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Abstract

Deep recurrent neural networks perform well on sequence data and are the model of choice.
It is a daunting task to decide the number of layers, especially considering different compu-
tational needs for tasks within a sequence of different difficulties. We propose a layer flexible
recurrent neural network with adaptive computational time, and expand it to a sequence
to sequence model. Contrary to the adaptive computational time model, our model has a
dynamic number of transmission states which vary by step and sequence. We evaluate the
model on a financial data set and Wikipedia language modeling. Experimental results show
the performance improvement of 2% to 3% and indicate the model’s ability to dynamically
change the number of layers.

1 Introduction

Recurrent neural networks (RNN) are widely used in supervised machine learning tasks for its
superior performance in sequence data, such as machine translation [1, 21], speech recognition
[12, 13], image description generation [17, 23], and music generation [6]. The design of the
underlying network is always a daunting task requiring substantial computational resources
and experimentation. Many recent breakthroughs hinge on multilayer neural networks ability
to increase model accuracy, [15, 25, 31], leading to the important decision in RNNs of the
number of layers used. First, the right choice requires running several very expensive training
processes to try many different numbers of layers. Even if a reinforcement learning algorithm
is used to determine a good number of layers, [2, 36], it still requires a substantial training
effort. The second issue with the number of layers in RNNs is the fact that the same number
of layers is applied to each step in each sequence and the number is the same for each sample.
It is conceivable that some samples are harder to classify than others and thus such harder
samples should employ more layers. A similar argument holds for steps, e.g., certain steps in
a sample can bear less predictive power and thus should use fewer layers in order to decrease
the computational burden. The goal of our work is to introduce a network that automatically
determines the number of layers - and together with this number of hidden vectors to use - in
training and inference which is dynamic with respect to samples and step number.

To resolve the inherent problems of fixed structure neural networks, Graves [11] addresses
this by providing an Adaptive Computational Time (ACT) model for RNN. In Graves’ model, a
sigmoidal halting unit is utilized to calculate a halting probability for each intermediate round
within a step, and a computation stops when the accumulated halting probability reaches or
exceeds a threshold. ACT can calculate the computational time in each RNN step and dynami-
cally adapt to different samples and steps. The model is appealing due to its modeling flexibility
and its advantages in increasing models accuracy, [9]. However, unlike multilayer networks, ACT



utilizes a single hidden vector and thus lacks the outstanding information transmission abilities
of deep networks. It has multiple rounds (and thus cells) within each individual step, but only a
single hidden vector. With the ACT mechanism, when a step of computation is halted, all inter-
mediate states and outputs are used to calculate one mean-field state and output. As a result,
ACT cannot efficiently represent functions of former hidden states and inputs as a multilayer
network can due to its limited capacity. Surprisingly, our experimental results on a financial
related data set revealed that a sequence to sequence model (seq2seq) applying ACT in each
encoder and decoder step is outperformed by a standard seq2seq model. Therefore, in order
to obtain the benefits of both ACT and a multilayer network, we develop a layer flexible RNN
model with adaptive computational time. The model uses several rounds in each step similar
to ACT but it is also using a flexible number of hidden states between two consecutive steps.

The novelty of our proposed model is its focus on learning the rules of transmitting states
of different layers between two consecutive steps. Similar to Graves’ work, we also utilize a unit
to determine the action of each round within a step by calculating their halting probabilities.
Instead of using a single hidden vector, a step in our model produces multiple hidden states (one
state per round within the step). These multiple hidden states are then combined into a different
number of hidden states for the next step (again, the number of new hidden states equals to
the number of rounds in the next step). The combination strategy uses attention ideas, [22].
The network can thus have a flexible number of layers according to adaptive computational
time in each step. We also develop several strategies to combine hidden states between two
steps and along the way, utilize seq2seq and explore different teaching forcing strategies. Our
model increases the accuracy of 2.9% on a financial data set and 1.9 % on Wikipedia language
modeling, which attests to its robustness.

Our main contributions are as follows:

1. A layer flexible RNN model is proposed with adaptive computational time.

2. A seq2seq model applying our layer flexible RNN in each step. We note that ACT has
been developed in the RNN setting and not seq2seq.

3. A new teacher forcing strategy in the decoder part of seq2seq.

The rest of the manuscript is structured as follows. In Section 2 we review the literature.
In Section 3, the flexible layer adaptive computational time RNN model is presented, including
all of the alternative options. In Section 4 we introduce the data sets and discuss all the
experimental results.

2 Literature Review

A deep learning model and algorithm have many upper parameters. In a RNN, one of the
problems is deciding the computation amount of a certain input sequence. A simple solution
is comparing different depths of networks and manually selecting the best option, but a series
of expensive training processes is required to make the right decision. Hyperparameter opti-
mization [5, 4] and Bayesian optimization [30, 24, 28] have been proposed to select an efficient
architecture of a network. Based on these concepts, Zoph [36] and Baker [2] propose mecha-
nisms for network configuration using reinforcement learning. However, massive training efforts
are still present. Another problem if such approaches is the assumption of a fixed structure
of the network, irrespective of the underlying sample. The difficulty of classification varies in
each data set and sample, and it is comprehensible that harder samples would require more
computation. Therefore, applying networks with the same number of layers is inflexible and it
cannot achieve the goal of flexible computing time among different samples. Conditional com-
putation provides general ideas for alleviating the weaknesses of a fixed-structure deep network
by a establishing learning policy [8, 3]. A halt neuron is designed and used as an activation
threshold in self-delimiting neural networks [29, 32] to stop an ongoing computation whenever



it reaches or exceeds the halting threshold. [34] shows that conditional computation helps the
networks obtain adaptive depth and thus acquire higher accuracy than fixed depth structures.
Graves [11] introduces an Adaptive Computation Time (ACT) mechanism for RNN to dynam-
ically calculate each input step’s computing time and determine their halting condition. This
series of work focuses on formulating the policies of halting condition and uses a single hidden
vector in each cell, but none of them contributes to designing flexible multilayer networks or
studies on learning the rules of states transmission.

The ACT mechanism [11] is proved to improve performances and is applied in a few different
problems. Universal Transformers [9] apply ACT to improve a model’s accuracy by dynamically
adapting the times of revising representation in each position in a sequence. A dynamic time
model for visual attention [20] is proposed to accelerate the processing time by adding a binary
action at each step to determine whether to continue or stop. Figurnov et al. [10] prove that
applying ACT on Residual Networks could dynamically choose the number of evaluated layers
and propose a spatially adaptive computation time for Residual Networks for video processing
to adapt the computation amount between spatial positions. Similarly, Neumann et al. [26]
extend ACT to a recognizing textual entailment task. In addition, ACT is also applied to reduce
computation cost and calculate computing time in speech recognition [19], image classification
[18], natural language processing [35], and highway network [27]. These models simply apply
ACT mechanism on other models to achieve the abilities of adaptively halting computations.
They focus on solving their specific problems but do not make any change of the structure of
ACT cells. However, our work concentrates in the inner design of layer flexible ACT cell for its
ability of automatically and dynamically adapting the number of layers.

3 Model

We start with an explanation of RNN and ACT. A standard RNN contains three layers: the
input layer, the hidden layer, and the output layer. The input layer receives input sequences x
and transmits it to the hidden layer to compute the hidden states u. The output layer calculates
the output y based on the updated state of each step. The equations are as follows:

Uy = f(xt,utq)

yr = o(Woug + b,).

In step ¢, input x; from the input sequence x is delivered to the network. A cell in the hidden
layer uses the input x; and the state u;_1 from the previous step to update the hidden state w;
in the current step. Long Short-Term Memory (LSTM) [16] and Gated Recurrent Unit (GRU)
[7] are frequently applied in the hidden layer cell f, which contain the dynamic computing
information and the activations of the hidden cells. The output y; is computed utilizing an
output weight W,, an output bias b,, and an activation function o.

ACT extends the standard RNN. The hidden layer contains several rounds of computation
and each round produces an intermediate state and output. The representation of intermediate
states u and intermediate outputs o} are as follows:

u?:{ f@?,ue—1), n=0

f(x?,u?fl) n>0
.Z‘;L = (671,3:75)
oy = o(Wouy +b,).

The first hidden cell, in step t, receives the state u;_1 from the previous step ¢t — 1 and
computes the first intermediate state. All the following rounds of computation use the previous
intermediate output u' ! and produce an updated state u}. To distinguish different rounds of
computation, a flag §p is augmented to the input x; for the first round and another flag §,, is



added for all the later ones. Each intermediate output o}’ is computed based on the intermediate
state uy in the same round.
To determine the halting condition of a series rounds of computation, units A} are introduced
in each computing round n:
hy = O'(th? + bp). (1)

The total computational time Ny in a step is decided by the halting units and the maximum
threshold L. Whenever the accumulated halting units’ value in a step ¢ is over 1 or the compu-
tational time reaches L, the computation halts. The definition of total computational time Ny
is as follows:

n
N; = min{min{n| Y hj >1— €}, L}, (2)
i=1
where € is a hyper-parameter.

ACT uses all the intermediate states and outputs to calculate one mean-field state u; and
output y; (as represented in (4) and (5) below) for each step. A probability p produced by
halting unit A} is introduced into ACT for calculating a mean-field state and output according
to the contribution of each intermediate computational round in a step. The updated mean-field
state u; is transmitted to next input step and the output o; is delivered to the output layer as
the current step’s output.

n __ h,?7 TL<Nt
pt{l—zf\fflhi n =N )

Ny
u =y piu (4)
i=1

Ny
y=3 pio] (5)
=1

Given an input sequence x, the ACT model tends to compute as much as possible in each
step to avoid making predictions and incurring errors. This can cause an extra computational
expense and impede achieving the goal to adapt the computational time. Therefore, training
the model to decrease the amount of computation becomes necessary. ACT introduces ponder
cost P(x) as

P(z) = N +p;"

to represent the total computational time during the input sequence. The loss function £(z, gt)
with gt being the ground truth is modified to encourage the network to also minimize P(z):

L(z, gt) = L(z,gt) + TP(z)

where 7 is a hyper-parameter time penalty that balances the ponder cost and prediction errors.

3.1 Layer Flexible Adaptive Computation Time Recurrent Neural
Network

In this section, our Layer Flexible Adaptive Computational Time (LFACT) model is introduced.
The main idea of LFACT is dynamically adjusting the number of layers according to the immi-
nent characteristic of different inputs and efficiently transmitting each layer’s information to the
same layer in the next step. Differing from ACT where only the mean-field states u, in (4) are
transmitted to the next step, which can be viewed as a single layer network, LFACT is designed
for transmitting each layer’s state individually between every consecutive step. In LFACT we
compute Ny and Nyyq as in ACT. Each cell i at step t takes 0,1;_1 from the previous cell at ¢ and
ui_, from step t — 1 as input and creates ui and o! for i = 1,..., N;. The problem is that at step
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Figure 1: LFACT model - an example of three consecutive steps. Step ¢ — 1 has three layers,
step t has two layers, and step ¢ + 1 includes four layers.

t we produce u! for i = 1, ..., Ny but for step ¢ + 1 we need 4! for i = 1,..., Ny 1. The key of our
model is to use the attention principle to create uj,u?, ..., ﬂiV“Ll from u},u?, ..., uivt. Figure 1
depicts the model.

The representation of the LFACT model is as follows:

ul = f(xt’ﬂ?—l)a n=20
t flor=tar ) n>0

op = o(Woui +b,).

The LFACT model contains two types of states. One state is the primary production of
each hidden cell uy, which is the same as the states in standard RNN. The other state is the
transmission state @y that is used for transmitting layer information to the next step. In step ¢,
the hidden layer cell f uses the input and the transmission state uj_; received from the previous
step to compute and update the primary state u;. The primary states are used to compute the
transmission state uy for the next step. The first layer’s input x; is obtained from the input
layer, and the later layers’ inputs are the output of previous layer 0?_1 in the current step. The
equations governing the relationship between the two transmission states read

9t
—n § : n
Uy = Qpin Uy
i=1

eBrin -
Qtin = Z?il eﬁt]‘n ? S i
Btin = VnT : G(WQOi + VQ’UJ?} + bQ) i < g?' (6)

To compute the transmission states 4y, an attention unit « is introduced to represent the
relationship between the primary states uj' in a certain layer n and the primary states in other



layers. We propose two choices to select g;*:

n | min(Ngn), (a)
9t { N;. (b)

Option (a) only considers the relationship between the state u} of the current layer and the
states u! from the lower layers (i.e. i < n), called limited (LTD). Alternative (b) utilizes all
computed transmission states (i.e. i < Ny), called ALL. When strategy LTD is applied, we have
Niy1 < Ny; all primary states u? in deeper layers (i.e. i > N;) cannot be used. Strategy ALL
aims to include the computed information of all the layers. To distinguish different layers, extra
weights V,, are utilized to compute a. Weights V,,, W and Vg in (6) to compute « can either
be matrices or vectors; we compare the different options in the experimental section.

We use the same method as ACT to compute N, (as represented in (2)), the computing
time of each step. But unlike ACT, the halting unit is computed based on the output and
transmission state of each layer:

h? = O’(Who? + by, + Vhﬂzlfl).

In addition, instead of computing a mean-field output, we directly take the output of the deepest
layer as one step output:

_ Ve
Yt = 0 .

3.2 Augmentation Model

To simplify our LFACT model, an alternative layer flexible RNN model is proposed, marked as
Augmentation (AUG), as follows:

’U/?:{ f('ﬁha?)v n =20

flopr=har) n>0

a = Wl g 4 b
ye = o(Woul +b,).

Each layer receives the state from the same layer from the previous step or the deepest one if
N;_1 < n, with augmenting the depth index of layer n as a flag to distinguish different layers.
Weights W, and bias b, are applied on each augmented state to maintain all of the states in
the network to be of the same size. The mechanism of halting and computational time N, are
the same as in ACT expressions (1) and (2).

3.3 Sequence to Sequence Model with LFACT

In order to deal with sequence tasks, we propose a combination model using a seq2seq (encoder-
decoder) model and our LFACT model, as Figure 2 shows. In the seq2seq model, a cell in
each step is replaced with our LFACT model to form a deep and flexible network. The seq2seq
encoder part accepts a sequence input, and in the decoder part, we propose 4 strategies for its
input based on paradigms of teacher-forcing [33]: (1) No feeding data in the decoder part (None,
2zt = (0); (2) Feed in the prediction of the previous step (Pred, z; = softmax(y;—1)), which is
the same as the standard teacher-forcing strategy; (3) Feed the label of the last encoder step
into every step of the decoder part (Same, z; = gt7); (4) Take the average of the previous
step prediction and the label of the last encoder step (Ave, z: = (gt + softmax(yi—1))/2);
(5) Concatenate the output of the previous step and the label of the last encoder step (Concat,
zt = (gtrr, softmax(yi—1))). Here gty is the ground truth of predicting for z7.
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Figure 2: Seq2seq with LFACT model

4 Computational Experiments

4.1 Training

We train LFACT in several phases. We first train the seq2seq model. The weights in our model
consist of those pertaining to the seq2seq model, and the remaining weights unique to our model.
We use the pretrained seq2seq weights to initialize the former. In the first 25 training epochs,
we freeze the weights from seq2seq, and train the remaining variables, and in the following 25
epochs, the seq2seq variables are released to be trained and the rest of the variables are frozen.
The process is repeated four times, resulting in a total of 200 training epochs.

4.2 Financial Data Set

We test our LFACT models on a financial data set from [14]. The data set consists of tick prices
of twenty-two ETFs at five minute intervals. The data is labeled into five classes to represent
the significance of the price changes, e.g., one class corresponds to the price being within one
standard deviation. We have a size 22 softmax classification layer in each step. We have three
test instances, and in each one we train our model on 50 weeks of returns (45,950 samples), use
the next week (905 samples) as validation data to save the best performance weights, and test
the model based on the saved weights using the following week (905 samples).

We use the seq2seq version of LFACT to predict the following five steps. The raw sequence
data with input length of 20 is compressed into ten through a convolutional neural network
(CNN) layer. We train our models for 200 epochs with 64 batch size in a straightforward way
without using the strategy from Section 4.1. All results are from the test set. We choose 0.001
as our ponder time penalty (7 = 0.001) and utilize the Adam optimizer with 0.00005 learning
rate to train our model. The maximum number of layers L is 5. We use GRU in each layer of
LFACT.

In Figure 3(a) we present the average F1 scores over the three test instances for different
models. LTD and ALL are the two strategies for computing transmission states w, matrix
and vector are the two options for computing attention unit «, and s2s indicates the seq2seq
model, which works better than RNN. All the models are trained with the teacher-forcing
Same strategy (zr = gty) which outperforms all strategies (Fligure 4). We test plain ACT
and seq2seq alone which have been tuned with respect to all hyperparameters as our baseline
models, and compare them with seq2seq models applying our proposed LFACT models. The
red bars represent results of the two baseline models, and the yellow bars are from our proposed
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models. The best performance model is our proposed model LTD _matrix, which uses strategy
LTD to compute transmission states 4 and matrices for attention unit «. It is surprising that
seq2seq model applying ACT performs worse than seq2seq alone; it performs the worst over all
of the models. We assume that it is due to the information discarding when computing mean-
field states and outputs in ACT. In Figure 3(b), we compare the results of each test instance
individually for our best proposed model LTD_matrix (yellow bars) and the best baseline model
seq2seq (red bars). The results show that model LTD_matrix yields significant benefits over the
best baseline model for each one of the 3 instances.

In Figure 4, we compare the performance of the five teacher-forcing strategies based on
model LTD_matrix. The x-axis represents the F1 scores. The red, orange and yellow bars
respectively indicate the first, second and third test instance. From the results, strategy Same
shows the best performance on all of the three test instances, and the three strategies containing
the ground truth of the last encoder step g7 (Concat, Ave, and Same) all perform better on
every test instance than the two that do not (None and Pred). A plausible explanation is that
the prediction results (Pred) and the state information (None) in each step are not accurate
enough, and feeding these errors into the next step as input can cause further errors in the
following predictions. Thus, strategy Same that does not include any prediction results with
potential errors works the best, and the two strategies None and Pred that only have prediction
information are the worst.

The LFACT model is expected to dynamically adapt the computation time according to the
inputs. Figure 5 presents the computation time (/NVy) result for the first test instance: (a) and
(b) are the Ny results of the training and validation process based on the optimized weights,
and (c) is for test. We present the maximum N; of all the samples by dark green bars and the
95 percentile with light green bars to show how is the computational time distributed between
different steps. Step indexes 1 to 10 indicate the ten steps in the encoder, and 11 to 15 are the
five steps in the decoder. The result show the change of N; among different steps, indicating
that the LFACT model has the ability of adapting computational time dynamically according
to its input. The V; result for test is more similar to the validation than training set, because
the test and validation sets are very close on the timescale (have similar distributions), therefore
they have similar changing pattern of tick prices.
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Figure 7: Results of Wikipedia language modeling

We observed in F'igure 5 that most of the time a single layer is needed based on the optimized
weights. We wonder if the model is trying to squeeze out the computational time as training
progresses. To this end, Figures 6(a) and (b) show N; of two samples based on early training
weights (the 5th epoch), Figures 6(c) and (d) are the same samples based on intermediate
training epoch weights (the 20th epoch), and Figures 6(e) and (f) depict the samples based on
the optimized weights (the 57th training epoch). The significant change of Ny during the training
process indicates that the loss function adequately captures both the loss and computational
time by decreasing the computation time.

4.3 Wikipedia Language Modeling

This task is about predicting characters from the Hutter Prize Wikipedia data set, which is also
used in Graves’ ACT paper [11]. We clean the data by only keeping lowercase English letters
and the common punctuation symbols in the main text. The data set is split into ten equal
parts; the first eight are the training set, the ninth is the validation set, and the tenth is the test
set. Sequences of 50 consecutive characters are chosen as input, and the following 5 characters
are predicted. Each character is represented as one-hot, and presents one timestep.

Training is performed based on Section 4.1. The maximum number of layers L is set to 3,
and a softmax layer with size 34 is added to each step in the decoder. To deal with overfitting,
we apply a dropout layer after each cell with probability 0.8. The learning rate and ponder
time penalty (7) are both 0.0001, and the training epochs and batch size are the same as for
the financial data set. We use the bit per character (BPC) to evaluate the performance of our
model and the baseline models (the lower the better).

Figure 7 shows the comparison of the models. We applied five different random seeds for
each model to initialize the weights. In Figure 7, we provide the maximum, minimum, and
average BPC. From the figure, we observe that the average BPC of seq2seq LFACT is lower
than both seq2seq alone and seq2seq with ACT, and that the worst case of seq2seq LFACT is
still better than the best performance of the other two models. These results indicate that our
model works best and improves the performance. The relative improvement of LFACT is 1.9%
over seq2seq alone, and 3.3% over seq2seq ACT on average. In order to test the stability of the
performance, we performed the t-test between LFACT and the other two models. The p-value
between LFACT and seq2seq is 0.0006, and the p-value between LFACT and seq2seq ACT is
0.0002. From the t-test results, seq2seq with LFACT has a significant consistent benefit over
the two baseline models. Moreover, the BPC range of LFACT is 0.019, which is much smaller
than the value of 0.031 for seq2seq alone and 0.054 for seq2seq ACT. At the same time, the
standard deviation for the LFACT BPC results is 0.0068, 0.0139 for seq2seq alone, and 0.0217
for seq2seq ACT. These results imply a higher stability for LFACT over seq2seq and seq2seq
ACT.
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An interesting observation from both data sets is that ACT is outperformed by a pure seq2seq
model. We point out that evaluations in the ACT work [11] have been conducted in the RNN
setting where the conclusion is that ACT beats standard RNN.

In Figure 8, we provide the average encoder and decoder computation time during training
of Wikipedia language modeling. We observe a clear decrease during the early training epochs,
which eventually stabilizes. Note that during epochs 25 to 50, the computational time increases
and stays at a relatively high level. This happens because we switch the trainable variables from
LFACT-model specific to seq2seq specific at the 25th epoch. During this period, variables from
the seq2seq model are trained for the first time, and the computational time related variables
not belonging to the seq2seq portion cannot be trained. The barchart in Section Al in the
Appendix focuses on computational time based on the optimal weights. It shows the average
across all samples in the underlying set. We have 50 time steps in encoder and 5 steps in
decoder but to avoid clutter we report N, every 3 time steps. The average computational time
decreases as the sequence index increases, which indicates that the computational complexity
is high at the beginning of a sequence and then decreases as more history is available to make
predictions which is expected. In addition, we observe that the computational time for the test
and validation set are very close but are slightly higher than the training set.

5 Conclusion

Deciding the structure of recurrent neural networks has been a problem in deep learning ap-
plications, in particular the number of layers. A halting unit is applied in a previous work to
adapt the computational time to inputs, but a single hidden vector structure leads to the infor-
mation transmission weaknesses. In this paper, we propose LFACT which utilizes an attention
strategy in designing an information transmission policy which leads to a flexible multilayer
recurrent neural network with adaptive computational time. LFACT can automatically adjust
computational time according to the computing complexity of inputs and has outstanding dy-
namic information transmission abilities between consecutive time steps. We apply LFACT in a
seq2seq setting and evaluate the model on a financial data set and Wikipedia language modeling.
The experimental results show a significant improvement of LFACT over seq2seq and ACT on
both data sets. The different number of layers in practice indicates LFACT’s ability of adapting
computational time and information transmission.
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A Appendix

A.1 Computational Time for Wikipedia Language Modeling based on
Optimal Weights
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