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1 Proofs

1.1 Technical Lemmas

Lemma 1 In a probability space (Ω,F ,P), let there be an F-measurable random variable X(w) and an event A ∈ F
such that P{A} > 0. For a convex function ϕ(x), we have

E [ϕ(X)1{A}]
P{A}

≥ ϕ

(
E [X1{A}]

P{A}

)
.

Proof: Let

x0 =
E [X1{A}]

P{A}
=

1

P{A}

∫
A

X(w)dP(w).

Since ϕ is convex, there exists a sub-gradient of ϕ at x0, i.e., there exists an a such that

ϕ(x) ≥ ϕ(x0) + a(x− x0)

for any x ∈ R. Then we have

E [ϕ(X)1{A}]
P{A}

=
1

P{A}

∫
A

ϕ(X(w))dP(w)

≥ 1

P{A}

∫
A

a(X(w)− x0) + ϕ(x0)dP(w)

=
a

P{A}

∫
A

X(w)dP(w) +
ϕ(x0)− ax0

P{A}

∫
A

1dP(w)

= ax0 + ϕ(x0)− ax0

= ϕ(x0),

which finishes the proof.

Lemma 2 For any x, y > 0,
(x+ y)3 ≤ 4(x3 + y3).

Proof: For t ≥ 0, let

h(t) :=
(1 + t)3

1 + t3
= 1 + 3

t+ t2

1 + t3
.

The derivative of h(t) reads

h′(t) = 3
(1 + 2t)(1 + t3)− 3t2(t+ t2)

(1 + t3)2
= −3

(t− 1)(t+ 1)3

(t3 + 1)2
.

Apparently h(t) achieves the maximum at t = 1, thus h(x/y) ≤ h(1) = 4, and we have

(x+ y)3

x3 + y3
≤ 4.
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Lemma 3 Given αt = α/t and β1 ∈ [0, 1), there exists a constant C̄ > 0, such that for any t ≥ 2 we have

t−1∑
j=1

αjβ
t−j
1 ≤ C̄αt.

Proof: Letting t∗ =
⌊
t−1
2

⌋
, we have

t−1∑
j=1

αjβ
t−j
1 =

t∗∑
j=1

αjβ
t−j
1 +

t−1∑
j=t∗+1

αjβ
t−j
1

≤ α

t∗∑
j=1

βt−j
1 +

α

t∗ + 1

t−1∑
j=t∗+1

βt−j
1

≤ αβt−t∗

1

1− β1
+

α

t∗ + 1

β1

1− β1

≤ αβ
(t+1)/2
1

1− β1
+

2αβ1

(1− β1)

1

t− 1
= O(t−1).

Thus there exists a positive constant C̄ such that for any t ≥ 2,

t−1∑
j=1

αjβ
t−j
1 ≤ C̄αt.

Lemma 4 Consider 0 < A < 1 and T ≥ 2, and let

λT−1 =

T−1∏
t=1

(
1− A

t

)
,

νT−1 =

T−1∑
t=1

1

t2

T−1∏
j=t+1

(
1− A

t

)
.

Then we have

λT−1 ≤ O(T−A)

and

νT−1 ≤ O(T−A).

Proof: Notice that

log λT−1 =

T−1∑
t=1

log

(
1− A

t

)
≤ −A

T−1∑
t=1

1

t
≤ −A log T,

where the first inequality comes from log(1− x) ≤ −x for x ≥ 0 and the second inequality uses the integral approximation

T−1∑
t=1

1

t
≥

T−1∑
t=1

∫ t+1

t

1

s
ds =

∫ T

1

1

s
ds = log T.

Thus λT−1 ≤ T−A. Similarly, we have

log
λT−1

λt
=

T−1∑
k=t+1

log

(
1− A

t

)
≤ −A log

T

t+ 1
,



and then,

νT−1 ≤
T−1∑
t=1

1

t2

(
T

t+ 1

)−A

≤ T−A
T−1∑
t=1

(t+ 1)A

t2
≤ 2AT−A

T−1∑
t=1

t−2+A.

Again, applying the integral approximation yields

T−1∑
t=1

t−2+A ≤ 1 +

T−1∑
t=2

∫ t

t−1

s−2+A ds = 1 +

∫ T−1

1

s−2+A ds ≤ 1 +
1

1−A
=

2−A

1−A
< ∞.

Then we have νT−1 ≤ O(T−A).

1.2 Proof of Theorem 1

Let p = P(ξ = 1). In each step, the update value is

∆t = − αgt√
β2vt−1 + (1− β2)g2t

=

− α(wt/δ+δ4)√
β2vt−1+(1−β2)(wt/δ+δ4)2

with probability p

α(1−wt/δ)√
β2vt−1+(1−β2)(1−wt/δ)2

with probability 1− p.

Apparently,

F (w) =
w2

2δ
+ δw,

and
w∗ = −δ2.

We use contradiction to prove the theorem. Assume that E[F (wt)− F (w∗)] → 0. Notice that

F (wt)− F (w∗) =
1

2δ
(wt − w∗)2,

which means that E[F (wt)−F (w∗)] → 0 is equivalent to E
[
(wt − w∗)

2
]
→ 0. Let us select 0 < ϵ < 1/2, and we choose

Tϵ such that t > Tϵ implies E
[
(wt − w∗)

2
]
< ϵ. The following discussion is based on wt such that t > Tϵ.

We have

|∆t| =
α|gt|√

β2vt−1 + (1− β2)g2t
≤ α|gt|√

(1− β2)g2t
=

α√
1− β2

, (1)

where the inequality is due to vk being non-negative for any k.

Let Ft be the filtration including all the information obtained until the update of wt, including wt. We define the following
event

E :=
{
|wt − w∗| < δ2

}
which is known given Ft. We have

P{Ec} = P
{
|wt − w∗| ≥ δ2

}
≤

E
[
(wt − w∗)2

]
δ4

<
ϵ

δ4
.

Given Ec, we simply bound the step size with the lower bound

E [∆t1{Ec}] ≥ − α√
1− β2

E [1{Ec}] ≥ − ϵ

δ4
α√

1− β2
.
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For the samples in E, we have

E [∆t1{E}] = E [E [∆t1{E} |Ft ]] = E [E [∆t |Ft ]1{E}]

= E

[
1{E}

{
(1− p)

α(1− wt/δ)√
β2vt−1 + (1− β2)(1− wt/δ)2

}]

−E

[{
p

α(wt/δ + δ4)√
β2vt−1 + (1− β2)(wt/δ + δ4)2

}]

≥ E

[
1{E}(1− p)

α√
β2vt−1 + (1− β2)(1 + 2δ)2

]
−p

α√
1− β2

P{E}. (2)

In the inequality, the first term is bounded because −2δ < wt/δ < 0 by the definition of E and the second term is bounded
by the bound of the step length in (1).

By applying Lemma 1 to (2), we have

E[∆t1{E}] ≥ (1− p)P(E)
α√

β2E[vt−11{E}]/P{E}+ (1− β2)(1 + 2δ)2
− pP(E)

α√
1− β2

.

We next focus on the conditional expectation

E [vt−11{E}] = (1− β2)

t−1∑
k=1

βt−1−k
2 E

[
1{E}g2k

]
.

We claim that for any trajectory in E and for any k < t, we have

|wt − wk| =

∣∣∣∣∣∣
t−1∑
j=k

∆j

∣∣∣∣∣∣ ≤
t−1∑
j=k

|∆j | ≤
α(t− k)√
1− β2

.

The last inequality comes from the bound of the step length in (1). Then we have

wt −
α(t− k)√
1− β2

≤ wk ≤ wt +
α(t− k)√
1− β2

.

Let us recall that given E, we have −2δ2 < wk < 0, and hence

−2δ2 − α(t− k)√
1− β2

≤ wk ≤ α(t− k)√
1− β2

. (3)

Then for each k = 1, . . . , t− 1, we obtain

E
[
g2k1{E}

]
= E

[
E[g2k1{E} |Fk ]

]
≤ E

[(
E
[
g
2(1+µ)
k |Fk

])1/(1+µ)

(E [1{E}])µ/(1+µ)

]
≤ E

[(
E
[
g
2(1+µ)
k |Fk

])1/(1+µ)
]

where the inequality holds for any µ according to the Holder inequality. Let 0 < µ < 1/2. According to the bound given
previously in (3) and δ ≥ 2, we have (wk

δ
+ δ4

)2
≤

(
α(t− k)

δ
√
1− β2

+ 2δ + δ4
)2

(
1− wk

δ

)2
≤

(
α(t− k)

δ
√
1− β2

+ 2δ + 1

)2

.



Then we derive,

E
[
g
2(1+µ)
k |Fk

]
= p

(wk

δ
+ δ4

)2(1+µ)

+ (1− p)
(wk

δ
− 1
)2(1+µ)

≤ 1 + δ

δ4

(
α(t− k)

δ
√
1− β2

+ 2δ + δ4
)2(1+µ)

+

(
α(t− k)

δ
√
1− β2

+ 2δ + 1

)2(1+µ)

= (1 + δ)

(
α(t− k)

δ5
√
1− β2

+
2

δ3
+ 1

)2(1+µ)

δ4+8µ +

(
α(t− k)

δ
√
1− β2

+ 2δ + 1

)2(1+µ)

≤ 2δ ·
(

α(t− k)

δ5
√
1− β2

+
2

δ3
+ 1

)3

· δ4+8µ +

(
α(t− k)

δ
√
1− β2

+ 2δ + 1

)3

≤ 2

(
α(t− k)√
1− β2

+ 2

)3

δ5+8µ +

(
α(t− k)√
1− β2

+ 3δ

)3

≤
(
8α3(t− k)3

(1− β2)3/2
+ 64

)
δ5+8µ +

4α3(t− k)3

(1− β2)3/2
+ 108δ3.

We have used δ > 2 and 0 < µ < 1/2. The last inequality holds because of Lemma 2. Then we obtain

(
E
[
g
2(1+µ)
k |Fk

])1/(1+µ)

≤
[(

8α3(t− k)3

(1− β2)3/2
+ 64

)
δ5+8µ +

4α3(t− k)3

(1− β2)3/2
+ 108δ3

]1/(1+µ)

=

(
8α3(t− k)3

(1− β2)3/2
+ 64 +

4α3(t− k)3

(1− β2)3/2
δ−5−8µ + 108δ−2−8µ

)1/(1+µ)

δ(5+8µ)/(1+µ)

≤
(
12α3(t− k)3

(1− β2)3/2
+ 172

)1/(1+µ)

δ(5+8µ)/(1+µ)

≤
(
12α3(t− k)3

(1− β2)3/2
+ 172

)
δ(5+8µ)/(1+µ).

The third inequality uses δ > 1 and thus

E[vt−11{E}] ≤ (1− β2)

t−1∑
k=1

βt−1−k
2

(
12α3(t− k)3

(1− β2)3/2
+ 172

)
δ(5+8µ)/(1+µ)

≤ δ(5+8µ)/(1+µ)

{
12α3

√
1− β2

∞∑
k=1

βk−1
2 k3 + 172

}

≤ δ(5+8µ)/(1+µ)

{
72α3

(1− β2)9/2
+ 172

}
:= M1δ

(5+8µ)/(1+µ)

where the last inequality is because
∑∞

k=1 β
k−1
2 k3 = (1 + 4β2 + β2

2)/(1− β2)
4 < 6/(1− β2)

4. Thus, we have

E [∆t1{E}] ≥ P{E}

{(
1− 1 + δ

1 + δ4

)
α√

β2M1δ(5+8µ)/(1+µ)/P{E}+ (1− β2)(1 + 2δ)2

− 1 + δ

1 + δ4
α√

1− β2

}
≥ 1

2

{(
1− 1 + δ

1 + δ4

)
α√

2β2M1δ(5+8µ)/(1+µ) + (1− β2)(1 + 2δ)2

− 1 + δ

1 + δ4
α√

1− β2

}
,

where the second inequality follows from

P{E} > 1− ϵ

δ4
> 1− ϵ >

1

2
.
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Then the full expectation of ∆t is

E [∆t] ≥ 1

2


(
1− 1 + δ

1 + δ4

)
α√

2β2M1δ(5+8µ)/(1+µ) + (1− β2)(1 + 2δ)2︸ ︷︷ ︸
T1

− 1 + δ

1 + δ4
α√

1− β2︸ ︷︷ ︸
T2

− 1

2δ4
α√

1− β2︸ ︷︷ ︸
T3

.

Notice that T1 = Ω(δ−(5+8µ)/(2+2µ)), T2 = O(δ−3) and T3 = O(δ−4). As long as we set µ < 1/2, we have (5+8µ)/(2+
2µ) < 3 < 4, thus the right hand side can be positive for sufficiently large δ, only dependent on α and β2. We conclude that
we can assume E[∆t] > c0 > 0. This means wt keeps drifting in the positive direction. Then for any k ≥ 1 and t > Tϵ, we
have

E
[
(wt+k − w∗)2

]
= E

[
(wt+k − wt)

2
]
+ 2E [(wt+k − wt)(wt − w∗)] + E

[
(wt − w∗)2

]
≥ E

[
(wt+k − wt)

2
]
− 2
√

E [(wt+k − wt)2]E [(wt − w∗)2] + E
[
(wt − w∗)2

]
=

(√
E [(wt+k − wt)2]−

√
E [(wt − w∗)2]

)2
, (4)

where the inequality is the Cauchy-Schwartz inequality for random variables. If we select k large enough such that
k > 3

√
ϵ/c0, which implies kc0 −

√
ϵ > 2

√
ϵ, then E[(wt+k − wt)

2] ≥ (E[wt+k − wt])
2 ≥ k2c20, and thus from (4) we

have
E
[
(wt+k − w∗)2

]
≥ (kc0 −

√
ϵ)2 ≥ 4ϵ > ϵ,

which contradicts the convergence assumption. Thus, ADAM diverges for this unconstrained stochastic optimization
problem. This completes the proof of Theorem 1.

1.3 Proof of Theorem 2

Consider function π(δ) = (1 + δ)/(1 + δ4). We notice that π(1) = 1, π(δ) ≤ 1 for δ ≥ 1, and π(+∞) = 0. Since π has
only a finite number of stationary points, there exists a δ̄ such that π is decreasing on [δ̄,∞). Thus for any b, there exists an
N∗

b such that for any N ≥ N∗
b , N > b there exists a δN,b > max(δ∗, δ̄) > δ∗ with

b

N
= π(δN,b).

Let us consider the following mini-batch problem with sample size N > N∗
b .

fn(w) =
w2

2δN,b
− w for n = 1, . . . , N − 1,

fN (w) =
w2

2δN,b
+ (bδ4N,b + b− 1)w.

Apparently, the selection of mini-batch Bt satisfies

P{N ∈ Bt} =

(
N−1
b−1

)(
N
b

) =
b

N
=

1 + δN,b

1 + δ4N,b

:= p.

If M ∈ Bt, we have

FBt(w) =
1

b
(fN (w) + (b− 1)f1(w)) =

w2

2δN,b
+ δbN,bw.

Otherwise, it is clear that

FBt(w) = f1(w) =
w2

2δN,b
− w.



To summarize, the mini-batch loss reads

FBt(w) =

{
w2

2δN,b
+ δ4N,bw with probability p

w2

2δN,b
− w with probability 1− p

which is an OP(δN,b), since δN,b > δ∗. By Theorem 1, ADAM diverges on this problem.

1.4 Proof of Theorem 3

Similarly to the proof of Theorem 2, there exists N∗ such that for each N > N∗, there exists a δN > δ∗ such that

1

N
=

1 + δN
1 + δ4N

.

We let

fn(w) =
w2

2δN
+ δ4Nw for n = 1, . . . , N − 1

fN (w) =
w2

2δN
− ((N − 1) + (N − 2)δ4N )w.

The selection of mini-batch Bt satisfies

P{N ̸∈ Bt} =
1

N
.

If N ̸∈ Bt, we have

FBt(w) = f1(w) =
w2

2δN
+ δ4Nw,

and otherwise

FBt(w) =
N − 2

N − 1
f1(w) +

1

N − 1
fN (w) =

w2

2δN
− w.

This is an OP(δN ), which is divergent according to Theorem 1.

1.5 Proof of Theorem 4

We first introduce the following lemma.

Lemma 5 Given Assumption 1 is satisfied, there exist positive constants Q1 and Q2 such that for any t,

E[F (wt+1)]− E[F (wt)] ≤ − αt

4
√
G2 + ϵ

E
[
∥∇F (wt)∥22

]
+Q1αtλt +Q2αt

t−1∑
k=1

βt−k
1 λk +Q3α

2
t .
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Proof: Let us start from the application of L-smoothness of gradient of F (w) as follows.

F (wt+1) ≤ F (wt) +∇F (wt)
⊤(wt+1 − wt) +

L

2
∥wt+1 − wt∥22

= F (wt)−
αt

1− βt
1

∇F (wt)
⊤V

−1/2
t mt +

α2
tL

2(1− βt
1)

2

∥∥∥V −1/2
t mt

∥∥∥2
2

= F (wt)−
αt(1− β1)

1− βt
1

∇F (wt)
⊤V

−1/2
t

t∑
k=1

βt−k
1 gk +

α2
tL

2(1− βt
1)

2

∥∥∥V −1/2
t mt

∥∥∥2
2

= F (wt)− αt∇F (wt)
⊤V

−1/2
t gt −

αt(1− β1)

1− βt
1

t−1∑
k=1

βt−k
1 ∇F (wt)

⊤V
−1/2
t (gk − gt)

+
α2
tL

2(1− βt
1)

2

∥∥∥V −1/2
t mt

∥∥∥2
2

= F (wt)− αt ∇F (wt)
⊤V

−1/2
t G(wt; ξt)︸ ︷︷ ︸
T1

−αt(1− β1)

1− βt
1

t−1∑
k=1

βt−k
1 ∇F (wt)

⊤V
−1/2
t (G(wk; ξk)− G(wk; ξt))︸ ︷︷ ︸

T2

−αt(1− β1)

1− βt
1

t−1∑
k=1

βt−k
1 ∇F (wt)

⊤V
−1/2
t (G(wk; ξt)− G(wt; ξt))︸ ︷︷ ︸

T3

+
α2
tL

2(1− βt
1)

2

∥∥∥V −1/2
t mt

∥∥∥2
2︸ ︷︷ ︸

T4

.

Bounding T1: We start from

E[T1] = E
[∥∥∥V −1/4

t ∇F (wt)
∥∥∥2
2

]
+ E

[
∇F (wt)

⊤V
−1/2
t (G(wt; ξt)−∇F (wt))

]
≥ 1

2
E
[∥∥∥V −1/4

t ∇F (wt)
∥∥∥2
2

]
− 1

2
E
[∥∥∥V −1/4

t (G(wt; ξt)−∇F (wt))
∥∥∥2
2

]
≥ 1

2
√
G2 + ϵ

E
[
∥∇F (wt)∥22

]
− 1

2
√
ϵ
E
[
∥G(wt; ξt)−∇F (wt)∥22

]
,

where the first inequality applies the Cauchy-Schwartz inequality and the second inequality is due to∥∥∥V −1/4
t ∇F (wt)

∥∥∥2
2
=

d∑
i=1

(∇iF (wt))
2√

ṽt,i + ϵ
≥ 1√

G2 + ϵ

d∑
i=1

(∇iF (wt))
2
=

1√
G2 + ϵ

∥∇F (wt)∥22

and ∥∥∥V −1/4
t (G(wt; ξt)−∇F (wt))

∥∥∥2
2

=

d∑
i=1

(∇iF (wt)− Gi(wt; ξt))
2√

ṽt,i + ϵ

≤ 1√
ϵ

d∑
i=1

(∇iF (wt)− Gi(wt; ξt))
2

=
1√
ϵ
∥G(wt; ξt)−∇F (wt)∥22 .

According to the unbiased assumption, we have

E
[
∥G(wt; ξt)−∇F (wt)∥22

]
=

d∑
i=1

E
[
(Gi(wt; ξt)−∇iF (wt))

2
]
=

d∑
i=1

Var(Gi(wt; ξt)) ≤ dλt. (5)



Then we can lower bound the expectation of T1 as

E[T1] ≥
1

2
√
G2 + ϵ

E
[
∥∇F (wt)∥22

]
− d

2
√
ϵ
λt. (6)

Bounding T2: Notice that for two random vectors X and Y , and a constant a we have

∥∥∥∥aX +
1

a
Y

∥∥∥∥2
2

= a2∥X∥22 +
1

a2
∥Y ∥22 + 2Y ⊤X,

and thus

E
[
Y ⊤X

]
≥ −a2

2
E[∥X∥22]−

1

2a2
E[∥Y ∥22].

If Fk = {ξ1, . . . , ξk−1}, then wk is known given Fk. We then have

E [T2] =

t−1∑
k=1

βt−k
1 E

[
∇F (wt)

⊤V
−1/2
t (G(wk; ξk)− G(wk; ξt))

]
=

t−1∑
k=1

βt−k
1 E

[
E
[
∇F (wt)

⊤V
−1/2
t (G(wk; ξk)− G(wk; ξt)) |Fk

]]
≥ −1

2

t−1∑
k=1

βt−k
1 E

[
a2E

[
∥V −1/2

t ∇F (wt)∥22 |Fk

]
+

1

a2
E
[
∥G(wk; ξk)− G(wk; ξt)∥22 |Fk

]]

≥ −1

2

t−1∑
k=1

βt−k
1

{
a2

ϵ
E
[
∥∇F (wt)∥22

]
+

1

a2
E
[
E
[
∥G(wk; ξk)− G(wk; ξt)∥22 |Fk

]]}

= −1

2

t−1∑
k=1

βt−k
1

{
a2

ϵ
E
[
∥∇F (wt)∥22

]
+

2

a2
E
[
E
[
∥∇G(wk; ξk)−∇F (wk)∥22 |Fk

]]}

≥ −a2

2ϵ

1

1− β1
E
[
∥∇F (wt)∥22

]
− 1

a2

t−1∑
k=1

βt−k
1 E

[
∥∇G(wk; ξk)−∇F (wk)∥22

]
≥ −a2

2ϵ

1

1− β1
E
[
∥∇F (wt)∥22

]
− d

a2

t−1∑
k=1

βt−k
1 λk

for any positive constant a, where the third equality holds because G(wk; ξk) and G(wk; ξt) are i.i.d. given Fk, and thus

E
[
∥G(wk; ξk)− G(wk; ξt)∥22 |Fk

]
= E

[
∥G(wk; ξk)−∇F (wk)∥22 |Fk

]
+ E

[
∥G(wk; ξt)−∇F (wk)∥22 |Fk

]
−2E [(G(wk; ξk)−∇F (wk)) |Fk ]

⊤ E [(G(wk; ξt)−∇F (wk)) |Fk ]

= 2E
[
∥G(wk; ξk)−∇F (wk)∥22 |Fk

]
.

The last inequality applies (5).

If a =
√

ϵ(1− β1)/2
√
G2 + ϵ, then we have

E[T2] ≥ − 1

4
√
G2 + ϵ

E
[
∥∇F (wt)∥22

]
− 2d

√
G2 + ϵ

ϵ(1− β1)

t−1∑
k=1

βt−k
1 λk. (7)
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Bounding T3: We derive

T3 =

t−1∑
k=1

βt−k
1 ∇F (wt)V

−1/2
t (G(wk; ξt)− G(wt; ξt))

≥ −
t−1∑
k=1

βt−k
1

∥∥∥∇F (wt)V
−1/2
t

∥∥∥
2
∥G(wk; ξt)− G(wt; ξt)∥2

≥ −LG√
ϵ

t−1∑
k=1

βt−k
1 ∥wt − wk∥

= −LG√
ϵ

t−1∑
k=1

βt−k
1

∥∥∥∥∥∥
t−1∑
j=k

αjV
−1/2
j m̃j

∥∥∥∥∥∥
2

≥ −LG√
ϵ

t−1∑
k=1

βt−k
1

t−1∑
j=k

αj

∥∥∥V −1/2
j m̃j

∥∥∥
2

≥ − LG2

ϵ
√
1− β1

t−1∑
k=1

t−1∑
j=k

βt−k
1 αj

= − LG2

ϵ
√
1− β1

t−1∑
j=1

αj

j∑
k=1

βt−k
1

≥ − LG2

ϵ(1− β1)3/2

t−1∑
j=1

αjβ
t−j
1

≥ − LG2C̄

ϵ(1− β1)3/2
αt, (8)

where the first inequality is the Cauchy-Schwartz inequality, the second inequality applies L smoothness of G(·; ξ) for any
ξ, the forth inequality holds because

∥∥∥V −1/2
j m̃j

∥∥∥
2
=

√√√√ 1

1− βj
1

d∑
i=1

m2
j,i

vj,i + ϵ
≤ G√

ϵ(1− β1)

and the last inequality comes from Lemma 3.

Bounding T4: It is easy to show that

T4 =

d∑
i=1

m2
t,i

vt,i + ϵ
≤ G2

ϵ
. (9)

According to the bounds in (6), (7), (8) and (9),we get

E[F (wt+1)]− E[F (wt)] ≤ −αt

{
1

2
√
G2 + ϵ

E
[
∥∇F (wt)∥22

]
− d

2
√
ϵ
λt

}
−αt(1− β1)

1− βt
1

{
− 1

4
√
G2 + ϵ

E
[
∥∇F (wt)∥22

]
− 2d

√
G2 + ϵ

ϵ(1− β1)

t−1∑
k=1

βt−k
1 λk

}

+
LG2C̄

ϵ
√
1− β1(1− βt

1)
α2
t +

LG2

2ϵ(1− βt
1)

2
α2
t

≤ −αt
1

4
√
G2 + ϵ

E
[
∥∇F (wt)∥22

]
+

d

2
√
ϵ
αtλt +

2d
√
G2 + ϵ

ϵ(1− β1)
αt

t−1∑
k=1

βt−k
1 λk

+

{
LG2C̄

ϵ(1− β1)3/2
+

LG2

2ϵ(1− β1)2

}
α2
t .



Letting

Q1 =
d

2
√
ϵ

Q2 =
2d

√
G2 + ϵ

ϵ(1− β1)

Q3 =
LG2C̄

ϵ(1− β1)3/2
+

LG2

2ϵ(1− β1)2

completes the proof.

Proof of Theorem 4: According to Lemma 5, we have

Finf − F (w1) ≤ E[F (wT+1)]− F (w1)

=

T∑
t=1

E[F (wt+1)]− E[F (wt)]

≤ − 1

4
√
G2 + ϵ

T∑
i=1

αtE
[
∥∇F (wt)∥22

]
+Q1

T∑
i=1

αtλt +Q2

T∑
i=1

αt

t−1∑
k=1

βt−k
1 λk

+Q3

T∑
i=1

α2
t .

Then we obtain

1

4
√
G2 + ϵ

T∑
t=1

αtE
[
∥∇F (wt)∥22

]
≤ F (w1)− Finf +Q1

T∑
t=1

αtλt

+Q2

T∑
t=1

αt

t−1∑
k=1

βt−k
1 λk +Q3

T∑
t=1

α2
t

≤ F (w1)− Finf +Q1

T∑
t=1

αtλt

+Q2

T∑
k=1

λk

T∑
t=k

βt−k
1 αt +Q3

T∑
t=1

α2
t

≤ F (w1)− Finf +Q1

T∑
t=1

αtλt

+
Q2

1− β1

T∑
k=1

λkαk +Q3

T∑
t=1

α2
t .

Noticing that the left-hand side can be bounded as

T∑
t=1

αtE
[
∥∇F (wt)∥22

]
≥

T∑
t=1

αt min
1≤t≤T

E
[
∥∇F (wt)∥22

]
,

we obtain

min
1≤t≤T

E
[
∥∇F (wt)∥22

]
≤ 4

√
G2 + ϵ∑T
t=1 αt

+ 4
√
G2 + ϵ

(
Q1 +

Q2

1− β2

) ∑T
t=1 λtαt∑T
t=1 αt

+4
√

G2 + ϵQ3

∑T
t=1 α

2
t∑T

t=1 αt

.
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1.6 Proof of Theorem 5

Applying L-smoothness of gradients of F and strong convexity of F , we have

F
(
ŵ

(2)
2

)
≥ F

(
w

(2)
1

)
+ F ′

(
w

(2)
1

)(
ŵ

(2)
2 − w

(2)
1

)
+

c

2

(
ŵ

(2)
2 − w

(2)
1

)2
F
(
w

(2)
2

)
≤ F

(
w

(2)
1

)
+ F ′

(
w

(2)
1

)(
w

(2)
2 − w

(2)
1

)
+

L

2

(
w

(2)
2 − w

(2)
1

)2
.

By definition, we have

F
(
ŵ

(2)
2

)
− F

(
w

(2)
2

)
≥ F ′

(
w

(2)
1

)(
ŵ

(2)
2 − w

(2)
2

)
+

c

2

(
ŵ

(2)
2 − w

(2)
1

)2
− L

2

(
w

(2)
2 − w

(2)
1

)2
= F ′

(
w

(2)
1

)α2
m̃

(2)
1√

ṽ
(2)
1 + ϵ

− α2

ˆ̃m
(2)

1√
ˆ̃v
(2)

1 + ϵ

+
cα2

2

2

ˆ̃m
(2)

1

ˆ̃v
(2)

1 + ϵ
− Lα2

2

2

m̃
(2)
1

ṽ
(2)
1 + ϵ

= α2F
′
(
w

(2)
1

)F ′
(
w

(2)
1

)
√
Q3

− γ
(1− β1)F

′
(
w

(2)
1

)
+ β1m

(1)
m+1

√
Q4


+
cα2

2γ
2

2

(
(1− β1)F

′
(
w

(2)
1

)
+ β1m

(1)
2

)2
Q4

− Lα2
2

2

(
F ′
(
w

(2)
1

))2
Q3

where

Q3 = ṽ
(2)
1 + ϵ

Q4 = ˆ̃v
(2)

1 + ϵ

γ =
1

1− βm+1
1

.

Thus we have

F
(
ŵ

(2)
2

)
− F

(
w

(2)
2

)
≥

(
F ′
(
w

(2)
1

))2
q

 m
(1)
m+1

F ′
(
w

(2)
1

)


where q(x) = Q5x
2 +Q6x+Q7 is a function with parameters

Q5 =
cα2

2γ
2β2

1

2Q4

Q6 =
cα2

2γ
2β1(1− β1)

Q4
− α2γβ1√

Q2

Q7 =
α2√
Q3

− α2γ(1− β1)√
Q4

+
cα2

2γ
2(1− β1)

2

2Q4
− Lα2

2

2Q3
.

Apparently, from

ṽ
(2)
1 =

(
g
(2)
1

)2
≤ G2

ˆ̃v
(2)

1 =
1− β1

1− βm+1
2

(
m∑

k=1

βm+1−k
2

(
g
(1)
k

)2
+
(
g
(2)
1

)2)
≤ 1− β1

1− βm+1
2

(
m∑

k=1

βm+1−k
2 + 1

)
G2 = G2,

we have

ϵ ≤ Q3 ≤ ϵ+G2

ϵ ≤ Q4 ≤ ϵ+G2.



Noticing that

∆ = Q2
6 − 4Q5Q7

=
α2
2γ

2β2
1

Q4

(
1− 2cα2√

Q3
+

cLα2
2

Q3

)
>

α2
2γ

2β2
1

Q4

(
1− 2cα2√

Q3
+

c2α2
2

Q3

)
=

α2
2γ

2β2
1

Q4

(
1− cα2√

Q3

)2

≥ 0,

where the first inequality uses the property of the strong convexity parameter and the L-smoothness gradient parameter
c < L, we have that there exists

x1 =
−Q6 +

√
∆

2Q5

x2 =
−Q6 −

√
∆

2Q5

such that q(x1) = q(x2) = 0. We claim that |x1| ≤ 1 and |x2| ≤ 1, which is implied by
√
∆ ≤ min{2Q5 +Q6, 2Q5 −Q6}. (10)

We notice that

2Q5 +Q6 =
α2γβ1√

Q4

(
cα2γ√
Q4

− 1

)
2Q5 −Q6 =

α2γβ1√
Q4

(
cα2γ(2β1 − 1)√

Q4
+ 1

)
and

∆ ≤ α2
2γ

2β2
1

Q4

(
1− 2Lα2√

Q3
+

L2α2
2

Q3

)
=

α2
2γ

2β2
1

Q4

(
1− Lα2√

Q3

)2

where the inequality holds according to Assumption 2 Lα2 ≥ 2
√
G2 + ϵ ≥ 2

√
Q3. Thus we have

√
∆ ≤ α2γβ1√

Q4

(
Lα2√
Q3

− 1

)
≤ α2γβ1√

Q4

(
cα2γ(2β1 − 1)√

Q4
− 1

)
≤ min{2Q5 +Q6, 2Q5 −Q6},

where the second inequality holds according to Assumption 2, L
c ≤ 2β1−1

1−βm+1
1

√
ϵ

G+ϵ ≤ 2β1−1

1−βm+1
1

√
Q3

Q4
.

Hence we obtain (10), which implies that q(x) ≥ 0 where |x| ≥ 1. As we assume∣∣∣m(1)
m+1

∣∣∣ ≥ ∣∣∣F ′
(
w

(2)
1

)∣∣∣ ,
we have

F
(
ŵ

(2)
2

)
− F

(
w

(2)
2

)
≥ 0,

which finishes the proof.

1.7 Proof of Theorem 6 and Theorem 7

We start proving the following lemmas.
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Lemma 6 Given Assumption 3, we have that for any 1 ≤ k ≤ m and 1 ≤ t ≤ T , the ADAM states in Algorithm 2 with
option A satisfy ∥∥∥m(t)

k

∥∥∥
2

≤ 3G,∥∥∥v(t)k

∥∥∥
2

≤ 9G2.

Proof: By definition, we have

m
(t)
k = (1− β1)

k∑
j=1

βk−j
1 g

(t)
j

v
(t)
k = (1− β2)

k∑
j=1

βk−j
2 g

(t)
j ⊙ g

(t)
j .

Applying the Cauchy-Schwartz inequality, we obtain∥∥∥m(t)
k

∥∥∥
2

≤ (1− β1)

k∑
j=1

βk−j
1

∥∥∥g(t)j

∥∥∥
2

≤ (1− β1)

k∑
j=1

βk−j
1

(∥∥∥∇FB(t)
j

(
w

(t)
j

)∥∥∥
2
+
∥∥∥∇FB(t)

j (w̃t)
∥∥∥
2
+ ∥∇F (w̃t)∥2

)

≤ (1− β1)

k∑
j=1

βk−j
1 3G ≤ 3G

and ∥∥∥v(t)k

∥∥∥
2

≤ (1− β2)

k∑
j=1

βk−j
2

∥∥∥g(t)j ⊙ g
(t)
j
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2

= (1− β2)

k∑
j=1

βk−j
2

∥∥∥g(t)j

∥∥∥2
2

≤ (1− β2)
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j=1

βk−j
2

(∥∥∥∇FB(t)
j

(
w

(t)
j

)∥∥∥
2
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2
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≤ (1− β2)

k∑
j=1

βk−j
2 9G2 ≤ 9G2.

Lemma 7 Given Assumption 3, there exist positive constants Q8 and Q9 such that Algorithm 2 with option A satisfies that
for any t,

F (w̃t+1)− F (w̃t) ≤ −Q8αtm ∥∇F (w̃t)∥22 +Q9α
2
t

holds almost surely.

Proof: We start from the application of L-smoothness of gradient of F (w) as follows

F (w̃t+1) ≤ F (w̃t) +∇F (w̃t)
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.



By definition and the resetting option, we have
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(t)
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1− βk
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and thus
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Bounding T1: We have

T1 ≥ −
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j=1
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The first thing to notice is that∥∥∥∥∥∥
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where the second inequality employs the assumption that the gradients of F are bounded. Secondly, according to L-
smoothness of gradients of every loss function, we derive∥∥∥∇FB(t)

j

(
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where the first inequality applies the Cauchy-Schwartz inequality and the last one applies Lemma 6. By plugging equations
(12) and (13) into equation (11), we obtain

T1 ≥ −
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3G2L

(1− β1)3ϵ
(j − 1)αt = − 3G2L

2(1− β1)3ϵ
m(m− 1)αt. (14)

Bounding T2: We have
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j=1

m∑
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1

1− βk
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⊤
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βk−j
1
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∇iF (w̃t)
2

√
9G2 + ϵ

=
∥∇F (w̃t)∥22√
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m∑
j=1
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1

≥ ∥∇F (w̃t)∥22√
9G2 + ϵ

m∑
j=1

1

=
1√

9G2 + ϵ
m ∥∇F (w̃t)∥22 . (15)

Bounding T3: We obtain

T3 ≤

(
m∑

k=1
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∥∥∥∥
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In summary, we get

F (w̃t+1) ≤ F (w̃t)− αt
m(1− β1)√
9G2 + ϵ

∥∇F (w̃t)∥22 +
3G2Lm(m− 1)/(1− β1)

2 + 9G2Lm2

2ϵ
α2
t

= F (w̃t)−Q8αtm ∥∇F (w̃t)∥22 +Q9α
2
t ,

where

Q8 =
1− β1√
9G2 + ϵ

Q9 =
3G2Lm(m− 1)/(1− β1)

2 + 9G2Lm2

2ϵ
.

Proof of Theorem 6: If F (w) is c-strongly convex, we have

∥∇F (w)∥22 ≥ 2c (F (w)− F ∗) ,

and thus according to Lemma 7, we have

F (w̃t+1) ≤ F (w̃t)− 2cQ8αtm (F (wt)− F ∗) +Q9α
2
t ,

which is equivalent to

F (w̃t+1)− F ∗ ≤
(
1− C2mα

t

)
(F (w̃t)− F ∗) +Q9α

2
t .

We obtain recursively

F (w̃T )− F ∗ ≤
T−1∏
t=1

(
1− C2mα

t

)
(F (w̃1)− F ∗) +

T−1∑
t=1

αt

T−1∏
j=t+1

(
1− C2mα

j

)
.

By definition, we have C2mα < 1, and thus we can use Lemma 4 to obtain

F (w̃T )− F ∗ ≤ O
(
T−C2mα

)
.

Proof of Theorem 7: Let us consider the set of indices A = {t ∈ N : ∥∇F (w̃t)∥ = 0}. If the set is infinite, there exists a
sequence {tk}+∞

k=1 such that ∥∇F (w̃tk)∥ = 0 for all k. Then we have

lim inf
t→∞

∥∇F (w̃t)∥2 = 0.

Otherwise, A is finite, and thus its maximum exists. For all t > τ := maxA, we have ∥∇F (w̃t)∥2 > 0. Applying Lemma
7, we have

F (w̃t+1)− F (w̃t) ≤ −αtQ8m ∥∇F (w̃t)∥22 +Q9α
2
t .

Then it follows

Finf − F (w̃τ+1) ≤ F (w̃T+1)− F (w̃τ+1)

≤
T∑

t=τ+1

−Q8mαt ∥∇F (w̃t)∥22 +Q9

T∑
t=τ+1

α2
t ,

and thus

min
τ+1≤t≤T

∥∇F (w̃t)∥22
T∑

t=τ+1

αt ≤
T∑

t=τ+1

αt ∥∇F (w̃t)∥22 ≤ F (w̃τ+1)− Finf

Q8m
+

Q9

Q8m
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α2
t .
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Then, we have

min
τ+1≤t≤T

∥∇F (w̃t)∥22 ≤ 1∑T
t=τ+1 αt

{
F (w̃τ+1)− Finf

Q8m
+

Q9

Q8m

T∑
t=τ+1

α2
t

}
,

which yields

lim
T→+∞

min
τ+1≤t≤T

∥∇F (w̃t)∥22 = 0. (17)

For all r > τ , there must exists an s > r such that

∥∇F (w̃s)∥2 < ∥∇F (w̃r)∥2 .

Otherwise, if there exists an r0 > τ , such that for all s > r0 we have

∥∇F (w̃s)∥2 ≥ ∥∇F (w̃r0)∥2 ,

then for all T ≥ r0, we have

min
τ+1≤t≤T

∥∇F (w̃t)∥22 = min
τ+1≤t≤r0

∥∇F (w̃t)∥22 = A > 0,

which contradicts (17), since A is a positive constant.

Let t1 = τ + 1 and for all k ∈ N, let tk+1 = inf
{
s > tk : ∥∇F (w̃s)∥2 < ∥∇F (w̃tk)∥2

}
. This implies a sub-sequence{

∥∇F (w̃tk)∥2
}
k

of sequence {∥∇F (w̃t)∥2}t. Since

∥∇F (w̃tk)∥2 = min
τ+1≤t≤tk

∥∇F (w̃t)∥2 ,

by employing (17), we have

lim
k→∞

∥∇F (w̃tk)∥2 = 0,

which implies that

lim inf
t→∞

∥∇F (w̃t)∥ = 0.

This completes the proof.

2 Experiments

2.1 Network Structure

Dataset Input dimension Hidden dimension Output Dimension
CovType 98 100 7
MNIST 784 100 10

Table 1: Feedforward network structure

The feedforward networks used in the experiments have two fully connected layers with the dimensions described in Table 1.

The structure of the CNN used in the experiments is described as follows. The CNN is mainly composed of two convolution
layers, two max pooling layers and one fully connected layer. The kernel size of the convolution layers is 4 and the kernel
size of the pooling layers is 2. The numbers of channels of the two convolution layers are 16 and 32, respectively, and the
dimensions of the fully connected layer are 32 for input and 10 for output.

2.2 Additional Results



Figure 1: Relative difference of VRADAM in classifying Embedded CIFAR10 with Logistic regression

Figure 2: Relative difference of VRADAM in classifying MNIST with CNN

Figure 3: Relative difference of VRADAM in classifying MNIST with FFN

Figure 4: Deviation of VRADAM and ADAM for MNIST with CNN
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Figure 5: Deviation of VRADAM and ADAM for MNIST with FFN

Figure 6: Deviation of VRADAM and ADAM for CovType with logistic regression

Figure 7: Deviation of VRADAM and ADAM for Embedded CIFAR-10 with logistic regression

Figure 8: Deviation of VRADAM and ADAM for MNIST with logistic regression



Figure 9: Deviation of VRADAM and ADAM for NSL-KDD with logistic regression

Figure 10: Sensitivity on initial point for MNIST with CNN

Figure 11: Sensitivity on initial point for MNIST with FFN

Figure 12: Sensitivity on initial point for Embedded CIFAR-10 with logistic regression
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Figure 13: Sensitivity on initial point for CovType with logistic regression

Figure 14: Sensitivity on initial point for MNIST with logistic regression

Figure 15: Sensitivity on initial point for NSL-KDD with logistic regression


