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Abstract

Very few methods for hybrid federated learning,
where clients only hold subsets of both features
and samples, exist. Yet, this scenario is very im-
portant in practical settings. We provide a fast,
robust algorithm for hybrid federated learning
that hinges on Fenchel Duality. We prove the
convergence of the algorithm to the same solu-
tion as if the model was trained centrally in a
variety of practical regimes. Furthermore, we
provide experimental results that demonstrate the
performance improvements of the algorithm over
a commonly used method in federated learning,
FedAvg. We also provide privacy considerations
and necessary steps to protect client data.

1 Introduction

Federated learning (FL) has quickly become a top choice
for privacy-aware machine learning (Li et al., 2020a). The
basic premise of federated learning is that a group of exter-
nal nodes called clients hold parts of the data and a central
server coordinates the training of a model representative
of these data but without directly accessing the data itself.
This requires the clients to train local models, then pass
some information (such as model weights) to the server
where the server aggregates the clients’ contributions to up-
date its global model. The goal of FL is to build algorithms
that result in convergence to a similar objective value as the
centralized case, as if the server had access to all data di-
rectly, and perform well over various problem settings with
minimal communication overhead.

Federated learning can be classified based on how the data
is gathered on the clients. In horizontal FL, each client
holds a subset of the samples that contain all of their fea-
tures. In vertical FL, each client holds all of the samples but
only a subset of each sample’s features. These are both spe-
cial cases of hybrid FL where each client contains a subset
of the samples and a subset of the features.

Hybrid FL is less studied than the case of horizontal and
vertical FL, but it is still very important in practice. An

example of hybrid FL is the case where multiple hospitals
wish to build a central model but cannot directly share data
between hospitals due to privacy laws. Each hospital has
a subset of all of the patients, and since each patient may
have visited multiple hospitals, the patient’s features are
split between many hospitals. Similar examples arise in
banking/finance, e-commerce, advertising, and social net-
works.

We introduce a primal-dual algorithm, Hybrid Federated
Dual Coordinate Ascent (HyFDCA), that solves convex
problems in the hybrid FL setting. This algorithm ex-
tends CoCoA, a primal-dual distributed optimization algo-
rithm introduced by Jaggi et al. (2014) and Smith et al.
(2017), to the case where both samples and features are par-
titioned across clients. We provide privacy considerations
that ensure that client data cannot be reconstructed by the
server. Next, we provide proofs of convergence under var-
ious problem settings including special cases where only
subsets of clients are available for participation in each it-
eration. The algorithm and associated proofs can also be
utilized in the distributed optimization setting where both
samples and features are distributed (doubly distributed)
across computational nodes. As far as we know, this is
the only algorithm in the doubly distributed case that has
guaranteed convergence outside of block-splitting ADMM
developed by Parikh and Boyd (2014). ADMM has not
been designed with FL in mind, but the algorithm has no
data sharing. On the down side, block-splitting ADMM re-
quires full client participation which makes it much more
restrictive than HyFDCA and essentially impractical for
FL. It is also the only known hybrid FL algorithm that con-
verges to the same solution as if the model was trained
centrally. Finally, we provide extensive experimental re-
sults that demonstrate the performance improvements of
HyFDCA over FedAvg, a commonly-used FL algorithm
(McMahan et al., 2017).

Our main contributions in this work are as follows:

1. Provide HyFDCA, a provably convergent primal-dual
algorithm for hybrid FL. The proofs cover a variety
of FL problem settings such as incomplete client par-
ticipation. Furthermore, the convergence rates pro-
vided for the special cases of horizontal and vertical
FL match or exceed the rates of popular FL algorithms
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designed for those particular settings.

2. Provide the privacy steps that ensure privacy of client
data in the primal-dual setting. These principles apply
to future efforts in developing primal-dual algorithms
for FL.

3. Demonstrate that HyFDCA empirically outperforms
FedAvg in loss function value and validation accuracy
across a multitude of problem settings and datasets.
We also introduce a hyperparameter selection frame-
work for FL with competing metrics using ideas from
multiobjective optimization.

In Section 2, we discuss work that has been done in the
vertical and horizontal settings and the lack of algorithms
that exist for the hybrid setting. We then highlight the im-
provements that HyFDCA provides in theory and practice.
In Section 3, we introduce HyFDCA and privacy consid-
erations that protect client data. In Section 4, we analyze
convergence of HyFDCA and provide convergence results
in a variety of practical FL problem settings. In Section 5,
we present experimental results on three separate data sets
and compare the performance of HyFDCA with FedAvg.

2 Related Work

There has been significant work in developing primal-dual
algorithms that harness Fenchel Duality for distributed op-
timization where samples are distributed across compute
nodes. One of the leading frameworks on this front is Co-
CoA. However, these algorithms do not properly handle
data that is distributed over both samples and features. This
extension from partitioning data over a single axis direc-
tion to both directions is not a trivial extension, especially
in the primal-dual case where now multiple clients share
different copies of the same dual variables and the same
primal weights. D3CA is the first algorithm to extend Co-
CoA to the case where data is distributed over samples and
features (Nathan and Klabjan, 2017). However, D3CA has
no analytical convergence guarantees and has convergence
problems in practice with small regularization constant.
HyFDCA fixes these issues with D3CA and is altered to
ensure that the privacy requirements for FL are met. Block-
splitting ADMM is the only other distributed optimization
algorithm that can handle distributed samples and features.
However, as Nathan and Klabjan (2017) show, the empiri-
cal performance of block-splitting ADMM is poor and full
client participation is needed. HyFDCA and the associated
proofs, while focused on the federated setting, can also be
utilized in the distributed optimization setting where both
samples and features are distributed across computational
nodes.

There has been substantial work in horizontal FL where
samples are distributed across clients but each sample con-
tains the full set of features. One of the most commonly

used algorithms is FedAvg which, in essence, computes
model weights on each client using stochastic gradient de-
scent (SGD), then averages together these model weights
in an iterative fashion. FedAvg can be naively extended
to the hybrid FL case by computing client weights locally,
as before, then concatenating the model weights and av-
eraging at the overlaps. From now on, this modified ver-
sion of FedAvg is what is meant when referencing Fed-
Avg in the hybrid FL setting. Empirical results in Section 5
demonstrate that this naive extension is not satisfactory, and
focused algorithms with satisfactory performance specifi-
cally for hybrid FL must be developed. The convergence
rate of HyFDCA matches FedAvg (Li et al., 2020b) in the
special case of horizontal FL. Furthermore, HyFDCA does
not require smooth loss functions unlike FedAvg, making
the convergence results more flexible.

FedDCD is an approach for using dual methods for FL, but
is limited to the regime of horizontal FL (Fan et al., 2022).
The extension to hybrid FL is not clear as now multiple
clients hold copies of the same dual variables and the lo-
cal coordinate descent that FedDCD performs is no longer
valid. Furthermore, the proof results given for FedDCD re-
quire smooth loss functions which eliminate many common
loss functions such as hinge loss. Our convergence results
do not require smoothness of the loss functions. FedDCD
does not mention privacy considerations in the case that
the mapping between primal and dual variables can be in-
verted to reveal information about the data held on clients.
We address these privacy concerns with suitable homomor-
phic encryption steps in HyFDCA. We note that to the best
of our knowledge, HyFDCA is the only primal-dual algo-
rithm that can handle vertical FL.

There has been substantially less work in vertical FL where
each client has all of the samples but only a subset of the
features. Some approaches exist such as FedSGD (ver-
tical variant) and FedBCD which rely on communicating
relevant information between clients to compute stochas-
tic gradients despite only holding a portion of the features
(Liu et al., 2022). However, these algorithms do not work
in the hybrid FL case we are exploring. Furthermore,
they require communication of this gradient information
between clients instead of just passing information through
the server. In addition, the convergence rate of HyFDCA
in the special case of vertical FL is faster than FedBCD,
demonstrating that while HyFDCA is designed to handle
hybrid FL, it also enjoys improvements over existing meth-
ods in the special cases of horizontal and vertical FL.

To the best of our knowledge, there is only one other al-
gorithm that focuses on hybrid FL, HyFEM proposed by
Zhang et al. (2020). This algorithm uses a feature match-
ing formulation that balances clients building accurate local
models and the server learning an accurate global model.
This requires a matching regularizer constant that must be
tuned based on user goals and results in disparate local and
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global models. Furthermore, the convergence results pro-
vided for HyFEM only prove convergence of the matching
formulation not of the original global problem. This work
is substantially different than our approach which uses data
on local clients to build a global model that converges to
the same solution as if the model was trained centrally.
Furthermore, the local and global models are synchronized
and do not require the adjustment of a matching parame-
ter between local and global models. However, HyFEM
is suitable for a vast array of architectures including deep
learning architectures, whereas HyFDCA is designed for
convex problems like logistic regression and support vec-
tor machines.

3 The Primal-Dual Algorithm

The goal is to solve the following minimization problem
that consists of a strongly convex, L2 regularizer and a sum
of convex loss functions

min
w∈RM

P (w) =
λ

2
||w||2 + 1

N

N∑
i=1

li(w
Txi) (1)

where w are the weights of the model, M is the total num-
ber of features, N is the total number of samples, λ is the
regularization parameter that influences the relative impor-
tance of regularization, xi is the i-th sample, and li are sam-
ple specific loss functions. This class of problems encom-
passes many important models in machine learning includ-
ing logistic regression and support vector machines (SVM).

Our approach takes advantage of the Fenchel Dual of this
problem, which is defined as

max
α∈RN

D(α) = −λ

2
|| 1

λN

N∑
i=1

αixi||2 −
1

N

N∑
i=1

l∗i (−αi)

(2)
where α are the dual variables and l∗ is the convex con-
jugate of l. There is a convenient relationship between
optimal primal, w∗, and dual variables, α∗, defined by
w∗ = 1

λN

∑N
i=1 α

∗
i xi. When li are convex, we have that

P (w∗) = D(α∗).

3.1 The HyFDCA Algorithm

The main idea of HyFDCA, shown in Algorithm 1, is that
each client performs a local dual coordinate ascent to find
updates to the dual variables. This local method, shown
in Algorithm 3, utilizes the inner product of the primal
weights and the data, and thus a secure way of finding this
inner product across clients that contain sections of each
sample is provided in Algorithm 2. These dual updates
from clients are averaged together and then used to update
the global dual variables held on the server. These updated

dual variables are then sent back to the clients where they
each compute their local contribution of the primal weights.
These are then sent back to the server and aggregated. The
steps to compute these global primal weights are shown in
Algorithm 4. A diagram of HyFDCA that demonstrates
each step is shown in Figure 1.

We introduce some additional notation. Set Bn is the set
of clients that contain sample n; Ik is the set of samples
available on client k; Mk is the set of features available to
client k; and Km is the set of clients that contain feature
m. Furthermore, xk,i is the subset of sample i available to
client k, and xk,i,m is the value of feature m of sample i
located on client k.

Algorithm 1: HyFDCA

1 Initialize α0 = 0, w0 = 0, and ŵ0 = 0.
2 Set ipk,i = 0 for every client k and i ∈ Ik.
3 for t=1,2,...T do
4 Given Kt, the subset of clients available in the

given iteration
5 Find Kt = {k : k ∈ Kt and k /∈ Kt−1}
6 Send enc(αt

0) to clients k ∈ Kt

7 PrimalAggregation(Kt)
8 SecureInnerProduct(Kt)
9 for all clients k ∈ Kt do

10 ∆αt
k=LocalDualMethod(αt−1

k , wt−1
k , xT

i w
t−1
0 )

11 Send all enc( γt

|Bn|∆αt
k) to server

12 end
13 for n=1,2,...,N do
14 enc(αt

0,n) =

enc(αt−1
0,n ) +

∑
b∈Bn

enc( γt

|Bn|∆αt
b,n)

15 end
16 Send enc(αt

0) to clients k ∈ Kt and clients decrypt
17 PrimalAggregation(Kt)
18 SecureInnerProduct(Kt)
19 end

Due to the mapping between primal and dual variables,
w = 1

λN

∑N
i=1 αixi = Aα, care needs to be taken to pre-

vent the reconstruction of A from iterates of w and α. The
server could collect wt and αt for many t and construct a
system of linear equations W = AA where W collects it-
erates of w in its columns and A collects iterates of α in
its columns. This would allow for the solution of A or the
approximate solution in the least-squares sense if A is not
square. For this reason, either α or w should be encrypted
to prevent this reconstruction of the data. Because w is used
by the central model for inference on new data, we choose
to encrypt α using homomorphic encryption.

Homomorphic encryption is a technique for encrypting
data and preserving certain arithmetic operations in the
encrypted form (Gentry, 2009). For example, in additive
homomorphic encryption the following holds: enc(X) +
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Figure 1: Flowchart of HyFDCA. Each vertical arrow
represents a communication of some information between
clients and the server.

enc(Y ) = enc(X + Y ). There are numerous algorithms
for homomorphic encryption and new, faster algorithms are
invented frequently. For example, the Paillier cryptosys-
tem takes on average 18.882 ms for encryption, 18.865 ms
for decryption, and 0.054 ms for addition in the encrypted
state (Sidorov et al., 2022). HyFDCA uses homomorphic
encryption in several steps to ensure that the server can per-
form aggregation operations but not reconstruct the under-
lying data that belongs to the clients.

In addition, the communication of the inner product infor-
mation poses a similar problem. If we define bti = (wt)Txi,
then the server could collect iterates of b and w and form a
system of linear equations B = Wxi where W collects w
in its rows and B is a column vector of the corresponding
bi. This system could then be solved for xi. For this reason,
the inner product components passed to the server from the
clients must be encrypted using additive homomorphic en-
cryption to prevent this reconstruction of the data.

So far, we have addressed the server reconstructing data,
however, another concern is the clients themselves recon-
structing data from other clients. It is important that the
clients are only sent the dual variables corresponding to the
samples on that client and only the primal weights corre-
sponding to the features on that client. With this informa-
tion they would only be able to reconstruct their local data.

The dual variables and primal weights are sent between the
server and clients at the beginning and end of each iter-
ation to ensure that clients are not using stale information
because they may not participate in every iteration. It is im-
portant to note that in the special case of horizontal FL, the
SecureInnerProduct component is not necessary, as each
client can compute this inner product with just local data.
This simplifies the algorithm considerably and removes the
need for some homomorphic encryption which can be com-
putationally costly.

Algorithm 2: SecureInnerProduct

1 Input: Set of available clients K
2 for all clients k ∈ K do
3 for all samples i ∈ Ik do
4 Client k computes local xT

k,iw
t
k and encrypts

this scalar using additive homomorphic
encryption resulting in enc(xT

k,iw
t
k).

5 ipk,i = enc(xT
k,iw

t
k).

6 Send ipk,i to server.
7 end
8 end
9 for all samples i = 1, 2, ..., N do

10 Server computes enc(xT
i w

t) =
∑

k∈Bi
ipk,i.

11 Send to all clients k ∈ K all values enc(xT
i w

t) for
i ∈ Ik.

12 end
13 Clients decrypt enc(xT

i w
t
0) to obtain xT

i w
t
0.

Algorithm 3: LocalDualMethod

1 Input: αt−1
k , wt−1

k , xT
i w

t
0

2 D is a set of sample indices available to client k of size
H randomly chosen without replacement

3 Let ∆αt
k,i = 0 for all i ∈ Ik

4 for i ∈ D do
5 Let ut−1

i ∈ ∂li(x
T
i w

t−1
0 )

6 sk,i = argmaxs∈[0,1]{−l∗i (−(αt−1
k,i + sγt(u

t−1
i −

αt−1
k,i )))− sγt(w

t−1)Txi(u
t−1
i − αt−1

k,i )−
γ2
t

2λ (s(u
t−1
i − αt−1

k,i ))
2}

7 ∆αt
k,i = sk,i(u

t−1
k,i − αt−1

k,i )

8 end
9 Return ∆αt

k.

Algorithm 4: PrimalAggregation

1 Input: Set of available clients K
2 for all clients k ∈ K do
3 for all features m ∈ Mk do
4 ŵk,m =

∑
i∈Ik

αt
k,ixk,i,m

5 end
6 end
7 Update global ŵ0,k,m from available local ŵk,m

8 for all features m = 1, 2, ...,M do
9 wt

0,m = 1
λN

∑
k∈Km

ŵ0,k,m

10 end
11 Send wt

0 to clients k ∈ K
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4 Convergence Analysis

We provide convergence proofs for HyFDCA in various
problem settings. The proofs for these theorems are located
in the supplementary materials.

4.1 Hybrid Federated Setting with Complete Client
Participation

We first make the following assumptions of our problem
setting.

Assumption 1. Loss functions li ≥ 0 are convex and L-
Lipschitz functions. This is satisfied by many commonly-
used loss functions in practice including logistic regression
and hinge loss (support vector machines).

Assumption 2. The set of clients, K, available at a given
outer iteration is the full set of clients.

Assumption 3. The data is split among clients in the par-
ticular way shown in Figure 2. We assume that |Ik| = N

K

and |Mk| = M
Q for every client k. It is also assumed that

Q = |Bi| for every i, and K = |Km| for every m, i.e., each
sample belongs to the same number of clients and each fea-
ture belongs to the same number of clients.

Figure 2: Diagram of how data is assumed to be stored
among clients for the convergence proof in the case where
N = 4,M = 6,K = 2, Q = 3.

Theorem 1. If Assumptions 1-3 are met and γt = 1, then
Algorithm 1 results in the bound on the dual suboptimality
gap, E[εtD] ≤ (1− stHK

N )E[εt−1
D ] +

s2tHK
N G, for any st ∈

[0, 1] and G ≤ 2L2

λ , where εtD = D(α∗)−D(αt).

Next, we find the bound on the suboptimality gap in terms
of the number of iterations.

Theorem 2. If HK
N ≤ 1, then for every t ≥ t0 we have

E[εtD] ≤ 2G

1 + HK
2N (t− t0)

(3)

where t0 = max{0, ⌈log(E[ε0D]/G)⌉}. This upper bound
clearly tends to zero as t → ∞.

The requirement of HK ≤ N places an upper limit on
the number of inner iterations that can be performed before
aggregation across clients.

4.2 Horizontal Federated Setting with Random
Subsets of Available Clients

The case of incomplete client participation for hybrid FL
is difficult because of the presence of stale variables due
to clients not participating in some iterations affecting sev-
eral steps of the algorithm. More details on where these
stale variables impact the algorithm are given in Section
4.3. The PrimalAggregation and SecureInnerProduct steps
before and after the local updates alleviate these issues in
practice, but problems still exist for convergence proofs.
For this reason, we first approach the incomplete client par-
ticipation case for horizontal FL where this problem does
not exist.

Assumption 4. Data is split among clients such that every
client has the full set of features but only a subset of sam-
ples (definition of horizontal FL). Furthermore, we assume
that each client holds N/K samples, where K is the total
number of clients.

Assumption 5. Each outer iteration, a random subset of
clients is chosen to participate and perform updates. Each
client has an equal probability of being chosen and the
mean number of clients chosen for a given outer iteration
is P . Thus the mean fraction of clients participating in a
given outer iteration is P

K .

Theorem 3. If Assumptions 1,4, and 5 are met, γt = 1, and
PH
N ≤ 1, then Algorithm 1 results in the following bound

on the dual suboptimality gap for every t ≥ t0

E[εtD] ≤ 2G

1 + PH
2N (t− t0)

(4)

where t0 = max{0, ⌈log(E[ε0D]/G)⌉} and G ≤ 2L2

λ . This
upper bound clearly tends to zero as t → ∞.

The requirement on PH ≤ N similarly places a limit on
the amount of inner iterations that can be performed be-
fore aggregation. This result demonstrates that HyFDCA
enjoys a convergence rate of O( 1t ) which matches the con-
vergence rate of FedAvg. However, our convergence proof
does not assume smooth loss functions whereas FedAvg
does. This makes our convergence results more flexible in
the horizontal FL setting.

4.3 Vertical Federated Setting with Incomplete Client
Participation

We now explore the case of incomplete client participation
for the vertical federated setting. We change the assump-
tions for how subsets of clients are available for participa-
tion in Assumption 7 because random client subsets impose
some issues for vertical FL. If a particular αi is updated,
then w0 needs to be updated using local data on each client.
If one of these clients cannot provide its contribution to w0,
then these primal weights will be stale and thus (wt−1

0 )Txi
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used in LocalDualMethod will also be stale. We require a
limit on the maximum number of iterations that a partic-
ular client can go without being updated. The reason this
cannot be extended to the hybrid case is that if wt−1

0 is up-
dated, then a particular client will require (wt−1

0 )Txi for
any i, but now that samples are also split across clients, it
may not be able to access all components of (wt−1

0 )Txi if
some of those clients are not available. This is unlike the
vertical FL case where all samples belong to each client.

Assumption 6. Data is split among clients such that ev-
ery client has the full set of samples but only a subset of
features (definition of vertical FL).

Assumption 7. All of the clients are partitioned into C ≥
2 sets where each subset of clients has Q/C clients (we
assume that Q mod C = 0). Let B1,B2, ...,BC be this
partition. We then assume that client subsets are active
(participating in a particular outer iteration) in the cyclic
fashion. Thus the sequence of active clients is defined as
B1,B2, ...,BC ,B1, ...,BC ,...

Theorem 4. If Assumptions 1, 6, and 7 are met, H
N ≤ 1,

and γt = 1
t , then Algorithm 1 results in the following

bound on the dual suboptimality gap for t ≥ C

E[εtD] ≤ J1 + J2(ln(t− C + 1) + 1)

tH/N

where J1 = CH/NE[εC−1
D ], J2 = 2HL2(C+1)

Nλ [(C − 1)4 +

2(C−1)2+1], and E[εC−1
D ] is bounded by a constant with

the standard assumption that li(0) ≤ 1. This converges to
zero as t → ∞.

It is clear that for fastest convergence in an asymptotic
sense we want H/N to be large, however, this would also
increase the magnitude of J1 and J2 which would in turn
slow convergence in early iterations when t is small and
J1 and J2 dominate the bound. Furthermore, if we take
HN = 1, then HyFDCA exhibits O( log t

t ) convergence
whereas FedBCD exhibits a slower O( 1√

t
) convergence

rate and requires full client participation. Thus, to the best
of our knowledge HyFDCA exhibits the best convergence
rates for vertical FL even with partial client participation.

We emphasize that Theorems 2-4 demonstrate that
HyFDCA in a particular federated setting converges to the
same optimal solution as if all of the data was collected on
a centralized device and trained with a convergent method.
Furthermore, Theorems 3 and 4 demonstrate that in the hor-
izontal and vertical FL cases, HyFDCA is still guaranteed
to converge to the optimal solution when only a subset of
clients participate in each iteration. The convergence rates
for the special cases of horizontal and vertical FL match or
exceed the convergence rates of existing FL algorithms in
those settings.

5 Experimental Results

We investigate the performance of HyFDCA on several
datasets and in several different problem settings (number
of clients and percentage of available clients). These dif-
ferent problem settings cover the vast number of different
environments seen in practice.

Three datasets were selected to examine HyFDCA under a
variety of conditions. MNIST is a database of handwritten
digits where each sample is a 28x28 pixel image (Deng,
2012). News20 binary is a class-balanced two-class vari-
ant of the UCI “20 newsgroup” dataset, a text classification
dataset (Chang and Lin, 2011). Finally, Covtype binary is a
binarized dataset for predicting forest cover type from car-
tographic variables. The supplementary materials outline
some key characteristics of these datasets.

We use the hinge loss function for li in experiments.
A practical variant of LocalDualMethod, shown in Al-
gorithm 5, was used for experiments. Line 5 of Al-
gorithm 5 has a closed form solution of ∆αt

k,i =

yi(max(0,min(1, λN(1− xT
i w

t−1
0 ) + yiα

t−1
k,i )))− αt−1

k,i ,
where yi is the class label for the i-th sample. Further-
more, the second occurrence of SecureInnerProduct (Line
18 of Algorithm 1) was omitted for experiments because it
did not improve empirical performance and incurred more
communication cost.

Algorithm 5: LocalDualMethod (Practical Variant)

1 Input: αt−1
k , wt−1

k , xT
i w

t
0

2 D is a set of sample indices available to client k of size
H randomly chosen without replacement

3 Let ∆αt
k,i = 0 for all i ∈ Ik

4 for i ∈ D do
5 Find ∆αt

k,i that maximizes
−l∗i (−(αt−1

k,i +∆αt
k,i))− λN

2 (||wt−1
0 ||2 +

2∆αt
k,i

λN (wt−1
0 )Txi + (

∆αt
k,i

λN )2)

6 αt−1
k,i = αt−1

k,i +∆αt
k,i

7 end
8 Return ∆αt

k.

5.1 Implementation

The exact details of the implementation including the soft-
ware versions are provided in the Supplementary Materi-
als. In FL each client would perform local computations
in parallel, but in our simulation the client objects were
updated sequentially and the slowest client was used to
record the time (to accurately simulate the clients working
in parallel). All sample and feature assignments to differ-
ent clients were IID in nature with no overlapping features
or repeat samples held by multiple clients. We emphasize
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that the experiments were performed in the hybrid setting
where both samples and features were gathered across dif-
ferent clients. Homomorphic encryption was not actually
performed; instead, published time benchmarks of homo-
morphic encryption were used to estimate the encryption
time penalty which was added to the overall wall time.
The regularization parameter, λ, was found by tuning via
a centralized model and finding the value that resulted in
the highest validation accuracy. The resulting choices of
λ are λMNIST = 0.001, λNews20 = 1 × 10−5, and
λcovtype = 5× 10−5.

Hyperparameter tuning for federated learning is diffi-
cult because there are many competing interests such as
minimizing iterations to reach a suitable solution while
also minimizing the amount of computation performed on
clients due to computational limits on common clients such
as smartphones. Therefore, we frame this as a multiobjec-
tive optimization problem where an optimal solution must
be selected from the Pareto-Optimal front. We chose to
use Gray Relational Analysis to solve this (Wang and Ran-
gaiah, 2017). The exact metrics used are provided in the
supplementary materials. For FedAvg, we tuned the num-
ber of local iterations of SGD performed as well as a, b in
the learning rate γt =

a
b+

√
t
. For HyFDCA, we only need

to tune the number of inner iterations. Each problem set-
ting, choice of number of clients and fraction of available
clients, had different hyperparemeters tuned for that partic-
ular problem.

The plots shown use the relative loss function which is
defined as PR =

P (wt)−P∗
C

P∗
C

where P ∗
C is the optimal

loss function value trained centrally. The plots were also
smoothed using a moving average filter and displayed with
a log scale on the y-axis to increase readability. HyFDCA
and FedAvg were run for the same number of outer iter-
ations without a stopping criterion. Furthermore, Figure
3 includes 0.2575s latency time penalties for each round-
trip communication, and it includes encryption times. The
times are scaled to the time of the slowest instance, but the
relative times between the two algorithms are preserved.
Figure 5 shows the effect of different communication la-
tencies. Further plotting details are provided in Supple-
mentary Materials.

5.2 Results

We now discuss the results of the experiments. Due to the
large number of problem settings investigated and the var-
ious metrics of interest, only selected plots are displayed
here. The rest of the plots covering all problem settings are
included in the Supplementary Materials.

Figure 3 compares the performance of HyFDCA with Fed-
Avg over a variety of problem settings. These plots cor-
respond to varying levels of difficulty. Intuitively, a large
number of clients with a very low fraction of participating

clients is more difficult than a small number of clients with
a high fraction of participating clients. The results show
that HyFDCA converges to a lower relative loss function
value and a higher validation accuracy. The poor perfor-
mance of FedAvg demonstrates that algorithms designed
specifically for horizontal or vertical FL cannot simply be
lifted to the hybrid case. Moreover, though HyFDCA is
a significantly more complex algorithm, HyFDCA often
achieves better loss and generalization in a shorter amount
of time even accounting for encryption and latency. We
note that FedAvg terminates sooner in time because both
algorithms are run for the same number of iterations, but
the iterations of FedAvg are faster partially because they
do not require homomorphic encryption.

Figure 4 shows the effect of different problem settings on
the performance of HyFDCA. Although each problem set-
ting used different tuned hyperparameters, it is clear that
the settings with the small fraction of participating clients
converged significantly slower. News20 is chosen as the
representative plot, but the behavior for MNIST and Cov-
type is similar - the plots for these datasets are shown in
Supplementary Materials.

Figure 5 shows the time cost breakdown for each iteration
of HyFDCA and FedAvg. It is clear that each iteration of
HyFDCA takes more time than each iteration of FedAvg.
Furthermore, the most expensive component of HyFDCA
is the homomorphic encryption cost. This is expected to
significantly decrease over time as homomorphic encryp-
tion algorithms become much faster due to heavy research
efforts. In addition, various methods can be employed to
decrease the homomorphic encryption costs such as par-
allelizing the encryption/decryption execution of the ele-
ments of the vectors. Furthermore, the user could choose
whether to encrypt the primal or the dual variables depend-
ing on the characteristics of the dataset, which could further
decrease the encryption time penalty. It is also clear that the
connection latency time costs for HyFDCA are higher than
FedAvg due to more communications between the clients
and the server in each iteration.

While HyFDCA is a more complicated algorithm that in-
volves more communication rounds per iteration and re-
quires homomorphic encryption, the performance gains
over FedAvg make HyFDCA more desirable in most hybrid
federated learning applications. Furthermore, HyFDCA
converges to a lower loss value and higher validation ac-
curacy in less overall time under most problem settings de-
spite the higher time per iteration. Lastly, HyFDCA only
requires tuning of one hyperparameter, number of inner it-
erations, as opposed to FedAvg which also requires the tun-
ing of the learning rate. This may allow for simpler practi-
cal implementations and (adaptive) hyperparameter selec-
tion methodologies.
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Figure 3: Comparison of HyFDCA and FedAvg over varying problem settings.

Figure 4: Effect of number of clients and fraction of participating clients on HyFDCA performance on News20.

Figure 5: Average time costs of components of each outer iteration of HyFDCA and FedAvg.
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