
A Primal-Dual Algorithm for Hybrid Federated Learning: Supplementary
Materials

1 Convergence Proofs

Lemma 1. Let li : R → R be an L-Lipschitz continuous function. Then for any real value α with |α| > L we have that
l∗i (α) = ∞

Proof. Proof provided in Lemma 21 in (Shalev-Shwartz and Zhang, 2013).

1.1 Proof of Theorem 1

Proof. For simplicity, the global dual and primal variables are denoted as: w = w0 and αi = α0,i. We also frequently use
the following relationships.

1. The map from dual to primal is w = 1
λN

∑N
i=1 αixi = Aα.

2. αt
i = αt−1

i + γt∆αt
i

3. Equalities αt−1
i = αt−1

b,i = 1
Q

∑
b∈Bi

αt−1
b,i hold because the aggregated dual variables on the server are sent back to

the clients every iteration.

4. Following from Cauchy-Schwarz, we have ||
∑N

i=1 zi||2 ≤ N
∑N

i=1 ||zi||2.

Starting with the difference in dual objective after one outer iteration, we have

N [D(αt)−D(αt−1)] = [−
N∑
i=1

l∗i (−αt
i)−

λN

2
||Aαt||2]︸ ︷︷ ︸

A

− [−
N∑
i=1

l∗i (−αt−1
i )− λN

2
||Aαt−1||2]︸ ︷︷ ︸

B

.

We rewrite A as

A = −
N∑
i=1

l∗i (−αt
i)︸ ︷︷ ︸

A1

−λN

2
||Aαt||2︸ ︷︷ ︸
A2

and then bound A1 as

A1 = −
N∑
i=1

l∗i (−αt−1
i − γt∆αt

i)

= −
N∑
i=1

l∗i (−(1− γt)α
t−1
i − γt(α

t−1
i +∆αt

i))

≥ −
N∑
i=1

[γtl
∗
i (−αt−1

i −∆αt
i) + (1− γt)l

∗
i (−αt−1

i )]
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and rewrite A2 as

A2 = −λN

2
||Aαt||2

= −λN

2
||A[αt−1 + γt∆αt]||2

= −λN

2
||wt−1 + γtA∆αt||2

= −λN

2
[||wt−1||2 + 2γt(w

t−1)T A∆αt + γ2
t ||A∆αt||2].

Our bound on A is

A ≥ −
N∑
i=1

[γtl
∗
i (−αt−1

i −∆αt
i) + (1− γt)l

∗
i (−αt−1

i )]− λN

2
[||wt−1||2 + 2γt(w

t−1)T A∆αt + γ2
t ||A∆αt||2].

Expression B appears in the RHS, so we can simplify

A−B ≥ −
N∑
i=1

[γtl
∗
i (−αt−1

i −∆αt
i)− γtl

∗
i (−αt−1

i )]− λN

2
[2γt(w

t−1)T A∆αt + γ2
t ||A∆αt||2].

Next, we re-write the linear operator A as a summation over samples

A−B ≥ −
N∑
i=1

[γtl
∗
i (−αt−1

i −∆αt
i)− γtl

∗
i (−αt−1

i )]− λN

2
[2γt(w

t−1)T
N∑
i=1

1

λN
xi∆αt

i + γ2
t ||

N∑
i=1

1

λN
xi∆αt

i||2]

= −
N∑
i=1

[γtl
∗
i (−αt−1

i −∆αt
i)− γtl

∗
i (−αt−1

i ) + γt(w
t−1)Txi∆αt

i]−
λN

2
[γ2

t ||
N∑
i=1

1

λN
xi∆αt

i||2]

≥ −
N∑
i=1

[γtl
∗
i (−αt−1

i −∆αt
i)− γtl

∗
i (−αt−1

i ) + γt(w
t−1)Txi∆αt

i]−
λN

2
[
γ2
t

λ2N

N∑
i=1

||xi∆αt
i||2].

Without loss of generality, we assume our data is normalized such that ||xi|| ≤ 1, which yields

A−B ≥ −
N∑
i=1

[γtl
∗
i (−αt−1

i −∆αt
i)− γtl

∗
i (−αt−1

i ) + γt(w
t−1)Txi∆αt

i +
γ2
t

2λ
(∆αt

i)
2].

Our dual updates are defined as ∆αt
i =

1
Q

∑
b∈Bi

∆αt
b,i, which is just the mean of the dual variable updates on each client

that contains sample i. In turn we have

A−B ≥ −
N∑
i=1

[γtl
∗
i (−αt−1

i − 1

Q

∑
b∈Bi

∆αt
b,i)− γtl

∗
i (−αt−1

i ) + γt(w
t−1)Txi(

1

Q

∑
b∈Bi

∆αt
b,i) +

γ2
t

2λ
(
1

Q

∑
b∈Bi

∆αt
b,i)

2]

= −
N∑
i=1

[γtl
∗
i (−

1

Q

∑
b∈Bi

(αt−1
i +∆αt

b,i))− γtl
∗
i (−αt−1

i ) + γt(w
t−1)Txi(

1

Q

∑
b∈Bi

∆αt
b,i) +

γ2
t

2λ
(
1

Q

∑
b∈Bi

∆αt
b,i)

2].

By convexity of l∗i we get

A−B ≥ −
N∑
i=1

[
γt
Q

∑
b∈Bi

l∗i (−(αt−1
i +∆αt

b,i))− γtl
∗
i (−αt−1

i ) +
γt
Q

∑
b∈Bi

(wt−1)Txi∆αt
b,i +

γ2
t

2λQ

∑
b∈Bi

(∆αt
b,i)

2]

= −γt
Q

N∑
i=1

∑
b∈Bi

[l∗i (−(αt−1
i +∆αt

b,i))− l∗i (−αt−1
i ) + (wt−1)Txi∆αt

b,i +
γt
2λ

(∆αt
b,i)

2].



The stochastic element of this algorithm is in randomly determining which ∆αb,i are nonzero. If a particular ∆αb,i is zero,
then that term in the double series in the right hand side of the inequality is zero. If that ∆αb,i is nonzero, then the local
dual method chooses the ∆αb,i as follows. We choose our local dual method such that ∆αt

b,i = sb,i(u
t−1
i − αt−1

b,i ) where
sb,i ∈ [0, 1] and ut−1

i ∈ ∂li(x
T
i w

t−1
0 ). We define our local dual method to find sb,i as follows

sb,i = argmax
s∈[0,1]

{−l∗i (−(αt−1
b,i + s(ut−1

i − αt−1
b,i )))− s(wt−1)Txi(u

t−1
i − αt−1

b,i )− γt
2λ

(s(ut−1
i − αt−1

b,i ))2}.

Now we must find the probability that a particular αb,i is updated. This is HK/N , because there are a total of QN
pairings of samples and clients and there are HQK total updates per outer iteration. So we take the expectation over these
client/sample pairs while conditioning on the previous state, αt−1

i , to obtain

E[A−B|αt−1] ≥ −γtHK

QN

N∑
i=1

∑
b∈Bi

[l∗i (−(αt−1
i + sb,i(u

t−1
i − αt−1

b,i )))− l∗i (−αt−1
i )

+ (wt−1)Txisb,i(u
t−1
i − αt−1

b,i ) +
γt
2λ

(sb,i(u
t−1
i − αt−1

b,i ))2].

Due to the definition of the LocalDualMethod, the inequality holds for any choice of st ∈ [0, 1], and thus

E[A−B|αt−1] ≥ −γtHK

QN

N∑
i=1

∑
b∈Bi

[l∗i (−(αt−1
i + st(u

t−1
i − αt−1

b,i )))− l∗i (−αt−1
i )

+ (wt−1)Txist(u
t−1
i − αt−1

b,i ) +
γt
2λ

(st(u
t−1
i − αt−1

b,i ))2].

By convexity of l∗i , we conclude

E[A−B|αt−1] ≥ −γtHK

QN

N∑
i=1

∑
b∈Bi

[(1− st)l
∗
i (−αt−1

b,i ) + stl
∗
i (−ut−1

i )− l∗i (−αt−1
i )

+ (wt−1)Txist(u
t−1
i − αt−1

b,i ) +
γt
2λ

(st(u
t−1
i − αt−1

b,i ))2]

and thus from αt−1
b,i = αt−1

i , we have that

E[A−B|αt−1] ≥ −γtHK

QN

N∑
i=1

∑
b∈Bi

[−stl
∗
i (−αt−1

i ) + stl
∗
i (−ut−1

i ) + st(w
t−1)Txi(u

t−1
i − αt−1

i ) +
γts

2
t

2λ
(ut−1

i − αt−1
i )2].

We obtain

E[A−B|αt−1] ≥ −γtHK

N

N∑
i=1

[−stl
∗
i (−αt−1

i ) + stl
∗
i (−ut−1

i ) + st(w
t−1)Txi(u

t−1
i − αt−1

i ) +
γts

2
t

2λ
(ut−1

i − αt−1
i )2].

Now from convex conjugates we know that li(xT
i w

t−1) = −l∗i (−ut−1
i )− ut−1

i xT
i w

t−1, and thus

E[A−B|αt−1] ≥ −γtHK

N

N∑
i=1

[−stl
∗
i (−αt−1

i )− stli(x
T
i w

t−1)− st(w
t−1)Txiα

t−1
i +

γts
2
t

2λ
(ut−1

i − αt−1
i )2]. (1)
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The primal-dual gap at iteration t− 1 is defined as

P (wt−1)−D(αt−1) = (
λ

2
||wt−1||2 + 1

N

N∑
i=1

li((w
t−1)Txi))− (−λ

2
|| 1

λN

N∑
i=1

αt−1
i xi||2 −

1

N

N∑
i=1

l∗i (−αt−1
i ))

=
1

N

N∑
i=1

l∗i (−αt−1
i ) +

1

N

N∑
i=1

li((w
t−1)Txi) + λ||wt−1||2

=
1

N

N∑
i=1

l∗i (−αt−1
i ) +

1

N

N∑
i=1

li((w
t−1)Txi) + λ(wt−1)Twt−1

=
1

N

N∑
i=1

l∗i (−αt−1
i ) +

1

N

N∑
i=1

li((w
t−1)Txi) + λ(wt−1)T (

1

λN

N∑
i=1

αt−1
i xi)

=
1

N

N∑
i=1

[li((w
t−1)Txi) + l∗i (−αt−1

i ) + αt−1
i xT

i w
t−1].

We plug this primal-dual gap into (1) to derive

E[A−B|αt−1] ≥ stγtHK[P (wt−1)−D(αt−1)]− γ2
t s

2
tHK

2Nλ

N∑
i=1

(ut−1
i − αt−1

i )2

and after dividing by N

E[D(αt)−D(αt−1)|αt−1] ≥ stγtHK

N
[P (wt−1)−D(αt−1)]− γ2

t s
2
tHK

2N2λ

N∑
i=1

(ut−1
i − αt−1

i )2.

By assumption, γt = 1 and setting Gt−1 = 1
2Nλ

∑N
i=1(u

t−1
i − αt−1

i )2, we get

E[D(αt)−D(αt−1)|αt−1] ≥ stHK

N
[P (wt−1)−D(αt−1)]− s2tHK

N
Gt−1. (2)

We know that εt−1
D = D(α∗)−D(αt−1) ≤ P (wt−1)−D(αt−1) and D(αt)−D(αt−1) = εt−1

D − εtD. It must also hold
that E[D(αt)−D(αt−1)|αt−1] = E[εt−1

D − εtD|αt−1] = εt−1
D − E[εtD|αt−1]. Together with (2) this yields

εt−1
D − E[εtD|αt−1] ≥ stHK

N
εt−1
D − s2tHK

N
Gt−1.

Let Gt−1 ≤ G. Then,

E[εtD|αt−1] ≤ (1− stHK

N
)εt−1

D +
s2tHK

N
G.

Taking the expectation of both sides and using the law of iterated expectation we obtain

E[εtD] ≤ (1− stHK

N
)E[εt−1

D ] +
s2tHK

N
G.

Finally we need to bound G. From Lemma 1 we know that each |αb,i| < L due to the choice of LocalDualMethod.
Furthermore, |ui| < L because li are L-Lipschitz. We conclude that

G =
2L2

λ
.

This concludes the proof.



1.2 Proof of Theorem 2

Proof. This is proved by using induction on t. It also uses the fact that 1 + x ≤ ex. Let st = 1 for t ≤ t0 and
st =

1
1+HK

2N (t−t0)
for t > t0.

The base case of t = t0 follows as

E[εtD] ≤ (1− HK

N
)tE[ε0D] +

HK

N
G

t−1∑
τ=1

(1− HK

N
)τ

≤ (exp(
−HK

N
))tE[ε0D] +

HK

N
G(

1− (1− HK
N )t−1

1− (1− HK
N )

)

≤ (exp(
−HK

N
log(E[ε0D]/G)))E[ε0D] +G (1− (1− HK

N
)t−1)︸ ︷︷ ︸

≤1

≤ (
G

ε0D
)

HK
N E[ε0D] +G

≤ G+G

= 2G.

We now assume (3) holds for some t, and we need to prove that it also holds for t+ 1. We start with

E[εt+1
D ] ≤ (1− sHK

N
)E[εtD] +

s2HK

N
G

≤ (1− sHK

N
)(

2G

1 + HK
2N (t− t0)

) +
s2HK

N
G

= (1− HK/N

1 + HK
2N (t− t0)

)(
2G

1 + HK
2N (t− t0)

) +
HKG/N

(1 + HK
2N (t− t0))2

= 2G
1 + HK

2N (t− t0)− HK
2N

(1 + HK
2N (t− t0))2︸ ︷︷ ︸

U

.

We bound U by

U =
1 + HK

2N (t− t0)− HK
2N

(1 + HK
2N (t− t0))2

=
1

1 + HK
2N (t+ 1− t0)

(1 + HK
2N (t+ 1− t0))(1 +

HK
2N (t− 1− t0))

(1 + HK
2N (t− t0))2

=
1

1 + HK
2N (t+ 1− t0)

1 + HK
N (t− t0) +

H2K2

4N2 ((t− t0)
2 − 1)

1 + HK
N (t− t0) +

H2K2

4N2 (t− t0)2

=
1

1 + HK
2N (t+ 1− t0)

(1− H2K2

4N2(1 + HK
N (t− t0) +

H2K2

4N2 (t− t0)2)
)

=
1

1 + HK
2N (t+ 1− t0)

(1− H2K2

4N2(1 + HK
2N (t− t0))2

)︸ ︷︷ ︸
≤1

≤ 1

1 + HK
2N (t+ 1− t0)

.

Therefore,

E[εt+1
D ] ≤ 2G

1 + HK
2N (t+ 1− t0)

(3)
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completing the proof.

1.3 Proof of Theorem 3

Proof. This proof follows the proof of Theorem 1 closely. We first note some important facts that are key to the proof for
the horizontal case.

1. We have Q = |Bi| = 1, therefore each dual variable αi only belongs to a single client. We simplify the notation by
omitting the dual variable subscript pertaining to the client, e.g. we write αt

i instead of αt
b,i.

2. The inner product for sample i, xT
i w

t can be found completely on the single client and no aggregation by the server
is needed.

3. The relationship wt−1 = 1
λN

∑N
i=1 α

t−1
i xi still holds. Because some of the αi have not been updated in iteration

t− 1, the algorithm has stored the contributions of each component in ˆw0,k,m of the sum so that wt−1 can be exactly
found.

From the proof of Theorem 1, we have

A−B ≥ −
N∑
i=1

[γtl
∗
i (−αt−1

i −∆αt
i)− γtl

∗
i (−αt−1

i ) + γt(w
t−1)Txi∆αt

i +
γ2
t

2λ
(∆αt

i)
2].

In the hybrid case, we compute ∆αt
i =

1
Q

∑
b∈Bi

∆αt
b,i. However, in this case, this can be simplified due to Q = |Bi| = 1.

Now we must find the probability that a particular αi is updated. This is probability PH/N , because there are a total of N
samples and there are PH total expected updates per outer iteration. So taking the expectation over these available clients
while conditioning on the previous state, αt−1, yields

E[A−B|αt−1] ≥ −γtPH

N

N∑
i=1

[l∗i (−αt−1
i −∆αt

i)− l∗i (−αt−1
i ) + (wt−1)Txi∆αt

i +
γt
2λ

(∆αt
i)

2].

Due to the choice of LocalDualMethod, for any st ∈ [0, 1], we obtain

E[A−B|αt−1] ≥ −PHγt
N

N∑
i=1

[−stl
∗
i (−αt−1

i ) + stl
∗
i (−ut−1

i ) + (wt−1)Txist(u
t−1
i − αt−1

i ) +
γt
2λ

s2t (u
t−1
i − αt−1

i )2].

In the same vein as the in the proof of Theorem 1, we derive

E[A−B|αt−1] ≥ −PHγt
N

N∑
i=1

[−stl
∗
i (−αt−1

i )− stli(x
T
i w

t−1)− st(w
t−1)Txiα

t−1
i +

γt
2λ

s2t (u
t−1
i − αt−1

i )2]

and

E[A−B|αt−1] ≥ PHγtst[P (wt−1)−D(αt−1)]− PHγ2
t

2λN
s2t (u

t−1
i − αt−1

i )2]

which in turn yields

E[D(αt)−D(αt−1)|αt−1] ≥ PHst
N

[P (wt−1)−D(αt−1)]− PHs2t
N

Gt−1.

The rest of the proof is the same as in Theorem 1 and 2.



1.4 Proof of Theorem 4

Proof. We first note some important points.

1. If set c is selected for updates, then for all b ∈ Bc, we have αt−1
b,i = αt−1

i because all clients in that set are sent the
global dual variables from the server before performing local updates.

2. The dot product scalar, xT
i w, that is calculated and passed from the server at the start of iteration t is representative of

the true xT
i w

t−1. This is because if the feature indices are updated on a particular client, then that component of the
dot product is computed and sent to the server and the server stores the components of the dot product from feature
indices that were not updated.

3. We frequently use Lemma 1 and the choice of the LocalDualMethod to bound |αi| < L. Furthermore, |ui| < L
because li are L-Lipschitz.

We examine the change in the dual objective after one outer iteration. We assume that t ≥ C. We start with

N [D(αt)−D(αt−1)] ≥ [−
N∑
i=1

l∗i (−αt
i)−

λN

2
||Aαt||2]︸ ︷︷ ︸

A

− [−
N∑
i=1

l∗i (−αt−1
i )− λN

2
||Aαt−1||2]︸ ︷︷ ︸

B

.

We first examine A by

A = −
N∑
i=1

l∗i (−αt
i)−

λN

2
||Aαt||2

= −
N∑
i=1

l∗i (−αt−1
i −∆αt

i)−
λN

2
||Aαt−1 + A∆αt||2

= −
N∑
i=1

l∗i (−αt−1
i −∆αt

i)−
λN

2
[||Aαt−1||2 + 2(Aαt−1)T (A∆αt) + ||A∆αt||2].

Then we have

A−B ≥ −
N∑
i=1

[l∗i (−αt−1
i −∆αt

i)− l∗i (−αt−1
i )]− λN(Aαt−1)T (A∆αt)− λN

2
||A∆αt||2

≥ −
N∑
i=1

[l∗i (−αt−1
i −∆αt

i)− l∗i (−αt−1
i )]−

N∑
i=1

(Aαt−1)T∆αt
ixi −

1

2λ

N∑
i=1

(∆αt
i)

2

= −
N∑
i=1

[l∗i (−αt−1
i −∆αt

i)− l∗i (−αt−1
i ) + (Aαt−1)T∆αt

ixi +
1

2λ
(∆αt

i)
2].

We assume that at iteration t, a set c is selected and the clients in that set are updated. We have that ∆αt
i =

γt

Q/C

∑
b∈Bc

∆αt
b,i and

A−B ≥ −
N∑
i=1

[l∗i (−αt−1
i − γt

Q/C

∑
b∈Bc

∆αt
b,i)− l∗i (−αt−1

i ) + (Aαt−1)T (
γt

Q/C

∑
b∈Bc

∆αt
b,i)xi +

1

2λ
(

γt
Q/C

∑
b∈Bc

∆αt
b,i)

2].

Using convexity we have that

l∗i (−αt−1
i − γt

Q/C

∑
b∈Bc

∆αt
b,i) = l∗i (−

1

Q/C

∑
b∈Bc

αt−1
i − γt

Q/C

∑
b∈Bc

∆αt
b,i)

≤ 1

Q/C

∑
b∈Bc

l∗i (−αt−1
i − γt∆αt

b,i).
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Returning to A−B we derive

A−B ≥ −
N∑
i=1

[
1

Q/C

∑
b∈Bc

l∗i (−αt−1
i − γt∆αt

b,i)− l∗i (−αt−1
i ) +

γt
Q/C

∑
b∈Bc

(Aαt−1)T (∆αt
b,i)xi +

1

2λ

1

Q/C

∑
b∈Bc

(γt∆αt
b,i)

2]

= − 1

Q/C

N∑
i=1

∑
b∈Bc

[l∗i (−αt−1
i − γt∆αt

b,i)− l∗i (−αt−1
i ) + γt(Aαt−1)T (∆αt

b,i)xi +
1

2λ
(γt∆αt

b,i)
2].

The stochastic component of this algorithm is deciding if a particular sample i is selected for the corresponding dual
variable to be updated. If the sample-client pair is not selected to be updated, then ∆αt

b,i is zero, and the entire right
hand size of the inequality is zero. There are HQ/C possible updates in a given outer iteration and NQ/C total sample-
client combinations. Therefore, the probability of a given sample-client pair to be selected to be updated is H/N . By
conditioning on αt−1

i , we get

E[A−B|αt−1] ≥ − H

QN/C

N∑
i=1

∑
b∈Bc

[l∗i (−αt−1
i − γts

t
b,i(u

t−1
i − αt−1

i ))− l∗i (−αt−1
i ) + γt(Aαt−1)T (stb,i(u

t−1
i − αt−1

i ))xi

+
1

2λ
(γts

t
b,i(u

t−1
i − αt−1

i ))2]

= − H

QN/C

N∑
i=1

∑
b∈Bc

[l∗i (−αt−1
i − γts

t
b,i(u

t−1
i − αt−1

i ))− l∗i (−αt−1
i ) + γts

t
b,i(Aαt−1)T (ut−1

i − αt−1
i )xi

+
1

2λ
(γts

t
b,i(u

t−1
i − αt−1

i ))2]. (4)

We now express Aαt−1 in terms of wt−1. In the vertical case with incomplete client participation, wt−1 is different because
only a subset of clients are available at each outer iteration. Without loss of generality, let us assume that at iteration t− 1
set 1 was updated, at iteration t − 2 set 2 was updated, etc. We define xc,i as the portion of features that are available to
clients in set c with padded zeros at indices that are not available to the clients in set c.

Then based on PrimalAggregation we have

wt−1 =
1

λN

N∑
i=1

αt−1
i x1,i +

1

λN

N∑
i=1

αt−2
i x2,i + · · ·+ 1

λN

N∑
i=1

αt−C
i xC,i

= Aαt−1 − 1

λN

C∑
c=2

N∑
i=1

αt−1
i xc,i +

1

λN

C∑
c=2

N∑
i=1

αt−c
i xc,i.

We next manipulate this equation to

Aαt−1 = wt−1 +
1

λN

C∑
c=2

N∑
i=1

αt−1
i xc,i −

1

λN

C∑
c=2

N∑
i=1

αt−c
i xc,i

= wt−1 +
1

λN

C∑
c=2

N∑
i=1

(αt−1
i − αt−c

i )xc,i

= wt−1 +
1

λN

C∑
c=2

N∑
i=1

c−1∑
d=1

∆αt−d
i xc,i



and substitute this into (4) to obtain

E[A−B|αt−1] ≥ − H

QN/C

N∑
i=1

∑
b∈Bc

[l∗i (−αt−1
i − γts

t
b,i(u

t−1
i − αt−1

i ))− l∗i (−αt−1
i ) + γts

t
b,i(w

t−1)T (ut−1
i − αt−1

i )xi

+ γts
t
b,i(

1

λN

C∑
c=2

N∑
j=1

c−1∑
d=1

∆αt−d
j xc,j)

T (ut−1
i − αt−1

i )xi +
1

2λ
(γts

t
b,i(u

t−1
i − αt−1

i ))2].

Based on LocalDualMethod

sb,i = argmax
s∈[0,1]

−l∗i (−αt−1
i − γts(u

t−1
i − αt−1

i ))− γts(u
t−1
i − αt−1

i )(wt−1)Txi −
γ2
t s

2

2λ
(ut−1

i − αt−1
i )2,

therefore, we can replace sb,i in the terms included in the maximization with any value in [0, 1] and the bound still holds.
Furthermore, we know that sb,i are the same for b ∈ Bc. Therefore, we simply set sb,i = 1 in the terms in maximization
and use convexity of l∗i to get

E[A−B|αt−1] ≥ −H

N

N∑
i=1

[l∗i (−αt−1
i − γt(u

t−1
i − αt−1

i ))− l∗i (−αt−1
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i )xi
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1
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1
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≥ −H

N
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i ))2]. (5)

By using the fact that stb,i ∈ [0, 1], we bound the next to last term as

γts
t
b,i(

1

λN

C∑
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N∑
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By definition, ∆αt−d
b,j = stb,j(u

t−d−1
j − αt−d−1

j ) and thus

γt(
1

λN

C∑
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λ
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.

We continue with (5) to derive

E[A−B|αt−1] ≥ −H

N

N∑
i=1

[−γtl
∗
i (−αt−1

i ) + γtl
∗
i (−ut−1
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1
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Now from convex conjugates we know that li(xT
i w

t−1) = −l∗i (−ut−1
i )− ut−1

i xT
i w

t−1 which yields

E[A−B|αt−1] ≥ −H

N
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(7)

We next explore the primal-dual gap. We set D = 1
λN

∑C
c=2

∑N
i=1

∑c−1
d=1 ∆αt−d

i xc,i to obtain
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We have that λ||wt−1||2 = λ(wt−1)Twt−1 = λ(wt−1)T (Aαt−1 −D) = λ(wt−1)T Aαt−1 − λ(wt−1)TD.



This results in
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and in turn
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We substitute this into (7) to get
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To bound ||D||2 we use
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We substitute this into (8) to get

E[A−B|αt−1] ≥ Hγt[P (wt−1)−D(αt−1)]− Hγtλ

2
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+
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As in the previous proofs this yields
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and in turn
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Note that H
N ≤ 1 by definition.

First, we bound B1. Using the fact that ln(1 − x) ≤ −x for every 0 ≤ x ≤ 1 and that 1
τ monotonically decreases for

τ > 0, we have
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Thus we have
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Next, we bound B2. Using the fact that ln(1 − x) ≤ −x for every 0 ≤ x ≤ 1 and that 1
τ+C monotonically decreases for

τ > 0 we have
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Therefore, we have
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We know that H/N ≤ 1 and thus
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where Hart−C+2 is the (t− C + 1)-th harmonic number. Using the well-known bound on the harmonic numbers Harn ≤
ln(n) + 1, we have

B2 ≤ GH(C + 1)(ln(t− C + 1) + 1)

NtH/N
.
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All that is left is to bound E[εC−1
D ], which follows a similar recurrence relation as before but with slightly different terms.

This results in a finite expression that depends on ε0D. Since ε0D ≤ 1 (proved in Lemma 20 of (Shalev-Shwartz and Zhang,
2013)), it is clear that E[εC−1

D ] is bounded by a constant.

Thus we have

E[εtD] ≤ J1 + J2(ln(t− C + 1) + 1)

tH/N

where

J1 = CH/NE[εC−1
D ]

J2 =
2HL2(C + 1)

Nλ
[(C − 1)4 + 2(C − 1)2 + 1].

This completes the proof.



2 Computational Study

We provide the full details of the experiments here. The details provided are enough to reproduce results, and the full set
of experimental results are provided here as well.

2.1 Implementation

In order to investigate the performance of HyFDCA, we implemented both HyFDCA using the practical LocalDualMethod
as described in Algorithm 5 and FedAvg using Python 3.10. NumPy was used to handle all matrices and matrix algebra
for the MNIST and Covtype datasets, and due to the sparsity of the News20 dataset, we employed SciPy’s sparse matrices.

Kubernetes was employed for container management to enable several concurrent experiments. Each dataset’s HyFDCA
and FedAvg experiments were run on identical pods on the same node (server) to ensure fair comparison of results. The
specifications of the node/pod that each experiment was run on are described in Table 1.

Finally, homomorphic encryption was not actually conducted as part of the experiment. Our simulation simply found
the number of necessary encryptions/operations in each iteration and used this to compute the estimated encryption time
penalty based on published benchmarks for homomorphic encryption algorithms. For the first step of the algorithm, there
is a decryption penalty only for the dual variables that were updated and are stale on the clients. This is variable depending
on the iteration. For the SecureInnerProduct, only the sample indices that are going to be chosen to be updated on at least
one of the clients need to be encrypted and sent to the server for addition and back for decryption. Since there may be
significant overlap in the indices chosen between clients, this is also variable depending on the iteration. The dual variable
updates found on each client must also be encrypted before sending to the server. The number of dual variables that then
need to be decrypted by each client varies because the overlap in which dual variables are selected for updates. In the
experiments, the number of necessary encryption/decryption operations were found in each iteration and used to calculate
the encryption penalties to be added to the total wall time.

The total number of outer iterations used for each problem setting was 2,500 outer iterations for MNIST, 10,000 outer
iterations for News20, and 30,000 outer iterations for Covtype.

Table 1: Computer Hardware Information

MNIST News20 Covtype

CPU Intel Core i7-6850K
CPU @ 3.60GHz

Intel Xeon Silver 4108
CPU @ 1.80GHz

Intel Core i7-6850K
CPU @ 3.60GHz

Number of Processors 11 32 12
Maximum Memory
Allocated

6 GiB 6 GiB 10 GiB

2.2 Data Partitioning

Table 2 outlines the key characteristics of each dataset. Sparsity is defined as the percent of zero values divided by the total
number of values.

Table 2: Dataset Information
MNIST News20 Covtype

Type Image Text Multivariate
Classes 10 2 2

Samples 70,000 19,996 581,012
Features 784 1,355,191 54
Sparsity 80.858% 99.966% 77.878%
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Due to the differences in the datasets, specifically the meaning of the features, different methodologies were used to
partition the data among a number of clients while remaining IID in nature.

Each MNIST sample is a 28x28 pixel image where values were normalized to [0, 1]. Each sample was split into four equal-
sized quadrants, and thus Q = 4 for all problem settings. A bias feature of value 10 was appended to the fourth quadrant’s
data; this larger value was chosen to prevent the bias term from being affected as strongly by regularization. Each client
was then provided with 4N

KQ sample quadrants where KQ is the total number of clients. The first quarter of clients received
features from the first quadrant of the images, the second quarter of clients received features from the second quadrant of
the images, and so on.

News20 and Covtype used a different assignment procedure as geometrically segmenting features makes no sense for either
dataset. First, the samples are evenly divided into K number of sample groups. Within each sample group, Q clients are
defined. Examining each sample within a segment separately, each client receives 1/Q of the non-zero features. No bias
term was employed for either the News20 or Covtype datasets. As such, there were K ·Q clients. Similar to MNIST, this
process ensures that there is no data overlap between clients and minimizes data imbalances.

2.3 Hyperparameter Tuning

For HyFDCA, the only hyperparameter to tune was the number of inner iterations because no diminishing learning rate is
needed for convergence. FedAvg requires tuning of the number of inner iterations on each client and the constants a and
b in the learning rate γt = a

b+
√
t
. Inner iterations in FedAvg correspond to the number of times the primal weights are

updated in a given iteration. Our implementation used a batch size of one to find stochastic gradients, and made H updates
to the primal weights in each iteration.

The number of inner iterations was not directly tuned. Rather, we employed an inner iterations constant, IIC, that defined
the number of inner iterations as a function of the number of training samples, total number of clients, and IIC as follows:

H =

⌈
IIC ·N
KQ

⌉
. (9)

We employed a random search method in order to collect sufficient data to select hyperparameters (Bergstra and Bengio,
2012). Nine client-fraction combinations were tuned independently for each dataset. For MNIST, this consisted of all
combinations of 5, 500, and 5000 clients with 0.1, 0.5, 0.9 fraction of clients available. For News20 and Covtype, all
combinations using three sets of (sample groups, feature groups) - (3, 3), (5, 5), (12, 12) - were examined using the same
three fractions - 0.1, 0.5, 0.9 - leading to a 9 client-fraction combinations. Based on an understanding of reasonable
hyperparameters from preliminary testing, the search area was bounded as follows:

• HyFDCA IIC: [min clients
samples , 1.0]

• FedAvg IIC: [min clients
samples , 5.0]

• FedAvg a: [10−5, 25.0]

• FedAvg b: [10−5, 25.0].

We used (9) to calculate appropriate ranges for IIC for each dataset. From preliminary testing, we believed that smaller
values of all hyperparameters were more likely to be chosen as optimal leading us to sample values from a logarithmic
distribution. We randomly sampled a value, xi, from the uniform distribution [log10xmin, log10xmax] where xmin and
xmax are the lower and upper bounds of the given hyperparameter, respectively. The randomly selected hyperparameter is
therefore defined as 10xi .

Hyperparameter tuning in the case of federated learning is more complicated due to the large number of competing metrics
that define an algorithm’s performance. For example, we may wish to minimize the total number of outer iterations
(communication rounds) to reach a satisfactory loss function value but also wish to minimize the total computation time
on each client because of computational limits on devices such as smart phones. These two goals are directly conflicting.
For this reason, we frame this hyperparameter selection problem with multiple metrics as a multiobjective optimization
problem where the optimal solution must be selected from the Pareto-Optimal front. We solve this using Gray Relational
Analysis as described in (Wang and Rangaiah, 2017). The metrics we use for the hyperparameter selection are as follows:



1. Average runtime per iteration with 0.000 seconds of round-trip latency

2. Average runtime per iteration with 0.2575 seconds of round-trip latency

3. Average runtime per iteration with 0.8000 seconds of round-trip latency

4. Average of last 5 loss function values

5. Maximum validation accuracy

6. Volatility - standard deviation of differences in consecutive loss function values

7. Number of iterations to reach 90% progress of minimizing the loss function

Here, 0.000 second of round-trip latency is meant to represent the most ideal scenario, 0.2575 seconds represents a long-
distance server connection (US-Singapore AWS server representation (Adorjan, 2020)), and 0.8000 represents a GEO
satellite connection (Telesat, 2017). There are 4.5 round-trips of information transmissions for HyFDCA and 1.0 round-
trips for FedAvg per iteration.

All divergent runs were excluded from GRA. All optimally selected hyperparameters for both HyFDCA and FedAvg are
listed in Tables 3-5.

Table 3: MNIST optimal hyperparameters selected and employed

HyFDCA IIC FedAvg IIC FedAvg a FedAvg b
5, 0.1 0.0001876 0.04872 0.05857 0.1124
5, 0.5 0.001514 0.04872 0.05857 0.1124
5, 0.9 0.002816 0.01718 0.02867 0.0004823

500, 0.1 0.0006865 0.1718 0.02867 0.0004823
500, 0.5 0.001187 0.06561 0.04185 0.00004166
500, 0.9 0.08337 0.04872 0.05857 0.1124

5000, 0.1 0.002816 1.618 0.003995 0.8498
5000, 0.5 0.002816 1.618 0.003995 0.8498
5000, 0.9 0.0006109 1.618 0.003995 0.8498

Table 4: News20 optimal hyperparameters selected and employed

HyFDCA IIC FedAvg IIC FedAvg a FedAvg b
5, 0.1 0.02256 0.003037 0.8753 0.4597

3, 3, 0.5 0.009124 0.002873 4.891 4.496
3, 3, 0.9 0.007732 0.002873 4.891 4.496
5, 5, 0.1 0.01769 0.002873 4.891 4.496
5, 5, 0.5 0.02173 0.003037 0.8753 0.4597
5, 5, 0.9 0.02577 0.002873 4.891 4.496

12, 12, 0.1 0.1362 4.542 3.792 0.1815
12, 12, 0.5 0.1091 4.542 3.792 0.1815
12, 12, 0.9 0.1091 4.542 3.792 0.1815

2.4 Analysis Methods

Table 6 shows the number of centralized iterations to find the optimal centralized solutions along with the minimum loss
value for these centralized runs.

Due to a combination of factors including the large number of outer iterations, characteristics of the datasets, and the nature
of the algorithms employed, there was significant volatility in the loss function making plots hard to read. We applied a
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Table 5: Covtype optimal hyperparameters selected and employed

HyFDCA IIC FedAvg IIC FedAvg a FedAvg b
5, 0.1 0.00004962 0.02291 0.4475 0.0003501

3, 3, 0.5 0.0002264 0.02291 0.4475 0.0003501
3, 3, 0.9 0.00002769 0.02291 0.4475 0.0003501
5, 5, 0.1 0.0002049 0.03647 0.3247 4.514
5, 5, 0.5 0.0009082 0.02291 0.4475 0.0003501
5, 5, 0.9 0.00009929 0.03647 0.3247 4.514

12, 12, 0.1 0.0007434 0.0005590 0.05344 0.004065
12, 12, 0.5 0.006039 0.0005590 0.05344 0.004065
12, 12, 0.9 0.00033673 0.2494 11.93 0.05131

Table 6: Centralized Training Information

MNIST News20 Covtype

Iterations 30,000 40,000 1,000,000
Min Loss 0.07242 0.008017 0.5286

moving average in order to smooth the loss function solely for the sake of readability in plotting. The moving average had
a window, ω, of 50 outer iteration for MNIST, 150 for News20, and 300 for Covtype.

Additionally, we employed a relative time measure and percent of outer iterations completed for clearer and normalized
plotting. These were performed separately for each dataset, and it preserves the relative differences between the two
algorithms while allowing the results from all three datasets to be plotted together. Such values are defined as follows:

TR =
T

max{T1, T2}
(10)

where TR is the relative time value, T1 is the total wall time for HyFDCA, T2 is the total wall time for FedAvg, and T is
the original time quantity for either HyFDCA or FedAvg, and we have

tR =
t

tmax − ω
(11)

where tR is the percent of outer iterations completed, ω is the width of the moving average window, tmax is the maximum
number of outer iterations, and t is the number of outer iterations.

2.5 Full Results

Due to the large number of problem settings investigated and the various metrics of interest, only selected plots were
included in the main paper. Additional data are included herein to ensure completeness and transparency in reporting.

Accompanying Figure 4 of the main paper, appendix Figures 1 and 2 show the effect of different problem settings on the
performance of HyFDCA for the MNIST and Covtype datasets, respectively.

Figure 5 of the main paper displays computational and encryption time data only for three client-fraction settings. The full
data are represented in Tables 7, 8, and 9 for MNIST, News20 and Covtype, respectively.



Figure 1: Effect of number of clients and fraction of participating clients on HyFDCA performance on MNIST.

Figure 2: Effect of number of clients and fraction of participating clients on HyFDCA performance on Covtype.
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Table 7: Computational and Encryption Times for MNIST (seconds)

HyFDCA Computational HyFDCA Encryption FedAvg Computational
5, 0.1 0.7228 0.1107 0.2268
5, 0.5 0.7895 3.164 0.2544
5, 0.9 0.5174 11.32 0.1543

500, 0.1 0.3478 2.037 0.1027
500, 0.5 1.104 13.67 0.1922
500, 0.9 1.684 431.0 0.2064

5000, 0.1 1.778 61.69 0.5775
5000, 0.5 7.246 1136 0.6021
5000, 0.9 13.48 3903 0.5455

Table 8: Computational and Encryption Times for News20 (seconds)

HyFDCA Computational HyFDCA Encryption FedAvg Computational
3, 3, 0.1 0.1554 0.6173 1.074
3, 3, 0.5 0.1760 1.815 1.023
3, 3, 0.9 0.1976 2.661 0.9357
5, 5, 0.1 0.1828 0.6312 0.7311
5, 5, 0.5 0.1965 3.533 0.6438
5, 5, 0.9 0.2283 6.760 0.6572

12, 12, 0.1 0.2309 3.773 1.544
12, 12, 0.5 0.2884 13.26 1.376
12, 12, 0.9 0.3398 24.65 1.409

Table 9: Computational and Encryption Times for Covtype (seconds)

HyFDCA Computational HyFDCA Encryption FedAvg Computational
3, 3, 0.1 0.02608 0.03922 0.04077
3, 3, 0.5 0.06815 1.144 0.05855
3, 3, 0.9 0.1073 0.3229 0.05638
5, 5, 0.1 0.03468 0.1843 0.02457
5, 5, 0.5 0.1064 3.169 0.02655
5, 5, 0.9 0.1313 0.6798 0.03297

12, 12, 0.1 0.08541 0.5996 0.001403
12, 12, 0.5 0.2455 16.879 0.002198
12, 12, 0.9 0.4046 3.632 0.03100


