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8 Appendix A

8.1 Nomenclature

Symbol Explanation

L The Lipschitz constant
n Learning rate for gradient algorithm
«a Weight parameter for batch-normalization update
z The vector for one record of input data
Y The target output vector for the input record Z;
N Size of training set, number of all £ in one epoch
D, Dimension of the hidden layer
z§1), 1(2) th entry of output of the first and second hidden layer, respectively
ni, N Numbers of parameters in 6 and )\, respectively
0 Set of all trainable parameters updated by its gradient
WO W@ ¢ g, weights of linear transformation between layers
(1) ﬂ () € 6, trainable parameters for batch-normalized output y( )
Set of all batch normalization parameters determined by previous updates
1 € A, mean of previous values of zj(-l)
o € ), standard deviation of previous values of zj(-l)
€B The offset for batch normalization transformation

8.2 Preliminary Results

Proposition 8.1 There exists a constant M such that, for any 0 and fixed )\, we have
IVF(O,M]3 < M.

Proof. By Assumption 4.5, we know there exists (6%, \*) such that |V f(6*, \*)||2 = 0. Then we
have

IV (0, M)l

=ﬂvﬂﬂkﬂb—nvfw* ANz )

=[V£O,Mll2 = IVF(O,X)l2 + [VF(O,A)[l2 = [[VF(O", A7) |2

<[VFO,A) = VOl +[[VFO, ) = VO, A)]2
N N

< NIVF(Xi 1 0,0) = V(X 0,0l + Y V(X1 0,07) = V(X 07,072
i=1 i=1

SNL(|IA = A2 + (16 = 07]2),
where the last inequality is by Assumption 4.1. We then have
IVFO, 13 < N2L2(IA = A[l2 + 10 — 67][2)* < M,

because sets P and Q are compact by Assumption 4.2. ]
Proposition 8.2 We have
- . . e 1 - -

Proof. This is a known result of the Lipschitz-continuous condition that can be found in [5]. We
have this result together with Assumption 4.1.

8.3 Proof of Theorem 4.6

Lemma 8.3 When Y oo o™ < ooand Y 00_ S a™n™ < oo
(m)

ﬂ(m) — Hy
i T = a1 = a®). (1= alm)

is a Cauchy series.

10



294

295

296

297

299

300

301

302

303

304

Proof. By Algorithm 1, we have

N
m m 1 m m m—
p™ = ol ST ROWITNG 4 (1 - et )
=1
(m)
We define 6 = : and AW} = W) — Wi, After

(1 —a®)(1—-a®).(1—-alm)
dividing (4) by (1 — o) (1 — a?)...(1 — a(™)), we obtain

A = atmpm L ZW(’”’X i),

=1
Then we have

N
~(m+1 ~(m ~ 1 m
A = ) = el RO 5 3 (W)

i=1

— &m0 DZ AWYLX 5)

zlnl

N
- ~<m>|k<1>|iz Z( (")ZVW AKX 0 A )> X
i=1 [n=1
1 N m
LUES Y ( (vau (X000 A n>)> X)
i=1n=1
1 N m
< alm kW] NZZ( ”M\val (X 00\ >||~||Xi||) (6)
i=1n=1 =1
A (™) ||
N m N B
>y (MZ [V X0 s 600N = T, FOX: 67,01 ||Xz-||)
i=1n=1 =1

< &t kO] ZZn(")ZIIVW“fz( O ) — Vi Sl X 05 A0) o+

11n1 =1

IV, fi(X0 007, 0) = Vi, ful(X0 07,07 |l2] - 11X ]2)

O3S0 (L (Z- AW = Wi Dl + IS = X5 112) - 1l )

=1 n=1

m N
<atm 3 () K]S REMIIX.[12) )

=1

3
Il
-

Equation (5) is due to
W(’m) Z AW(n)

1,9, — 1,4,5°

Therefore,



305

306

307

308

309

310

311

312

316

317

318

319

320

m

W;—p) | < Mgz - Z alm Zn(”)

®)
q m
= ME,M . Z &™) Zn(n) - MLM . Z Z almpm),
m=p n=1 m=pn=1
It remains to show that -
Z o™ < o )
m=1
Z ZaW ") < oo (10)
implies the convergence of {fi("™}. By (9), we have
m_, (1 — a™) >0,
since - -
In(T1°_; (1 — al™)) = Zl ™)y > Z —al™ > —oo.
m=1 m=1
It is also easy to show that there exists C' and M. such that for all m > M., we have
(1—aM1-a®)...(1-a™)>C. (11)
Therefore,
lim (1—aM)1—-a®)...1-a™)>C.
m— o0
Thus the following holds:
1
am < 5a<m> (12)
and
ok ( ok o™y
A — m 13
PN "
From (10) and (13) it follows that the sequence {ﬂ§m)} is a Cauchy series. O
Lemma 8.4 Since {ﬂgm)} is a Cauchy series, { u§»m)} is a Cauchy series.
Proof. We know that
pd™ = g™ (1 — a®)...(1 - alm™),
Since
lim ,u( m o i)
m—00
and _
lim (1—aWM)..(1-a™) =,
m—00
we have (m) _
ity
Thus ,u( " isa Cauchy series. (]
Lemma 8.5 [fY > _ o™ < ocand 300 S a(Mp() < o, {0( )} is a Cauchy series.

12



321 Proof. We define O‘J(-m) = 6](-m)(1 —aM)...(1 = al™). Then we have

1 & 2
|&§m+1) _ &;m) ~(m)\l Z (kz(l)W m)X (m))

=

~.

322 Since {ugm)} is convergent, there exists ¢, co and Nj such that for any m > Ni, —00 < ¢1 <
(m)

323 < ¢o < 0. Therefore,
~(m+1 ~(m
i ot
1) N 2 (14
) Liaid - > (wimx, ) S (wimx - %)
1,7, 1 3]s 1
\/ﬁ Pt J e Pt J k()
= C1 C2o
324 Forany C € {kz(l) k;(l)} we have
N
(m+1) _ ~(m g F 1 Vf m)
5 = S (wimx, - c) (15)
i=1
kM) N _\2
<amE_l 3 (|W1(”??Xi| + \0\) (16)
VN vt s

m ) 2
(Z AW{Z?_) Xi| + C|>
n=1

2
kD ™ N _
~a B S (135 (o0 X, o x4

&) N ’
<am . $ ( <77(”) 1D Vw filXe 60, AM) ~Xi|> + Ol) (17
& (2 (v,

2
3 ]{3(1) N m N B
<a(m)|m|¢2 S nIS v, A0 600 A X (0] ) A9
s n=1

=1 =1
(my K| i(i () (2NLM || X;]]2) c|>2 (19)
<a'"™ =" UNE ill2) +
\/N i=1 \n=1

13



325

326

327
328
329

330

331

332

333

334

335

336

337

338

339

|k(1)| N m B 2
< alm il N My Y n™ +1C] (20)

n=1

m 2
=a™|kW). (ME,M Zn(n) + C‘|>

n=1

n=1

=amE]- (ML,MZn<"> + |C’|>- @1

C1

ROk k(l) } into (14). Inequality (16) is by the following fact:

Inequality (15) is by plugging C' € {

n

> (ai—e)? <max {1 (lagl = )2 | D (lail +¢)2 ¢ = | > (lail + )2, 22)
i=1 i=1 i=1

i=1
where b and a; for every 7 are arbitrary real scalars. Besides, (22) is due to
—2a;¢ < max{—2|a;|c, 2|a;|c}.

Inequalities (17), (18) and (19) follow from the square function being increasing for nonnegative
numbers. Besides these facts, (19) is also by the same techniques we used in (6)-(7) where we
bound the derivatives with the Lipschitz continuity in the following inequality:

N
1> V., fi(Xp: 00 X)) < 2NLM.

Inequality (20) is by collecting the bounded terms into a single bound M .0 - Therefore,
g—1 q—1
|a(q) ~§p)| < Z |5,j(_m+1) _ = ‘ <ML v Z n n) C’|> (23)
m=p m=p n=1

Using the similar methods in deriving (9) and (10), it can be seen that a set of sufficient conditions
ensuring the convergence for {5§7'L)} is:

i al™ < 00,

m=1

(oo} m
33 atmp® < o,

m=1n=1
Therefore, the convergence conditions for {a§m)} are the same as for { ugm) }. |
It is clear that these lemmas establish the proof of Theorem 4.6.
8.4 Consequences of Theorem 4.6
Proposition 8.6 Under the assumptions of Theorem 4.6, we have

|>\(m) - /_\|oo < am,

where

am = M Z Za@ @) + My Z a® (24)

i=m j=1

and M, and My are constants.

14



340  Proof. For the upper bound of aj(-m), by (21), we have

q—1 m
VP%%<Z&WW<MMZWMW>
m=p n=1
~ 6’_}
341 We define’o; := . Therefore,

(1 —a). (1 —a)..

o™ < 32 GORO| 81,0 30 +1C

i=m Jj=1
(25)
VLSS o (ST 416
STZQ ME,MZUJ +|C]
i=m j=1

s42 The first inequality comes by substituting p by m and by taking lim as ¢ — oo in (23). The second
343 inequality comes from (11). We then obtain,

’aj(-m) —0j
) (m) 7" ]
_ _ 1 _ m J _ J
=l =) (=) A et T = a®). (1= ™)
(m) _
NEY _ o 95 9
S = a0 (= o Oy A —atm) ~ A= a®) (i —am|
0j B g ]
(1 —a®).. (1704(’” ) (1—a®)..(1—-a@)..
=(m) _ =(o0) 9; ~(0) (26)
<195 o; |t ’ 1—a®)...(1 - am) — 0 ‘
_|stm) _ ~(o0) o; 7;
;% *’ o) .(1—atm)  (I=a®).(1 —a(“))...‘
I SCH ROl (1—04("”'1))...(1—a(“))...—1
i % A= ey (1 —am)..
~(m ~ (o0 0
<™ 5\ + oh-a- o™ty (1= o). |
< &;m) _ 5_§oo) + % Z o™

n=m+1

ass  The second inequality is by (1 — aD)...(1 — a{™)) < 1, the third inequality is by (11) and the last
345 inequality can be easily seen by induction. By (26), we obtain

m ~ ~(m gj — n
o;— oyl = lim |of" —of™| <5~V +F D o 27

n=m-+1

15



346

Therefore, we have

o) — U;m')|

9]
S o
n=m-+1
i . B Z a

S[:Uj - ~§m)| + E

<Zd(i)|k(1)|. ME71\4Z77(])+‘C‘ Jri
i=m Jj=1 1=m-+1
oo 5 i ) B (28)
a® k0] Mz v Z??(]) +1C] + = Z al?
Jj=1 1=m-+1

<y %a(i)|k(1)| AWz S0 +101 ) + 2
i=m j=1 '
O[T &
P L (S] (i)
(c o )2
=m

MLJW‘k( ZZ(X i), (5)

i=m j=1

fourth inequality is by adding the nonnegative term

]

The first inequality is by (27), the second inequality is by (23), the third inequality is by (12) and the
93 ™) 1o the right-hand side.

347
348
349 For the upper bound of ugm), we have
‘/ém) — [ij ‘
(1) (m) " 1
=(1—-aW)..(1-alm J - ]
(1= o) (L= ™) | ) A —atm) ~ A= a®)..( = a™)
(1) (m) " ]
<1 —-aM)..(1—alm J - J
S =) (L= o @y A —atm) ~ G = a®).(1 =y |
12 _ Hj
(1—a®)..(1—al™) (1-a®)..(1-a«al=)
<|zm _ ~(oo>‘ Fg _ )]
—‘” e Ty @ —amm) ¥
1 _ ()
) i ‘ Recall from

|ﬂ(m) _ [L(OO)| and B, = ‘(1 —aM),

350 Let us define A,,
35t Theorem 4.6 that { ugm)} is a Cauchy series, by (8)
q m
|M(ZD) §‘I)| < ME,JVI . Z Z Oé(7n)77(n).
m=pn=1
352 Therefore, the first term in (29) is bounded by
oo 1
i (15°] < M 5 - Z Za(z)n(n) <
i=mmn=1
a3 For the second term in (29), recall that C' := (1 — a™)...(1 — a(®).... Then we have
i ~(c0)
C - _
1—a®)..1—am) * ‘
=f;|1 — ( M) (1 - o).
< 3 o)
1=m-+1

16
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354
355

356

357
358

359

360

361

363

364

365
366

367

368

369
370

371

372

373

374

where the last inequality can be easily seen by induction. Therefore, the second term in (29) is
bounded by

1 el e BN 0 3]
’(1a(1))...(1a(m)) a ‘ o 2 o G1)
1=m-+1
From these we obtain
‘/ém) — I
<[ — )| ¢ ‘ iy _ ﬂ<oo>‘

(1—a®)..(1—alm) (32)

<M i i ap™ 4 %J i o,
1=m n=1 i=m—+1

The first inequality is by (29) and the second inequality is by (30) and (31). Combining (28) and
(32), we have that

00 i e}
|)\(m) - 5"00 = maX(|H(m) - ﬂ‘oov |0(7n) - 6|oo) < Ml Z Za(i)n(j) + M2 Z a(i),

i=m j=1 i=m
where M, and M5 are constants defined as

My kD] _
M, = max(%a MZ,M)

and @ C
a; + [kWNCl @y
Mo = I Lt et N AN
2 ma’x( C ’ C)
Proposition 8.7 Under the assumptions of Theorem 4.6,
—VFO™ )T VO™ N < [V FOU™, N2 + LM /ngam,
where a,, is defined in Proposition 8.6.
Proof. For simplicity of the proof, let us define
2™ =V N, Y™ = Ve M),

We have

‘x(m) _ y(m)|oo < ”m(m) _ y(m)||2 < EH)\(M) _ 5‘||2 <L /n*2H)\(m) _ j\HOO < L/nzam, (33)

where /ng is the dimension of A. The second inequality is by Assumption 4.1 and the fourth
inequality is by Proposition 8.6. Inequality (33) implies that for all 7 and 7, we have

|x§m) - ygm)| < Ly/naan,.

It remains to show

2
— Z ygm)xl(»m) < - Z mz(-m) + LM /naam,, Vi, m. (34)
This is established by the following four cases.
- 2
1) If ajgm) > O,xgm) — yl(m) > 0, then xl(-m) < Ly/naa,, + ygm). Thus —xl(-m)ygm) < _$£m> +
LM \/nza.,, by Proposition 8.1.
2
2) If CUEm) > O,xgm) — yl(m) < 0, then xgm) < ygm), gcgm) < xgm) yz( ) and —xgm)ygm) <
2
_ytm?,
2
3)If mgm) < O,xgm) - yl(m) > 0, then xl(-m) > ygm), xl(-m) < :cl(-m) -ygm) and —asgm)ygm) <

2
o,

17



375

376
377

378

379

380

381

382

383

384

385
386

387
388

389

390

391

392

_ 2
4) If:vl(m) <0, xgm)fyl(m) < 0, then y(m)fxgm) < Ly/nsa,, yE"L)xEm)fxEm) > L, /ngamxl(m)

%

2 2
and fyl(m)x(-m) < fxl(j”) — L,/ngamacgm) < fxl(»m) + LM ,/nsa,,. The last inequality is by

Proposition 8.1.

All these four cases yield (34). O

Proposition 8.8 Under the assumptions of Theorem 4.6, we have

FO 0, 5) < F6,3) = 0™ [V FO, R[5 + 9™ ALz + 3 (1) - NEM,
where M is a constant and a,, is defined in Proposition 8.6.
Proof. By Proposition 8.2,
[i(Xi 1 0,0) < [i(Xi:0,0) + V(X :0,0)"(0 - 6) + %illé —0lI3.
Therefore, we can sum it over the entire training set from ¢ = 1 to IV to obtain
F(8.0) < F(0.0) + V0N~ ) + L6~ 3. 65)

In Algorithm 1, we define the update of 6 in the following full gradient way:

N
OO+ 1 gm) — ) . ST (X, 00 A,

i1
which implies

o(m+1) _ gtm) — _p(m) .7 f(p(m) \(m)), (36)
By (36) we have f — 0 = 9(m+1) — g(m) — _p(m)7 F(9m) A(m)) We now substitute 6 := 9(™+1),
0 := 6(™) and ) := ) into (35) to obtain

‘]F(e(m+1)7 5\)

< (00 %)~V FO0) 2RO, X0) + ()2 - 2L g g a0y
= < = < = NLM

< JOU, ) =0 VO, )T RO A 4 () == (37)
_ _ _ _ _ 1 _

< F(OU, %) + 0 (=90, VI3 + LM izan ) + 5(n™)? - NLM

_ _ _ _ _ 1 _
O, 2) =V FOT, N5 + 0™ LM/t + 5 (1"™)% - NLM.

The first inequality is by plugging (36) into (35), the second inequality comes from Proposition 8.1
and the third inequality comes from Proposition 8.7. (]

8.5 Proof of Theorem 4.10
Here we show Theorem 4.10 as the consequence of Theorem 4.6 and Lemmas 4.7, 4.8 and 4.9.

8.5.1 Proof of Lemma 4.7
Here we show Lemma 4.7 as the consequence of Lemmas 8.9, 8.10 and 8.11.

Lemma 8.9

i i Z 2Oy < oo

m=1i=mn=1

18



393 and

i i o™ < o
m=1n=m

394 is a set of sufficient condition to ensure

S gy — 0™ < 00, Vi (38)

m=1

395 Proof. By plugging (27) and (25) into (38), we have the following for all j:

m=1

si(r%_&;mu% > a“”)

m=1 n=m+1

S DR LD SN LN BraS SRRl R 2 @

m=1 i=m Jj=1 n=m+

L MLM (i) 0) 4 73+ kY0 )
S WD NE e WP WY

396 Itis easy to see that the the following conditions are sufficient for right-hand side of (39) to be finite:

397 and

398 Therefore, we obtain

399 Z lo; — 0§-m)| < 00, Vj. O

400 Lemma 8.10 Under Assumption 4.4,

)DPIPILLLCIIPIED b ST

m=1i=mn=1 m=1n=m
401 is a set of sufficient conditions to ensure

lim sup Z ‘f (o) A(m)) — f(&“’”,?\)‘ < 0.

M—>oom1

402 Proof. By Assumption 4.4, we have

D

lli(2) = L) < M|z —y|| < MY |2i = yil- (40)
=1

19



403 By the definition of f;(-), we then have

NE

FOU, A = (0, )|

3
£
=2

I
NE
=

20 N) a0 ) = 37 (10X 07, R) 4 eall )

=1

3
Il
_
S
Il
—

i 9('m)7>\(7n)) _ lz(Xz e(m) )\ )

3
I
—
=
I
-

I
M8

e
=

IA
NE
M=
=

Y CISNCON I NG R (CD) X)‘

3
Il
-
-
Il
-

FOWX - ™ EOWX, —
o™ +ep 0j +ep

_ (m)
eowrxy (L L ) A
1,5,- <% o_(m)_’_6 g+ e€p 0i+e€p (m)
p B J J o; " +eB

_ (m)
(k(l)W(m)X ) 1 1 I D7 B Hy
1 (m) tep 5-j +ep
N
|(ROWX0)

B
M8
WE
M-

Il
—
.
I
=
©
Il
—

I
5

|w§
Mz 102 il 108 i1
: M-

M=

NE
M-

~
I
—
©
I
—

NE
M-

IA
S

)
)
)

i o
i _ . 41
7j +ep (’”)+e D @

404 The first inequality is by the Cauchy-Schwarz inequality, and the second one is by (40). To show the
405 finiteness of (41), we only need to show the following two statements:

oites o™ tep
) (m)
By Hy
|9 tes o™ tep
_ (m)
By Hy
gjten o™ tep

<
Il
-
«
Il
—

1 1
U§m)+EB 5’j+€B

o)

<.
Il
-
S
Il
-

O'j*

M=
=
=
o

™ X

Il
<MU

S
Il
_

( (m) +€B)(5'j —|—€B)
(m)

<
Il
-

O —
J +N

RO =5
B

A
5
:
IMs
POUERS
%

o~ N _ J(m)
SOS RO | ZET | < ooy 42)
m=1i=1 %
406 and
00 7 H('m)
2= G| < 00,V 43)
=105 +€B 7, +ep
407 Proof of (42): For all j we have
m 0
ZZM(UHW( )X| 7J
m=1i=1
< Z V| N DM max]| X | = = ] a§m>‘ (44)

m=1

1 m
=k | N DM max| X;|| - Z ‘aj A >\.
! GB m=1

a8 The inequality comes from |W1(7jn)Xl\ < DM]|| X;||2, where D is the dimension of X; and M is the

409 element-wise upper bound for WI(T) in Assumption 4.2.

20



410

411

412

413

414

415

416

417

418

419
420

421
422

423

424

425

Finally, we invoke Lemma 8.3 to assert that > ~_, ’@- — Jém)‘ is finite.
Proof of (43): For all j we have
00 _ (m)
Z By  Hy
mo1 |03 T €B UJ(‘M) +eB 45
P - SR S
_m:1 0;+eB 0j+¢€B 1 0jt+e€p U§m)+63

The first term in (45) is finite since {,ugm)} is a Cauchy series. For the second term, we know that

there exists a constant M such that for all m > M, ,ujm) < iz + 1. This is also by the fact that

{ uﬁ.m)} is a Cauchy series and it converges to ji. Therefore, the second term in (45) becomes
(m) (m) (m) (m)

M-—1 [’}

K B M 22 B M
M—1 ,LL(-m) /u'(m) 0 1 1
< - + > (a+1)|= -~ :
1 |93 +€B o, +eB M 0jteB o, +eB

is Lipschitz continuous since its gradient is bounded by —-.

Noted that function f(o) =
o+e€p €B

1
Therefore we can choose —- as the Lipschitz constant for (o). We then have the following inequal-
€

. B
1ty:
1 1 1. .
5 T < 5195 —UJ(' ). 47)
oj te€B o, +eB B
Plugging (47) into (46), we obtain
M-—1 (m) (m) o
j i 1 1
=19t €B o, +eB e M oj +€B o, t+eB
M—1 (m) (m) 0o
<Y ||+ > e o,
m=1 ojten 0 + € m=M B

where the first term is finite by the fact that M is a finite constant. We have shown the condition for
the second term to be finite in Lemma 8.9. Therefore,

o) (m)
2

B Hy
0j+e€B 0§7n) +€ep

By (42) and (43), we have that the right-hand side of (41) is finite. It means that the left-hand side

of (41) is finite. Thus,

< 00, Vj.

S |6t ) — 65| < o, 0
m=1

Lemma 8.11 If

oo 0o % co o
Z Z Za(i)n(") < oo and Z Z o™ < oo,

m=1i=mn=1 m=1n=m

then

M
limsup ™|V F(6", N[5 < oo.

M — o0 —
m=1

21



426 Proof. For simplicity of the proof, we define

ASON —Zn NIVFO™, N3,

427

O(m) = f(e(er+1)7A(m+1)> _ f(e(m)7>\(m))’

428

A(m-‘rl . JF( m+1 (m+1)) _ J?(e(m-‘rl)’j\)7
429

A™ = F(OU D X) — F(6™ ) N),

430 where )\ is the converged value of A in Theorem 4.6. Therefore,

0 = A L Al L AT < AT 1A Al 48)

4

w

1 By Proposition 8.8,

m ; S - 1 -
AF < =™ IVFO N3+ 0V LM ian + (™) - NLM. - (49)

432 We sum the inequality (48) from 1 to K with respect to m and plug (49) into it to obtain

3" o < Z INGRIp z AP = 3 T O™, D)

m=1 m=1
K

+ Y "™ LM /nzam + Z{ (™2 NLM}

m=1

- Z AT 4 Z NI

+ L2 /ns - Zn(m)a +Z{ (M2 N LMY
433 From this, we have:

lim sup 7¢) <hmsup—(f( ) AT — Fem AWy)
K—oo K—oco Ci1
| X
Flimsup — 37 (1] +]A{")

K—o0 m=1

(50)
+limsup L?\/ng Z n

K—oo p—

= K
NLK
+ lim sup E n(m)z.

K—oo C1

m=1

43¢ Next we show that each of the four terms in the right-hand side of (50) is finite, respectively. For the
435 first term,

lim sup — (f(Q(K) Ay — FeM AD)) < 00

K—oo C1

a3 is by the fact that the parameters {6, A} are in compact sets, which implies that the image of f;(-) is
437 in a bounded set.

438 For the second term, we showed its finiteness in Lemma 8.10.
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443

444
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446
447

448

449

451

452

453

454

456

457
458

For the third term, by (24) we have

lim sup Z ™ a,

K—)ooml

K
:]j;njgopniz:ln(m) Klzza ) (9) +K22a 51)

i=m j=1

lehmbupZn ZZ@ (7) +K2hmsup2n Za

i=m j=1

The right-hand side of (51) is finite because

DU DI ED IR DI I (52)
1 i=m j=1 m=1 \i=m j=1
S 3 al < 35 3 a <o &
m=1 i=m m=1i=m
The second inequalities in (52) and (53) come from the stated assumptions of this lemma.
For the fourth term,
= K
NLM 2
lim su m)* < o
K~>oop 2c mZ:l K
holds, because we have > oc_ (n™)2 < oo in Assumption 4.3. Therefore, T(>®) =
St 1MV (67, N3 < o0 holds. O

In Lemmas 8.9, 8.10 and 8.11, we show that {¢(™)} and {(™} are Cauchy series, hence Lemma
4.7 holds.

8.5.2 Proof of Lemma 4.8

This proof is similar to the the proof by Bertsekas and Tsitsiklis [4].
Proof. By Theorem 4.7, we have

hmsup Z ™V F(0™, N)]3 < . (54)

—>DOm1

If there exists a € > 0 and an integer m such that
IV 7O, N2 > €

for all m > m, we would have
M

M2 > liminf €2 (m) _
lim n §: ITFE NI > it - ™ = o0
which contradicts (54). Therefore, lim inf||V f(6("), X)||2 = 0. O
m—0o0

8.5.3 Proof of Lemma 4.9

Lemma 8.12 Let Yy, W, t and Z,; be three sequences such that Wy is nonnegative for all t. Assume
that
1/t-‘rISYt_‘A/i&_'_Zt; t:0717"'7

and that the series Z?:o Z, converges as T — oo. Then either Y; — 0o or else Y; converges to a
finite value and Y2 W, < oc.
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469

470
471
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473

474

475
476
477

This lemma has been proven by Bertsekas and Tsitsiklis [4].

Lemma 8.13 When
3P a0 <o a3 Y a <,
m=1i=mn=1 m=1n=m

it follows that f(0\™) | \) converge to a finite value.

Proof. By Proposition 8.8, we have
Fomt) Xy < 59 XY _ o) IT Fem) S\I12 4 () T Lo mne . N7
f( A S FOTN) = ™IV M)z +n LM\/nzam+§(77 )"+ NLM.

Let Y™ = f(00™ X), WM = M| VFOm™ N2 and Z™ = 9™ LM, /nza,, +
1 _
5(77(’”))2 - NLM. By (2) and (51)- (53), it is easy to see that S _ Z(™) converges as M — oc.

Therefore, by Lemma 8.12, Y (™) converges to a finite value. The infinite case can not occur in our
setting due to Assumptions 4.1 and 4.2. O

Lemma 8.14 If

oo oo % co o
Z Z Za(i)n(") < oo and Z Z o™ < oo,

m=1i=mn=1 m=1n=m
then lim |V f(0(™) )|z = 0.
m—0o0
Proof. To show that lim ||V f(8(™, X)||o = 0, assume the contrary; that is,
m—00

limsup||V£(8™, X)]||2 > 0.
m—r 00

Then there exists an ¢ > 0 such that |V (0™, X)| < /2 for infinitely many m and also

IVF(6™) X)|| > e for infinitely many m. Therefore, there is an infinite subset of integers M,
such that for each m € M, there exists an integer ¢(m) > m such that

IVFO™, N < /2,
F(plim))
VA5, 5] > e 55
/2 < [VFOD. NI < e
ifm <i<q(m).
From
IVFOT D] = IVFO™ N < [VAO D, 2) = VO™, M)
< I_/HH(”H_D _ e(m)H
= L™ |V (6, A)],
it follows that for all 7 € M that are sufficiently large so that Ln(™) < ¢/4, we have
€/4 <[V F(O, ™). (56)

Otherwise the condition €/2 < ||V £(#(™*1D, X)|| would be violated. Without loss of generality, we
assume that the above relations as well as (37) hold for all m € M. With the above observations, we
have for all m € M,
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479

480

481

482

483

484

< VA0 X)) = IV £, M)

< [VF(O7™, X)) = VO, )|
L|jgatm) — g(m))|

l\.’)\m

IN

7q(’m)—1 ‘ ‘
<Ly [0 o)

qg(m)—1
<L Y @IVEEeW, A0

7q(m)*1_ o o _ o
<L Y WUV EED, N+ IVFOD, D) = VFED,N)])

i=m

N

<L > (V0D N + Ly/nzanm)

q(m)—1 q(m)—1

< Le (i) + l_/zw/ng Z n(i)am

q(m)— q(m)—
LSS 0y Z 0 (35" a0 <k>+M2Za
i=m j=m k=1
q(m)—1 q(m)—1 0o j q(m)—1 o0
e S 0@+ L2y S 5@ Y aly® £ 2y, 3 @S ol
i=m i=m Jj=m k=1 i=m j=m

The first inequality is by (55) and the third one is by the Lipschitz condition assumption. The seventh
one is by (33). By (3), we have for all m € M,

q(m)—1 oo g _ 0o o0 J
SIED 9 SULLIES 9) 99 SVCEES
i=m j=m k=1 i=1 j=1i k=1
and
qg(m)—1 0o
3 493500 <33 0l <o
i=m Jj=m =1 j=1
It is easy to see that for any sequence {c; } with >~ a; < o0, if follows that lim inf Y0, a; =0.
—00
Therefore,
g(m)—1
(4) (1), (k) —
lint > 53 a =0
j=m k=1
and
q(m)—1 oo
imi (4) () —
int 3 ) o
i=m j=m
From this it follows that
-1
1
il 57
lgriglof Z 5T (57)
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492

493

494

495

497

498

499

500

By the triangle inequality, we have
IV 76, 0]
=[[VF(60, ) = TF(8, A) + T F(00, )|
> [V FO A = [V F(O),X) = VO, 2]

ByGSmﬁ@&ﬁwqumthwMMdhﬁ@mgguwhwﬂWTWW%DH2%1@@
(37), we observe that

q(m)—1 q(m)—1
Fm %) < FO. )~ 3 (1Ol VFOD, N)E) + 5 - NLM >
, alm)—1 . a(m)~
< 7o Xy o (€ @ L
< F(6™ ) q(8) ;; n®+ 3 NLM 2 Vm e M,
where the second inequality is by (56). By Lemma 8.13, f(#9(™) )\) and f(60™) X)) converge to

the same finite value. Using this convergence result and the assumption > ~_ (n(m)) < 00, this
relation implies that

a(m)=1
lim sup Z n® =0

m—oo0,meM i—m.

and contradicts (57). O
By Lemmas 8.12, 8.13 and 8.14, we show that Theorem 4.10 holds. To this end we write

lim |V (6™, AT)]

m—r 00
< lim [[VF(O),A™) = VO, N2+ lim [[VFON)]|2
< lim L||/\(m) Allz + lim |\vf(9<m>,X)\|2.

m—r o0 m— 00

By Theorem 4.6, we have
lim LA™ — X[ =0
m—r o0

and by Lemma 4.9, we have
lim [[VF(6", X)]2 = 0.

Therefore, we have B
lim ||V F(6/™), AU)[3 =0
m—00

which is the statement in Theorem 4.10.

8.6 Proof of Theorem 5.2

In this section we assume that f;(-) is strongly convex.

Lemma 8.15 If

m? i i a(i)n(") < 00, (58)

i=mn=1

there exists a constant M such that , for every m we have

A 4 (1 4 pm) )MWW+MWLMJ*%1
1 (m)2
n

< M. (59)
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501 Proof. The notation here is the same as the one used in the proof of Lemma 8.11. Showing (59) is

A(m)
502 equivalent to showing constant upper bounds for | 2| and —— .
n(m) 77(7”)
A™)
503 For an upper bound of 5, by (41) and (44), we have
A
n(m)?
[F(0U, A0™) — F(0™), 2]
= ?7(7") (60)
_ (m)
F Hj

D
=2 Z (k(l \NDM— ’cr] —O'(m)‘ +N

) |

have constant upper

0j+e€B UJ(.m)+EB

lo; — U;m)| and I — N§'M)|
(m)? (m)?

505 bounds because all other terms in the right-hand side of (60) are finite constants.

504 We can see that it is equivalent to show that

s06 By (39), we have

|k - MLM S e ) G RYIC S
2. ;W i C >, «

=m n=m-+1

|U_j - ng)| <

s07 Note that we have 7(™) = 3 _E and thus 7]<m)2 = O(#) Therefore, (58) implies that
m

e Z Za(z) (") < 0. 61)

i=m n=1

s08 Inequality (61) implies

o0

12 > ol <o (62)

7

so9 This is by the fact that we assume > n™ = oo in Assumption 4.3. We now apply the same
sto  kind of analysis to |; — I )| to establish

\u§-’”) — i ‘
(m) -
i _ Hj
(1—aW). (1 —am™) (1-a®). .(1-am)
(m) -

=(1-aW)..(1-am)

K I
<(1-aW).(1-a™ J - J 63
S =)= @y A —at) ~ G —a®).a | @
fj o f ]
(1—a®)..(1-alm™) (1 -a®). .(1-al)
~(m) ~<oo>‘ ] ~(00)
< — i o)
—‘” Hi +’(1 — oMy (1—atm) 1 ‘
511 We define A,, — ﬂ(-oc)’ and B, := K - u( )|, Recall from
J (1—aW)...(1—alm) J

512 Theorem 4.6 that {u(m)} is a Cauchy series. By (8), we have
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513

514

515

517

518

519

520

521
522

523

524

525

526

527
528

|M(p) ~(q) zq:zm: (m)

Therefore, the first term in (63) is bounded by

|l1§-m) — A < M-y Y aPni < oo

i=mn=1

For the second term in (63), we first define C' := (1 — a(!))...(1 — a(®)... . Then we have

H ~(00)
C .
1 —a®)..(1—atm) *i ‘
=751 — (1 — ™). (1 — ()]

o0
SIEL] Z 04(1)7
i=m-+1

where the last inequality can be easily checked by induction. Therefore, the second term in (63) is
bounded by

A (o) o Hy (@)
’(151(1))...(104(’”)) K ‘< > o

- (m)
Hence (61) and (62) ensure |M() to be finite.
17 m

For an upper bound of ——, by (24), we have

()’

am ]\41 ZZ . Z a( D) M, Z a®

‘We know that
MEE, T
L Ln(m]) : (m)2 Z Za W < o (64)
1=m j=1
and o -
My S22l 1 i
: %E;ﬁ)" <M 3ol <o (65)

The second inequalities in (64) and (65) are by (61) and (62). Note that given that (™) =1 /m, (61)

is equivalent to
ZZ& )7<Za )1n <Za()ln

1=m j=1
This concludes the proof. (]

Lemma 8.16 Under the assumptions of Lemma 8.15, Theorem 5.2 holds.

The proof for this Lemma of the high level follows the proof of Theorem 4.7 in Bottou et al. [5].
Proof. Assumption 5.1 implies that

FO,N) > F(O,\) +VFO,NT (6 —6)+ %cué —0)12,v6,4.

Therefore, f has a unique minimizer f* := f(6*, \) for any \ fixed. Note that #* = 6*()) but this
dependency is irrelevant in the rest of the proof. Standard convex analysis argument establishes
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2¢ (00, 3) = F(07, 1)) < [VFO, )3 (66)

s20 Recall that A" .= f(e(m+D) A(m+1) _ F(9(m+1) }) We then have
F(OUHD \(mEDy _ F(glm) \(m)y
- {J?(g(ﬂl-i-l)’/\(mﬂ)) _ f(9<m+1>7;)} _ {f(é’(’”),k(m)) — F(6™ X
+ D)~ F(0,N)
<JAT 4 AT] 4 FOUTD,X) — (00, ).

(67)

530 Therefore,

FOUTIN) = £, N)
< =™ [V FE, KB + 7™ A gy + 5™ NEM
< MO, %) ~ F(O°, ) + 1 LM i + Ln™ NLM
= — e (F(OU, A = (6", 2) + F(OU, 2) = F(OU, A

+ ™ LM \/nganm, + %n(m)QNEM (68)
< — e (F0,X) = F(0*, 1)) +n™e | (00, ) = F(6), A0

+ 0™ LM \/nzam, + %n(m)QNEM
= — e (FO,A™) = 70", ) + 0 el AT

_ 1 _
+ 9™ LM /g, + in(m)QNLM.

sa1  The first inequality is by Proposition 8.8, while the second inequality is by the strong convexity
532 property (66). Combining (67) and (68) yields
f(g(erl), )\(m+1)) — f(o™, )\(vn))

<—nme (f(e(m), Ay — f (67, X)) + ATV 4 (14 o) AL
_ 1 _
+ 0™ LM /rgam + 577<m>2NLM.

533 By Lemma 8.15, there exists an upper bound M, such that for all m sufficiently large,

|Agm+1)| + (1 + n(m)C)\Agm)l + U(m)EM‘ /Mo,
)2 < My.

1.(m
2l
ss4 By subtracting f(6*, \) from both side of (8.6), we obtain

FOUmTD Ny fo*X)

_ o _ 69
<= MO, ) — F(8°, )+ gn™ (NEM + My). .

535 Inequality (69) has the exact same form used in classic convergence proofs for the strongly convex,
s36  diminishing step size case.

537 We finally show by induction that

- - - v

(70)
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538 holds for all m, where

CNLM + My) 7o) (DY _ Fp* 3
2(ce—1) @+ D)[FOW,AD) — (0%, M)}

539 First, the definition of { ensures that it holds for m = 1. Assuming (70) holds for some m > 1, it
s40 follows from (69) that

FOOmDA0) — (0, 3) < (1= e)(FO™, X) = F(07,3)) + 50" (LM + M)

v = max{

nm™e)——— (Tn) LM + M
< (1= ™)+ 2™ (LM + M)

- Ce ) v C?(LM + My)
d+m’d+m 2(9 4+ m)?
9 +m—(c C3(LM + My)
T T @Wrmz T 200+ m)e
d4m—1 Ce—1 CH(LM + M)
T @+ m)? _((wm)z”) 20 + m)?
Y4+m—1

(9 +m)?

<
“J94+m+1

541 The first inequality is by (69), the second inequality is by the definition of 1("*), the third inequality
s42 is by the definition of v, the sum of the latter two terms is non-positive, and the fourth inequality
543 is because (9 + m)? > (9 +m + 1)(9 + m — 1). This shows that the algorithm converges at a
544  sublinear rate. ]

ss 9 Appendix B

s46 9.1 Conditions for stepsizes

547 Here we discuss the actual conditions for (") and o™ to satisfy the assumptions of Theorem 4.6,

ss8 Lemma 4.7 and Theorem 5.2, respectively. We only consider the cases (") = -1 and (™) = #,

549 but the same analysis applies to the cases (™) = O(-%) and alm = O(#)

550 9.1.1 Assumptions of Theorem 4.6

s51  For the assumptions of Theorem 4.6, the first condition

ia(m) < 0

m=1
552 requires i > 1.
553 Besides, the second condition
o0 o0
DD LVEES 95 SLCYEES SR o
m=1n=1 n=1m=n = m=n
o0 oo
1 1
nzl nh1:h_1znk+h1<°°
ss4 requires kK + h > 2. The approximation comes from the fact that for every p > 1, we have
. > 1 > 11
Zk*m/ kPde = ——a' 7P| = ————.
i k=n L—p n  p—1n?

s55 Since k > 1 due to Assumption 4.3, we conclude that k + h > 2.

ss6 Therefore, the conditions for (") and o™ to satisfy the assumptions of Theorem 4.6 are h > 1
s57 and k > 1.
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559

560

561

562

568

569

9.1.2 Assumptions of Lemma 4.7

For the assumptions of Theorem 4.6, the first condition

0o 0o o)
> Y aa Y <
m=1n=m m=1 m

requires h > 2.

Besides, the second condition is

i i ia%(n) _ i i NO) i:,,m <C i i 0 < oo,

m=1i=mn=1 m=1i=m n=1 m=1i=m
The inequality holds because for any p > 1, we have

n n 1

Zkfﬂ z/ kPdk = — k1P
1-p

k=1 k=1

"
= =0 —pl )y <C
1

Therefore, the conditions for (™) and a(™ to satisfy the assumptions of Lemma 4.7 are h > 2 and
k>1.

9.1.3 Assumptions of Theorem 5.2

Recall that we have let (") = 1/m. For the assumptions of Theorem 5.2, the condition
Z o™ In(m) < oo
m=1

requires h > 1. To see this, note that In(m) < C'm* for any € > 0. Thus

o0 o
Z o™ In(m) < C Z m~"me < oo
m=1 m=1

if e — h < —1. This yields h > 1.

Therefore, the condition for a(™) to satisfy the assumptions of Theorem 5.2 is h > 1.

31



	Introduction
	Literature Review
	Model and Algorithm
	Algorithm

	General Case
	Assumptions
	Convergence Analysis

	Convex Case
	Convex Objective Convergence Analysis

	Computational Experiments
	Future Directions
	Appendix A
	Nomenclature
	Preliminary Results
	Proof of Theorem 4.6
	Consequences of Theorem 4.6
	Proof of Theorem 4.10
	Proof of Lemma 4.7
	Proof of Lemma 4.8
	Proof of Lemma 4.9

	Proof of Theorem 5.2

	Appendix B
	Conditions for stepsizes
	Assumptions of Theorem 4.6
	Assumptions of Lemma 4.7 
	Assumptions of Theorem 5.2 



