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Abstract

We devise an algorithm for solving the infinite dimensional linear programs that arise from general de-
terministic semi-Markov decision processes on Borel spaces. The algorithm constructs a sequence of
approximate primal/dual solutions that converge to an optimal one. The innovative idea is to approxi-
mate the dual solution with continuous piecewise linear ridge functions that naturally represent functions
defined on a high dimensional domain as linear combinations of functions defined on only a single dimen-
sion. This approximation gives rise to a primal/dual pair of semi-infinite programs, for which we show
strong duality. In addition, we prove various properties of the underlying ridge functions.

1 Introduction

Linear programming is a classical approach to the solution of Markov decision processes (MDP), and dates
back to the pioneering work of Ghellinck (1960), D’Epenoux (1960), and Manne (1960) for MDP’s with finite
state and action spaces. Recently, there has been substantial interest in MDP’s on general Borel spaces,
e.g. see Hernández-Lerma and Lasserre (1996), Hernández-Lerma and Lasserre (1999) and references therein.
In this setting, the linear programs are no longer defined on finite spaces, but infinite ones. Unlike finite
linear programs, which enjoy the wide availability of solution software, solution methodologies for infinite
linear programs are rare. Typically, algorithms are specially designed for particular classes of problems. One
exception to this is the paper by Hernández-Lerma and Lasserre (1998a).

Klabjan and Adelman (2006) develop infinite dimensional linear programming theory for semi-Markov
decision processes (SMDP) on Borel spaces and long-run time average expected cost criterion, with particular
emphasis on the special case in which the state transitions are deterministic. Included in this theory are
general conditions for strong duality and the existence of an optimal stationary, deterministic control policy.
Adelman and Klabjan (2005b) apply this theory to the generalized joint replenishment problem, which
includes many classical problems in inventory control for which the duality and existence questions have
remained open for many years.
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In this paper, we devise a new algorithm for solving the primal/dual pair of infinite dimensional linear
programs that arise from deterministic semi-Markov decision problems with long-run time average cost cri-
terion. We show that under some mild conditions the algorithm is convergent. Our algorithm constructs a
sequence of measures that converge weakly to an optimal solution to the primal problem, and a correspond-
ing sequence of dual feasible functions that converge to an optimal solution to the dual problem. A key
contribution of our work is in specific forms of functional approximations to the feasible solutions of the dual
problem. In Klabjan and Adelman (2006) we showed how to construct an optimal stationary, deterministic
control policy from an optimal primal solution.

Bellman and Dreyfus (1959) were the first to consider functional approximations, in their case Legendre
polynomials, in the solution of the dynamic programming optimality equation defined on continuous spaces.
More recently, Johnson et al. (1993) considered the use of multivariate spline functions to approximate the
value function. The idea is to discretize the state space, evaluate the value function at the grid points,
and then use multivariate splines to interpolate between grid points. Because the number of multivariate
basis functions grows exponentially with the number of state space dimensions, Chen et al. (1999) consider
an experimental design approach from statistics, but with multivariate spline functions of lower polynomial
order. These authors consider only the finite-horizon case, work directly with the optimality equations instead
of the linear programming formulations as we do here, and do not show convergence. Recently, de Farias and
Van Roy (2003, 2004) have considered linear programming for approximate dynamic programming. The key
idea, which comes from Schweitzer and Seidmann (1985), is to approximate the value function with a linear
combination of basis functions. There has been considerable recent interest in using this approach. However,
there remains a fundamental open question: how to generate basis functions? Until now, all research in
approximate dynamic programming has assumed a fixed set of basis functions, chosen a priori by the human
modeler. Ours is the first paper, to our knowledge, to provide an algorithm that automates the generation
of basis functions. Our algorithm dynamically constructs basis functions as the algorithm proceeds, in the
limit converging in such a way as to close the gap between the approximate value function and the true
optimal value function. The key is limiting the search for new basis functions to a particular well-structured
class that has the power to approximate, arbitrarily closely, any bounded measurable function.

Hernández-Lerma and Lasserre (1998b) propose a convergent algorithm for solving the infinite dimen-
sional linear programs resulting from MDPs. Our algorithm differs from theirs in fundamental ways. Whereas
we approximate the dual problem, they approximate the primal problem. They consider countable dense
subsets of measures for aggregating the variables and countable dense subsets of functions to aggregate
constraints of the primal problem. In contrast, we work with an explicit form of functional approxima-
tions, which are computationally tractable and still give a convergent algorithm under some mild conditions.
Linear programming for semi-infinite problems is considered by Tadic et al. (2006), where the problem is
reformulated as a stochastic semi-infinite problem, which is then solved by Monte-Carlo simulation.

Our main idea is to approximate the bias function with piecewise linear functions. In our context, a
piecewise linear function is always continuous and it has a finite number of breakpoints. The key question
is how to define multivariate piecewise linear functions. The definition must allow for an easy encoding of
such functions and it should be easy to capture properties such as continuity, convexity, and monotonicity.
Such properties are important in applications of approximate dynamic programming, see e.g. Powell and
Topaloglu (2003), to ensure computational tractability and economic sensibility. The multivariate spline
functions, see e.g. Wang (1994) or Bojanov et al. (1983), are very complex and it is extremely difficult to
impose the aforementioned properties. For this reason we took a different approach where the mapping from
the multi-dimensional space to the 1-dimensional space is carried via the notion of ridge functions, see e.g.
Cheney and Light (1999). In the 1-dimensional space we then use piecewise linear functions or 1-splines
to approximate continuous functions. It is well known that higher order splines have better convergence
properties in other settings and they are smooth. However, in our setting they would yield nonlinear, very
hard to solve programs. By using piecewise linear functions often the resulting programs are linear mixed
integer programs, which can be solved using readily available optimization software.

Our algorithm begins with a collection of piecewise linear functions fj : R → R, which correspond to
1-splines. Given a Borel state space X of high dimension, corresponding to function j we map each state x
into a scalar rjx, where rj is called a ridge vector having dimension equal to that of X. We then approximate
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the bias function, u(·), with the summed ridge function, i.e.

u(x) ≈
∑

j

fj(rjx) x ∈ X.

By choosing rj to be different from the unit vectors, we capture interactions between components of the
state space. Letting bj denote the vector of breakpoints for function fj , we thus start the algorithm with
a collection {rj , bj}j . By substituting the above approximation into the dual infinite program, the slopes
between breakpoints for each function fj essentially become decision variables in what turns out to be a
semi-infinite linear program. We show that this program is solvable and has strong duality. Using the primal
solution of this semi-infinite program, we then solve an auxiliary problem that finds additional breakpoints
and/or ridge vectors, and then we repeat the whole procedure. We show that primal and dual solutions
generated by this algorithm converge to an optimal solution under some mild assumptions. In Adelman
and Klabjan (2005a), we discuss how to efficiently implement the basic algorithm discussed here on the
generalized joint replenishment problem, including how to construct feasible control policies in practice that
are (near) optimal.

The paper is organized as follows. In Section 2 we give a brief overview of infinite dimensional linear
programming for deterministic SMDPs. In Section 3 we define ridge functions and prove various properties
about them. We show in Section 4 how to formulate the problem of finding optimal weights for the ridge
function as a semi-infinite linear program, prove a strong duality result, and provide an algorithm for solving
it within arbitrary precision. Then in Section 5 we give the main algorithm and prove convergence.

2 Overview of Infinite Dimensional Linear Programming for De-
terministic SMDPs

In this section we review the linear programming theory developed in Klabjan and Adelman (2006) and
Adelman and Klabjan (2005b).

Given a Borel space Z we denote by C(Z) the set of all continuous functions on Z and by B(Z) the set
of all Borel measurable bounded functions on Z. The set of all finite signed Borel measures on Z is denoted
by M(Z). All these three sets can be equipped with a norm and the last two become Banach spaces. Let
also B(Z) be the Borel σ-algebra in Z.

2.1 Formulation

Consider a deterministic SMDP defined on a state space X and action space A, both assumed to be Borel
spaces. For each x ∈ X, let A(x) ⊆ A be a non-empty Borel subset that specifies the set of admissible
actions from state x. We denote the collection of state-action pairs as K = {(x, a) : x ∈ X, a ∈ A(x)},
assumed to be a Borel subset of X ×A. Upon taking action a in state x, a cost c(x, a) is incurred and then
the system transitions to some state s(x, a) after a time duration of length τ(x, a), all with probability one.
We assume that c : K → R, s : K → X, and τ : K → [0,∞) are measurable on K. Let {xn, an, tn}n=0,1,... ∈
(K × [0,∞))∞ denote any infinite sequence of state-action pairs and transition times. Suppose f : X → A
is a measurable decision function that specifies for every x ∈ X some action a ∈ A(x). Define the long-run
average cost of the system under control f , starting from an initial state x0 ∈ X, as

J(f, x0) = lim sup
N→∞

∑N
n=0 c(xn, f(xn))∑N

n=0 tn
.

The problem
J(x0) = inf

f :X→A
J(f, x0)

finds an optimal decision rule f∗ from starting state x0. One of the main questions in Markov control
processes is under what conditions does there exist an f∗ such that J∗ = J(f∗, x0) = J(x0) for every
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x0 ∈ X? Such a decision rule is said to be long-run time average optimal, in the class of stationary
deterministic decision rules, from every starting state.

More generally, rather than restricting the class of policies to deterministic decision rules f : X → A, we
could pose the existence question over all admissible, non-anticipatory policies π ∈ Π, including randomized
history-dependent ones. It follows from Klabjan and Adelman (2006) that stationary deterministic policies
still suffice for optimality.

2.2 Infinite Dimensional Linear Programming Theory

We reformulate the problem of finding an optimal policy as an infinite dimensional linear program.
We consider the following primal/dual linear programs on the spaces (M(K), B(K)), (R × M(X), R ×

B(X)). The primal problem (P) is

min
∫

K

c(x, a)µ(d(x, a)) (1a)∫
K

τ(x, a)µ(d(x, a)) = 1 (1b)

µ((B ×A) ∩K)− µ({(x, a) ∈ K : s(x, a) ∈ B}) = 0 for every B ∈ B(X) (1c)
µ ≥ 0, µ ∈ M(K) (1d)

and the corresponding dual problem (D) reads

max ρ

τ(x, a)ρ + u(x)− u(s(x, a)) ≤ c(x, a) for every (x, a) ∈ K (2)
ρ ∈ R, u ∈ B(X) .

We denote by inf(P ) and sup(D) the optimal values of the primal and dual programs, respectively. We call
constraints (1c) the flow balance constraints.

Next we provide a set of assumptions under which strong duality holds between these two programs.

Assumption B1. τ is continuous, nonnegative, and bounded on K.

Assumption B2. c is lower semi-continuous and nonnegative on K.

Assumption B3. c(x, a) + τ(x, a) ≥ 1 for every (x, a) ∈ K.

Here the right-hand side can be changed to any ε > 0, but we normalize to 1 for convenience.

Assumption B4. {a ∈ A(x) : c(x, a) + τ(x, a) ≤ r} is compact for every x ∈ X, r ∈ R.

Assumption B5. There exists a decision rule f : X → A and initial state x0 ∈ X such that J(f, x0) < ∞.

Assumption B6. s is continuous on K.

Assumption B7. K is compact.

The following assumption says that all states communicate with bounded cost and time.

Assumption B8. There exist constants C < ∞, Γ < ∞ such that for every measurable subset S ⊆ X there
is a decision rule f : X \ S → A with the property that for every x′ ∈ X \ S there exists a finite integer N
and a set of states x0, x1, . . . , xN with

• x0 = x′,

• an = f(xn) ∈ A(xn) for every n = 0, . . . , N − 1,

• xn+1 = s(xn, an) for every n = 0, . . . , N − 1,
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• xN ∈ S,

•
∑N−1

n=0 c(xn, an) ≤ C, and

•
∑N−1

n=0 τ(xn, an) ≤ Γ.

This communication assumption holds for a wide variety of deterministic continuous time infinite time
horizon inventory problems, Adelman and Klabjan (2005b). For example, the classical joint replenishment
problem has this property.

The following important theorems are given in Adelman and Klabjan (2005b).

Theorem 1. (Strong duality) Under Assumptions B1–B8, there exists an optimal primal/dual solution
pair (µ∗, (ρ∗, u∗)) ∈ (M(K), (R, B(X))) such that inf(P ) = sup(D) and complementary slackness holds,
i.e. for µ∗-almost all (x, a) ∈ K we have

τ(x, a)ρ∗ + u∗(x) = c(x, a) + u∗(s(x, a)).

Since (P) and (D) are solvable, instead of denoting by inf(P ), sup(D) their respective values, we denote
them by min(P ) and max(D). The next theorem states that there is an optimal deterministic stationary
policy.

Theorem 2. (General existence result) Under Assumptions B1–B8, there exists a decision rule f∗ :
X → A such that

J(x) = J(f∗, x) = J∗ for all x ∈ X.

In the present work we give an algorithm that solves (P) and (D). The main idea is to approximate u by
certain functions, which we introduce next.

3 Ridge Functions

Let bj
0 < bj

1 < · · · < bj
mj

< bj
mj+1 for j ∈ [n] = {1, 2, . . . , n} be real numbers in an interval [−Ω,Ω] except

that bj
0 < −Ω and bj

mj+1 > Ω. Each such ordered set of numbers is denoted by bj . For each j ∈ [n] and
i ∈ [mj ] let Hj

i : [−Ω,Ω] → R be defined as

Hj
i (z) =


z−bj

i−1

bj
i−bj

i−1
bj
i−1 ≤ z ≤ bj

i

bj
i+1−z

bj
i+1−bj

i

bj
i ≤ z ≤ bj

i+1

0 otherwise.

Note that Hj
i (bj

i ) = 1 and supp(Hj
i ) = (bj

i−1, b
j
i+1), see Figure 1. By supp(·) we denote the support set of a

function. These functions are known as hat functions or also B-splines of degree 1 and they form the basis
among the spline functions of degree 1, see e.g. Bojanov et al. (1983, pp. 33-35).

If n = 1, then we have a single ordered set of numbers b1. It is easy to see that for any weights w1
i , i ∈ [m1]

the function f(z) =
∑m1

i=1 w1
i H1

i (z) is piecewise linear. We next summarize some basic properties of these
functions, which are easy to prove.

Proposition 1. The following properties hold for every i ∈ [m1].

1. f is continuous piecewise linear with breakpoints b1
i and f(b1

i ) = w1
i .

2. The slope of f in
[
b1
i , b

1
i+1

]
is

w1
i+1 − w1

i

b1
i+1 − b1

i

.
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1

Figure 1: Hj
i and Hj

i+1 functions

3. If z ∈
[
b1
i , b

1
i+1

]
, then

f(z) = w1
i H1

i (z) + w1
i+1H

1
i+1(z) = w1

i

b1
i+1 − z

b1
i+1 − b1

i

+ w1
i+1

z − b1
i

b1
i+1 − b1

i

.

The next theorem is fundamental for this work and it establishes a form of a density property for a
specific family of functions within B(X̄).

Theorem 3. Let f ∈ B(X̄), where X̄ ⊆ Rq for some positive integer q is compact. Let µ ∈ M(X̄), and let
ε > 0, δ > 0. Then there exist

• a positive integer n < ∞ and Ω ∈ R+,

• vectors r1, r2, . . . , rn in Rq with ‖rj‖∞ = 1 for every j ∈ [n],

• ordered sets b1, b2, · · · , bn with bj
i ∈ [−Ω,Ω] for every j ∈ [n] , i ∈ [mj ], where mj is a positive finite

integer,

• and weights wj
i ∈ R, j ∈ [n] , i ∈ [mj ]

such that

‖f −
n∑

j=1

mj∑
i=1

wj
i H

j
i (< rj , · >)‖∞ ≤ ε

except on a subset E of X̄ with |µ(E)| ≤ δ. Here < x, y > denotes the standard inner product in Rq.

Proof. Let ε > 0, δ > 0 be arbitrary. Since µ is a finite signed measure, its total variation |µ| is a finite
positive measure. Therefore |µ| is regular (see e.g. Rudin (1986, pp. 47-48)) and by Lusin’s theorem (see
e.g. Rudin (1986, pp. 55)) there exists a subset E ⊆ X̄ with |µ| measure less than or equal to δ and a
continuous function g : X̄ → R such that g and f differ only on E and ‖g‖∞ ≤ ‖f‖∞ < ∞. Note that
|µ(E)| ≤ |µ|(E) ≤ δ.

We call a subset of C(Y ) fundamental if its linear span is dense. Since X̄ is compact and r ∈ Rq, ‖r‖∞ = 1
we have for all x ∈ X̄

| rx |≤ ‖r‖2 · ‖x‖2 ≤
√

q‖x‖2 ≤
√

q max
x′∈X̄

‖x′‖2 ≡ Ω < ∞ .

The set of all continuous piecewise linear functions on Y = [−Ω,Ω], denoted by PL, is fundamental in
C(Y ) (see e.g. Davis (1975, pp. 122-125)). Then the set {h(< r, · >) : h ∈ PL, ‖r‖∞ = 1} is fundamental in
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C(X̄), see e.g. Cheney and Light (1999, pp. 168). Hence by definition and g ∈ C(X̄), there exist λ1, . . . , λn

and r1, r2, . . . , rn ∈ Rq with ‖rj‖∞ = 1 for every j ∈ [n], and h1, . . . , hn ∈ PL such that

‖g −
n∑

j=1

λjhj(< rj , · >)‖∞ ≤ ε .

The hat functions form a basis in PL (see e.g. Bojanov et al. (1983, pp. 33-35)) and therefore for each j we
have hj =

∑mj

i=1 w̄ijH
j
i . By defining wj

i = w̄ijλj we obtain the claim.

Let u : X̄ → R be defined by

u(x) =
n∑

j=1

mj∑
i=1

wj
i H

j
i (rjx) , (3)

where X̄ ⊆ Rq. We call vectors r the ridge vectors and u is called the ridge function. We refer to b’s as
breakpoint sets and to w’s as the weights. Without loss of generality we assume that all ridge vectors are
nonzero.

We remark that given a ridge function u the ridge vectors are not uniquely defined. Consider, for
example, a ridge function with two ridge vectors r1, r2 that are linearly dependent. It is easy to see that in
this case u can also be written as a ridge function with only a single ridge vector r1 but different breakpoints.
Unfortunately this observation cannot be generalized to more than 2 arbitrarily chosen linearly dependent
vectors. If r2 = λ1r

1 + λ2r
2, where λ1 6= 0, λ2 6= 0, then in general the corresponding ridge function cannot

be written as a ridge function with only 2 piecewise linear functions. Additional such degenerate cases are
given in the next section.

By Theorem 3, ridge functions can approximate arbitrarily close dual feasible functions in (D), except
on subsets of arbitrarily small measure. We show in Section 5 a slightly stronger version. Namely, there is
an optimal solution to (D), which is the limsup of feasible ridge functions, though not necessarily a ridge
function.

3.1 Convexity, Monotonicity, and Boundness

In this section we study convexity, monotonicity and boundness of ridge functions. The first two proper-
ties are important in approximate dynamic programming, Powell and Topaloglu (2003). We first address
convexity. Given a set C ⊆ Rq we denote by int(C) its interior.

For every j ∈ [n] let mj be the smallest index with the property that there exists x ∈ X̄ such that
bj
mj

< rjx < bj
mj+1. In addition, for every j ∈ [n] let mj be the largest index with the property that there

exists x ∈ X̄ such that bj
mj

< rjx < bj
mj+1. Let R = {(j, i)|j ∈ [n] ,mj + 1 ≤ i ≤ mj}. For each (j, i) ∈ R

let Sj
i = {(l, k) ∈ R| there exists λlj

ki 6= 0 such that (rj , bj
i ) = λlj

ki(r
l, bl

k)}. Note that (j, i) ∈ Sj
i .

Proposition 2. Let X̄ be a convex full-dimensional set. Then u is convex if and only if

∑
(l,k)∈Sj

i

λlj
ki ·

wl
k − wl

k−1

bl
k − bl

k−1

≤
∑

(l,k)∈Sj
i

λlj
ki ·

wl
k+1 − wl

k

bl
k+1 − bl

k

for each (j, i) ∈ R . (4)

Note that if n = 1, then, by using Proposition 1 and the fact S1
i = {(1, i)}, λ11

ii = 1, these are the
standard conditions for convexity of piecewise linear functions. In addition, if all ridge vectors r are linearly
independent, then Sj

i = {(j, i)} and therefore (4) state convexity conditions for every individual piecewise
linear function. The proof is given in Appendix A.

Next we study monotonicity. In our context, a function u is monotone if u(x) ≤ u(y) whenever x ≤ y.
Let Xj

i = {x ∈ int(X̄) |bj
i ≤ rjx < bj

i+1} and Υ = {(k1, . . . , kn)|X1
k1
∩ X2

k2
∩ · · · ∩ Xn

kn
6= ∅}. For every

(k1, . . . , kn) ∈ Υ we denote ζ(k1, . . . , kn) = {j ∈ [n] : rjx = bj
kj

for every x ∈ X1
k1
∩X2

k2
∩ · · · ∩Xn

kn
}.
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Proposition 3. Let us assume that X̄ is full-dimensional and convex. Ridge function u is monotone in
int(X̄) if and only if ∑

j∈[n]\ζ(k1,...,kn)

rj
i

wj
kj+1 − wj

kj

bj
kj+1 − bj

kj

≤ 0 (5)

for every i ∈ [q] and for every (k1, k2, . . . , kn) ∈ Υ.

The proof is given in Appendix B. We remark that even though u is continuous, monotonicity in the
interior of X̄ does not necessarily imply monotonicity in X̄. This statement holds in R but not in higher
dimensions.

Consider a ridge function u, which is bounded in the infinity norm. Next we address the question if this
implies that all the weights w are uniformly bounded. In general the answer is no since cancelations can
occur. On the positive side, we have the following result.

Theorem 4. Let us assume that X̄ is full-dimensional and convex. Let the ridge function u with ridge
vectors r and breakpoint sets b be such that ‖u‖∞ ≤ M < ∞. Then there exist ridge vectors r̃, breakpoint
sets b̃, and weights w̃ such that the ridge function ũ defined with respect to r̃, b̃, and w̃ has the following
properties:

1. u(x) = ũ(x) for every x ∈ X̄, and

2. there exists a constant B = B(M, r, b, X̄) < ∞ such that |w̃j
i | < B for every i and j.

The proof is very long and technical and it is presented in Appendix C. As a consequence we obtain that
the set of all ridge functions for fixed ridge vectors and breakpoint sets is sequentially compact.

Corollary 1. Let X̄ be full-dimensional and convex. Let {uk}k be a sequence of ridge functions with respect
to identical fixed ridge vectors and breakpoint sets and such that ‖uk‖∞ ≤ M < ∞ for each k. Then there
exists a subsequence {kl}l such that u defined by u(x) = liml→∞ ukl

(x) is a ridge function with the same
ridge vectors and breakpoint sets.

Proof. Let us interpret uk as ridge functions ũk with respect to r̃ and b̃, which are given as in Theorem 4.
It follows from Appendix C that r̃ and b̃ are identical for all k. Let w̃(k) denote the weights of ũk. Then
all w̃(k)j

i are uniformly bounded for every i, j and k by Theorem 4. Since the number of ridge vectors and
breakpoints is the same for all ũk, it follows that there is a subsequence {kl}l such that liml→∞ w̃(kl)

j
i = ŵj

i .
It is easy to see that the ridge function ũ defined with respect to r̃, b̃, ŵ has the property ũ(x) = liml→∞ ũkl

(x)
for every x ∈ X̄. It is also easy to see from the proof of Theorem 4 that we can transform ũ back to a ridge
function u with respect to r and b for some weights w.

4 Finding Optimal Weights

In this section we assume that the ridge vectors and the breakpoint sets are fixed. We show here how to
find a ridge function u, i.e. weights w, that gives the largest objective value in (D).

We need the following two additional assumptions.

Assumption B9. The set {c(x, a)|(x, a) ∈ K} ⊂ R is compact.

Assumption B10. X is a convex, full-dimensional subset in Rq and A ⊆ Rq.

The last assumption comes from Corollary 1. Note that we require c to be lower semi-continuous, which
in general does not imply Assumption B9. The assumption A ⊆ Rq is for ease of notation. It suffices to
assume that A ⊆ Rs for some integer 1 ≤ s < ∞. In the rest of the paper we assume B1–B10.
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We consider functions u : X → R given by (3), where w are unknowns. The problem of obtaining the
ridge function of this type that gives the largest dual objective value is

sup ρ̂ (6a)

τ(x, a)ρ̂ +
n∑

j=1

mj∑
i=1

wj
i

[
Hj

i (rjs(x, a))−Hj
i (rjx)

]
≤ c(x, a) for every (x, a) ∈ K (6b)

ρ̂ ∈ R, w unrestricted . (6c)

For every x ∈ X and j ∈ [n] let lj(x) ∈ [mj ] be defined as bj
lj(x) ≤ rjx < bj

lj(x)+1 and for every
(x, a) ∈ K, j ∈ [n] let tj(x, a) = lj(s(x, a)). Then it is easy to see that (6) can be rewritten as the following
semi-infinite linear program, which we denote by (DW).

sup ρ̂

τ(x, a)ρ̂ +
n∑

j=1

[
Hj

tj(x,a)(r
js(x, a))wj

tj(x,a) + Hj
tj(x,a)+1(r

js(x, a))wj
tj(x,a)+1

]
−

n∑
j=1

[
Hj

lj(x)(r
jx)wj

lj(x) + Hj
lj(x)+1(r

jx)wj
lj(x)+1

]
≤ c(x, a) for every (x, a) ∈ K (7)

ρ̂ ∈ R, w unrestricted

The primal problem (PW) of (DW) is

inf
∑

(x,a)∈T

c(x, a)zx,a (8a)

∑
(x,a)∈T

τ(x, a)zx,a = 1 (8b)

∑
(x,a)∈T

tj(x,a)∈{i,i−1}

Hj
i (rjs(x, a))zx,a −

∑
(x,a)∈T

lj(x)∈{i,i−1}

Hj
i (rjx)zx,a = 0 j ∈ [n] , i ∈ [mj ] (8c)

z ≥ 0, supp(z) = T, |T | < ∞ . (8d)

(8b) correspond to the ρ̂ variable and (8c) correspond to the w variables.
The following theorem yields solvability and strong duality.

Theorem 5. (PW) and (DW) are solvable and there is no duality gap.

In order to prove this result, we need first to state an auxiliary result. Let

J = {(c(x, a), τ(x, a), {Hj
i (rjs(x, a))−Hj

i (rjx)}j∈[n],i∈[mj ]) ∈ R2+
Pn

j=1 mj |(x, a) ∈ K} .

This set corresponds to the right-hand side in (DW) and all the constraint coefficient functions. We denote
by M c the conic hull of J .

The next result is a generalization of a result from Glashoff and Gustafson (1983, pp. 71). The proof is
similar to the one in this book and it is therefore omitted.

Lemma 1. Suppose that J is compact and (DW) has a Slater point, i.e. there exist ρ̂, w such that (7) are
strict inequalities for every (x, a) ∈ K. Then the moment cone M c is closed.

Proof of Theorem 5. We use the following result from Glashoff and Gustafson (1983, pp. 79). If (PW) is
consistent and has a finite value, and the moment cone M c is closed, then there is no duality gap, and (PW)
is solvable.

9



We first argue that M c is closed. By Lemma 1 it suffices to show that J is compact and that there is a
Slater point. The latter is easy by considering for example ρ̂ = −1, w = 0. To establish compactness, note
that by Assumption B1, τ is continuous, and clearly the hat functions are continuous. From this it follows
that the projection of J to all the coordinates but the first one is compact. Recall also that K is compact
by Assumption B7. By Assumption B9, the projection to the first coordinate is compact. We conclude that
J is compact.

Next we show that (PW) is consistent. Let us pick two states x̄ ∈ X, x̃ ∈ X, x̄ 6= x̃. By using Assumption
B8 twice, first with x′ = x̄, S = {x̃} and then with x′ = x̃, S = {x̄}, it follows that there exists a sequence T
of state-action pairs (x1, a1), (x2, a2), . . . , (xN̄ , aN̄ ) and (xN̄+1, aN̄+1), (xN̄+2, aN̄+2), . . . , (xN̂ , aN̂ ), N̂ ≤ 2N

in K such that x1 = xN̂ = x̄, xN̄ = x̃ and s(xi, ai) = xi+1 for i = 1, 2, . . . , N̂ − 1. We can assume that all
these states are different, except x1 and xN̂ (otherwise we replace these states with a ‘cyclic’ subset having
this property). Now we defined a feasible solution z to (PW) as follows. For every i = 1, 2, . . . , N̂ − 1
let z(xi, ai) = 1/

∑N̂−1
j=1 τ(xj , aj) and z is 0 otherwise. This z clearly has finite support T and clearly by

definition it satisfies (8b). Note that for every j ∈ [n] , i ∈ [mj ] we have

{(x, a) ∈ T : bj
i ≤ rjs(x, a) ≤ bj

i+1} = {(x, a) ∈ T : bj
i ≤ rjx ≤ bj

i+1} .

This property together with z having equal value on T it shows (8c).
(DW) is clearly consistent and therefore by weak duality (PW) has a finite value. This shows that there

is no duality gap and that (PW) is solvable.
Next we establish solvability of (DW). We first argue that there exists a constant M̂ < ∞ such that

‖u‖∞ ≤ M̂ for every u that is feasible to (DW). Let x̃ ∈ X be fixed and x ∈ X, x 6= x̃ be arbitrary. Let
(x1, a1), (x2, a2), . . . , (xN̂ , aN̂ ) be as above with x = x̄. If u is feasible to (DW), then u + θ is feasible as
well for any θ ∈ R. Therefore without loss of generality we assume that u(x̃) = 0. After applying (6b) or
equivalently (2) for (xi, ai), i = 1, 2, . . . , N̄ − 1 and summing all the inequalities we obtain

u(x) ≤
N̄−1∑
i=1

c(xi, ai)− ρ
N̄−1∑
i=1

τ(xi, ai) + u(x̃) ≤ C + sup(DW) · Γ , (9)

where C and Γ are as in Assumption B8 and sup(DW ) denotes the optimal value of (DW). By summing
(6b) for (xi, ai), i = N̄ , N̄ + 1, . . . , N̂ − 1 we similarly obtain

0 = u(x̃) ≤
N̂−1∑
i=N̄

c(xi, ai)− ρ
N̂−1∑
i=N̄

τ(xi, ai) + u(x) ≤ C + sup(DW) · Γ + u(x) . (10)

Thus we can take M̂ = C + sup(DW) · Γ.
There exists a sequence {(uk, ρk)}k feasible to (DW) such that limk→∞ ρk = min(PW), where min(PW)

is the optimal value of (PW). By Corollary 1 there is a subsequence {kl}l such that u(x) = liml→∞ ukl
(x)

is again a ridge function for some weights w. Since all ukl
have the same ridge vectors and breakpoint sets

(they are feasible to the same linear program (7)), it follows that u also has the same ridge vectors and
breakpoint sets. By definition all uk satisfy (6b) and therefore by taking the limit operator on both sides of
(6b) we obtain that (u, min(PW)) is feasible to (6) with respect to weights w. Clearly then (u, min(PW)) is
an optimal solution to (DW).

From Theorem 5 it follows that min(PW ) = max(DW ) ≤ max(D) = min(P ). In addition it follows that
there exists a constant B < ∞ such that without loss of generality we can impose −B1 ≤ w ≤ B1, where 1
is the vector of appropriate dimension consisting of all 1s. The proof of Theorem 4 also gives a constructive
way to compute B a priori.

Strong duality also gives the following complementary slackness result.

Theorem 6 (Complementary slackness). If (ρ̂∗, w∗) is optimal to (DW) and z∗ is optimal to (PW), then

c(x, a) = τ(x, a)ρ̂∗ +
n∑

j=1

mj∑
i=1

(w∗)j
i

[
Hj

i (rjs(x, a))−Hj
i (rjx)

]
(11)

10



for every (x, a) ∈ supp(z∗).
On the other hand, if (ρ̂∗, w∗) is feasible to (DW), z∗ is feasible to (PW), and they satisfy (11), then

(ρ̂∗, w∗) is optimal to (DW) and z∗ is optimal to (PW).

Next we discuss the separation problem. Given ρ̂, w, we want to find the most violated constraint (7) or
assert that none exists.

The separation problem reads

Φ(ρ̂, w) = min
(x,a)∈K

c(x, a)− ρ̂τ(x, a)−
n∑

j=1

mj∑
i=1

wj
i

[
Hj

i (rjs(x, a))−Hj
i (rjx)

] . (12)

Since K is compact, the above minimum is always attained (because c is lower semi-continuous). Further-
more, Φ is concave.

We next briefly argue that the piecewise linear functions in (12) can easily be modeled with additional
binary and continuous variables.

Let µ̄, 0 ≤ µ̄ ≤ 1 and µ̃, 0 ≤ µ̃ ≤ 1 be auxiliary continuous variables such that for some i, k and each j

rjx = µ̄j
i b

j
i + (1− µ̄j

i )b
j
i+1 (13)

rj(s(x, a)) = µ̃j
kbj

k + (1− µ̃j
k)bj

k+1 . (14)

Then

n∑
j=1

[
Hj

lj(x)(r
jx)wj

lj(x) + Hj
lj(x)+1(r

jx)wj
lj(x)+1

]
=

n∑
j=1

mj∑
i=1

wj
i µ̄

j
i , and

n∑
j=1

[
Hj

tj(x,a)(r
js(x, a))wj

tj(x,a) + Hj
tj(x,a)+1(r

js(x, a))wj
tj(x,a)+1

]
=

n∑
j=1

mj∑
i=1

wj
i µ̃

j
i .

From (7) we obtain

n∑
j=1

mj∑
i=1

wj
i

[
Hj

i (rjs(x, a))−Hj
i (rjx)

]
=

n∑
j=1

mj∑
i=1

wj
i (µ̃

j
i − µ̄j

i ) .

The requirements (13) and (14) can easily be modeled with linear constraints (except for s(x, a)), see e.g.
Nemhauser and Wolsey (1988) or Croxton et al. (2003). If c, τ, s, and the requirement (x, a) ∈ K can be
modeled by linear constraints, then the entire separation problem is a mixed integer programming problem.

If we want to impose u to be convex, where X is convex and full-dimensional, we proceed as follows. For
each j ∈ [n] we first compute φ∗j = maxx∈X rjx and ϕ∗j = minx∈X rjx. Next we compute mj and mj by
considering φ∗j , ϕ

∗
j , respectively. Finally, we form the set R and we add constraints (4). Note that we have

only polynomially many constraints.
Imposing monotonicity again under the assumption that X is convex and full-dimensional is more difficult

since it is not easy to determine Υ and the corresponding ζ. Since the number of constraints (5) can be
exponential, we need to dynamically generate them. Given w, we next show how to either find a violated
(5) or assert that the incumbent u is monotone.

We proceed in two steps. We first solve the following optimization problem.

ω = maxu(x1)− u(x2) (15a)
x1 ≤ x2 (15b)

rjx1 and rjx2 in the same interval for every j ∈ [n] (15c)
x1 ∈ X,x2 ∈ X (15d)

11



As above it can easily be argued that the objective function and constraints (15c) can be modeled as linear
mixed integer type constraints. A closer look at the proof of Proposition 3 reveals that ω ≤ 0 if and
only if u is monotone. Thus if ω ≤ 0, the current u is monotone and we quit the dynamic constraint
generation procedure. If x∗1, x

∗
2 are optimal to (15), then let kj , j ∈ [n] be defined as bj

kj
≤ rjx∗1 ≤ bj

kj+1 and

bj
kj
≤ rjx∗2 ≤ bj

kj+1. From (15c) it follows that such kj , j ∈ [n] exist. Note also that (k1, k2, . . . , kn) ∈ Υ.
In the second step we find ζ(k1, . . . , kn). For each j ∈ [n] we solve

γj = max rjx

bj̄
kj̄
≤ rj̄x ≤ bj̄

kj̄+1 j̄ ∈ [n]

x ∈ X .

Now it is clear that ζ(k1, . . . , kn) = {j ∈ [n] : γj > bj̄
kj̄
}. Finally, one of the constraints (5) is violated for an

i ∈ [q].

4.1 Solving (DW)

In this section we present a row generation algorithm for solving (DW) within a given tolerance. The
algorithm is based on the row generation algorithm for general semi-infinite algorithms, see e.g. Goberna
and López (1998). Let δ > 0 be given. The restricted master problem (RMP) consists of the problem
formed by considering only a finite subset of states (x, a) ∈ K together with the bounds −B1 ≤ w ≤ B1
from Section 3. Note that the resulting problem is a finite linear program. The algorithm finds a maximum
objective value solution to (DW) that satisfies all constraints (7) within δ. We require that the separation
problem is solved within the tolerance δ/2.

The algorithm is given in Algorithm 1. Given ρ̂ and w, for any (x, a) ∈ K we denote by πρ̂,w(x, a) the right-
hand side of (7) minus the left-hand side. The initial set S that gives a finite objective value to the RMP can
be selected as follows. Let us pick any two states x̄ ∈ X, x̃ ∈ X, x̄ 6= x̃. By using Assumption B8 twice, we ob-
tain a set S of state-action pairs (x1, a1), (x2, a2), . . . , (xN̄ , aN̄ ) and (xN̄+1, aN̄+1), (xN̄+2, aN̄+2), . . . , (xN̂ , aN̂ ),
N̂ ≤ 2N in K such that x1 = xN̂ = x̄, xN̄ = x̃ and s(xi, ai) = xi+1 for i = 1, 2, . . . , N̂ − 1. It is easy to see
that this S has the desired property.

1: Start with a finite subset S of state-action pairs such that the RMP over S has a finite objective value.
2: loop
3: Solve the RMP over S and let ρ̂, w be an optimal solution.
4: Find a finite subset S̄ consisting of (x, a) ∈ K such that πρ̂,w(x, a) ≤ Φ(ρ̂, w) + δ

2 .
5: if πρ̂,w(x, a) ≥ −δ for every (x, a) ∈ S̄ then
6: Stop; ρ̂, w is the solution.
7: else
8: S = S ∪ S̄.
9: end if

10: end loop

Algorithm 1: The row generation algorithm for solving (DW)

The key step in this algorithm is step 4. If this separation problem can be solved efficiently, then
many iterations of the algorithm can be performed. In view of the discussion in the previous section, the
optimization problem corresponding to this step is either a linear or a nonlinear mixed integer program. If c
and τ are piecewise linear, the resulting problem is a linear mixed integer program (for details see Adelman
and Klabjan (2005a)). The computational experiments in Adelman and Klabjan (2005a) demonstrate that
in the case of the inventory routing problem, this step can be performed efficiently.

The next theorem establishes that this is a finite algorithm and it produces the desired solution.
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Proposition 4. Algorithm 1 stops in a finite number of steps. The resulting solution has the property
πρ̂,w(x, a) ≥ −δ for all (x, a) ∈ K, i.e. it is optimal with δ dual feasibility tolerance. In addition, if Θ is the
obtained objective value upon the algorithm completion, then

max(DW ) ≤ Θ ≤ max(DW ) + δ(1 + max(DW )) .

Proof. In iteration k we denote the optimal dual solution to the RMP by ρ̂k, w(k) and by S̄k the set produced
in step 4. We also denote by Sk the set of all selected state-action pairs at the end of iteration k, which is
S at the end of iteration k. The RMP is a finite linear program with an optimal solution. Let zk be the
corresponding primal solution, which is clearly feasible to (PW).

Let us assume that the algorithm does not stop. Since w ≤ B1 are always in the RMP, we have that
ρ̂k, w(k) are included in a compact set. Therefore there is a convergent subsequence. For ease of notation
we assume that the entire sequence is convergent. Let ρ̂∗ = limk→∞ ρ̂k and w∗ = limk→∞ w(k). We claim
that Φ(ρ̂∗, w∗) ≥ −δ/2.

Note that Φ is concave and ∞ > Φ > −∞. Therefore Φ is continuous. We first show πρ̂∗,w∗(xk, ak) ≥ 0
for every k, where (xk, ak) ∈ S̄k. Let k be fixed and select (xk, ak) ∈ S̄k ⊆ Sk. For every p > k we have
(xk, ak) ∈ Sp since we do not remove constraints from the RMP. Therefore πρ̂p,wp(xk, ak) ≥ 0 for every
p ≥ k. By taking the limit as p goes to infinity we obtain πρ̂∗,w∗(xk, ak) ≥ 0.

Now we show Φ(ρ̂∗, w∗) ≥ −δ/2. For any k we have

Φ(ρ̂∗, w∗) = Φ(ρ̂k, w(k)) + (Φ(ρ̂∗, w∗)− Φ(ρ̂k, w(k)))

≥ πρ̂k,w(k)(xk, ak)− δ

2
+ (Φ(ρ̂∗, w∗)− Φ(ρ̂k, w(k)))

≥
(
πρ̂k,w(k)(xk, ak)− πρ̂∗,w∗(xk, ak)

)
− δ

2
+ (Φ(ρ̂∗, w∗)− Φ(ρ̂k, w(k))) .

Here we have used step 4 of the algorithm. In the limit as k goes to infinity, the last two terms go to 0
since Φ is continuous. Since τ, c, and the hat functions, which correspond to the coefficients in (7), are
bounded (Assumptions B9, B1, and B7), it follows that the first two terms go to 0 as well. We conclude
that Φ(ρ̂∗, w∗) ≥ −δ/2.

Since −δ < −δ/2, there exists a k such that Φ(ρ̂k, w(k)) ≥ −δ. These yields that πρ̂k,w(k)(xk, ak) ≥
Φ(ρ̂k, w(k)) ≥ −δ, which shows that the algorithm stops at the latest in iteration k. To show the second
claim we only need to observe that πρ̂k,w(k)(x, a) ≥ Φ(ρ̂k, w(k)) ≥ −δ for every (x, a) ∈ K. Therefore
ρ̂k, w(k) is a solution with δ dual feasibility tolerance.

It remains to show the bound on the objective value. Let o = max(DW ). Let us denote by (PPW),(PDW)
the same problem as (PW),(DW) except that the cost is defined as c(x, a)+δ for every (x, a) ∈ K, respectively.
Note that (ρ̂k, w(k)), zk is the optimal primal/dual pair of (PPW),(PDW). By definition

Θ =
∑

(x,a)∈supp(zk)

(c(x, a) + δ)zk
x,a .

Since zk is feasible to (PW) it follows that

o ≤
∑

(x,a)∈supp(zk)

c(x, a)zk
x,a ≤

∑
(x,a)∈supp(zk)

(c(x, a) + δ)zk
x,a = Θ .

If z∗ is an optimal solution to (PW), then it is feasible to (PPW) and therefore

Θ =
∑

(x,a)∈supp(zk)

(c(x, a) + δ)zk
x,a ≤

∑
(x,a)∈supp(z∗)

(c(x, a) + δ)z∗x,a = o + δ
∑

(x,a)∈supp(z∗)

z∗x,a . (16)

By Assumption B3 we have 1 ≤ c(x, a) + τ(x, a) for every (x, a) ∈ K and therefore∑
(x,a)∈supp(z∗)

z∗x,a ≤
∑

(x,a)∈supp(z∗)

c(x, a)z∗x,a +
∑

(x,a)∈supp(z∗)

τ(x, a)z∗x,a = o + 1 . (17)

Combining together (16) and (17) yields the final statement.
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5 The Algorithm

Here we present and analyze the overall algorithm. The algorithm in each iteration first finds the optimal
weights for fixed ridge vectors and breakpoints, i.e. we apply Algorithm 1 to solve (DW). In the second
phase we generate new breakpoints or ridge vectors.

For any function z : K → R with supp(z) < ∞, r ∈ Rq, and b̄ = (b̄1, b̄2, b̄3) with b̄1 < b̄2 < b̄3 let

g(z, r, b̄) =|
∑

(x,a)∈supp(z)
b̄1≤rx≤b̄3

Hb̄(rx)zx,a −
∑

(x,a)∈supp(z)
b̄1≤rs(x,a)≤b̄3

Hb̄(rs(x, a))zx,a | .

Here we denote by Hb̄ the hat function on breakpoints b̄1, b̄2, b̄3. This function measures the flow inbalance
given in (8c).

By Theorem 3 it suffices to consider ridge vectors with the infinity norm of 1. Therefore for every x ∈ X
and every ridge vector r with ‖r‖∞ ≤ 1 we have by Cauchy-Schwartz

| rx |≤ ‖r‖2 · ‖x‖2 ≤
√

q · diam(X) ,

where diam(X) < ∞ is the diameter of X. Therefore we can select Ω =
√

q · diam(X) (see Section 3 for the
role of Ω). We denote by −Ω ≤ b̄ ≤ Ω the requirement −(Ω+1) ≤ b̄1 < b̄2 < b̄3 ≤ (Ω+1) and −Ω ≤ b̄2 ≤ Ω.
(See the discussion in Section 3 for the reason to allow b̄1 < −Ω and b̄3 > Ω.)

The overall algorithm is given in Algorithm 2. Given a set of ridge vectors and the corresponding
breakpoints, the algorithm in step 5 finds the optimal weights w (up to a certain precision). Next we find
either new breakpoints or new ridge vectors that violate the flow balance constraints (8c). These are then
added to the set of the existing ridge vectors and breakpoints. We assume that the problem of finding the
most violated flow balance constraint can be solved within an arbitrary precision.

1: Let {εi}∞i=0, {δi}∞i=0 be such that εi > 0, δi > 0 for every i and limi→∞ εi = limi→∞ δi = 0.
2: s = 0
3: Let S0 be a set of initial ridge vectors and the corresponding breakpoints, which can be an empty set.
4: loop
5: Run Algorithm 1 with precision δs. Let ρ̂, w be the resulting optimal solution with δs dual feasibility

tolerance.
6: Let zs be the corresponding primal solution to (PW) with the same objective value. We denote the

resulting ridge function as us.
7: Find a finite subset S̄s of (r, b̄), ‖r‖∞ ≤ 1,−Ω ≤ b̄ ≤ Ω such that

g(zs, r, b̄) ≥ max
‖r̃‖∞≤1

−Ω≤b̃≤Ω

g(zs, r̃, b̃)− εs

for every (r, b̄) ∈ S̄s.
8: For every (r, b̄) ∈ S̄s either add (r, b̄) to Ss if r is not already in Ss, or add b̄ to an already present

ridge vector r in Ss.
9: s = s + 1

10: end loop

Algorithm 2: Optimal solution algorithm

In step 7 we assume that max ‖r̃‖∞≤1

−Ω≤b̃≤Ω

g(z, r̃, b̃) is attained. The following lemma whose proof is given in

Appendix D establishes this.

Lemma 2. If α = sup ‖r̃‖∞≤1

−Ω≤b̃≤Ω

g(z, r̃, b̃), then there exists r, ‖r‖∞ ≤ 1 and b,−Ω ≤ b ≤ Ω such that

α = g(z, r, b).
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Similarly to Algorithm 1, the separation step 7 is very important. Typically it yields a nonlinear opti-
mization problem, which needs to be solved approximately. In Adelman and Klabjan (2005a) in the context
of inventory routing this step is solved heuristically yet it guarantees to separate the current solution. Even
though max ‖r̃‖∞≤1

−Ω≤b̃≤Ω

g(zs, r̃, b̃) is not computed within an arbitrary precision, the computational experiments

show convergence after a relatively low number of iterations.
In order to prove the convergence of the algorithm we need to state some definitions and statements from

measure theory.

Definition 1. A sequence {µm}m of measures on K converges weakly to a measure µ on K if∫
K

u dµm
m→∞−−−−→

∫
K

u dµ (18)

for every u ∈ C(K).

The total variation norm of a finite signed measure µ on K is defined as ‖µ‖TV = |µ|(K), where |µ| is
the total variation of µ. If µ is a positive measure, then ‖µ‖TV = µ(K). Note that since K is compact,
the set of all continuous functions is equivalent to the set of all continuous bounded functions, which are
considered in a typical definition of weak convergence.

Every solution z to (PW) induces a measure γz on K defined by

γz(K̄) =
∑

(x,a)∈K̄∩supp(z)

zx,a

for every Borel subset K̄ ⊆ K. By definition, for every Borel subset K̄ and every Borel measurable function
g we have ∫

K̄

g dγz =
∑

(x,a)∈K̄∩supp(z)

g(x, a)zx,a .

Every vector b̄ with −Ω ≤ b̄ ≤ Ω can be viewed as a vector in [−(Ω + 1),Ω + 1]3, which is a compact set.
Therefore every sequence of b̄ ’s contains a convergence subsequence with the limit b̃. However b̃ might not
have the property b̃1 < b̃2 < b̃3. It can happen that for example b̃1 = b̃2 = b̃3 and therefore we cannot define
the hat function on this triplet. The next theorem states that the algorithm produces an optimal solution
to (P) and (D) as long as the generated breakpoints b̄ “stay apart” for at least one convergent subsequence.

Theorem 7. Suppose that there exists a subsequence {b̄sk}k with (rsk , b̄sk) ∈ S̄sk
such that limk→∞ b̄sk = b̃

and b̃1 < b̃2 < b̃3. Then there exists a subsequence si such that γzsi converge weakly to a measure µ, which
is optimal to (P). If u(x) = lim supi usi , then u is optimal to (D).

Observe that the corresponding {rsk}k converge on a subsequence since their infinity norm is less than or
equal to 1. We can restate the condition of the theorem as follows. There is at least one accumulation point
(r̃, b̃) in ∪∞s=1S̄s with the property b̃1 < b̃2 < b̃3. Note that ∪∞s=1S̄s is the set of all generated breakpoints
and ridge vectors. Before proving this theorem, we need to state a few results. The following corollary is a
special case of Corollary 3.6 in Klabjan and Adelman (2006), which in turn relies on the Prohorov’s theorem
(see e.g. Billingsley (1968)).

Proposition 5. Let Γ be a family of nonnegative measures on a Borel compact space K. Assume that
there exists a constant M < ∞ such that 0 < ‖µ‖TV < M . Then for each sequence {µn}n in Γ there is a
subsequence {µm}m and a measure µ such that {µm}m converges weakly to µ.

This proposition holds without requiring that K be compact but additional restrictions need to be
imposed. The following result is shown in Hernández-Lerma and Lasserre (1999), page 225.

Lemma 3. Let g ≥ 0 be lower semi-continuous. If {µi}i converges weakly to a measure µ on K, then∫
K

g dµ ≤ lim inf
i

∫
K

g dµi .
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Definition 2. A sequence of functions {fs}s on a set X̂ continuously converge to a function f if for every
convergent sequence {xs}s in X̂ with lims→∞ xs = x we have lims→∞ fs(xs) = f(x).

The following proposition is proven in Langen (1981).

Proposition 6. Let {µs}s be a sequence of finite positive measures on X̂ that converge weakly to a fi-
nite positive measure µ. Let {fs}s, {ps}s be measurable functions from X̂ to R such that |fs| ≤ ps for
every s. Let {fs}s continuously converge to f and let {ps}s continuously converge to p. In addition, let
lims→∞

∫
X̂

ps dµs =
∫

X̂
p dµ < ∞. Then

lim
s→∞

∫
X̂

fs dµs =
∫

X̂

f dµ .

Proof of Theorem 7. Let Θs be the optimal objective value at step 5. The optimal objective value of the
underlying (PW) and (DW) is denoted by os. By Proposition 4 we have

os ≤ Θs ≤ os + δs(1 + os) . (19)

We first show how to find the subsequence si. Let (rsk , b̄sk) ∈ S̄sk
and b̃ be as in the statement of the

theorem. There is a subsequence in {rsk}k that converges to r̃, ‖r̃‖ ≤ 1. For ease of notation we assume
that the entire sequence has this property, i.e. all of the subsequences that follow are subsequences of {sk}k.
There is a Π > 0 such that δs < Π for every s. From (19) we obtain

0 ≤ Θs ≤ os + Π(1 + os) ≤ max(D) + Π(1 + max(D)) < ∞ (20)

and therefore the sequence Θs is bounded. There is a subsequence {s̄l}l such that liml→∞ Θs̄l
= ϕ.

Next we use Proposition 5 to find a weakly convergent subsequence in {γzs̄l }l. First we note that by (20)
we have ∫

K

cdγzs

≤
∫

K

(c + δs) dγzs

= Θs ≤ max(D) + Π(1 + max(D))

for every s. From 1 ≤ τ + c ≤ τ + c + δs we have

‖γzs

‖TV =
∫

K

dγzs

≤
∫

K

τ dγzs

+
∫

K

(c + δs) dγzs

= 1 + Θs ≤ 1 + max(D) + Π(1 + max(D))

for every s, where we have again used (20). This shows that we can apply Proposition 5 to find a weakly
convergent subsequence {γzsl }l in {γzs̄l }l. Let µ be the corresponding limit.

Function u defined by u(x) = lim supl u
sl is well defined. To see this we apply (9) and (10) with c + δs

instead of c. By using (20) we obtain

‖usl‖∞ ≤ C + δsl
·N + Θsl

· Γ ≤ C + Π ·N + Γ(max(D) + Π(1 + max(D))) ,

which shows that u is well defined.
We next show that (ϕ, u) is feasible to (D), µ is feasible to (P), and that they have equal objective values.

For simplicity we assume that {sl}l corresponds to the entire sequence.
We first show that (ϕ, u) is feasible to (D). Note that us is optimal with δs dual feasibility tolerance.

Therefore us satisfies (6b) with c + δs, which reads

Θsτ(x, a) + us(x) ≤ c(x, a) + δs + us(s(x, a))

for every (x, a) ∈ K. After applying the lim sup operator on both sides and using lims→∞ δs = 0 we obtain

ϕτ(x, a) + u(x)− u(s(x, a)) ≤ c(x, a)

for every (x, a) ∈ K. This shows the statement.
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Next we argue that ϕ =
∫

K
cdµ, which shows that (ϕ, u) and µ have the same objective values. By

Lemma 3 and Assumption B2 we obtain∫
K

cdµ ≤ lim inf
s

∫
K

cdγzs

≤ lim inf
s

Θs = ϕ , (21)

which shows the claim.
It remains to show that µ is feasible to (P), i.e. it satisfies (1b) and (1c). Since zs satisfies (8b) and τ is

continuous, we have

1 =
∫

K

τ dγzs s→∞−−−→
∫

K

τ dµ = 1 ,

which shows (1b).
The proof for (1c) is more complicated. Let L1 : M(K) → M(X) be the linear operator defined by

(L1φ)(B) = φ((B ×A) ∩K)− φ({(x, a) ∈ K : s(x, a) ∈ B})

for every B ∈ B(X). It is easy to see that this is a measure in X. The following is shown in Klabjan and
Adelman (2006). If {αs}s converge weakly to a measure α on K, then for every v ∈ C(X) we have∫

X

v dL1αs
s→∞−−−→

∫
X

v dL1α . (22)

We argue that L1µ is a finite signed measure. By definition of L1 it suffices to show that µ is a finite
measure. This follows from 1 ≤ τ + c,

∫
K

τ dµ = 1, and (21).
We need to show that L1µ = 0. By the Riesz representation theorem for finite signed measures (see e.g.

Rudin (1986)) this is equivalent to showing that
∫

X
v dL1µ = 0 for every v ∈ C(X). By Theorem 3 it suffices

to show that
∫

X
u dL1µ = 0 for every ridge function u. If we denote hr

b̄
= Hb̄(< r, · >), then it suffices to

show
∫

X
hr

b̄
dL1µ = 0 for every ridge vector r and three-tuple b̄ = (b̄1, b̄2, b̄3), b̄1 < b̄2 < b̄3. Note that by

definition of L1 we have g(z, r, b̄) = |
∫

X
hr

b̄
dL1γ

z|.
From (22) and since hr

b̄
are continuous it follows∫

X

hr
b̄ dL1γ

zs s→∞−−−→
∫

X

hr
b̄ dL1µ (23)

for every r, b̄.
From step 7 of the algorithm we obtain

|
∫

X

hr
b̄ dL1γ

zs

| ≤ max
‖r‖∞≤1
−Ω≤b̄≤Ω

g(zs, r, b̄) ≤ |
∫

X

hrs

b̄s dL1γ
zs

|+ εs . (24)

Let us fix s and consider (rs, b̄s) ∈ Ss. Then from the algorithm (see (8c)) it follows that
∫

X
hrs

b̄s dL1γ
zp

=
0 for every p > s. By considering the limit as p goes to infinity and from (23) we get∫

X

hrs

b̄s dL1µ = 0 . (25)

The following is elementary to establish. Since rs → r̃ and b̄s → b̃, and b̃1 < b̃2 < b̃3, then hrs

b̄s continuously
converge to hr̃

b̃
. This is the only place where we need the assumption b̃1 < b̃2 < b̃3. Note that if this is

violated, then hrs

b̄s converge pointwise to a function however the convergence is not continuous.
By considering ps = 1 for every s and p = 1 we can use Proposition 6 with {γzs}s and µ. We first obtain∫

K

hrs

b̄s (x) dγzs

(x, a) s→∞−−−→
∫

K

hr̃
b̃
(x) dµ(x, a) (26)
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by taking fs(x, a) = hrs

b̄s (x). Next we obtain∫
K

hrs

b̄s (s(x, a)) dγzs

(x, a) s→∞−−−→
∫

K

hr̃
b̃
(s(x, a)) dµ(x, a) (27)

by considering fs(x, a) = hrs

b̄s (s(x, a)) in Proposition 6. Since s is continuous by Assumption B6, it is easy
to see that hrs

b̄s (s(x, a)) is continuously convergent. After subtracting (26) from (27) we obtain

|
∫

X

hrs

b̄s dL1γ
zs

| s→∞−−−→ |
∫

X

hr̃
b̃
dL1µ| . (28)

By the Lebesgue convergence theorem with the dominant function being the constant 1 it follows∫
X

hrs

b̄s dL1µ
s→∞−−−→

∫
X

hr̃
b̃
dL1µ .

Combining with (25) we obtain
∫

X
hr̃

b̃
dL1µ = 0. This equality and (28) yield

lim
s→∞

|
∫

X

hrs

b̄s dL1γ
zs

| = 0 .

In turn from (24) it follows lims→∞ |
∫

X
hr

b̄
dL1γ

zs | = 0. Finally, from (23) we get
∫

X
hr

b̄
dL1µ = 0, which

shows the entire theorem.

In order to guarantee convergence and in line with the stated assumption in Theorem 7, it is desirable
in step 7 of Algorithm 2 to find new breakpoints that are far apart from the already generated breakpoints.
In Adelman and Klabjan (2005a) this is achieved by using the strategy of adding a new breakpoint if this
breakpoint is at least a given parameter away from the previously generated breakpoints. If such a breakpoint
cannot be found, then a new ridge vector r is found.
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Goberna, M. and López, M. (1998). Linear Semi-Infinite Optimization. John Wiley & Sons.

Hernández-Lerma, O. and Lasserre, J. (1996). Discrete-Time Markov Control Processes: Basic Optimality
Criteria. Springer-Verlag.

Hernández-Lerma, O. and Lasserre, J. (1998a). Approximation schemes for infinite linear programs. SIAM
J. Optim., 8, 973–988.

Hernández-Lerma, O. and Lasserre, J. (1998b). Linear programming approximations for Markov control
processes in metric spaces. Acta Applicandae Mathematicae, 51, 123–139.

Hernández-Lerma, O. and Lasserre, J. (1999). Further Topics on Discrete-Time Markov Control Processes.
Springer-Verlag.

Johnson, S. A., Stedinger, J. R., Shoemaker, C. A., Li, Y., and Tejada-Guibert, J. A. (1993). Numerical
solution of continuous-state dynamic programs using linear and spline interpolation. Operations Research,
41, 484–500.

Klabjan, D. and Adelman, D. (2006). Existence of optimal policies for semi-Markov decision processes using
duality for infinite linear programming. SIAM Journal on Control and Optimization, 44, 2104–4122.

Langen, H.-J. (1981). Convergence of dynamic programming models. Mathematics of Operations Research,
6, 493–512.

Manne, A. (1960). Linear programming and sequential decisions. Management Science, 6, 259–267.

Nemhauser, G. and Wolsey, L. (1988). Integer and combinatorial optimization. John Wiley & Sons.

Powell, W. B. and Topaloglu, H. (2003). Stochastic programming in transportation and logistics. In
A. Ruszczynski and A. Shapiro, editors, Handbook in Operations Research and Management Science:
Stochastic Programming. Elsevier, Amsterdam.

Rudin, W. (1986). Real and Complex Analysis. McGraw-Hill.

Schweitzer, P. and Seidmann, A. (1985). Generalized polynomial approximations in Markovian decision
processes. Journal of Mathematical Analysis and Applications, 110, 568–582.

19



Tadic, V., Meyn, S., and Tempo, R. (2006). Randomized algorithms for semi-infinite programming prob-
lems. In G. Calafiore and F. Dabbene, editors, Probabilistic and Randomized Methods for Design under
Uncertainty. Springer Verlag.

Wang, R.-H. (1994). Multivariate Spline Functions and Their Applications. Kluwer Academic Publishers.

A Proof of Proposition 2

Let {rj}j∈[n] = ∪v
p=1Rp, where if rk ∈ Rp, r

l ∈ Rp, then rk and rl are linearly dependent and if rk ∈ Rp, r
l ∈

Rp̄, p 6= p̄, then rk and rl are linearly independent. This corresponds to the partition of the ridge vectors into
sets of pairwise linearly dependent vectors. For each p ∈ [v] we arbitrarily select and fix a vector rp∗ ∈ Rp,
which represents the set Rp. For each rj ∈ Rp we denote rj = µjr

p∗. Using this new notation we get

Sj
i = {(l, k) ∈ R| bl

k

µl
=

bj
i

µj
} . (29)

Observe also that if (l, k) ∈ Sj
i for j ∈ Rp, then λlj

ki = µl.
Now we introduce new variables yp = rp∗x and we rewrite the ridge function as

u(x) =
v∑

p=1

∑
j∈Rp

mj∑
i=1

wj
i H

j
i (rjx) =

v∑
p=1

∑
j∈Rp

mj∑
i=1

wj
i H

j
i (µjyp) =

v∑
p=1

up(yp) ,

where up(yp) =
∑

j∈Rp

∑mj

i=1 wj
i H

j
i (µjyp). Note that up is now a function of a single variable. We further

break up into up(yp) =
∑

j∈Rp
uj

p(µjyp), where uj
p(yp) =

∑mj

i=1 wj
i H

j
i (µjyp).

It is obvious that uj
p are piecewise linear functions with breakpoints bj

i/µj and the corresponding value
wj

i . We conclude that all of these functions have slopes µj · (wj
i −wj

i−1)/(bj
i − bj

i−1). Note that uj
p might not

be convex. Since uj
p are piecewise linear and the sum of piecewise linear functions is piecewise linear, so is

up. The breakpoints of up are {bj
i/µj}j∈[n],i∈[mj ], which is the union of all the breakpoints of functions uj

p.
We now proceed in two steps. First we show that u is convex if and only if up are convex for all p ∈ [v].

Then we show that up is convex if and only if (4) holds.

Claim 1. The ridge function u is convex if and only if up are convex for all p ∈ [v].

If up’s are convex for every p, then clearly u is convex (the sum of convex functions is a convex function
and a superposition of a convex and a linear function is convex). Let now u be convex.

Let p ∈ [v] be fixed and let us select an arbitrary (j, i) ∈ R with j ∈ Rp. Let also (l, k) ∈ Sj
i be arbitrary,

which implies that l ∈ Rp. We show that

up(λyp + (1− λ)ȳp) ≤ λup(yp) + (1− λ)up(ȳp) (30)

for any λ, 0 ≤ λ ≤ 1 and a particular choice of yp and ȳp satisfying

bl
k−1 ≤ µlyp < bl

k < µlȳp ≤ bl
k+1 . (31)

This suffices to prove the statement since up is piecewise linear with breakpoints bj
i/µj and (l, k) being

arbitrary with l ∈ Rp.
By definition of R, there exists x̄ ∈ int(X̄) with rj x̄ = bj

i . Here we use the assumption that X̄ is full-
dimensional and the facts min{rjx : x ∈ X̄} = inf{rjx : x ∈ int(X̄)},max{rjx : x ∈ X̄} = sup{rjx : x ∈
int(X̄)}. Let S̄ = {l : there exists k such that (l, k) ∈ Sj

i } (for simplicity we write S̄ instead of S̄j
i ). Note

that S̄ ⊆ Rp.
We show that there exists x ∈ int(X̄) with rjx = bj

i and for every q not in S̄ there exists o(q) with
bq
o(q) < rqx < bq

o(q)+1. Let q /∈ S̄ be arbitrary. If rq and rj are linearly dependent, then since q /∈ S̄ any
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x with rjx = bj
i has the property rqx 6= bq

ī
for every ī. Let now rq and rj be linearly independent. Then

as in the proof of Claim 5 (see Appendix C) we argue that there exists xq ∈ int(X̄) and ōq ∈ [mq] with
bq
ōq

< rqxq < bq
ōq+1. Then again as in the proof of Claim 5 we can combine the various xq into a vector x

with the desired property. Note that for every q ∈ S̄, rqx is one of the breakpoints.
Let

ε = min
q/∈S̄

{bq
o(q)+1 − rqx, rqx− bq

o(q)} > 0 ,

δ1 = min
(l,k)∈Sj

i

{bl
k+1 − bl

k, bl
k − bl

k−1} .

Consider f : X̄ → Rn defined by

f(w) =

{
rpw p /∈ S̄

rpx p ∈ S̄ ,

which is clearly continuous. Therefore there exists δ2 such that if ‖y − x‖∞ ≤ δ2, then ‖f(y)− f(x)‖∞ ≤ ε,
which is equivalent to bq

o(q) ≤ rqy ≤ bq
o(q)+1 for every q /∈ S̄. In addition there exists δ3 such that if

‖x− y‖∞ ≤ δ3, then y ∈ int(X̄).
Consider now δ = min{δ1, δ2, δ3}. Since by assumption rj 6= 0, there exists s ∈ [j] with rj

s 6= 0. We
construct α1 = x− δes, α2 = x+ δes. Since δ ≤ δ3 we have α1 ∈ int(X̄), α2 ∈ int(X̄). Due to δ ≤ δ2 we have
bq
o(q) ≤ rqα1 ≤ bq

o(q)+1 and bq
o(q) ≤ rqα2 ≤ bq

o(q)+1 for every q /∈ S̄. Without loss of generality we assume that
rj
s > 0 (otherwise we switch α1 and α2). Since δ ≤ δ1 we have bl

k−1 ≤ rlα1 < bl
k < rlα2 ≤ bl

k+1 for every
(l, k) ∈ Sj

i .
We select yp = rp∗α1 and ȳp = rp∗α2, which implies that yp = rlα1/µl, ȳp = rlα2/µl. We conclude that

(31) is satisfied. Let us pick 0 < λ < 1. Then since u is convex we have

u(α3) ≤ λu(α1) + (1− λ)u(α2) , (32)

where α3 = λα1 + (1 − λ)α2. We have bq
o(q) ≤ rqα3 ≤ bq

o(q)+1 for every q /∈ S̄ and for (l, k) ∈ Sj
i the value

rlα3 lies in either (rlα1, b
l
k] or [bl

k, rlα2).
It now follows that (32) is equivalent to (30). (For q /∈ S̄ the terms cancel out since the function is linear

on [bq
o(q), b

q
o(q)+1].) This completes the proof of the claim.

Claim 2. Given a fixed p ∈ [v] the function up is convex if and only (4) holds.

Consider a set of n piecewise linear functions and their sum ū. Clearly ū is piecewise linear and its
breakpoints are the union of all individual breakpoints. Image that this union is sorted and let us discuss
the underlying slopes and convexity of ū.

Consider first a breakpoint of ū, which is not equal to any other breakpoint of the n piecewise linear
functions. Let us assume that this is the breakpoint of the j’th function. Function ū is convex around this
breakpoint if and only if the slope to the left is less than or equal to the slope on the right. Only the j’th
function changes slope at this breakpoint and therefore convexity in this case is equivalent to requiring that
the j’th function is convex around this breakpoint.

Now assume that a breakpoint b equals to several breakpoints, each one being a breakpoint of a different
function. Let us denote by C the set of these functions. The functions outside of C do not change slope
at b. The slope of ū to the left and right equals to the sum of the left and right slopes of the functions in
C, respectively. Therefore ū is convex around b if and only if the sum over C of the slopes on the left is
less than or equal to the sum over C of the slopes on the right. Note that the right and left slopes of the
functions not in C cancel out and therefore it suffices to consider only the slopes of the functions in C.

Let us now interpret this discussion in terms of functions up and uj
p. The breakpoints in question are

{bj
i/µj}j∈[n],i∈[mj ]. If several breakpoints collide, then this corresponds precisely to the definition of Sj

i , see
(29). The slopes of uj

p are µj · (wj
i − wj

i−1)/(bj
i − bj

i−1). The statement now easily follows.
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B Proof of Proposition 3

We first assume that u is monotone in int(X̄) and we show that (5) holds. Let i ∈ [q] and let (k1, k2, . . . , kn) ∈
Υ be arbitrary. Let Y = X1

k1
∩X2

k2
∩ · · · ∩Xn

kn
. Then there exists x ∈ Y such that bj

kj
< rjx < bj

kj+1 for
every j ∈ [n] \ ζ(k1, . . . , kn). To see this consider the following vectors. By definition of Υ and ζ(k1, . . . , kn)
for each j ∈ [n] \ ζ(k1, . . . , kn) there exists xj ∈ int(X̄) such that bj

kj
< rjxj < bj

kj+1. Since X̄ is convex, we
can take

x =
1

| [n] \ ζ(k1, . . . , kn)|
∑

j∈[n]\ζ(k1,...,kn)

xj .

Let ε = minj∈[n]\ζ(k1,...,kn){bj
kj+1 − rjx, rjx − bj

kj
} > 0. Consider now f : X̄ → Rn defined by f(y) =

(r1y, . . . , rny). Clearly f is continuous in the infinity norm. Therefore there exists δ1 > 0 such that for every
y ∈ Y with ‖y − x‖∞ ≤ δ it follows that ‖f(y) − f(x)‖∞ ≤ ε. By definition of ε and f for any such y we
have bj

kj
≤ rjy ≤ bj

kj+1 for every j ∈ [n] \ ζ(k1, . . . , kn). For every j ∈ ζ(k1, . . . , kn) we have rjy = bj
kj

. Since
x ∈ int(X̄), there exists δ2 > 0 such that if ‖y − x‖∞ ≤ δ2, then y ∈ int(X̄). Let δ = min{δ1, δ2}.

Consider now y = x + δei. Clearly ‖y − x‖∞ ≤ δ1 and ‖y − x‖∞ ≤ δ2. These implies that y ∈ Y . For
every z1 ∈ Y, z2 ∈ Y we have

u(z1)− u(z2) =
∑

j∈[n]\ζ(k1,...,kn)

wj
kj

rj(z1 − z2)− wj
kj+1r

j(z1 − z2)

bj
kj+1 − bj

kj

. (33)

The terms corresponding to j ∈ ζ(k1, . . . , kn) cancel out by definition of ζ(k1, . . . , kn).
Since x ≤ y it follows that u(x) ≤ u(y). In turn we have

0 ≤ u(y)− u(x) = −δ
∑

j∈[n]\ζ(k1,...,kn)

rj
i

wj
kj+1 − wj

kj

bj
kj+1 − bj

kj

,

which follows from (33) and it shows (5).
Now let us prove the reverse statement. We assume that (5) holds and we need to show monotonicity.

Let x ∈ int(X̄), y ∈ int(X̄) with x ≤ y. We need to show that u(x) ≤ u(y).
Let x ∈ X1

k1
∩X2

k2
∩ · · · ∩Xn

kn
and y ∈ X1

k̄1
∩X2

k̄2
∩ · · · ∩Xn

k̄n
for (k1, . . . , kn) ∈ Υ, (k̄1, . . . , k̄n) ∈ Υ. We

define l(x, y) =
∑n

j=1 |kj − k̄j | and we prove the claim by induction on l(x, y), which can have only a finite
number of integer values.

Let us first consider l(x, y) = 0, i.e. (k1, . . . , kn) = (k̄1, . . . , k̄n). For each i ∈ [q] we multiply (5)
by yi − xi ≥ 0 and we sum all the resulting inequalities. If we add constant terms corresponding to
j ∈ ζ(k1, . . . , kn), it is easy to see that we obtain u(x) ≤ u(y).

Let w ≥ 1 be an integer. We now assume that for every x̄ ≤ ȳ with l(x̄, ȳ) ≤ w− 1 we have u(x̄) ≤ u(ȳ).
Consider x ≤ y with l(x, y) = w. Since w ≥ 1, there exists t ∈ [n] such that |kt − k̄t| ≥ 1.

Consider first rtx < rty and rty > bt
k̄t

. Let us define

λ =

(
1 +

rty − bt
k̄t

rty − rtx

)
/2 .

It is easy to see that 0 <
rty−bt

k̄t

rty−rtx < λ < 1. Consider z = λx + (1 − λ)y, which is in int(X̄) by convexity of
X̄. Since x ≤ y, it follows that x ≤ z ≤ y. By definition of λ it follows that rtx < rtz < bt

k̄t
. Therefore

l(z, y) ≤ w − 1 and l(x, z) ≤ w − 1. By induction hypothesis we have u(x) ≤ u(z) ≤ u(y). In turn this
implies u(y)− u(x) = u(y)− u(z) + u(z)− u(x) ≥ 0, which shows the statement.

If rtx < rty and rty = bt
k̄t

, then we can use any 0 < λ < 1 and proceed as above. The case rtx > rty is
identical by reversing the role of x and y. This completes the proof.
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C Proof of Theorem 4

The following lemma will be used on several occasions.

Lemma 4. If A ∈ Rk×k is an invertible matrix, then the set {x ∈ Rk : l ≤ Ax ≤ u} is bounded for every
given vectors l ∈ Rk, u ∈ Rk.

Proof. We have
{x ∈ Rk : l ≤ Ax ≤ u} = {A−1y : l ≤ y ≤ u, y ∈ Rk} .

The function f : Rk → Rk defined by f(y) = A−1y is continuous and the set {y ∈ Rk : l ≤ y ≤ u} is compact.
Since in Rk the image of a compact space of a continuous function is compact, the claim follows.

In addition, we need the following lemma, which can be easily proven by induction and the recursive
definition of the determinant.

Lemma 5. Let bj : Rq → Rn be differentiable functions for j ∈ [n]. If h : Rq → R is defined as h(x) =
det
[
b1, b2, . . . , bn

]
, then for i = 1, . . . , q we have

∂h

∂xi
= det

[
∂b1

∂xi
, b2, . . . , bn

]
+ det

[
b1,

∂b2

∂xi
, b3, . . . , bn

]
+ · · ·+ det

[
b1, b2, . . . ,

∂bn

∂xi

]
.

Proof of Theorem 4. We have already observed that if two ridge vectors are linearly dependent, then one of
them can be eliminated. Therefore without loss of generality we assume that all ridge vectors are pairwise
linearly independent. For simplicity we assume that mj = mj and mj = 1 (otherwise we simply remove all
the remaining breakpoints without affecting u).

We assume that ‖u‖∞ ≤ M < ∞. For each j ∈ [n] and i ∈ [mj ] we define

vj
i =

wj
i+1 − wj

i

bj
i+1 − bj

i

.

Let X̄j
i = {x ∈ int(X̄) |bj

i < rjx < bj
i+1} and Ψ = {(k1, . . . , kn)|X̄1

k1
∩ X̄2

k2
∩ · · · ∩ X̄n

kn
6= ∅}. Note that since

X̄ is full-dimensional, its interior is non empty. The proof is broken down into several claims.
Claim 3. There exists a ridge function û with weights ŵ such that u(x) = û(x) for every x ∈ X and
|ŵj

kj
| < M for every j = 1, . . . , n and a fixed kj ∈ [mj ].

For any numbers g1, . . . , gn such that
∑n

j=1 gj = 0 we have u(x) =
∑n

j=1

[∑mj

i=1 wj
i H

j
i (rjx)− gj

]
. Let

us now fix y ∈ X and let bj
kj
≤ rjy < bj

kj+1. We now set gj = wj
kj

rjy for j = 1, . . . , n − 1 and gn =

−
∑n−1

j=1 wj
kj

rjy. Let us denote hj(t) =
∑mj

i=1 wj
i H

j
i (t) − gj . Then hj is a piecewise linear function. For

j = 1, . . . , n − 1 it is easy to see that hj can be defined as having a breakpoint at rjy and in addition
hj(rjy) = 0. Therefore we can assume that the weight corresponding to rjy is equal to zero. For j = n we
can still define a new breakpoint at rny but however in this case hn(rny) = u(y). Therefore we can assume
that the weight corresponding to this new breakpoint is u(y). Since |u(y)| ≤ M , this completes the proof of
Claim 3.
Claim 4. Let j̄ ∈ [n] be fixed and let {rj : j ∈ S(j̄)} be a maximal set of linearly independent vectors with
j̄ ∈ S(j̄). Every rj , j /∈ S(j̄) is a linear combination of vectors from S(j̄) and therefore there exist λs such
that rj =

∑
k∈S(j̄) λj

krk. Then for every (k1, . . . , kn) ∈ Ψ there exists a constant B1 = B1(M, r, b, X̄) such
that

|vj̄
kj̄

+
∑

l∈[n]\S(j̄)

λl
j̄v

l
kl
| ≤ B1 .
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Note that |S(j̄)| ≥ 2 for every j̄ ∈ [n]. For simplicity we assume that j̄ = 1 and that S(1) = {1, 2, . . . , s}.
It means that r1, . . . , rs are linearly independent and for j = s + 1, . . . , n we have rj =

∑s
k=1 λj

krk. For any
x ∈ X̄ such that bj

kj
≤ rj ≤ bj

kj+1 for each j ∈ [n] we have

u(x) =
n∑

j=1

wj
kj

bj
kj+1 − wj

kj+1b
j
kj

bj
kj+1 − bj

kj

+
s∑

j=1

[(
vj

kj
+

n∑
l=s+1

λl
jv

l
kl

)
rjx

]
= a + b(x) .

Here a denotes the first summation and b(x) the second summation.
Let us now fix x ∈ X̄1

k1
∩ X̄2

k2
∩ · · · ∩ X̄n

kn
, which by definition is non empty. Since r1, . . . , rs are linearly

independent, there exist α1, . . . , αs such that the matrix A defined by {rj
αg
}j=1,...,s

g=1,...,s
is nonsingular. Since

X̄1
k1
∩ X̄2

k2
∩ · · · ∩ X̄n

kn
is open, there exists ε > 0 such that yg = x + εeαg

∈ X̄1
k1
∩ X̄2

k2
∩ · · · ∩ X̄n

kn
for every

g = 1, . . . , s. Then we have

u(yg) = a + b(yg) = a + b(x) + b(yg − x) = a + b(x) + εb(eg) = u(x) + εb(eg) .

Since u(yg) and u(x) are bounded by M , it follows that b(eg) is bounded for every g, where the bounds
depend on ε, i.e. on X̄ and M . Now we apply Lemma 4 with A = {rj

αg
}j=1,...,s

g=1,...,s
, xj = vj

kj
+
∑n

l=s+1 λl
jv

l
kl

for every j, and l, u correspond to the underlying bounds. We obtain that vj
kj

+
∑n

l=s+1 λl
jv

l
kl

are bounded
for every j. In particular it holds for j = 1, which shows Claim 4. Note that the resulting constant depends
on (k1, . . . , kn). However, since Ψ is finite we can take the maximum of all these values.

Claim 5. Let j̄ ∈ [n] and ī ∈ {2, 3, . . . ,mj − 1} be fixed. Consider Y = {x ∈ int(X̄) : rj̄x = bj̄
ī
}. Then there

exists x ∈ Y such that for every j ∈ [n] , j 6= j̄ there exist kj with bj
kj

< rjx < bj
kj+1.

Observe that for each j we have inf{rjx : x ∈ int(X̄)} = min{rjx : x ∈ X̄}, sup{rjx : x ∈ int(X̄)} =
max{rjx : x ∈ X̄} and therefore Y is non empty. We prove this claim in two steps.

Suppose that Y ⊆ {x ∈ int(X̄) : rjx = bj
kj
} for a j, j 6= j̄ and kj ∈ [mj ]. We show by contradiction

that this is not possible. There exist x1, . . . , xq−1 in Rq such that rj̄ , x1, . . . , xq−1 are an orthonormal base
in Rq. Let x ∈ Y . There exists ε > 0 such that x + εxi ∈ int(X̄) for every i = 1, . . . , q − 1. We have
rj̄(x+ εxi) = bj̄

ī
+ εrj̄xi = bj̄

ī
. This shows that x+ εxi ∈ Y for every i. By assumption then rj(x+ εxi) = bj

kj

for every i. In addition we have rjx = bj
kj

, which yields that rjxi = 0 for every i. Due to orthonormality

we have that there exist βl, l = 1, 2, . . . , q − 1 and β such that rj =
∑q−1

l=1 βlxl + βrj̄ . After multiplying
this equation by xi we obtain that βi = 0 for every i. Hence rj = βrj̄ . If β = 0, then rj = 0, which we
excluded. Hence β 6= 0, but now rj and rj̄ are linearly dependent, which we have ruled out as well. We have
a contradiction.

By the above statement, for every j, j 6= j̄ there exists xj ∈ Y such that bj
kj

< rjxj < bj
kj+1 for a

kj ∈ [mj ]. For simplicity we assume that j̄ = 1. We first construct an x ∈ Y such that the property holds
for j = 2 and j = 3. If r2x2 = r2x3 or r3x2 = r3x3, then we can either take x = x2 or x = x3. Assume now
that r2x2 6= r2x3 and r3x2 6= r3x3. Consider y = λx2 +(1−λ)x3 for a λ that is to be determined. There is a
finite number of λs such that r2y and r3y are breakpoints. Therefore there exists a λ ∈ (0, 1) such that r2y
and r3y are not breakpoints. For this particular λ we set x = y. Note that since X̄ is convex the resulting
y is in X̄.

By using the same approach for all j it is easy to obtain the desired x. This completes the proof of
Claim 5.
Claim 6. Let j̄, ī be as in Claim 5. In addition, let us select kj for j ∈ [n] , j 6= j̄ as in Claim 5. Then there
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exist x1 ∈ int(X̄), x2 ∈ int(X̄) such that

bj̄
ī−1

< rj̄x1 < bj̄
ī

bj̄
ī

< rj̄x2 < bj̄
ī+1

bj
kj

< rjx1 < bj
kj+1 j ∈ [n] , j 6= j̄

bj
kj

< rjx2 < bj
kj+1 j ∈ [n] , j 6= j̄ .

We can restate the statement of the claim as (k1, k2, . . . , kj̄−1, ī−1, kj̄+1, . . . , kn) ∈ Ψ and (k1, k2, . . . , kj̄−1, ī,
kj̄+1, . . . , kn) ∈ Ψ, see Figure 2.

j=n

-Ω Ω
j=1

Figure 2: Statement of Claim 6

Let x be as in Claim 5. We define

ε1 =
1
2

min{ min
j∈[n],j 6=j̄

{bj
kj+1 − rjx}, min

j∈[n],j 6=j̄
{rjx− bj

kj
}, bj̄

ī+1
− bj̄

ī
, bj̄

ī
− bj̄

ī−1
} > 0 .

Consider F : Rq → Rn defined by F (y) = (r1y, r2y, . . . , rny). F is clearly continuous at x in the infinity
norm. Therefore there exists δ1 > 0 such that if ‖y − x‖∞ ≤ δ1, then ‖F (y) − F (x)‖∞ ≤ ε1. The later
requirement by definition of ε1 implies bj̄

ī−1
< rj̄y < bj̄

ī+1
and bj

kj
< rjy < bj

kj+1 for every j ∈ [n] , j 6= j̄.

There exists δ2 > 0 such that if ‖y−x‖∞ ≤ δ2, then y ∈ int(X̄). Let us pick any z 6= 0 such that rj̄z > 0
and we define δ = min{δ1, δ2}/‖z‖∞. Consider now ȳ = x± δz. Clearly ‖ȳ − x‖∞ = δ‖z‖∞ = min{δ1, δ2}.
Therefore ȳ ∈ int(X̄) and bj

kj
< rj ȳ < bj

kj+1 for every j ∈ [n] , j 6= j̄. For j̄ we have bj̄
ī−1

< rj̄ ȳ < bj̄
ī+1

. In
addition

rj̄(x + δx) = bj̄
ī
+ δrj̄z > bj̄

ī
,

rj̄(x− δx) = bj̄
ī
− δrj̄z < bj̄

ī
.

Therefore we can take x1 = x− δz and x2 = x + δz, which completes the proof of Claim 6.

Claim 7. For any j̄ ∈ [n], if there exists a constant B2 = B2(M, r, b, X̄) such that |wj̄
l | ≤ B2, |wj̄

k| ≤ B2 for
two fixed l ∈

[
mj̄

]
, k ∈

[
mj̄

]
, then there exists a constant B = B(M, r, b, X̄) such that |wj̄

i | ≤ B for every
i ∈
[
mj̄

]
.
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The claim states that if two weights are bounded for each j, then all the weights are bounded. By Claim 3
we know that for each j we have a bound on a single weight and therefore this claim leaves us only with a
‘single degree of unboundness’ for each j.

Let us fix j̄ ∈ [n] and ī ∈ {2, 3, . . . ,mj̄ − 1} as in Claim 6. Next we use Claim 4 with (k1, k2, . . . , kj̄−1, ī−
1, kj̄+1, . . . , kn) and (k1, k2, . . . , kj̄−1, ī, kj̄+1, . . . , kn). We obtain that

|vj̄
ī−1

+
∑

l∈[n]\S(j̄)

λl
j̄v

l
kl
| ≤ B1

|vj̄
ī

+
∑

l∈[n]\S(j̄)

λl
j̄v

l
kl
| ≤ B1 ,

for a constant B1. It follows that vj̄
ī−1

− vj̄
ī

is bounded. If we denote aj
i = 1/(bj

i+1 − bj
i ), then

vj̄
ī−1

− vj̄
ī

= −aj̄
ī−1

wj̄
ī−1

+ (aj̄
ī
+ aj̄

ī−1
)wj̄

ī
− aj̄

ī
wj̄

ī+1

is bounded.
Let Ã ∈ Rmj̄×(mj̄−2) be the matrix

−aj̄
1 aj̄

1 + aj̄
2 aj̄

2

−aj̄
2 aj̄

2 + aj̄
3 −aj̄

3

. . . . . . . . .
−aj̄

mj̄−2
aj̄

mj̄−2
+ aj̄

mj̄−1
−aj̄

mj̄−1


that is triagonal. All the remaining entries are 0. It follows that Ã(wj̄

1, . . . , w
j̄
mj̄

) are bounded. After

removing any two columns from Ã, which corresponds to having two bounded columns, the resulting matrix
A is diagonally dominant and therefore invertible. By Lemma 4 we get that all the remaining wj̄ are bounded,
which completes the proof of Claim 7.

For each j ∈ [n] let us fix a k̃j ∈ [mj ] such that wj

k̃j
6= 0. We define w̃j

i = wj
i /wj

k̃j
. By combining

Claim 7 and Claim 3 we obtain that we can assume that there exists a constant B3 = B3(M, r, b, X̄) such
that |w̃j

i | ≤ B3 for every j, i. We can rewrite the ridge function u as

u(x) =
n∑

j=1

wj

k̃j

mj∑
i=1

w̃j
i H

j
i (rjx) =

n∑
j=1

wj

k̃j
fj(rjx) ,

where fj is piecewise linear and bounded. Let Q = {j ∈ [n] : mj = 2}. Note that for any j ∈ Q by our
assumption this means that rj maps X̄ into a single subinterval. In other words, for j ∈ Q we have that fj

is a linear function. The rest of the proof considers two cases; Q is empty and Q is non empty.
Claim 8. If Q = ∅, then there exist x1, . . . , xn ∈ X̄ such that the matrix with the entries {fj(rjxi)}j∈[n],i∈[n]

is nonsingular.
In order to prove this claim, we first show that there exist s1, s2, . . . , sn ∈ [q] and αt = (kt

1, k
t
2, . . . , k

t
n) ∈ Ψ

for t = 1, 2, . . . , n such that the matrix D defined by {vj
kt

j
rj
sj
}j∈[n],t∈[n] is nonsingular. We construct these

vectors, i.e. indices, iteratively with respect to j.
Let us assume that we have j − 1 linearly independent vectors, i.e. we have s1, s2, . . . , sn ∈ [q] and

α1, α2, . . . , αj−1 ∈ Ψ. Without loss of generality we assume that the submatrix consisting of the first j − 1
columns is nonsingular. In other words, the matrix B = {vj̄

kt
j̄

rj̄
sj̄
}j̄∈[j−1],t∈[j−1] is nonsingular.

We consider fj(rjx). If vj
1 = vj

2 = · · · = vj
mj

, then fj(rjx) is a linear function, which is a contradiction to
Q = ∅. Let vj

k̄j
6= vj

k̄j+1
. By Claim 6 with j̄ = j and ī = k̄j+1 we get that there exist k̄1, . . . , k̄j−1, k̄j+1, . . . , k̄n

such that α = (k̄1, . . . , k̄j−1, k̄j , k̄j+1, . . . , k̄n) ∈ Ψ and β = (k̄1, . . . , k̄j−1, k̄j + 1, k̄j+1, . . . , k̄n) ∈ Ψ. Let us
select sj such that rj

sj
6= 0.
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Consider the vector γ1 =
(
vj

kj
rj
sj

)
kj∈α

. If this vector is linearly independent from the currently con-

structed j − 1 vector, then we select this vector as the new jth vector and we proceed to the next iteration.
Let B̄ be the matrix obtained from B by appending the first j − 1 coordinates of γ1 and adding the

column corresponding to sj . Since we assume that γ1 is linearly dependent from the remaining vectors,

it follows that det(B̄) = 0. Consider now γ2 =
(
vj

kj
rj
sj

)
kj∈β

. Let B̃ be the matrix obtained from B by

appending the first j − 1 coordinates of γ2 and adding the column corresponding to sj . Since α and β differ
only in the single coordinate, it is easy to see that

det(B̃) = det(B̄)± rj
sj

(vj

k̄j
− vj

k̄j+1
) = ±rj

sj
(vj

k̄j
− vj

k̄j+1
) 6= 0 ,

where the sign depends on the parity of the last column in B̃. The last term is nonzero since by choice
rj
sj
6= 0 and vj

k̄j
6= vj

k̄j+1
.

This shows that we can construct j linear independent vectors. Repeating this procedure n times we
obtain the desired result.

Consider now the function F : ∆ ⊆ Rqn → R defined by F (x1, . . . , xn) = det{fj(rjxi)}j∈[n],i∈[n]. Here ∆
is defined by the requirement xt ∈ {x ∈ int(X) : bj

kt
j

< rjx < bj
kt

j+1
for every j ∈ [n]}, which are nonempty

open sets by definition of αt. Then by Lemma 5 we have that

∂F

∂x1
s1

∂x2
s2

. . . ∂xn
sn

=
1

w1
k̃1
· w2

k̃2
· · ·wn

k̃n

detD 6= 0 .

Therefore F is not anywhere 0 and in turn there exist x1, . . . , xn in the respective sets such that F (x1, . . . , xn) 6=
0, which is equivalent to the statement of Claim 8.

By using Claim 8 and Lemma 4 we conclude that if Q = ∅, then there exists ũ such that u = ũ and all
weights of ũ are bounded. Note that in this case the ridge vectors and breakpoints of u and ũ differ only due
to the procedure described in Claim 3 and the reduction that eliminates pairwise linearly dependent ridge
vectors.

It remains to consider the case Q 6= ∅. Let j̄ ∈ Q. By definition the corresponding i can have only values
1 and 2. We first assume that rj̄ is a linear combination of the remaining ridge vectors. Let rj̄ =

∑
k∈S µkrk,

where S 6= ∅ and µk 6= 0 for every k ∈ S. Let us pick a fixed j̃ ∈ S and for j ∈ [n] , j 6= j̄ we define

ŵj
i =


wj

i + wj̄
2−wj̄

1

bj̄
2−bj̄

1

bj
iµj j ∈ S \ {j̃}

wj
i j ∈ [n] \ S, j 6= j̄

wj
i + wj̄

2−wj̄
1

bj̄
2−bj̄

1

bj
iµj + wj̄

1 − bj̄
1

wj̄
2−wj̄

1

bj̄
2−bj̄

1

j = j̃ .

Let us define ũ as the ridge function with the same ridge vectors and breakpoints as u except that the ridge
vector rj̄ and the corresponding breakpoints are left out. In addition, the weights of ũ are defined based on
ŵ. A long but straight forward calculation shows that u(x) = ũ(x) for every x ∈ X̄.

As a consequence we can assume that j̄ ∈ Q is not a linear combination of the remaining ridge vectors.
For ease of notation we assume that j̄ = 1. Let r1, r2, . . . , rs be a maximal set of linearly independent vectors.
Note that clearly s ≤ q. Then there exists y ∈ Rq such that r1y = 1, r2y = 0, . . . , rsy = 0. For s + 1 ≤ j ≤ n
we have rj =

∑s
k=2 µkrk. Note that r1 is not present in this summation due to the assumption that r1 is

not a linear combination of the remaining ridge vectors. In turn we obtain that rjy = 0 for s + 1 ≤ j ≤ n.
Thus we conclude that rjy = 0 for j = 2, . . . , n.

Let us select x ∈ int(X̄). There exists ε > 0 such that if ‖z − x‖∞ ≤ ε, then z ∈ X̄. Consider
z = x + εy/‖y‖∞. By definition of ε we have z ∈ X̄. By choice of y we have that rjz = rjx for every
j = 2, . . . , n. Therefore rjz and rjx fall in the same subinterval for j = 2, . . . , n. For j = 1 we have a single
subinterval and therefore this holds also for j = 1.
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As a consequence we have u(z) = u(x) + ε
‖y‖∞

w1
2−w1

1
b12−b11

. Since u(x) and u(z) are bounded it follows that
w1

2 − w1
1 is bounded. By Claim 3 we can assume that one of them is bounded, which in turn implies that

the other weight is bounded as well.
This shows that the two weights corresponding to each j̄ ∈ Q are bounded. In turn we can reduce the

general case to the case Q = ∅, which is covered by Claim 8. This completes the proof.

D Proof of Lemma 2

Proof. It is easy to see that g(z, r̃, b̃) ≤ 2· | supp(z) | ·max(x,a)∈supp(z) zx,a < ∞, which shows that α < ∞.
By the definition of supremum, for every integer n, n > 0 there exist rn, ‖rn‖∞ ≤ 1 and bn,−Ω ≤ bn ≤ Ω

such that g(z, rn, bn) ≤ α− 1/n. We can view bn as elements in [−(Ω + 1),Ω + 1]3. As a result there exists
a convergent subsequence of rn and bn. Without loss of generality we assume that the entire sequence is
convergent. Therefore let limn→∞rn = r and limn→∞bn = b. Next we consider several cases.

Case 1) Let first b1 < b2 < b3.
We have

g(z, r, b) = lim
n→∞

g(z, rn, bn) = α

since in this case g is continuous in the neighborhood of b and r.
Case 2) Let now b1 = b2 = b3.
It is easy to see that for every (x, a) we have

lim
n→∞

Hbn(rnx) =

{
1 rx = b2

0 otherwise
and lim

n→∞
Hbn(rns(x, a)) =

{
1 rs(x, a) = b2

0 otherwise.

Let A1 = {(x, a) ∈ supp(z) |rx = b2} and A2 = {(x, a) ∈ supp(z) |rs(x, a) = b2}. In turn since z has finite
support we have

α = lim
n→∞

g(z, rn, bn) =|
∑

(x,a)∈supp(z)

zx,a lim
n→∞

Hbn(rnx)−
∑

(x,a)∈supp(z)

zx,aHbn(rns(x, a)) |

=|
∑

(x,a)∈A1

zx,a −
∑

(x,a)∈A2

zx,a | .
(34)

Let u1(x, a) = x and u2(x, a) = s(x, a). For i = 1, 2 we define the following sets:

Si
n = {rnui(x, a) : (x, a) ∈ supp(z)}

Ai
n = Si

n ∩ [bn
1 , bn

3 ]

Āi(x, a) = {n ∈ N : rnui(x, a) ∈ Ai
n}

Ci = {(x, a) ∈ supp(z) :| Āi(x, a) |< ∞}
Di = {(x, a) ∈ supp(z) :| Āi(x, a) |= ∞}

Values not in A1
n ∪A2

n do not contribute towards g(z, rn, bn) and therefore they can be neglected. Note that
∩n

i=1A
i
n is either ∅ or b2.

Let (x, a) ∈ Di. Then for infinitely many n we have rnui(x, a) ∈ Ai
n. As n goes to infinity, this yields

rui(x, a) = b2. In other words, D1 ⊆ A1, D2 ⊆ A2. Now it is easy to see that D1 = A1, D2 = A2. Note also
that the complement of Ai equals to Ci.

Let
M = max

(x,a)∈C1∪C2

i=1,2

Āi(x, a) < ∞ .
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By definition for every n > M we have rnui(x, a) /∈ Ai
n for every (x, a) ∈ C1 ∪ C2. If rui(x, a) =

limk→∞ rkui(x, a) ∈ (bM
1 , bM

3 ), then we contradict the definition of M . We conclude that for (x, a) ∈ C1∪C2

we have rui(x, a) /∈ (bM
1 , bM

3 ) for i = 1, 2.
Consider now b̂ defined as b̂1 = bM

1 , b̂2 = b2, b̂3 = bM
3 . Based on this definition if (x, a) ∈ Di, then

rui(x, a) = b̂2 and in turn Hb̂(rui(x, a)) = 1. On the other hand if (x, a) ∈ Ci, then rui(x, a) /∈ (b̂1, b̂3) and
therefore Hb̂(rui(x, a)) = 0. Now it immediately follows that g(z, r, b̂) = α based on (34), which completes
this case.

Case 3) Let now b1 = b2 < b3 or b1 < b2 = b3.
This case is a combination of the previous two cases and therefore it can be proven in a similar way.
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