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Abstract

We consider the case of a digital product for share-averse bidders, where the product

can be sold to multiple buyers who experience some disutility from other firms or

consumers owning the same product. We model the problem of selling a digital product

to share-averse bidders as an auction and apply a Bayesian optimal mechanism design.

We also design constant-approximation algorithms in the prior-free setting including

both average- and worst-case analyses.
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1 Introduction

Consider the problem of selling a valuable piece of information or dataset. In principle, the

information or dataset can be sold to all bidders at no marginal cost to the seller. In general,

many digital goods share the same property. In other words, digital goods are expensive to

produce but cheap to reproduce, since the unit cost of reproduction is negligible and virtually

zero. They can be consumed by more than one user at the same time. However, in reality, the

value of the information or dataset to a bidder decreases as increasing numbers of bidders

obtain the information because the competitive advantage of possessing the information

becomes weaker with more receivers of the information. The seller needs to know:

1. What is the optimal number of copies, k that they should sell to?

2. What is the profit maximizing price to charge the k buyers?

Digital product is available in unlimited supply. The firm can sell as many copies as there are

buyers. On the other side of this tug-of-war, each of the buyers that obtains a copy incurs

some disutility from others obtaining the same product. This indicates that the buyers are

willing to pay less if more copies are sold. This represents the basic trade-off to the seller.

Since the firms can sell to multiple parties who obtain some disutility from sharing, we call

this a digital product with share-averse bidders.

We model this example as an auction. The possible setup is selling either to an individual

buyer (standard single item auction) or to multiple buyers depending upon the valuations of

all buyers. We introduce a deterministic function to capture the decreasing valuations when

sharing the product. To make the problem tractable, we assume that this deterministic

function is known to all bidders and hence it is not part of bidder’s private information.

This assumption implies a single-parameter auction. A distinct attribute of our problem is

the task of modeling the number of winners. This can be computed by applying the VCG

auction on the virtual values in the Bayesian setting. We apply the well-known Myerson

mechanism for maximizing the expected revenue in the Bayesian setting where the values
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are drawn from a prior distribution. Unlike an auction for standard physical goods, the

number of items sold or the number of winners can not be determined in advance in the

auction for digital goods with share-averse bidders. We need to use the prior distribution

to compute the number of winners in this auction. In prior-free settings, it is challenging to

model the number of winners. We study prior-free auctions and establish the approximation

ratio in both average- and worst-cases of the appropriately designed algorithms. We design

an algorithm in the prior-free average case where the number of winners can be obtained by

the VCG auction on bids. The proposed algorithm approximately maximizes the revenue

against a certain benchmark. The algorithm provides good techniques to handle the prior-

free approximations and to resolve the issue of coping with the number of winners. We

design another prior-free auction/algorithm in the worst case where the bidders are divided

into sample and market groups and the number of winners is determined by computing the

winning price from the sample group.

We first show a single-sample approximation algorithm in the prior-free average case

where the revenue benchmark is the expected optimal revenue as shown in the Bayesian

setting. By single-sample, we mean that the algorithm is developed over only one sample

of bids from all bidders. The average case analysis can be used to compare the revenue

performance in this prior-free setting with the Bayesian optimal revenue. The second prior-

free approximation algorithm designed is a random sampling algorithm in the worst case.

The benchmark in the second approximation algorithm is the revenue of the optimal single

price auction. The optimal single price auction is optimal among all auctions where the price

by which the winners need pay is unique. In other words, in the optimal single price auction

the winners pay the same price. The worst case approximation is more challenging since the

approximation ratio is applied to every possible realization of valuations.

An important contribution of our work is the design of prior-free algorithms for auc-

tioning digital goods with share-averse bidders. The single-sample algorithm is a constant-

approximation algorithm to the revenue benchmark. In the single-sample auction, the num-
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ber of winners is a decision variable. Another major contribution of this work is the technique

to deal with the number of winners in a complicated single-parameter auction setting. We

need to sacrifice the revenue performance for determining the number of winners in the ap-

proximations. For example, in the prior-free worst-case analysis, determining the number

of winners makes the approximation even less “optimal” in comparison with the standard

single-parameter problem without shareability. This is not a problem in the standard single-

parameter auction because of the indivisible nature of standard products.

2 Literature Review
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Figure 1: Summary of Literatures

We mainly differentiate auctions by two features: externality and shareability. By exter-

nality, we mean the allocation externality where a party obtaining the product influences the

remaining parties. Shareability is the property of one unit of the product consumed by more
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than one party at the same time. At the top level, we divide auctions by prior distributions:

Bayesian auctions with known prior distributions and prior-free auctions without any prior

distributions. The traditional approach to auction design is to study optimal auctions (i.e.,

revenue-maximizing auctions) in the Bayesian setting, Myerson (1981). There are cases in

the Bayesian setting where shareability has been taken into account, e.g., the patent licens-

ing. The problem of licensing an innovation to firms that are competitors in a downstream

market has been well studied. Kamien (1992) provides an excellent survey of patent licens-

ing. Katz & Shapiro (1986) show a licensing game in which the bidders are identical and

their signals are publicly observable. In our work, bidder’s signal of willingness to pay is

private. Schmitz (2002) analyzes a revenue-maximizing auction for a sale of multiple licenses

where each bidder’s signal is private. All these papers assume no allocation externality, i.e.,

a firm who gets a license does not affect other firms obtaining no licenses. Our study adds

allocation externality into the setting. Our work is also related to the literature on sales with

externality. Both Jehiel et al. (1996) and Jehiel & Moldovanu (2000) discuss auctions with

externality. However, neither considers the shareability of a product at the same time, i.e.,

it is impossible to share the product in the auction. We allow multiple bidders to share a

product. Salek & Kempe (2008) is closest to our work. They study auctions in which items

being auctioned can be shared among multiple winners, and the valuation of winners de-

creases in the number of winners. They exhibit an optimal truthful auction for a single item

in the sense of Myerson. We advance this by studying the prior-free auctions. In addition, in

the Myerson’s setting our model is different because we do not allow fractional allocations.

On the flip side of externality, i.e., positive externality or share-attraction, Haghpanah et al.

(2011) and Bhalgat et al. (2012) show how to model bidder’s preference regarding positive

externality in a social network setting.

Literature on prior-free auction design, the focus of our work, is rare. In practice, the

Bayesian approach is restrictive since the prior distribution is usually unknown. A prior-free

mechanism design improves understanding of the auction without the assumption of prior
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distributions. Goldberg et al. (2006) investigate such a prior-free mechanism design problem

where the monopolist has a constant marginal cost of supplying units. They completely

eliminate the prior distribution assumption in their analysis. Dhangwantnotai et al. (2010)

propose single-sample approximations for a prior-free mechanism design. We apply the

single-sample techniques to the auctions for digital goods with share-averse bidders and

analyze their performance.

The paper is structured as follows. In Section 3 we state the model for auctioning

digital goods with share-averse bidders and show the Bayesian optimal mechanism design in

Section 4. We then focus on the approximation algorithms and their analysis in Section 5.

We conclude the introduction with a literature review.

3 Model

We model the sales of a digital good with share-averse bidders by an auction. In the models

that follow we use the following notation. We use bold letters to denote vectors. Let N be

the set of all bidders and n be the total number of bidders, i.e., |N | = n. Let v = (v1, ..., vn)

be the vector of strict valuations of all bidders for the single digital good with share-averse

bidders. Namely, vi is the valuation of bidder i as the individual winner and vi is drawn

from continuous distribution Gi, which we assume are i.i.d. Let g(· ) be the corresponding

probability density function of G = Gi. We denote by v−i = (v1, ..., vi−1, vi+1..., vn) the mask

vector after removing bidder i’s value and v−i−j = (v1, ..., vi−1, vi+1, ..., vj−1, vj+1, · · · , vn)

the mask vector after removing both bidder i and j’s values. Similarly, we denote the joint

distribution function without bidder i by mask vector G−i. We assume that the distribution

has the monotone hazard rate property, i.e., h(·) = g(·)
1−G(·) is increasing. We denote φ(vi) =

vi − 1−G(vi)
g(vi)

as the virtual value. Let f(· ) : Z → R be a decreasing function such that

0 ≤ f(· ) ≤ 1. This function models the disutility a bidder obtains from the product being

shared with other bidders. For example, if the auction awards 2 copies of the product,
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then the value to agent i is vi· f(2). Since we have a finite number of bidders, there exists

a (possibly non-unique) optimal number of bidders k such that the revenue obtained by

selling to those k bidders is greater than any other number. In case of a tie, we always

pick the smaller k. In this setting, we can model bidder’s utility using utility function

ui(v, k) = xi(v)· vi· f(k)− pi(v), where xi ∈ {0, 1} is the allocation of an item to agent i or

not and pi ∈ R+ is the payment of bidder i to the seller. Finally, for simplicity we assume

that all feasible allocations are single units, i.e., there is no additional utility in a bidder

receiving multiple copies or a fraction of a copy. This is a reasonable assumption for digital

goods with share-averse bidders, given that they are allocated as discrete units.

We denote by

Qi(vi) =

∫
v−i

xi(v)f(
∑
j

xj(v))dG−i(v−i)

the conditional allocation to bidder i by which we model the incentive constraint in the

Bayesian setting. The seller’s problem is to determine a subset S ⊆ N of bidders to allocate

to while maintaining the Bayesian incentive constraint and individual rationality. We use

the following lemma to simplify the seller’s objective, i.e., maximizing the total payment

from all bidders.

Lemma 1 (Myerson’s Lemma). For every truthful mechanism (x,p), the expected payment

of bidder i with valuation distribution G satisfies Ev[pi(v)] = Ev[φ(vi)xi(v)f(
∑

j xj(v))].

The seller’s problem is

max
x

Ev[
n∑
i=1

φ(vi)xi(v)f(
∑
j

xj(v))] (1)

Qi(vi) is monotone in vi for every i (2)

ui(v, k) ≥ 0 for every i, v and k (3)

Qi(vi) ≥ 0 for every i, vi. (4)

Note that objective (1) is the total payment from all bidders by Lemma 1. In a single-
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parameter Bayesian setting it is known that for a monotone allocation there exists a payment

scheme that maintains the incentive constraint. Hence incentive constraint (2) requires

monotonicity of Q. Constraints (3) and (4) are standard non-negativity requirements.

We denote by φ(i) the ordered virtual values, i.e., φ(i) ≥ φ(i+1) for i = 1, 2, · · · , n − 1.

The seller’s objective (1) can be further reduced to

max
S∈2N

E

[
f(|S|)

∑
i∈S

φ(i)

]

while maintaining a monotone allocation where the seller charges each winner the critical

payment.

The VCG auction allocates items in a socially optimal manner, while ensuring each bidder

receives at most one item. This system charges each individual the externality they cause to

other bidders and ensures that the optimal strategy for a bidder is to bid the true valuation.

Mathematically, the VCG auction is a pair (x,p) such that x maximizes
∑

i xi(v)vif(k)

where k =
∑

i xi(v), and pi(v) = maxx′
[
f(
∑

j 6=i x
′
j(v))

∑
j 6=i x

′
j(v)vj

]
−
∑

j 6=i xj(v)vjf(k).

It can be seen that the optimal auction in the Bayesian setting is a VCG auction on virtual

valuations. We next study the optimal auction in Section 4.1 and use the VCG auction to

design our prior-free algorithms for digital goods with share-averse bidders in Section 5.

4 Bayesian Optimal Mechanism

Bayesian optimal mechanism design is well studied for the standard single-parameter setting

where the number of units of goods is determined. The auction for digital goods with

share-averse bidders introduces a new variable, i.e., the number of goods to be allocated

(or the number of winners), which does not exist in the standard setting. We explicitly

model this variable in Bayesian optimal mechanism design. In this section, we study an

optimal mechanism that mainly involves computing k∗, the optimal number of winners and

the “critical-type” payments. We further show that the optimal allocation rule is monotone.
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Consequently, the critical type payment rule exists by the Myerson’s lemma and we show

that the VCG virtual payment is not as simple as the Vickrey payment in the standard

k-unit auction.

4.1 Computing allocation and payments

To derive an optimal mechanism, we first relax the incentive constraint and solve the non-

game theoretic optimization problem. We then show that the resulting mechanism is also

incentive compatible. The optimal mechanism is as follows.

1. Solicit and accept sealed bids b = (b1, ..., bn).

2. Compute φ← the virtual values over b.

3. (x, p′) ← V CG(φ, k∗), i.e., apply the VCG auction on virtual values, where k∗ is the

optimal number of bidders to allocate 1 unit of the good.

4. For all i, set pi ← φ−1i (p′i).

Each φi is computed at bi. In step 3, we obtain the optimal k∗ by solving the following

problem (where φ(i) are the sorted virtual values, i.e., φ(i) ≥ φ(i+1) for every i)

k∗ = arg max
k
{f(k)

k∑
i=1

φ(i)}.

The algorithm calculates the profit maximizing set of allocations x that are awarded to a

set of bidders S(b) corresponding to the top k∗ virtual values. The virtual payments p′i are

obtained as

p′i(φ) = f(k−)
∑

j∈S(b−i)
j 6=i

φj − f(k∗)
∑
j∈S(b)
j 6=i

φj,

where S(b−i) is the winner set of re-running the VCG auction after removing bidder i and

k− = |S(b−i)|. If k∗ = 1, then we can reduce the problem to a regular single-item auction,
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where the second price with reserve value φ−1(0) is an optimal revenue maximizing auction.

It is straightforward to see that the algorithm runs in O(n3) time.

4.2 Analysis of the optimal auction

We now analyze the optimal auction mechanism (allocation and payment) computed in the

previous section. We first show incentive compatibility and then discuss the payment rule.

Recall the interim allocation Qi(vi) =
∫
v−i

xi(v)f(
∑

j xj(v))dG−i(v−i). In order to show

that mechanism (x, p) is incentive compatible it suffices to show that the interim allocations

Qi are monotone. Without loss of generality, we assume that the values are decreasingly

ordered, i.e., v1 ≥ v2 ≥ · · · ≥ vn. Let vi < v
′
i. If xi(v−i, vi) = 0 for some v−i, then

xi(v−i, v
′
i) can be either 0 or 1. It remains to show that when xi(v−i, vi) = 1 for some v−i,

then xi(v−i, v
′
i) = 1 and the total number of winners corresponding to v

′
i is no bigger than

the number with vi. Suppose with valuation vi bidder i is one of the winners and the total

number of served bidders is k∗. Then clearly the virtual welfare function is maximized at

k∗, i.e., f(k∗)
∑k∗

j=1 φ(j) is maximal, see Figure 2. Note that the virtual welfare function in

Figure 2 by assumption is discrete, but for the purpose of illustration, we smooth the curves

in the next three figures.

k 
K* 

Figure 2: The optimal allocation of k∗ winners

We distinguish two cases. In the first case vi−1 ≥ v
′
i ≥ vi ≥ vi+1. In other words, changing

value for bidder i from vi to v
′
i does not change the ranking of the values. The difference of

the virtual welfare functions before and after changing the value from vi to v
′
i is decreasing
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k K* 

(‘
i-i)f(k) 

 

i 

Figure 3: The difference between virtual welfare functions

1 nK’i K*

Figure 4: Monotonicity of Qi(vi): Case 1

in k for k ≥ i, see Figure 3. It shows that the optimal number of winners k′ corresponding

to (v1, v2, · · · , vi−1, v
′
i, vi+1, · · · , vn) is no bigger than k∗. Further, it is between i and k∗,

see Figure 4. The shaded area in Figure 4 represents the increase of virtual welfare in the

number of winners. The upper boundary curve is the virtual welfare function corresponding

to v
′
i and the lower boundary the virtual welfare function for vi. Bidder i is also one of

the winners after changing the value to v
′
i. Hence, the interim allocation is non-decreasing.

On the other hand, suppose increasing the value for bidder i from vi to v
′
i does improve his

ranking in the second case. Following the similar argument as in the first case, it is not hard

to show that the total number of winners k′ is still no larger than the number of winners k∗.

Now it is possible that k′ < i depending on the new ranking based on v
′
i. However, bidder i

is in the winner set. This completes the statement on monotonicity.

We next show that computing the VCG virtual payment p′ is not the same (i.e., as

simple) as the Vickrey payment in the standard k-unit auction. The differences between
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the V CG and Vickerey payments will also be illustrated later in the prior-free setting. The

optimal allocation rule x combined with the standard Vickrey payment that is restricted to

k units may be infeasible. Next we exhibit an instance with the Vickrey payment in which

a bidder can be better off by reporting a non-truthful valuation. Suppose for bidder i with

true valuation vi his allocation associated with reporting vi is winning together with total k

bidders. It implies that his payoff ui(vi, vi) of reporting the true valuation is

ui(vi, vi) = f(k)[vi −max{r, v(k+1)}].

Recall the reserve price r = φ−1(0). Suppose instead bidder i reports a higher value v
′
i, i.e.,

v
′
i > vi. We have

ui(vi, v
′

i) = f(k
′
)[vi −max{r, v(k′+1)}],

where ui(vi, v
′
i) corresponds to a new allocation with total k

′
winners. We already discussed

the allocation of the auction mechanism corresponding to increasing bids. Suppose that the

new allocation has the number of winner k
′
< k. We might have ui(vi, v

′
i) > ui(vi, vi). In

other words, when bidder i increases his reported valuation he improves his interim allocation

(leading to a potentially larger payment). At the same time, he also lifts up the bar, namely

winning with fewer winners. This might eventually improve his payoff.

Consider the following numerical example. There are 3 bidders where values are indepen-

dently drawn from uniform distribution on [0, 1]. We assume f(k) = 1√
k

for 1 ≤ k ≤ 3, which

is decreasing and convex. The reserve price is r = 0.5 and the virtual value is φ(vi) = 2vi−1

for i = 1, 2, 3. Let the input value profile be v = (0.8, 0.625, 0.6). We correspondingly

have the virtual value φ(v) = (0.6, 0.25, 0.2). It is easy to see that the optimal number of

winners is k = 3. Bidder 1’s payoff of reporting true valuation is u1(v1, v1) = f(k)[v1 − r1],

i.e., u1(0.8, 0.8) = f(3)[0.8 − 0.5] = 0.173. On the other hand, suppose now bidder 1 re-

ports v
′
1 = 1. We can similarly compute that k

′
= 1 and bidder 1’s corresponding payoff

is u1(v1, v
′
1) = f(k

′
)[v1 − v(k′+1)], i.e., u1(0.8, 1) = 0.8 − 0.625 = 0.175. We conclude that
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u1(0.8, 1) > u1(0.8, 0.8).

5 Prior-free Approximations

The optimality of the Bayesian algorithm in Section 4 depends on the prior distribution of

bidder’s valuations. The algorithm is based on the V CG auction on virtual values. There

are a variety of appealing reasons to consider prior-free auctions, starting with the fact that

determining the prior distributions is very costly and unreliable. For this reason in this

section we focus on the design of prior-free algorithms. We show constant approximations

in both average- and worst-case scenarios.

5.1 An average-case constant-approximation

Let us consider an algorithm in which a single reserve price is randomly picked and VCG

with respect to values is conducted on the sub-economy of the remaining bidders excluding

the reserve bidder. The single sample algorithm includes steps:

1. Solicit and accept bids b = (b1, ..., bn)

2. Randomly pick a reserve bidder i (i.e., bid bi is to be used as the reserve price for

remaining bidders in the next step)

3. Run the VCG auction with the lazy random reserve price bi on b−i, i.e., (x−i, t−i) ←

V CGbi(b−i). In other words, we first run the V CG allocation on b−i and then apply

the random reserve price on the allocation x−i. This yields the winner set W V CG(b−i).

4. Charge each winner j in the set W V CG(b−i) the maximum between the VCG payment

tj and f(k′)bi, where k′ = |W V CG(b−i)|.
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In step 3, the allocation x−i is determined by choosing the top m bidders by their bids in

the set of all bidders excluding bidder i, where

m = arg max
k
{f(k)

k∑
j=1

b(j) : bj ∈ b−i and b(j) ≥ b(j+1)}.

If bidder j is one of the top m bidders and also has a value vj > vi, which is the selected

reserve price, then bidder j belongs to the winner set W V CG(b−i). The direct VCG payment

rule in step 4 assures that our approximation algorithm is incentive compatible. Hence, we

can use bi and vi interchangeably. The VCG payment rule calculates the payments based on

tj(v−i) = f(|S−j−i|)
∑

l∈S−j−i

l 6=i
l 6=j

vl − f(|S−i|)
∑
l∈S−i
l 6=i

vl,

where S−j−i is the winner set induced by running the VCG auction on v−j−i and likewise

S−i is the winner set induced by running the VCG auction on v−i.

We show below that the expected revenue from the single sample algorithm is approxi-

mately optimal compared to an optimal auction with respect to the original environment with

n bidders. We denote by Ev[OPT (v)] the revenue benchmark which is the expected revenue

of an optimal mechanism, i.e., the objective (1) in Section 3. We denote by Ev[V CGvi(v−i)]

the expected revenue of the single sample algorithm with respect to the induced values v−i.

The result is stated in the following theorem.

Theorem 1. Suppose the strict valuations vi for any bidder i are independently and iden-

tically drawn from distribution G that satisfies the monotone hazard rate (MHR) condition.

In addition, we assume function f(·) is linearly decreasing. Then the expected revenue of the

single sample algorithm is a constant approximation to the expected revenue of an optimal

auction in the original environment v, precisely, Ev[V CGvi(v−i)] ≥ 1
2e
n−1
n
Ev[OPT (v)] ≥

1
4e
Ev[OPT (v)].
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The proof of the theorem is fairly technical. The sketch of the proof is as follows.

Intuitively, we have

Ev[OPT (v)] h Ev[OPT (v−i)] (5)

= Ev[V CG(φ(v−i))] (6)

h Ev[V CGr∗(v−i)] (7)

h Ev[V CGvi(v−i)], (8)

where

• Ev[OPT (v−i)] is the expected revenue from an optimal mechanism with respect to

environment v−i induced by random reserve bidder i;

• Ev[V CG(φ(v−i))] is the expected revenue of the V CG mechanism with respect to

induced virtual values φ(v−i);

• Ev[V CGr∗(v−i)] is the expected revenue of the V CG mechanism with monopoly reserve

price r∗ with respect to induced values v−i.

Next we provide a complete proof including several partial results and observations. We

first make a few observations.

Observation 1. The virtual welfare function and the welfare function are sub-modular in

the number of winners.

Let us assume that the virtual values are decreasingly ordered, i.e, φ1 ≥ φ2 ≥ · · · ≥ φn.

We define the virtual welfare function by L(k) = f(k)
∑k

i=1 φi. It is straightforward to

verify that L(k) is submodular in k. Further, L(k + 1) − L(k) is strictly decreasing since

f(k) − f(k + 1) is non-decreasing. The case of welfare function LV (k) = f(k)
∑k

i=1 vi is

similar.
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Observation 2. Based upon the same economy v the total number of winners in the VCG

auction with monopoly reserve price with respect to bid values is no smaller than the number

of winners with respect to virtual values.

To see this, it suffices to show that for every k at which the virtual welfare L(k) is

increasing, so is LV (k). Mathematically, we want to show that L(k + 1)− L(k) ≥ 0 implies

LV (k + 1)− LV (k) ≥ 0 for every k. In other words, we want to show for every such k that

∑k
i=1 φi

φk+1 +
∑k

i=1 φi
≥

∑k
i=1 vi

vk+1 +
∑k

i=1 vi
. (9)

Since L(k+ 1)−L(k) ≥ 0 is equivalent to f(k+1)
f(k)

≥
∑k

i=1 φi

φk+1+
∑k

i=1 φi
, which from (9) implies that

LV (k + 1)− LV (k) ≥ 0. As a conclusion, it suffices to show (9).

Let us consider v1 ≥ v2 ≥ · · · ≥ vk+1. By the monotone hazard rate condition, i.e., the

hazard rate h(v) is monotone increasing in v, we have

1

h(v1)
≤ 1

h(v2)
≤ · · · ≤ 1

h(vk+1)
.

This implies −vk+1[
1

h(v1)
+ · · ·+ 1

h(vk)
] ≥ −[v1 + · · ·+ vk]

1
h(vk+1)

and in turn

[v1 + · · ·+ vk][v1 + · · ·+ vk+1]− [v1 + · · ·+ vk+1][
1

h(v1)
+ · · ·+ 1

h(vk)
]

≥ [v1 + · · ·+ vk][v1 + · · ·+ vk+1]− [v1 + · · ·+ vk][
1

h(v1)
+ · · ·+ 1

h(vk+1)
].

This further implies that

[v1 + · · ·+ vk]− [ 1
h(v1)

+ · · ·+ 1
h(vk)

]

[v1 + · · ·+ vk+1]− [ 1
h(v1)

+ · · ·+ 1
h(vk+1)

]
≥ v1 + · · ·+ vk
v1 + · · ·+ vk+1

and

φ1 + · · ·+ φk
φ1 + · · ·+ φk+1

≥ v1 + · · ·+ vk
v1 + · · ·+ vk+1

.
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This shows the second observation.

Observation 3. The allocation x(v) in the optimal auction is monotone. Namely, for any

i and fixed v−i, if bidder i increases the bid from vi to v
′
i, i.e., v

′
i > vi , then we have two

cases: (1) xi(v−i, vi) = 0 and xi(v−i, v
′
i) ∈ {0, 1}, or (2) xi(v−i, vi) = 1 and xi(v−i, v

′
i) = 1,

but the total number of winners is non-increasing.

It is straightforward to show monotonicity when xi(v−i, vi) = 0 and bidder i increases

the bid from vi to v
′
i. For bidder i with strict value vi, if xi(v) = 1 and bidder i increases

the bid from vi to v
′
i, it is easy to argue that xi(v

′
i,v−i) = 1 and the total number of winners∑

j xj(v
′
i,v−i) is not larger than the number with vi. On the other hand, if xi(v) = 1 and

bidder i reduces the bid from vi to v
′′
i , it can easily be seen that either xi(v

′′
i ,v−i) = 0 (i.e.,

bidder i drops out) or xi(v
′′
i ,v−i) = 1 and the total number of winners

∑
j xj(v

′′
i ,v−i) is not

lower than the number corresponding to vi. This shows the third observation.

We continue the overall proof with the following proposition that demonstrates the ex-

pected revenue of an optimal auction after randomly throwing out a bidder from the original

economy v = (v1, · · · , vn).

Proposition 1. The expected revenue of the optimal auction on sub-economy v−i after ran-

domly removing a bidder, for example i, is at least n−1
n

fraction of the expected revenue of

the optimal auction on v, i.e., Ev[OPT (v−i)] ≥ n−1
n
Ev[OPT (v)].

Proof. Given an input valuation profile v = (v1, · · · , vn), let us suppose the winner set is

WOPT (v) in the original economy with |WOPT (v)| = k. Since the reserve bidder i is selected

independently of all valuations, each bidder in the winner set WOPT (v) is a non-reserve

bidder with probability n−1
n

. Conditioning on the valuations, the expected (over the choice

of reserve bid vi) virtual welfare of an optimal auction on the sub-economy v−i induced by

reserve bidder i is at least a n−1
n

fraction of the expected virtual welfare of an optimal auction

on the original economy v. To be specific, if the chosen reserve bidder is outside the winner

set (i.e., this occurs with probability n−k
n

) the expected virtual welfare of the optimal auction
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on the sub-economy is identical to that on the original economy. On the other hand, if the

chosen reserve bidder i is one of the winners (each with probability 1
n
), the optimal auction

can be modeled by replacing bidder i’s bid with 0. By applying Observation 3, the virtual

welfare of the optimal auction on the sub-economy can be computed as

Virtual Welfare(v−i) ≥
n− k
n

[
f(k)

k∑
t=1

φ(t)

]
+

1

n

[
f(k − 1)

k∑
t=2

φ(t)

]

+
1

n

f(k − 1)
∑
t6=2

t=1,...,k

φ(t)

+ · · ·+ 1

n

[
f(k − 1)

k−1∑
t=1

φ(t)

]

≥ n− k − 1

n

[
f(k)

k∑
t=1

φ(t)

]
+

1

n

[
f(k)

k∑
t=1

φ(t)

]

+
1

n

[
f(k)

k∑
t=1

φ(t)

]
+ · · ·+ 1

n

[
f(k)

k∑
t=1

φ(t)

]

≥ n− 1

n
f(k)

k∑
t=1

φ(t) =
n− 1

n
· Virtual Welfare(v).

From Lemma 1, it can be seen that the optimal expected revenue is the expected virtual

welfare. Hence, we apply a linear transformation and conclude that the expected revenue

satisfies Ev[OPT (v−i)] ≥ n−1
n
Ev[OPT (v)].

The relationship between the expected revenue and welfare, summarized below, in a given

auction has already been established before.

Lemma 2 (Dhangwantnotai et al. (2010)). For any monotone-hazard-rate distribution G

the expected welfare from any individual bidder i in a truthful auction is at most e times

more than the expected monopoly revenue from the same bidder, i.e., E[φi(vi)] ≥ 1
e
E[vi].

Lemma 2 implies that the expected revenue of the VCG mechanism with lazy reserve

prices is competitive with the expected optimal welfare in the single bidder case. We need

to extend the above result from an individual bidder to a V CG auction. Suppose the

distribution G with respect to bidder valuations v has monotone hazard rate. We apply a
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V CG auction with the monopoly reserve price on the values. In particular, k′ is the total

number of winners of the V CGr∗ auction under a valuation profile v and total n bidders,

i.e., k
′

= arg maxnk=1{f(k)
∑k

i v(i)}. We next show that the expected revenue of the above

auction is at least a constant fraction of the expected welfare related to this auction. Recall

that v(i) and φ(i) are the order statistics of vi and φi respectively, i.e., v(i) ≥ v(i+1) and

φ(i) ≥ φ(i+1) for every i.

Lemma 3. For any monotone hazard rate distribution G the expected revenue in a V CG

auction with lazy monopoly reserve price is at least 1
e

fraction of the expected social welfare

of the same auction, i.e., Ev[f(k
′
(v, n))

∑k′

i=1 φ(i)] ≥ 1
e
Ev[f(k

′
(v, n))

∑k′

i=1 v(i)].

Proof. See Appendix for a detailed proof.

As shown in the previous section, the Bayesian optimal auction could be interpreted as

the V CG auction on the virtual values. Formally, we have Ev[OPT (v−i)] = Ev[V CG(φ(v−i))

for the sub-economy v−i induced by reserve bidder i. In other words, the steps in Section 4

give us an optimal auction. We next show that the V CG auction with the monopoly reserve

price on values is approximately optimal.

Proposition 2. The expected revenue of the V CG auction with lazy monopoly reserve price

r∗ on values of v−i is a constant 1
e

fraction of the expected revenue of the V CG auction with

monopoly reserve price r∗ on induced virtual values of φ(v−i).

Proof. The detailed proof is deferred to Appendix.

We are now prepared to start the analysis of the performance of the single-sample ap-

proximation algorithm. Since a winning bidder incurs disutility while sharing with other

potential winners, we use Gk(p) to represent the distribution function in the winning sce-

nario with a total k winners. Note that G1(·) = G(·) is the regular distribution function of the

strict valuation. It is straightforward to verify that Gk(p) = G( p
f(k)

) and gk(p) = 1
f(k)

g( p
f(k)

).

Similarly, the monopoly reserve price in the case of total k winners is r∗f(k). We denote by
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Rk(p) = p[1 − Gk(p)] the revenue function in the case of k winners as a function of price

p. For a single-bidder and single-item case, the expected revenue of the approximation al-

gorithm with a random reserve price is at least one half of that of an optimal auction, see

Lemma 3.6 in Dhangwantnotai et al. (2010). We have a similar result for the auction of

digital goods with n bidders.

Lemma 4. Let vi denote a random valuation from distribution G. For any nonnegative

number t ≥ 0 and k ≥ 1, we have

Evi [Rk(max{t, vif(k)})] ≥ 1

2
Rk(max{t, r∗f(k)}).

As shown in step 3 of the single sample algorithm, we use a random reserve price rather

than the monopoly reserve price. The performance loss of using a random reserve price is

shown by the following proposition.

Proposition 3. The expected revenue of the V CG auction with a random reserve price

vif(k′(v−i)) on induced values v−i is a 2-approximation to the expected revenue of the V CG

auction with the monopoly reserve price r∗f(k′(v−i)) on v−i. Namely, we have

Ev[V CGvi(v−i)] ≥
1

2
Ev[V CGr∗(v−i)].

Proof. We compare the expected revenue of an individual bidder in two different scenarios.

The first one is the scenario of a single-item with a single-bidder. The expected revenue of

an individual bidder j in a single-item single-bidder auction is

Rk(max{tj, r∗f(k′(v−i))}) = max{tj, r∗f(k′(v−i))}[1−Gk(max{tj, r∗f(k′(v−i))})]

for any tj ≥ 0. The other scenario is the revenue contribution of the same individual bidder

in a V CG auction on induced values v−i. We next show that the revenue contribution of the

same bidder j in the V CG auction with the random reserve price vif(k′(v−i)) on v−i is the
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same as in the single-item auction.

We consider a reserve bidder i. For fixed reserve price vif(k′(v−i)) we condition on all

valuations v−i−j other than bidder i and j in order to compute the V CG payment tj for

any bidder j 6= i. For fixed v−i, every non-reserve bidder is isolated and hence evaluated

by using two prices vif(k′(v−i)) and tj(v−i−j). This is equivalent to the single-item auction

with random reserve price vif(k′(v−i)) for the same bidder j. Hence, the expected revenue

is Evi [Rk′(max{tj, vif(k′(v−i))})]. In order to show the revenue contribution of individual

bidder j 6= i, we need to ensure that the number of the new set of winners after removing

bidder j is at least the number of winners k′(v−i) on the originally induced values v−i. This

point is illustrated by Observation 2. By Lemma 4, we further have

Evi [Rk′(max{tj, vif(k′(v−i))})] ≥
1

2
Rk′(max{t, r∗f(k′(v−i))}).

Taking expectations over previously fixed valuations v−i−j, summing over all non-reserve

bidders j, applying the linearity of expectation, and eventually taking expectations over the

reserve bids vi, we obtain Ev[V CGvi(v−i)] ≥ 1
2
Ev[V CGr∗(v−i)].

Now, we are ready to state the entire proof to the theorem.

Proof of Theorem 1: First, from Proposition 3 we haveEv[V CGvi(v−i)] ≥ 1
2
Ev[V CGr∗(v−i)],

which is inequality (8). Further, from Proposition 2 we have Ev[V CGr∗(v−i)] ≥ 1
e
Ev[OPT (v−i)]

that is inequality (7). Finally, Proposition 1 yields Ev[OPT (v−i)] ≥ n−1
n
Ev[OPT (v)],

which is inequality (5). All these results yield Ev[V CGvi(v−i)] ≥ 1
2e
n−1
n
Ev[OPT (v)] ≥

1
4e
Ev[OPT (v)].

This completes the proof to Theorem 1 of the constant approximation ratio of the single-

sample algorithm to the optimal mechanism in terms of the expected revenue.
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5.2 Numerical analysis of average-case approximation

In Section 5.1 we presented a single sample constant approximation algorithm to the optimal

expected revenue. Next by means of a numerical study we validate the performance of the

single sample approximation algorithm in various settings. Each setting consists of a prior

distribution of the valuation distribution G, size of the population N and decreasing function

f . Let f(k) = 1− k−1
N

, where N is selected from {5, 10, 100}. We consider 3 distributions with

increasing hazard rate functions. The first distribution is the continuous uniform distribution

between 0 and 1. The second one is the gamma distribution with parameters (λ, α) = (1, 2)

and the density function

g(t, λ, α) =
λαtα−1e−λt

τ(α)
.

The third distribution is the truncated normal distribution between 0 and 1 with parameters

of mean and standard deviation (µ, σ) = (1/2, 1/2), which we denote by T-normal. The

three distributions are chosen in the numerical analysis because they are commonly used in

practice and parameters are further configured to make the hazard rate functions monotone

increasing. Notice that the expected values for the 3 distributions are the same.

The numerical analysis is summarized in Figure 5 below. The optimum column is the

Figure 5: Numerical results in average-case analysis
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optimal expected revenue shown in Section 4.1. The benchmark is set to be 1
2e
N−1
N

fraction

of the optimum. The approximation ratio is defined as the ratio of the revenue from the

single sample algorithm to the optimum. We also report the 95% confidence interval (C.I.)

after 1, 000 replications.

In Figures 6, 7 and 8 we show that the revenue from the single sample algorithm lies

between the benchmark and optimum. Further we show the approximation ratio is increasing

in N . Not surprisingly, more revenue can be gained from the single sample algorithm with

more bidders.

Figure 6: Uniform Distribution Figure 7: Gamma Distribution

Figure 8: T-Normal Distribution

This numerical analysis shows that the single sample algorithm yields solutions that are

between 55% and 80% from the optimum. It also asserts that the approximation ratio is
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increasing in the size of the population.

5.3 A worst-case constant-approximation

In this section, we exhibit a constant approximation algorithm for auctioning the digital

goods with share-averse bidders in the worst case scenario. We conduct a sequence of two

auctions. The first auction is used to learn bidders’ valuations and thus no allocation of

goods is actually assigned. The optimal price learned from the first auction over a subset

of bidders is then applied to the remaining bidders in the second auction. In both auctions,

the values are given and we choose the number of winners that maximizes the revenue in the

auction. We use the random sampling technique to learn bidders’ valuations from a subset

of bidders and then apply the learning to the remaining bidders. The random sampling

algorithm A is as follows.

1. Solicit and accept bids b = (b1, ..., bn)

2. Partition the bidders into two groups: market group s
′

and sample group s
′′
.

• First sort all bids in decreasing order.

• Assign the bidder with the largest value to the market group.

• Assign the remaining bidders to groups and an arbitrary bidder is placed in the

market group with probability 1
2
.

3. Compute the optimal price of the auction from the sample group s
′′
.

• Return the optimal price vk where k represents the index of the winner with the

smallest value in the auction.

4. Apply the optimal price vk to the auction conducted in the market group and collect

the revenue.

The random sampling algorithm is incentive compatible because the price by which the

revenue is collected is determined in the sample group and does not depend on the bidder’s

value in the market group. For this reason value v and bid b can be used interchangeably.
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We next show that the random sampling algorithm gives a constant approximation to

the optimal single price auction. We partition the bidders by randomly assigning bidder i

into two groups according to random variable xi with binary values. Namely, bidder i is in

the sample group if xi = 1 and the market group otherwise. Recall that the bidders are

sorted. Let mi be the number of bidders in the sample group after the first i bidders have

been assigned, i.e., the number of bidders whose values are greater than vi and have been

placed in the sample group. It is easy to see that the optimal revenue in the auction from

the sample group is R(s
′′
) = mk · vk · f(mk), where vk is the winning price and mk represents

the number of winners in the auction conducted in the sample group. Hence, the revenue

from the market group is R(s
′
) = (k −mk) · vk · f(k −mk). We first show a lemma which

will be used later.

Lemma 5. For any i = 1, 2, · · · , n we have P (i−mi ≥ mi

3
) ≥ 0.9.

Proof. Let zi = 3(i −mi) −mi + 1. The boundary conditions are x1 = 0 and z1 = 4 since

the bidder with the largest value is assigned to the market group. Now for i ≥ 2 we define

if zi−1 = t, then

zi =


t− 1 if xi = 1,

t+ 3 if xi = 0.

For a fixed t, we define rt = P (zi ≤ 0 for some j ≤ i ≤ n with zj = t). This leads

to the recursion rt = 1
2
(rt−1 + rt+3). It is easy to check that rt = rt1 with boundary condition

r0 = 1 is a solution to the recursion if r41−2r1 +1 = 0. Applying the Ferrari’s method, it can

be seen that r4 = r41 ≤ 0.1. Subsequently, by the boundary condition z1 = 4, for 1 ≤ i ≤ n

we have

1− r4 = P (zi > 0)

= P (3(i−mi)−mi + 1 > 0)

= P (i−mi ≥
mi

3
) ≥ 0.9.
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We denote by Gv the revenue of an optimal single price auction, i.e., Gv = max1≤i≤n{i ·vi ·

f(i)} and R(v) the revenue of the random sampling algorithm with input v. The following

theorem shows the constant approximation performance of the random sampling algorithm

to the optimal single price auction.

Theorem 2. The random sampling algorithm is a constant approximation to the optimal

single price auction, i.e., R(v) ≥ 1
15
Gv for every v.

Proof. We prove the theorem in several steps. We first show that the revenue from the

sample group is close to the revenue of the optimal single price auction, i.e., R(s
′′
) ≥ 1

2
Gv.

It can be seen that mi follows the Binomial distribution with parameters (i, 1
2
). This implies

that P (mi ≥ i
2
) ≥ 1

2
for any 1 ≤ i ≤ n. Under event E1 = {mk ≥ k

2
} we have

R(s
′′
) = mk · vk · f(mk)

≥ mk∗ · vk∗ · f(mk∗)

≥ k∗

2
· vk∗ · f(k∗)

=
1

2
Gv,

where k∗ is the number of winners in an optimal single price auction with input v. The first

inequality follows by the definition of mk and in the second inequality we use f(mk∗) ≥ f(k∗)

since f is decreasing and mk∗ ≤ k∗.

Next, we show that the revenue from the market group is also close to the revenue of

the sample group. Under event E1 and E2 = {k −mk ≥ mk

3
}, the revenue from the market
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group satisfies

R(s
′
) = (k −mk) · vk · f(k −mk)

≥ mk

3
· vk · f(k −mk)

≥ 1

3
·mk · vk · f(mk)

=
1

3
R(s

′′
).

The first inequality follows because of event E2 and the second inequality is due to event E1.

Specifically, event E1 implies that k−mk ≤ mk. We have f(k−mk) ≥ f(mk) because function

f(·) is decreasing. By Lemma 5 we have P (E1E2) ≥ 1−P (Ec
1)−P (Ec

2) ≥ 1−0.5−0.1 = 0.4.

Finally, we have

R(s
′
) ≥ P (E1E2)

1

3
R(s

′′
)

≥ 0.4 · 1

3
· 1

2
Gv

=
1

15
Gv.

This shows that the revenue from the market group is at least an 1
15

fraction of the optimal

benchmark revenue, which completes the proof.

5.4 Numerical analysis of worst-case approximation

The worst-case approximation study is to show how far is the performance of the random

sampling algorithm from 1
15

fraction of the revenue of the optimal single-price auction. We

use the same three distributions from Section 5.2. The total population in the worst-case

numerical analysis is chosen as N = 100 and we again use f(k) = 1− k−1
N

.

We ran 1,000 replications and in Figures 9, 10, and 11 we report the performance of the

worst-case approximation algorithm against the revenue benchmark of the optimal single

price auction which is the upper bound. The lower bound is a constant proportion (i.e.,

27



1/15 in this case) of the upper bound. The revenue from the random sampling algorithm

clearly lies between the lower and upper bound.

In order to show the tightness of the bound, consider the following case. In Figure 12 we

show the result under the setting of N = 10 and discrete distribution g defined by

T =


0.01 with probability 1/3,

0.5 with probability 1/3,

0.99 with probability 1/3.

It can be seen that the revenue of the random sampling algorithm in this case is close to

the upper bound. The implication is that in this case, we designed a better worst-case

approximation algorithm.

6 Conclusions and Future Research

Auctioning digital goods for share-averse bidders is challenging because digital goods can be

auctioned in any quantity and disutility of a particular bidder of sharing the same product

with others makes the problem complicated. We study auctions of digital goods for share-

averse bidders that are optimal in the Bayesian setting or approximately optimal in the

prior-free setting. Specifically, we first apply the single-parameter optimal auction design to

digital goods for share-averse bidders and show an optimal auction algorithm. We concluded

that the standard single-parameter auction design is not applicable to digital goods with

share-averse bidders since the new decision variable about the final number of winners needs

to be integrated in the algorithm in an optimized way. In other words, an optimal number

of final winners can not be prior determined.

We next proposed a single sample algorithm in the prior-free average-case setting that is

a constant approximation to the optimal auction in terms of the expected revenue. In other

words, the revenue from the single sample algorithm is not worse than a constant proportion
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Figure 9: Uniform Distribution Figure 10: Gamma Distribution

Figure 11: T-Normal Distribution Figure 12: Discrete Distribution

of the optimal revenue in expectation. It can be much better than 1
4e

of the optimal revenue

as the numerical study establishes when N = 100 in Section 5.2. We concluded that in prior-

free setting, we can design a good auction algorithm of selling digital goods for share-averse

bidders by using a single sample to determine the winner set and selling prices.

We further exhibited a constant approximation algorithm in the prior-free worst-case

setting. The worst-case bound is distribution independent, thus practically useful in selling

digital goods with share-averse bidders. In most cases, the worst-case bound is not tight

as shown in our numerical analysis. It remains an interesting open question to design an
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algorithm with a tighter bound, even for such distributions as those shown in Figure 12.
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Appendix

Proof to Lemma 3:

Proof. We want to show that Ev[f(k
′
(v, n))

∑k′

i=1 φ(i)] ≥ 1
e
Ev[f(k

′
(v, n))

∑k′

i=1 v(i)]. It suffices

to show Ev[
∑k′

i=1 φ(i)] ≥ 1
e
Ev[
∑k′

i=1 v(i)].

Consider the distribution of
∑k′

i=1 φ(i) and
∑k′

i=1 v(i), which is a convolution of distributions

of {φ(i)}i and {v(i)}i, respectively. We know that the convolution of distributions with

monotone hazard rate functions is still of monotone hazard rate, e.g., Theorem 3.2 in Barlow

et al. (1963). Since the valuation distribution G has a monotone hazard rate, the bidder

with the ith largest virtual value φ(i) among n bidders is the same person as the one who

has the ith largest value v(i). Thus it suffices to show E[φ(i)] ≥ 1
e
E[v(i)] for every i regardless

of the number of winners. Let us denote g(i)(t) as the density and G(i)(t) as the cumulative

distribution function of the ith largest value in v. By applying known facts about standard

order statistics of v, we obtain

g(i)(t) = n

(
n− 1

n− i

)
G(t)n−i[1−G(t)]i−1g(t),

and

G(i)(t) =
i−1∑
k=0

(
n

k

)
G(t)n−k[1−G(t)]k.

These equations can be derived from Result 2.3 in Gungor et al. (2009). It remains to show

that v(i) has a distribution function with a monotone hazard rate. Then by invoking Lemma

2 it follows that E[φ(i)] ≥ 1
e
E[v(i)] for every i. The hazard rate function of v(i) is

h(i)(t) =
g(i)(t)

1−G(i)(t)

=
n
(
n−1
n−i

)
G(t)n−i[1−G(t)]i−1g(t)

1−
∑i−1

k=0

(
n
k

)
G(t)n−k[1−G(t)]k

.
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It suffices to show that h(i)(t) is increasing in t. Let p = 1−G(t) and consider

1

h(i)(t)
=

∑n
k=i

(
n
k

)
pk[1− p]n−k

n
(
n−1
n−i

)
pi−1[1− p]n−ig(t)

(10)

=
1

g(t)

∫ p

0

(
x

p

)(i−1)(
1− x
1− p

)(n−i)

dx, (11)

which further implies

1

h(i)(t)
=

p

g(t)

∫ 1

0

y(i−1)
(

1− yp
1− p

)(n−i)

dy.

Equality (11) follows because P (Beta(i, n + 1− i) ≤ p) = P (Binomial(n, p) ≥ i). We note

that h(t) = g(t)
p

is the hazard rate function of the original distribution of v which is increasing.

It is also easy to see that 1−yp
1−p is decreasing in [0, 1] . Thus, we obtain E[φ(i)] ≥ 1

e
E[v(i)] for

every i and hence Ev[f(k
′
(v, n))

∑k′

i=1 φ(i)] ≥ 1
e
Ev[f(k

′
(v, n))

∑k′

i=1 v(i)].

Proof to Proposition 2:

Proof. We denote by WOPT (v−i) the winner set in an optimal auction and by W V CG(v−i) the

winner set in the V CG auction with monopoly reserve price r∗. By the Myerson’s lemma,

we have that the expected revenue from an optimal auction is

Ev[OPT (v−i)] = Ev

f(k∗(v, n))
∑

i∈WOPT (v−i)

φi

 ,
where k∗(v, n) is the total number of winners in an optimal auction for a given valuation

profile v−i and total number of n bidders. Likewise, the expected revenue from the V CG

auction is

Ev[V CGr∗(v−i)] = Ev

f(k
′
(v, n))

∑
i∈WV CG(v−i)

φi

 ,
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where k
′
(v, n) is the total number of winners in the V CG auction for a given valuation profile

v−i and total number of bidders n. This yields

Ev[V CGr∗(v−i)]

Ev[OPT (v−i)]
=

Ev
[
f(k

′
(v, n))

∑
i∈WV CG(v−i) φi

]
Ev
[
f(k∗(v, n))

∑
i∈WOPT (v−i) φi

]
=

Ev

[
f(k

′
(v, n))

(∑
i∈WOPT (v−i) φi +

∑
i∈WV CG(v−i)\WOPT (v−i) φi

)]
Ev
[
f(k∗(v, n))

∑
i∈WOPT (v−i) φi

]
=

Ev[f(k
′
(v, n))

∑k′

i=1 φ(i)]

Ev[f(k∗(v, n))
∑k∗

i=1 φ(i)]
,

which further implies that

Ev[V CGr∗(v−i)]

Ev[OPT (v−i)]
≥ 1

e

Ev[f(k
′
(v, n))

∑k′

i=1 v(i)]

Ev[f(k∗(v, n))
∑k∗

i=1 φ(i)]
(12)

≥ 1

e

Ev[f(k
′
(v, n))

∑k′

i=1 v(i)]

Ev[f(k∗(v, n))
∑k∗

i=1 v(i)]
(13)

≥ 1

e
. (14)

Inequality (12) follows from Lemma 3, and inequality (13) is satisfied due to v(i) ≥ φ(i) for

every i. Inequality (14) follows by the definition of the VCG auction, i.e., f(k
′
(v, n))

∑k′

i=1 v(i)

is socially optimal. This completes the proof.
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