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Abstract—Federated learning is a distributed machine learning
paradigm where multiple data owners (clients) collaboratively
train one machine learning model while keeping data on their
own devices. The heterogeneity of client datasets is one of the
most important challenges of federated learning algorithms.
Studies have found performance reduction with standard feder-
ated algorithms, such as FedAvg, on non-IID data. Many existing
works on handling non-IID data adopt the same aggregation
framework as FedAvg and focus on improving model updates
either on the server side or on clients. In this work, we tackle
this challenge in a different view by introducing redistribution
rounds that delay the aggregation. We perform experiments on
multiple tasks and show that the proposed framework signifi-
cantly improves the performance on non-IID data.

Index Terms—federated learning

I. INTRODUCTION

As the amount of data generated by mobile devices increase
explosively, followed by increasing privacy concerns of user
data, researchers start seeking a solution to the dilemma of
utilizing a large volume of user data while preserving the
privacy of users. Federated learning is a machine learning
paradigm that provides a solution to this dilemma. Under the
coordination of a central server, a model is trained collabora-
tively by clients. To update the model, the server only collects
a minimal amount of necessary information from clients
but not their data [1]. Federated learning has been drawing
increasing interest in recent years and has been applied in
many on-device prediction tasks [2], [3]. The privacy promise
of federated learning also makes it an appealing choice in
healthcare applications [4], [5].

In federated learning, a global model is trained collabora-
tively on clients which are coordinated by a central server.
Each round of training typically consists of four phases: an
aggregation phase on the server, a local training phase on
clients, and two communication (server-to-client and client-to-
server) phases. The whole training process starts with a global
model initialized on the server-side. In the server-to-client
communication phase, a group of active clients is selected as
training clients based on certain policy and the model is sent
to them. Then, each client trains the model by calculating
updates based on its own data stored on the local device.
Stochastic gradient descent (SGD) is typically used to update
local models during the local training phase. In the client-to-
server communication phase, clients send their updated models
back to the server, which then aggregates local models into a
new global model in the aggregation phase.

Different from traditional distributed learning, in federated
learning, client’s raw data are never collected by the central
server. This raises several challenges. First, data on a particular
client are generated by a particular user, therefore, client
data most likely are not distributed in a balanced and IID
manner, which is usually an assumption in distributed learning.
Second, the number of clients can be much larger than the
number of samples on each client. This aggravates the issue
of aggregation of non-IID clients. Third, clients are not always
able to participate in training as user devices can be offline fre-
quently or slow in communication. These challenges demand
new methods different from existing algorithms designed for
traditional distributed learning.

Our work focuses on mitigating the impact of non-IID client
data distributions. Many existing works [6]–[10] adopt the
FedAvg [1] framework and applied various strategies to handle
non-IID data. In this work, we propose a new framework of
federated learning with delayed aggregations. We delay the
aggregation of local models on the server by redistributing
local models to clients multiple times. Delayed aggregation
and redistribution mitigate the non-IID issue by ensuring that
each local model is trained with data of multiple clients before
aggregation. In a non-IID scenario, a combination of data
from multiple clients are potentially more representative of
the global data distribution than the data of a single client.

Compared with several state-of-the-art federated learning
algorithms that handle non-IID data distributions, our frame-
work demonstrates a good ability to mitigate the impact of the
non-IID data distribution and yields the best performance on
multiple datasets. The main contributions are summarized as
follows.

1) We propose a novel federated learning framework with
delayed aggregations to handle non-IID data and a client
selecting algorithm that further boosts the performance.

2) We evaluate the proposed algorithm on 9 non-IID
datasets and demonstrate an improvement over the best
benchmark by 1.56% on average. On multiple datasets
with a more challenging task, our algorithm demon-
strates an improvement of roughly 3% against the best
comparison algorithm. The total wall-clock training time
and the total communication requirements in our algo-
rithm are the same as benchmarks. We implement our
framework in Ray [11] with code made public 1.

1Code is available at: https://github.com/yxsub/RADFed

https://github.com/yxsub/RADFed


3) We propose a novel method to generate non-IID data. It
samples non-IID sizes of clients, class distributions and
feature distributions separately. This method provides an
ability to simulate specific non-IID settings.

4) Along the way, we also study the impact of localized
and global data standardization on federated learning.

II. RELATED WORK

Many works have been done to tackle aforementioned
challenges. Improving communication efficiency [1], [12], [13]
is one of the most important topics in federated learning as
client devices are usually on slow and expensive connections.
Performing sketched updates is a popular strategy. Konečnỳ
et al. [12] applied quantization and subsampling on the model
update to compress it before sending it back to the server.
Wang et al. [13] reduce communication by avoiding irrelevant
updates from clients. Each client determines if its update is
relevant enough by checking whether its local update aligns
with the global tendency.

Despite the great success of FedAvg, researchers showed
that the performance of FedAvg reduces significantly when
local data are non-IID [6]. Zhao et al. also proposed a strategy
to mitigate non-IID data by sharing a subset of data between
clients. The idea is to make the training data more IID through
sharing. Many studies focus on handling the non-IID issue
in this direction, [5], [14]. Instead of sharing raw data, a
generative adversarial network (GAN) was trained in [14]
to reproduce client data, which preserves privacy as no real
data of clients is shared. A series of distillation methods was
proposed in [15]–[17] to alleviate the non-IID issue through
model distillation on extra data, such as public and synthetic
data.

Another category of studies improving federated learning on
non-IID data adds constraints when updating the model. This
can be done either on clients or on the server side. Several
works modified the loss function to correct or penalize local
updates so that the local model is not shifted too much from
the global model [8], [9], [18]. Wang et al. [19] proposed
to normalize gradients on clients. Sattler et al. [10] proposed
a communication-efficient federated learning framework to
reduce communication costs by applying Top-k Sparsification.
The sparsification restricts changes to a subset of the model’s
parameters and is shown to suffer the least from the non-IID
data among existing model compression methods.

On the server side, Li et al. [7] applied momentum uni-
formly to the gradients of all clients to stabilize the training
process under a non-IID scenario. However, collecting gradi-
ents from clients might require more frequent communications
than collecting models from clients. Other momentum-based
methods update the global model considering the historical
global models [8], [20]. Reddi et al. [21] proposed adaptive
federated learning algorithms, which treats the difference be-
tween the client’s local update and the global model as pseudo-
gradient and applied adaptive gradient descent algorithms to
update the global model.

Our work focuses on handling non-IID data. Similar to [9],
[21], we modify the FedAvg algorithm to make it more robust
on non-IID data. Different from existing works, we change
the aggregation logic by introducing redistribution rounds
which delay the aggregation. Our method is orthogonal to
aforementioned FedAvg-based methods and can be mixed with
other algorithms. The proposed algorithm can be used as an
alternative federated learning framework to FedAvg.

III. METHODOLOGY

One of the most common approaches to solve the opti-
mization problem in federated learning is FedAvg [1]. In each
training round, the server sends the global model to a subset
of randomly selected clients. The clients update their local
model using SGD on their own data in parallel and send back
the updated model to the server. The server then updates the
global model by averaging local updates from clients. Consider
a subset K of training clients, the aggregation at the t-th round
is written as

wt ←
∑
k∈K

nk

n
wk

t ,

where wk
t is the updated model on client k, nk is the size

of client k and n is the total size of clients. When data are
identically distributed at clients, this aggregation works well
since each local model is trained on a subset of data that
is representative of the global distribution. It is identical to
updating the global model in a centralized way. In non-IID
cases, however, the client data can be highly skewed and it
might not be a good idea to average the model trained on a
highly skewed client with less skewed ones. The weighted
averaging makes the aggregation even worse if a highly
skewed client is large.

A. Delayed Aggregation

In order to make this aggregation work better in the non-
IID setting, we have to answer the question: can each local
model be trained on data that are representative of the global
distribution at the time of aggregation?

One of the core promises federated learning makes is that
no client data is collected by the server, so we can not make
data on each client be representative of the global distribution
by rearranging client data. However, we can rearrange local
models. If we train a model on all clients one by one, we
end up with a model that is trained on all the data. This
would be similar to standard epoch based training and thus
very slow. Second, it would assume that each client is active
when needed. Alternatively, we can select only a subset of
clients to perform this strategy.

Following this idea, we propose the Randomized Aggre-
gation Delayed Federated learning algorithm (RADFed). We
delay the aggregation by adding another training round to
FedAvg. As shown in Algorithm 1, in the inner rounds, the
server randomly sends local models back to clients again
without performing aggregation. The server only aggregates
local models at the end of the inner rounds. We call the inner



Algorithm 1 RADFed
K clients participate in training; C is the fraction of clients
participating in each training round; T is the number of train-
ing iterations and S is the number of redistributing iterations.
Server executes:

1: initialize w1

2: m← max(C ·K, 1)
3: for each round t = 1, 2, ..., T do
4: wk

t ← wt, for k = 1, 2, ...,m
5: w̄1 ← (w1

t , ..., w
m
t )

6: for each redistributing iteration s = 1, 2, ..., S do
7: U ← uniformly sample m training clients
8: for i = 1, 2, ...,m do
9: w̄i

s+1 ← ClientUpdate(Ui, w̄
i
s)

10: end for
11: end for
12: wt+1 ← 1

m

∑m
i=1 w̄

i
S+1

13: end for
14: return wT+1

training rounds the redistributing rounds. ClientUpdate(k,w)
trains the model of client k with initial weights w.

In Figure 1, we compare the aggregation in FedAvg and
RADFed under a scenario with three clients, where each client
has one class of data with a different number of samples.
In FedAvg, there are three times of aggregation. At every
aggregation, each set of local model weights is trained on
data of a different class. In RADFed, however, there is one
aggregation and two redistributions. At aggregation, each set
of local model weights is trained on data of all three classes.
In other words, at aggregation, local models in RADFed are
trained with data that are more representative of the global
distribution than in FedAvg. In this toy scenario, local models
in RADFed are also trained with the same number of samples.
In practice, this would not likely be the case, but they are
expected to be trained with a similar number of samples due
to randomization.

RADFed mitigates the non-IID issue with delayed aggrega-
tion and redistribution, where local models are trained on data
that are more representative of the global data distribution.
Note that, redistribution does not increase communication
costs compared with FedAvg. Instead of redistribution, the
server in FedAvg sends back the global model, which is
the same size as local models. Additionally, as illustrated in
Figure 1, with enough random redistributions, local models are
expected to be trained on a similar number of samples. There-
fore, we remove the sample size factor during aggregation and
perform plain averaging over local models with equal weights.
Because of this, the algorithm has another appealing property
in terms of privacy-preserving in that the clients do not have
to expose the size of their data. In many cases, the size of data
can also be considered as sensitive information and exposing
them may also cause privacy leakage. For example, it is more
likely that a heavier user of a health-tracking app has a health

Fig. 1: A comparison of aggregation between RADFed and FedAvg.
Colored blocks represent the data on clients. Each color represents
a class. The length of each block shows the size of the data. Each
circle represents a model’s weights. Colored blocks under each circle
show the data used to train a certain set of weights.

problem. Furthermore, due to redistribution, the local updates
sent by clients in RADFed are already aggregated information
involving multiple clients thus hiding characteristics of each
individual from attacks from untrustworthy parties. Although
in the first redistribution round, the local update is not ag-
gregated information, the client that receives this local update
does not have the knowledge of whether this is aggregated
information or not and does not have the knowledge of the
source of the local update because it is sent from the server.
In conclusion, the proposed method does not significantly
increase, if not reduce, the privacy risk compared to FedAvg.

In practice, it is possible that the number of active clients
is different in each round. To apply our framework, a small
subset of active clients can be selected to make sure the
number of active clients is the same across redistributing
rounds. In some extreme cases where too few clients are active
during redistribution, there are multiple strategies to make the
framework work, e.g., reducing the number of redistributing
models accordingly, or counting the number of times a local
model has been redistributed and scheduling the redistributing
process to make sure local models are redistributed a similar
number of times before aggregation.

B. Importance Sampling

Not all samples are equally important and so are clients,
especially in federated learning where client data are usually
non-IID. If data are not identically distributed on clients, why
should we select training clients through a simple uniform ran-
dom sampling? We hypothesize that focusing computation on
good clients can help improve federated learning algorithms.
Inspired by [22], we propose RADFed-IS that incorporates
the idea of importance sampling into our aggregation delayed
framework. In [22] it is established that the optimal sampling
probability is proportional to the square of the norm of the
gradients.

The idea of importance sampling is to find a good mini-
batch to train the model on in the next training step. A
straightforward way of adopting this idea in our framework



Algorithm 2 RADFed+: RADFedp, RADFedm , RADFeda
and RADFedi
Server executes:

1: initialize w1

2: initialize pk for each training client k
3: m← max(C ·K, 1)
4: for each round t = 1, 2, ..., T do
5: wi

t ← wt, for i = 1, 2, ...,m
6: w̄1 ← (w1

t , ..., w
m
t )

7: for each redistributing iteration s = 1, 2, ..., S do
8: U ← m clients sampled with probabilities ∝ p
9: for i = 1, 2, ...,m do

10: w̄i
s+1, pnewUi

← ClientUpdate(Ui, w̄
i
s)

11: pUi
← (1− γ)pUi

+ γpnewUi

12: end for
13: end for
14: wt+1 ← α· 1

m

∑m
i=1 w̄

i
S+1 +(1− α)wt

15: ∆t ← 1
m

∑m
i=1(w̄

i
S+1 − wt)

16: mt, vt ← Calculate momentum terms with respect to
∆t , [21]

17: wt+1 ← wt + η mt

vt+τ
18: end for
19: return wT+1

ClientUpdate(k,w′):
1: On local data D, client k optimizes local objective func-

tion Fk(w) or Fk(w) +
ρ
2 ||w − w′||2 starting with w′.

2: Let w∗ be resulting solution.
3: p = 1

|D|
∑

d∈D ||∇ℓd(w∗)||22
4: return w∗, p to server

is to score the importance of all clients with respect to the
current global model right after each aggregation and select
the next set of clients to participate in training based on this
score. However, collecting scores from all clients is usually
not feasible in federated learning under the assumption that
clients are not always active. Besides, it may increase the
training time largely by adding an extra communication round
to collect scores after each aggregation.

Instead, we score each client along with its local training.
After local training, each client calculates the average square
of the gradient norm of all mini-batches as its importance score
and sends it back to the server along with the updated local
model. The advantage of this strategy is that there is almost no
extra burden added to the communication. Compared with the
model itself, the size of an importance score can be neglected.
However, the importance score calculated this way is no longer
a good indicator of the importance of the client’s data to the
global model as each score is associated with a local model.
In addition, a local model is not likely going to be trained on
the same client in the next round because of the redistribution.
Therefore, selecting clients based on this score might not be
a good idea.

In order to solve this issue, we accumulate the importance

Dataset Min Max Mean Stdev C-score

Cifar10 2 2,850 600 605 1.29
Shakespeare 3 41,305 3,616 6,808 0.27
COVCLS 110 33,300 4,920 5,110 0.79
COVFEAT 372 17,328 4,920 3,237 0.68
MNIST-1 3 3,365 700 667 0.70
MNIST-0.1 11 3,327 700 658 1.29
eICU 108 5,683 901 925 0.06

TABLE I: Statistics of datasets (number of samples of clients)

scores for each client by averaging the scores calculated on
all local models that have been trained on its local data. We
expect that the accumulated score of a client becomes a good
indicator of the importance of this client’s data to all local
models after accumulating over multiple rounds.

The server accumulates importance score pk of client k
by taking a weighted average between the old score and
the new one as pk ← (1 − γ)pk + γpnewk , with a mixing
hyper-parameter γ ∈ (0, 1). The server selects clients with
probabilities proportional to the accumulated scores. Different
from [23], we do not require to communicate raw gradients.
The detailed algorithm RADFedi is shown in Algorithm 2.

C. RADFed+

RADFed itself works independently as a federated
learning algorithm. However, it can also be used as a
federated learning paradigm, as an alternative to FedAvg,
where other methods can be plugged in. In this work, we
propose several RADFed-based algorithms RADFed+ under
this paradigm, including RADFed+FedProx (RADFedp),
RADFed+Momentum (RADFedm), RADFed+Adaptive
(RADFeda) and RADFed+IS (RADFedi). These algorithms
cover methods designed to improve the following major
aspects in federated learning: server-side updates, client-side
updates and client sampling. Although we only select one
or two methods from each aspect in this experiment, other
similar methods can be applied on top of RADFed as well.
The algorithm of RADFed+ is shown in Algorithm 2.

IV. EXPERIMENTAL SETUP

In this work, we focus on evaluating the performance of
federated learning algorithms in non-IID settings. Although a
real-world non-IID dataset is ideal, datasets with an artificial
partition are also very helpful in simulating different non-
IID settings. Many studies create heterogeneous clients by
manually sampling data on clients so that the class distribution
is not identical across clients. In existing sampling methods,
the sizes of clients are usually determined by class sampling.
To the best of our knowledge, feature-imbalance has not been
considered in prior works.

In order to simulate non-IID settings with more control of
the distribution of sizes, classes and features, we propose a
sampling method where we can sample them independently
with a different Dirichlet prior. It is not always the case that
we can draw a desired number of samples to satisfy all these



independently sampled distributions at the same time. Let us
consider sampling non-IID sample sizes and classes as an
example. A sampling solution for T clients and C classes
is a T × C matrix where each entry denotes the number of
samples of class c on client t. By sampling sizes and classes
separately, we specify each entry of the matrix, that is a total of
T ·C numbers. However, given the number of samples in each
class in a dataset, we only need T · C − C entries to specify
a solution. Therefore, we propose a Quadratic Programming
(QP) method to find a random feasible sampling solution.

Algorithm 3 Random QP solution
Input: QP solution A = {αtk}tk

1: for p = 1, 2, ..., P do
2: A← RandomizeSolution(A) // a burn-in period
3: end for
4: h←∞
5: for q = 1, 2, ..., Q do
6: A← RandomizeSolution(A)
7: L(A)← calculate loss from (1) or (2)
8: if L(A) < h then
9: Ā← A

10: h← L(A)
11: end if
12: end for
13: return Ā

RandomizeSolution(A):
1: (i, j), (̄i, j̄)← indices of two random entries of A
2: ε← uniform(0,min{Ai,j , Aī,j̄ , ξ})
3: for Each position (m,n) do

4: Anew
m,n ←


Am,n − ε,m = i, n = j
Am,n − ε,m = ī, n = j̄
Am,n + ε,m = i, n = j̄
Am,n + ε,m = ī, n = j
Ai,j , otherwise

5: end for
6: return Anew

A. Partitioning of Heterogeneous Data

Let Ck be the number of samples of class k and N be
the total number of samples. Clearly, we have N =

∑
k Ck.

Let n ∼ Dir(µ) be the sizes of clients and ct ∼ Dir(λt)
be the class distribution of client t. Let αtk be the number
of samples of client t of class k. We want αtk = ctkntN ,
given nt and ctk. However, the dataset needs

∑
t αtk = Ck

and
∑

k αtk = ntN , which they might not hold. Therefore,
we find a feasible solution for α by solving

min
α≥0

∑
t,k

(αtk − ctkntN)2 (1)

subject to
∑

k αtk = ntN, ∀ client t and
∑

t αtk =
Ck,∀ class k, which is a convex QP.

Using the similar idea of sampling classes and sizes, we
also sample categorical features in a non-IID manner. We

Dataset
RADFed RADFed-IS

S S γ

COVCLS(-L/-G) 22 22 0.9
COVFEAT(-L/-G) 20 20 0.9
MNIST-1 22 22 0.9
MNIST-0.1 15 15 0.9
Cifar10 15 100 0.9
Shakespeare 15 100 0.8
eICU 80 80 0.9

TABLE II: Hyper-parameters in proposed algorithms

sample category distribution f j
t ∼ Dir(θjt ) of feature j with dj

categories on client t. We consider classes as a feature that are
sampled separately. Let U be a set of all possible combinations
of categories in the dataset and Bu be the number of samples
that fall into configuration u ∈ U . The first element of u
corresponds to classes. Now let αtu be the number of samples
on client t with configuration u. Then we find a feasible
solution through

min
α≥0

∑
t

[

K∑
k=1

(
∑

u∈U,u1=k

αtu − ctkntN)2

+

M∑
j=1

dj∑
i=1

(
∑

u∈U,uj+1=i

αtu − f j
tintN)2]

(2)

subject to
∑

u∈U αtu = ntN, ∀ client t and
∑

t αtu =
Bu,∀ configuration u ∈ U . Here M is the number of cate-
gorical features. If a feature is non-categorical by nature, we
can create buckets that correspond to categories.

The above QPs may have many optimal solutions but
we want a random one. We generate a random solution by
modifying values at the “4 vertices of a random rectangle,”
in a way that the modified values still satisfy constraints in
(1) or (2). Algorithm 3 finds a random QP solution. A step
size ξ is used to control the modification. The algorithm has
two phases. In the first phase, we find a suboptimal solution
by randomly modifying values. Then, in the second phase,
starting from the suboptimal solution, we continue modifying
and record the best random solution we find.

B. Datasets and Models

For all datasets that are partitioned by (1) or (2), we set
µ = 1. These datasets have reasonably large variations in
client sizes, see Table I. We use the same λ = 0.1 for all
clients, on all datasets but MNIST, where we experiment with
different values of λ. Other hyper-parameters used in this
paper are specified in IV-D. For evaluation, we split clients
into training/validation/test groups [2], [5] and perform 5-fold
cross-validation to reduce the selection bias, which might be
aggravated by the non-IID client distributions, see details in
IV-C.

Covertype is a large structured dataset for forest cover type
prediction from the UCI KDD archive [24]. We partition the



Dataset FedAvg FedProx FedAsync FedAdapt RADFed RADFedi RADFeda RADFedp RADFedm

Cifar10 (82.88) 0.84 2.11 0.39 2.74 3.03 2.20 3.00 2.28
Shakespeare (51.71) 0.33 0.75 0.54 4.04 4.51 3.04 3.83 3.96
COVFEAT-G (87.61) 0.37 0.34 −1.45 3.23 2.59 2.49 3.37 1.96
COVFEAT-L (78.79) 1.29 0.93 −1.50 5.01 4.28 3.96 4.78 5.29
COVCLS-G (93.87) 0.03 −0.20 −0.26 0.16 0.23 0.26 0.26 0.33
COVCLS-L (90.62) 0.38 0.06 −0.23 2.27 0.09 2.24 2.16 2.32
MNIST-1 (97.29) 0.13 −0.05 0.11 0.16 0.23 0.23 0.41 0.47
MNIST-0.1 (96.95) 0.15 −0.17 0.10 0.24 0.29 0.36 0.20 0.42
eICU (92.21) 0.00 0.11 0.05 0.11 0.08 0.13 0.11 0.11

AVG (85.77) 0.37 0.38 −0.26 1.79 1.47 1.51 1.82 1.71

TABLE III: Average test performance of 5-fold cross-validation: % accuracy for the MNIST, Cifar10 and Shakespeare dataset; F1 score
(×100) for all Covertype datasets; and Area Under the Receiver Operating Characteristic Curve (AUC) (×100) for the eICU dataset. The
absolute scores are reported for FedAvg and the % relative performance difference against FedAvg is shown for other algorithms.

data into 100 clients. The number of training clients (K) is 60.
The number of validation and test clients are 20 each. Same
sizes are used for the MNIST and Cifar10 datasets. We train a
fully connected neural network with 2 hidden layers with 64
neurons each.

We create two types of datasets, one (COVCLS) with classes
and client sizes sampled non-identically based on (1) and the
other (COVFEAT) with also features sampled non-identically
thus using (2). For both datasets, we set λ = 0.1 for all clients,
and set θ = 0.1 for the COVFEAT dataset. All the datasets
that follow are created based on (1).

On the Covertype datasets, we also study the impact of
localized and global data standardization. The difference is
whether to use global statistics of all clients’ data to standard-
ize client local data or to let each client perform standardiza-
tion with its own statistics. On COVFEAT-G and COVCLS-
G, we perform global standardization, while on COVFEAT-
L and COVCLS-L, localized standardization is used. When
comparing our algorithm with benchmarks on other datasets,
we use global standardization to be consistent with the original
papers.

MNIST [25] consists of images of digits with 10 classes.
We sample 100 clients with classes and sizes non-identically
distributed. We study how data heterogeneity impacts the
performance of federated learning algorithms by creating two
datasets, MNIST-1 with λ = 1 and MNIST-0.1 with λ = 0.1.
A dataset generated with the larger λ has a lower heterogeneity
in class distributions. We build a fully connected neural
network same as [1].

Cifar10 [26] images are partitioned into 100 clients with
classes (λ = 0.1) and sizes (µ = 1) non identically distributed.
We use pre-trained MobileNetV2 [27] as the model and train
a subset of layers from the last bottleneck convolution layer
to the classification layer.

Shakespeare dataset is a language modeling dataset built
from The Complete Works of William Shakespeare [1]. We
use the same data as [9] but partition samples by speaking
roles. Each speaking role corresponds to one client. In total,
the dataset consists of 143 clients. The number of training,
validation and test clients are 85, 29 and 29, respectively. The

task is to predict the next character given a sequence of 80
characters. We train a 2 layer long short-term memory (LSTM)
classifier with an 8-dimensional embedding layer.

The eICU critical care database is a large multi-center
database made available by Philips Healthcare [28]. We train
a logistic regression model to predict the in-hospital mor-
tality using variables underlying the Acute Physiology Age
Chronic Health Evaluation (APACHE) predictions 2. To avoid
a potential sampling bias, we focus on mid to large hospitals
with more than 100 admissions and exclude those associated
with a high mortality rate (greater than 20%). Each hospital
corresponds to a client. The dataset contains 164 clients. The
number of training, validation and test clients are 98, 33 and
33, respectively.

C. Experimental Setup

To our best knowledge, there is no gold standard for
evaluating federated algorithms. Generally, there are 3 ways
to split the data into training and test sets: splitting all data
globally [4], [7], [10], splitting each client’s local data [3],
[21], [29] and splitting clients into training/test groups [2],
[5]. In this work, we adopt the last strategy by assuming no
local data can be collected by the server and the server can not
manipulate the client’s local data. Additionally, we perform 5-
fold cross-validation with the by-client splits in order to reduce
the selection bias, which might be aggravated by the non-IID
client distributions. We split all clients into 5 sets. One by one,
a set is selected as the test set. For the remaining sets, one by
one, a set is selected as the validation set and the others are
used as the training set.

D. Hyper-parameters

For feature sampling, we set θ = 0.1 for all clients and
features. In QP, we use P = 105, Q = 5 · 105 and ξ = 0.002.
The impact of C, B (the mini-batch size) and E (the number of
local training epochs) is well studied and thus we do not focus
on experimenting on various settings of these variables. We set

2The full variable list and descriptions are available at https://eicu-crd.
mit.edu/eicutables/apachepredvar and https://eicu-crd.mit.edu/eicutables/
apacheapsvar/.

https://eicu-crd.mit.edu/eicutables/apachepredvar
https://eicu-crd.mit.edu/eicutables/apachepredvar
https://eicu-crd.mit.edu/eicutables/apacheapsvar/
https://eicu-crd.mit.edu/eicutables/apacheapsvar/


C = 0.1, which is shown to be a generally good setting that
balances the performance and the convergence speed [1]. The
mini-batch size B is set to 10 and 16 for MNIST and Cifar10,
respectively, considering that clients on these datasets do not
have many samples. On other datasets, B is set to 256. We set
E = 10 for MNIST to make the task more challenging and set
E = 1 for the other datasets. Besides these general federated
learning hyper-parameters as mentioned above, each particular
algorithm has its own hyper-parameters. RADFed has one
more hyper-parameter, the number of redistribution rounds
S, than FedAvg. RADFedi adds another hyper-parameter, the
mixing weight γ. We tune hyper-parameters specified by each
federated learning algorithm using grid search on validation
clients. The number of redistribution rounds S and the mixing
weight γ are tuned on {10, 15, 20, 22, 25, 28, 30, 50, 80,
100, 120} and {0.6, 0.7, 0.8, 0.9, 0.95}, respectively. Table
II lists the hyper-parameter values of proposed algorithms
used in our experiments. For other RADFed+ algorithms,
we use the best hyper-parameters found in RADFed and the
other corresponding method. Note that, the values of hyper-
parameters in RADFedm are from FedAsync, where the global
model is updated in the same way as RADFedm. Hyper-
parameters used in comparison models are detailed in the next
section.

E. Comparison Models

We compare the performance of our method RADFed with
FedAvg [1], FedProx [9], the adaptive federated operation
method (FedAdapt) [21], the asynchronous federated opti-
mization method (FedAsync) [8] and RADFed+ on multiple
tasks. FedAvg is probably the most popular and commonly
used federated algorithm and the others are the state-of-the-
art federated learning algorithms that handle non-IID data
distributions. FedAsync is an asynchronous method whose
performance can be impacted largely by staleness. We del-
icately set its value to make a fair comparison between
asynchronous and synchronous methods. We add FedAsync,
which is an asynchronous algorithm, as one of the benchmarks
to make a more comprehensive comparison regarding the non-
IID problem, as it has several techniques to handle this issue.

Different from synchronous methods, FedAsync has to deal
with the staleness of updates from clients. The staleness of a
client’s update is defined as the timestamp difference between
a client’s update and the server’s model. The performance of
FedAsync suffers from large staleness. In order to mitigate
the impact of staleness on training, the new global model is
updated as a weighted average between the old global model
and the client’s local update. In addition, the authors show
that decaying the mixing weights as a function of staleness
helps to fight against large staleness. Despite these efforts,
the impact of staleness on FedAsync’s performance is not
completely eliminated.

In order to make a fairer comparison between asynchronous
and synchronous methods, we have to choose a reasonable
value for staleness. We simulate the FedAsync’s training pro-
cedure and find maximum staleness where the average number

of clients running in parallel per round is the same as in the
synchronous methods. In other words, we compare the perfor-
mance of FedAsync and synchronous methods under the same
level of parallelism on average. The maximum staleness de-
fined in [8] is set to 18, 19, 18, 28 and 31 for MNIST, Cifar10,
Covertype, Shakespeare and eICU datasets, respectively.

We tune hyper-parameters of the benchmark algorithms by
grid search and select the best configuration based on the
performance on validation clients. We tune µ of FedProx [9]
on values {10−2, 10−4, 10−6, 10−8, 10−10, 10−12}. For
FedAdapt, we fix the momentum terms of 0.9 and β2 = 0.99
throughout for all optimizers as suggested in [21]. We then
tune η, τ and v−1 on sets {10−1, 10−2, 10−3, 10−4}, {10−2,
10−4, 10−8} and {0, 10−1, 10−2, 10−3}, respectively. We tune
ρ and α of FedAsync on {10−2, 10−4, 10−6, 10−8, 10−10,
10−12} and {0.3, 0.6, 0.9}, respectively. For FedAsync with
adaptive mixing hyperparameters, we take a = 10 and b = 4
for FedAsync+Hinge and a = 0.5 for FedAsync+Poly as
suggested in [8].

V. RESULTS

We run each algorithm 3 times with different seeds on
each of the 5 folds and report the average performance over
the 15 runs in Table III. On average, RADFed and the
best RADFed+ model offer an improvement over FedAvg by
1.79% and 1.82%, respectively, and are 1.40% and 1.44%
better than the best benchmark (FedAsync), respectively. On
the MNIST datasets and the eICU dataset, all algorithms
achieve a close performance. On other datasets, the RADFed-
based models are significantly better than FedAvg and the
best benchmark (p < 0.05 under the Wilcoxon signed-rank
test [30]). Under some difficult settings, which we discuss
later, our framework offers a substantial improvement over
all comparison algorithms on multiple datasets. The best of
RADFed-based models outperforms the best benchmark by
3.72% on Shakespeare, 3.01% on COVFEAT-G, 4.33% on
COVFEAT-L and 2.26% on COVCLS-L.

Figure 2 shows that RADFed is quite stable across differ-
ent seeds and confirms its significant improvement on these
datasets. In Figures 3 and 4, we compare the validation
curves. On each dataset, the best variant of RADFed+ is
shown. With delayed aggregations, RADFed and RADFed+
stabilize the training by demonstrating a smaller variation in
validation scores than the algorithms that adapt the FedAvg
framework. Note that the x-axis of each plot is the number of
local training round. The number of aggregations in RADFed-
based algorithms is 1/S of the number in FedAvg-based
algorithms. The total wall-clock training time is the same with
the same number of local training rounds, assuming the local
training time at clients is the same. In general, our algorithms
achieve the maximum validation score at a similar number
of training rounds as other algorithms. On Shakespeare, our
algorithms peak much later than FedAvg. This is due to a large
learning rate used in FedAvg, where a relatively larger learning
rate yields a better result, although the model gets overfitted
quicker than using a lower learning rate. It does not imply



Fig. 2: Test performance comparison on the Covertype and Shakespeare datasets. Multiple runs are performed with different seeds on the
most representative fold, defined as the one with the closest performance gap to the average of all folds. The performance gap is the difference
in the test performance between RADFed and FedAvg.

Fig. 3: Validation performance comparison on the Covertype and MNIST datasets. The F1 score is used on all Covertype datasets and
accuracy is reported on the MNIST datasets. The x-axis is the number of training rounds, which is the count of regular training rounds in
FedAvg-based algorithms and the count of redistribution rounds or inner rounds in RADFed-based algorithms. Curves are smoothed by taking
the average over evenly spaced intervals for better visualization. The intervals are chosen differently considering that validation frequencies
are different. The intervals are set to 100 for the Covertype datasets and 5 for the MNIST datasets.

Fig. 4: Validation performance comparison. Accuracy is reported on the Cifar10 and Shakespeare datasets. AUC is used on the eICU dataset.
Similar to Figure 3, curves are smoothed with intervals 1, 2 and 50 for the Cifar10, Shakespeare and eICU datasets, respectively.



Fig. 5: Comparison on different levels of heterogeneity

that delaying aggregations also delays convergence. In fact,
on Shakespeare, aggregations in RADFed are delayed with 15
redistribution rounds and the number in RADFedi is 100. We
observe a similar convergence behavior.

A. Performance of RADFed+

On each dataset, the best performance is achieved by one
of the RADFed+ models. RADFedi is the best on Cifar-
10 and Shakespeare. RADFedp is the best on one of the
Covertype datasets (COVFEAT-G). RADFedm is the best on
the other three Covertype and both MNIST datasets. RADFeda
is the best on the eICU dataset. The results demonstrate that
our algorithm can work together with many other algorithms
that improve federated learning in various aspects, including
server-side changes, client-side modifications and client sam-
pling. We also observe that RADFed based models are better
than their FedAvg-based variants: RADFeda and RADFedp
show significant improvements on all datasets (up to 3.5%
and 5.5%) when compared to their FedAvg-based variants
FedAdapt and FedProx, respectively.

B. Divergence on Delayed Updates

In studying the non-IID challenge in federated learning,
the weight Divergence between the Centralized and federated
models (DC) has been used to explain the performance
reduction, which as shown in [6] can be attributed to the
divergence. It is defined as DC(t) =

||wt
FL−wt

C ||
||wt

C || , where wt
FL

are the weights of the global model in federated training at the
t-th round and wt

C are the centralized weights.
To visualize the weight divergence DC, we train a central-

ized model and a federated model side by side. Both models
start with the same weight initialization. In each round, the
same data are used in training. The difference is that in
centralized training we collect data from clients and update
the model using combined data. The divergence from the
centralized model is expected due to the distance between
the client data distribution and the population distribution. As
shown in Figures 6a and 6b, RADFed algorithm demonstrates
a smaller weight divergence than FedAvg. It indicates that the
aggregated weights of our algorithm are less impacted by the
skewness of the data and are closer to the weights trained on
data under the population distribution.

We also visualize the Divergence between clients’ Local
updates (DL), which helps understand how our algorithm

behaves. For a set of clients K = {1, 2, ...,K}, the divergence
is defined as

DL(wt
1,w

t
2, ...w

t
K) =

(
K

2

)−1 ∑
i,j∈K;i<j

(1−
wt

i ·wt
j

∥wt
i∥
∥∥wt

j

∥∥ ), (3)

where wt
i is the local update from client i in the t-th round.

A positive correlation between DL and federated learning
performance is observed in [31]. The study is based on the
FedAvg framework that is different from ours. Although the
same correlation might not hold when comparing different
frameworks, it helps visualize how our algorithm behaves.

(a) (b)

Fig. 6: Weight divergence

(a) (b)

Fig. 7: Weight divergence among local updates

During training of our algorithm, we observe a periodical
trajectory of DL, Figure 7. In the first round after each
aggregation, the divergence is the smallest. As the aggregation
being delayed for more rounds, the divergence keeps increas-
ing until the next aggregation. The divergence in FedAvg
vibrates around the lowest values of our algorithm. Figures
7a and 7b show the weight divergence of local updates on
Shakespeare and COVFEAT-L datasets.

The increasing DL does not indicate any deficiency of our
framework. It might be due to the nature of the redistribution
of local models. For example, in a non-IID setting where each
client has one class of data, training may start with clients
of different classes and yield large divergence between local
models. In the next redistribution round, the divergent local
models are trained again on client data of different classes.
The divergence accumulates as the redistribution continues.
FedAvg, however, results in a smaller DL because it performs
aggregation after each local training and divergence is not
accumulated.



C. Heterogeneity

We create datasets with various levels of heterogeneity to
evaluate whether our model is effective and robust under
different heterogeneous settings. In order to compare between
manually partitioned datasets and naturally partitioned ones,
we introduce the class non-IID score (C-score), which is
defined as 1

K

∑K
k=1

∑C
c=1 |rkc − Rc|, where ric is the ratio of

class c on client k and Rc is the ratio of class c in all data.
This score measures the difference between client’s class ratios
and the global class ratios. C-score of each dataset is shown
in Table I. For example, The MNIST-0.1 dataset is expected
to have a higher heterogeneity of class distributions than the
other due to a smaller value of λ, and its C-score is higher
than in MNIST-1. The COVCLS and COVFEAT datasets are
partitioned with the same value of µ and λ, so they have
a similar level of heterogeneity with respect to client sizes
and classes. Their C-score are also similar. However, since
we also introduce heterogeneity on feature distributions in the
COVFEAT datasets, they should have a severer issue on non-
IID data distribution than COVCLS datasets.

In the heterogeneity experiment, we observe that all algo-
rithms perform worse on MNIST-0.1 than MNIST-1 and all
algorithms show a lower performance on COVFEAT datasets
than on COVCLS datasets, no matter which standardization
method is used, as shown in Figure 5. RADFed and RADFed+
outperform benchmarks on all these datasets of different
levels of heterogeneity, which demonstrates the robustness of
proposed algorithms in various heterogeneous settings.

D. Standardization

With global standardization, RADFed outperforms FedAvg
by 0.17% and 3.24% on COVCLS-G and COVFEAT-G,
respectively. With localized standardization, we observe a
performance regression on all federated learning algorithms.
However, RADFed demonstrates a good ability in handling
localized standardization by offering a larger performance
improvement over FedAvg on both COVCLS-L (2.3%) and
COVFEAT-L (5.0%).

Interestingly, RADFed outperforms RADFedi on both
COVCLS-L and COVFEAT-L and RADFedi ranks 4th and 5th
in all 5 RADFed-based models, which implies that it is more
challenging for RADFedi to determine which clients are better
under localized standardization. RADFedi works well under
global standardization. It improves RADFed on 5 datasets and
ranks the best on 2 datasets.

VI. CONCLUSION

In this work, we propose a new training framework with
delayed aggregation to handle the well-known non-IID issue
in federated learning. We demonstrate that our framework
offers a substantial improvement over the FedAvg framework
and outperforms several state-of-the-art federated learning
algorithms. Moreover, we incorporate in our framework im-
portance sampling and several other techniques improving
federated learning in various aspects and further improve the
framework on multiple datasets.

Along the way, we also discuss the following topics in
federated learning: the splitting of training and test sets,
localized and global standardization, and weight divergence
on different frameworks. Experiments show that federated
learning algorithms suffer from localized standardization. The
proposed framework demonstrates a good ability in handling
localized standardization. However, the importance sampling
version does not offer further improvement under localized
standardization. In addition, we propose a sampling algorithm
to generate non-IID datasets. It offers the choice for a desired
non-IID level on client sizes, classes and features separately,
thus providing researchers with more flexibility and control
about simulating different non-IID settings.
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[12] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
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