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Order fulfillment is vital for successful business-to-consumer e-commerce firms. Customers 
place orders from various geographically disperse locations or, in the presence of multiple 
distribution channels, from various channels. The firm must make a tactical decision from which 
fulfillment centers to serve all of the forecasted demand and how much to procure for the 
forthcoming season. We present a single period distribution model that captures different 
customer locations or channels, each one with its own stochastic demand. The distribution cost 
for shipping goods from fulfillment centers to customers and the procurement costs are captured 
together with the associated revenue. We develop and analyze two approximate models, of which 
one can be analytically solved. In addition, we give a lower bound on the exact model that is 
used in the computational study. The solutions from the approximate models are reasonably close 
to the lower bound and they give an improvement over the strategy of assigning a unique 
fulfillment center to each demand location.   

 

1. Introduction 
In late nineties we witnessed a boom in e-commerce. The proliferation of internet led to new 

business concepts such as business-to-business exchanges, portals, e-procurement, online auc-

tions, and business-to-consumer strategies. Especially the latest paradigm of business-to-

consumer had the most significant influence on everyday life of consumers since it involves 

them directly. In addition, online retailing is rising quickly; from $8 billion in revenues generated 

by the US retailers in 1998 to $90 billion in 2004, Grosso et. al. (2005). Many firms use internet 

to sell directly to consumers, i.e., they use the direct channel. While direct sales are not confined 

to internet (catalog and mail sales exist for a long time), they definitely became the most wide-

spread direct channel. The pioneers in this direction are the book retailer Amazon.com and the 

computer manufacturer Dell who originally was selling only through the direct online channel 
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before cooperating with Best Buy.  

On the other hand, there are several firms that use various distribution channels. Barnes & 

Noble, another book retailer, uses its stores as a distribution channel and it offers a direct channel 

through its own web site. Several firms, e.g., Barnes & Noble, Gap, Best Buy, Levi Strauss & 

Co., used or are using both channels: the direct channel and the reseller channel. It is expected, 

due to lower distribution costs, that the price in a direct channel to be lower than the one in the 

reseller channel. However, not to undercut and interfere with retail sales, several firms price their 

products in the direct channel equal to or above their reseller price. Estee Lauder offers the same 

price on their Clinique.com web site (Machlis (1998b)) and Nike sells online for the retail price 

(King (1999)). Mattel Toys (Bannon (2000)) and Intuit (Machlis (1998a)) even offer higher pric-

es on their web sites. 

To boost profitability, order fulfillment processes are critical. Amazon.com and Dell are two 

examples of efficiency machines when it comes to fulfillment. When an online order is placed, 

the firm faces the decision from which fulfillment center to ship. Fulfillment centers can be 

stores and warehouses owned by the company or outsourced facilities to carriers such as FedEx 

Express and UPS. For example, Amazon.com has 19 fulfillment centers and the fulfillment deci-

sion factors in real-time order data and ship dates in order to develop optimal pick, pack, and 

ship processes. Which fulfillment center to use is an important decision especially when the 

shipping cost is covered by the company. This is usually the case when the customer selects the 

‘standard’ shipping option.  

For seasonal items such as apparel, the firm must make the procurement or manufacturing 

decision before the season starts. During the season, the demand realizes in several sales loca-

tions, which are geographically dispersed. In the case of multiple channel operations, each chan-

nel can have several sales locations. Pure e-tailers have only a single direct channel and therefore 

sales locations can be identified with geographic markets. In addition to the procurement or 

manufacturing cost, the firm incurs the shipping cost, which depends on the sales location. Clear-

ly the firm wants to minimize the distribution cost. In addition, the revenue stream comes from 

selling the product at the regular price and the potential income from selling at the markdown or 

salvage value in case the procurement or production quantity exceeds the demand. 

In this paper we lay down a modeling framework for such tactical planning of seasonal items. 

The model has two intriguing components. The first one is that the demand at sales locations can 
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be fulfilled from any fulfillment center. Thus, we allow, for example, that only a fraction of the 

demand be fulfilled from one fulfillment center and a different fraction of the demand from 

another fulfillment center. The second component is in modeling the optimal shipping cost, 

which depends on the realized demand and the procurement or production quantity. Unfortunate-

ly, the underlying model is very hard to analyze analytically and therefore we develop two ap-

proximate models. One of them can be analytically analyzed, i.e., the desired quantities can be 

explicitly computed and used as a heuristic. In addition, we develop a lower bounding procedure 

on the value of the optimal model. Numerical experiments performed on randomly generated in-

stances show that the heuristic on average performs reasonably well.  

The main novelties of this work are the two components described above. They yield an in-

triguing version of the standard newsvendor problem, which is analyzed by employing an ap-

proximation and then decomposition. The numerical experiments show that the proposed heuris-

tic produces better results than the standard heuristic of assigning a sales location to a unique ful-

fillment center (thus not allowing the demand from a sales location to be split among several 

centers). The improvement increases with the increased variability in the demand.  

In Section 2 we first present the underlying model. Next the two approximate models are 

provided and we show that both of them yield an upper bound. Section 3 focuses on one of the 

two approximate models by giving an explicit solution to the model. In Section 4 we give a low-

er bound on the exact model, which is then used in computational experiments in Section 5. 

Conclusions are wrapped up in Section 6. We finish the introduction with a literature review. 

Literature Review 

Most of the related research concerns the multi-channel studies of firms. Many authors study de-

centralized systems with multi-channels. The main question is under what conditions is benefi-

cial to establish a direct channel. Another important question is the pricing strategies for the di-

rect and the reseller channel, i.e., should the price be the same and if not, how to set them up. 

Tsay and Agrawal (2000), Chiang et. al. (2003), Tsay and Agrawal (2004a), and Jain et. al. 

(2005) study cons and pros of using both channels in a decentralized system. They also compare 

three possible scenarios: the firm has only a direct channel, the firm has only the reseller channel, 

and the firm is using both channels. Cattani et. al. (2003) consider also different price setting 

strategies between the two channels. Similarly, Boyaci and Gallego (2002) study pricing and 
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channel profits in a single warehouse multiple store setting. Boyaci (2005) assumes that channels 

are differentiated based on the location and the channel related demand is substitutable. The dis-

tribution cost is not a factor. Bernstein et. al. (2005) study the impact of setting up a channel to 

‘taste’ the product, which then hopefully induces additional reseller demand. Cattani et. al. 

(2004) and Tsay and Agrawal (2004b) provide recent surveys related to this line of research.   

There is also limited inventory management literature in multi-channel settings. Unfortunate-

ly in a multi-channel setting soon the underlying models become very hard to analyze. Chiang 

and Monahan (2005) study the two echelon continuous review model with a single direct chan-

nel. The reseller channel consists of a warehouse that supplies a single retailer. The retailer has 

exogenous demand where customers shop at the store. In addition, the direct demand is fulfilled 

from the warehouse. The authors study base stock policies. A similar system is studied by Allgor 

et. al. (2004) where several heuristics are proposed for the multi-item version of the problem. 

The closest work to ours is the publication by Alptekinoglu and Tang (2005). Their model cap-

tures several cross-docking depots not carrying inventory and multiple sales locations. Like our 

work, the demand from a sales location can be fulfilled from several depots. They study the peri-

odic review model in which the distribution cost, the holding cost at sales locations, and back-

logging costs are captured. They propose a decomposition heuristic where in the first step a frac-

tion of each demand is assigned to a depot. In the next step they approximately solve the problem 

with a single depot and several sales locations. Our model is a single period model where we also 

capture revenue. In addition, our fulfillment centers carry inventory. Another important differ-

ence is in the allocation of the distribution costs. Alptekinoglu and Tang (2005) model explicitly 

the flow from a depot to the sales location. On the other hand, our model assumes an optimal 

shipping strategy once the demand is observed. Such a choice leads to a much more complicated 

shipping cost function. Our heuristic is complementary to the one presented by Alptekinoglu and 

Tang (2005) since we decompose the problem with respect to a single sales location.  

The business-to-consumer setting is also considered in Bagga et. al. (2005). In their work a 

single warehouse supplies several stores, which fulfill the direct demand. They assume that a 

fixed order up-to-level replenishment policy is followed and they study day-to-day operations, 

i.e., execution planning. They do not allow demand from a location to be split among several 

stores, i.e., a single store must serve the entire demand from a location. They present an integer 

program to perform the assignment.  
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Since we study the single period problem, the standard newsvendor problem and its variants 

relate to our work as well (see e.g. Khouja (1999) for a recent survey). Of particular interest are 

the newsvendor networks, where several items and several locations with capacity restrictions 

are considered (see e.g. Van Mieghem and Rudi (2002) and the references therein). Their model 

is a more general model than ours from a modeling standpoint. The key difference between our 

paper and theirs lies in the solution methodology. Their focus is not on a practical algorithm but 

insights. Due to their generality with respect to locations and items, analytical solutions cannot 

be obtained. Our paper does provide a practical approximation algorithm with an analytical solu-

tion.  

Our model generalizes the work by Swaminathan and Tayur (1998) who study how to delay 

product differentiation by using semi-finished products while managing broader product lines. 

They refer to these semi-finished products as vanilla boxes. Given a set of vanilla box configura-

tions, the problem is to decide the inventory level of each vanilla box before demand is realized, 

and the allocation of vanilla boxes to assemble a variety of finished products after demand is rea-

lized. Their inventory level of each vanilla box corresponds to the procurement quantity at each 

facility in our model, while their allocation of vanilla boxes corresponds to the shipment deci-

sions in our model. They use a subgradient based method to solve the underlying two stage sto-

chastic program with recourse. The subgradient algorithm is not suited for a large number of de-

mand realizations (Birge and Louveaux 1997). The algorithms developed in this paper apply to 

their model since it is a special case of our model. Furthermore, one of the proposed algorithms 

can be used to solve practical problems with a large number of demand realizations. 

2. Models 
We consider n  fulfillment centers or distribution facilities operated by a single corporation, i.e., 

a centralized system, and m sales locations or markets in a single time period and a single item. 

Before the time period starts, each facility must procure or produce a certain amount of the item 

for which it incurs a certain cost. The procurement lead time is long such that a second procure-

ment is not possible during the time period after observing some demand. The procurement or 

production cost of facility i is denoted by ic . During the time period the demand at each market 

realizes. If the procurement quantity exceeds the total demand, then the surplus is salvaged with 

s being the salvage value. If the total demand exceeds the procurement quantity, there is no pe-
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nalty for unfulfilled demand. The selling price of the item is r and it does not depend on the mar-

ket. While this does not need to hold in general for multi-channel firms, we gave in the introduc-

tion several examples of firms using multiple channels, which price the product equally in all of 

these channels. For a pure e-retailer such an assumption holds in practice. We assume scr i ≥>  

for every Ni∈ , which is a standard assumption for newsvendor type problems. The product that 

is sold at a market incurs additional distribution cost to ship it from the facility to the market. Let 

ijd be the per unit distribution cost between facility i and market j. Surplus procurement quantity 

is salvaged at the fulfillment center and incurs no distribution cost. Stochastic demand jD~  of a 

particular market j can be fulfilled from several facilities, see Figure 1. A realization of the sto-

chastic demand of market j is denoted by jD . Once the demand realizes, we assume that an op-

timal shipping decision is made. The demands can be correlated; however, we do not allow subs-

titutions. Substitutions happen in multi-channel settings, but they are very hard to quantify. The 

no substation assumption is easily justified in the pure e-retailer setting. We assume that the cus-

tomer demand is fulfilled as long as there is sufficient supply at the facilities. Let },...1{ nN =  be 

the set of all distribution facilities and let },...,1{ mM =  be the set of all markets.  

 
Figure 1: The material flow with n=3, m=2 

 

A two stage stochastic linear model is formulated to find the optimal procurement quantity 

),...,( **
1

*
nyy=y  and the optimal distribution decision ),( ** Dyijv  under each realization of de-

mand ),...,( 1 mDD=D . Here ),( Dyijv  is the amount shipped from distribution facility i  to mar-
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ket j . (Vectors are denoted in bold.)  

The single period profit maximization problem (we actually minimize the negative of the 

profit) is 

})~()~,min()~,({min ~
+

∈∈∈∈∈
≥ ∑∑∑∑∑ −−−+=

Mj
j

Ni
i

Mj
j

Ni
ii

Ni
i DysDyrgycEZ DyD0y

.    (1)

 
Here we denote )~,...,~(~

1 mDD=D . The first term i
Ni

i yc∑
∈

 is the procurement cost. The third term 

]),min([ ∑ ∑
∈ ∈ni Mj

ji Dyr  is the selling income and the forth term ])([ +

∈∈
∑∑ −

Mj
j

Ni
i Dys  equals to the 

salvage value. The second term )~,( Dyg is the distribution cost, which is the optimal objective 

value of the second stage problem derived next. 

Given demand realization ),...,( 1 mDD=D  and fix procurement quantities ),...,( 1 nyy=y , the 

distribution cost is given by  

                
∑

∈∈

=
MjNi

ijijvdg
,

min),( Dy  

                         
∑
∈

≤
Mj

iij yv
   

ni ,...,1=                      (2)   

        
∑
∈

≤
Ni

jij Dv
 

mj ,...,1=       (3) 

  ),min(
,
∑ ∑∑

∈∈ ∈∈

=
MjNi Mj

j
Ni

iij Dyv                       (4) 

                                0≥ijv   ni ,...,1= mj ,...,1=  
            

Constraints (2) impose that we do not ship more than we have available, while (3) guarantee that 

the shipping quantity does not exceed the demand. Constraint (4) specifies that we ship as much 

as possible.  

Remark: Under the assumption that ijr d≥  for every Ni ∈  and Mj ∈ , the previous model is 

equivalent to the following model:  

Z min E { c y g( , ) s( y D ) },i i i ji N i N j M
− += − −∑ ∑ ∑

≥ ∈ ∈ ∈
y D

Dy 0
 

where       

∑
∈∈

−=
MjNi ijvijdrg

,
)(max),( Dy

 
∑
∈

≤
Mj iyijv ni ,...,1=  
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∑
∈

≤
Ni jDijv mj ,...,1=  

0≥ijv  ni ,...,1= 1j ,...,m.=  

To see the equivalence between this model and model (1), note that under the assumption ijr d≥ , 

the optimal shipping quantities ijv of this equivalent model must satisfy constraint (4) for any 

given demand realization D  and procurement quantities y . In practice, the assumption may be 

violated especially for e-tailers. Hence, in what follows, we will focus on model (1), which is 

more general.  

The exact two stage stochastic linear program (1) is hard to analyze. Analytical functional 

form of ),( Dyg  cannot be derived in general. Furthermore, ),( Dyg is neither convex nor con-

cave. Standard algorithms like the L-shaped method do not apply here. Therefore next we 

present two approximation models, namely the production based shipping (PBS) and link based 

shipping (LBS) models. Both of them are based on the concept of greedily approximating the 

distribution cost ),( Dyg . To this end, we select and fix an order of shipping links ),( ji , which 

we denote by nmlll ⋅,...,, 21 . For ease of notation, let ),( kkk jil =  and 
kk jik dd = for mnk ,...,1= . 

Each shipping order can in essence gives a different PBS and LBS model. One example of a 

shipping order is the one corresponding to the non-increasing order of the shipping cost d , 

which is shown to be the optimal shipping order under some condition on d ,  for LBS later in 

the paper. 

 The first approximate model called the production based shipping model reads 

})~,()~()~,min({min
1

~1 ∑ ∑∑∑∑∑
∈

⋅

=

+

∈∈∈∈
≥

+−−−=
Ni

nm

k
kk

Mj
j

Ni
i

Mj
j

Ni
iii wdDysDyrycEZ DyD0y

. 

The only difference between the exact model and the PBS model is in replacing the term 

),( Dyg  by ∑
⋅

=

nm

k
kk wd

1
),( Dy . Here ),( Dykw  is the shipping quantity on link kl under demand D  

and procurement quantity y . For fixed procurement vector y  and demand vector D , we employ 

the shipping strategy of first shipping as much as possible along 1l , then along 2l , and so forth. 

Under this shipping strategy, ),( Dykw  is calculated as shown in Algorithm 1. In the algorithm, 

ky  and kD are the remaining procurement quantity and demand before assigning shipment for 
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link kl , respectively. For vu ≤ , 
v
ue  is the v  dimensional u’th unit vector.  

 

 

 

 

 

 

 

Algorithm 1: Production based shipping 
 

The second approximate model called the link based shipping model reads 

})~,()~()~,min({min
1

~2 ∑∑ ∑ ∑ ∑∑ ∑
⋅

=∈ ∈

+

∈ ∈∈ ∈
≥

+−−−=
nm

k
kk

Ni Mj Mj
j

Ni
ij

Mj
j

Ni
ijiji wdDxsDxrxcEZ DxD0x

. 

The second approximate model uses different decision variables. Namely, for each shipping link 

),( ji  we have a decision variable ijx , which specifies the reserved procurement quantity of ful-

fillment center i  for market j . Actual shipping quantity ijv  may be smaller than ijx . In this case, 

the surplus amount ijij vx −  is salvaged at fulfillment center i  and cannot be used to satisfy de-

mand at markets other than j . The procurement quantity iy  of distribution facility i  is now

∑
∈Mj

ijx . In this model the second stage function ),( Dyg  is approximated by∑
⋅

=

nm

k
kk wd

1
),( Dx . Here 

),( Dxkw  is the shipping quantity on link kl under demand D  and available link shipping quanti-

ty x . In this setting, the total shipment ∑
∈Ni

ijv  to market j  is independent from the shipments to 

other markets; so is the salvage value for market j , which is now +

∈

−∑ )min( j
Ni

ij Dxs . The distri-

bution quantities ),( Dxw  are again computed greedily based on Algorithm 2. Here kD is the 

remaining demand before assigning shipment to link kl .  

 

 

 

Initialization: yy =1 , DD =1  
For nmk ⋅= ,..,1  

 },min{ k
j

k
ik kk

Dyw =  
1

k

k k n
k iw+ = −y y e  

1
k

k k m
k jw+ = −D D e  

End For 

Initialization: DD =1  
For nmk ⋅= ,..,1  

},min{ k
jjik kkk

Dxw =  
m
jk

kk
k

w eDD −=+1 . 
End For 
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Algorithm 2: Link based shipping 
 
Example 1: Consider the following example with 3,2 == mn , Figure 2. 

 
Figure 2: Data for Example 1 

Let us assume that the shipping order is given by the following sequence 

)2,1()1,2()1,1()3,2()2,2()3,1( →→→→→ , where the shipping cost is denoted as 

)2,1(6)1,2(5)1,1(4)3,2(3)2,2(2)3,1(1 ,,,,, dddddddddddd ====== . The distribution cost for 1Z  

based on Algorithm 1 is as follows: 

).)(),,)min(()min(()),)min((

),)(,)min(()min((),)min((

))(,)min((),min(),min(),(

221313161311

13222251314

1322322231

32

1
1

++++

++++

++
⋅

=

−−−−+−−

−−−−+−+

−−++=∑

yDDDyDydDDyD

yDDyDydDDyd

yDDydDydDydwd
k

kk Dy

 

Similarly, the distribution cost for 2Z  based on Algorithm 2 is as follows: 

))(,min(),min(),min(),( 13323322223131

32

1

+
⋅

=

−++=∑ xDxdDxdDxdwd
k

kk Dx  

).)(,min())(,min(),min( 2221261112151114
++ −+−++ xDxdxDxdDxd                                  □ 

 
Our first result states that 1Z  and 2Z  overestimate the optimal value Z .  

Theorem 1: For Z , 1Z and 2Z  defined earlier, we have 1ZZ ≤ . In addition, if maxdsr +≥ , where 

ijMjNi
dd

∈∈
=

,max max , then we have 21 ZZ ≤  under the same shipping order. 

1c  

2c  
23d

22d

21d

13d
 12d

11d 1D  

2D

3D  
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The following lemma is used in the proof. 

Lemma 1: If sdr ≥− max , then for any n  and any nn yyxx ,...,,,..., 11 , we have  

1 1 1 1 1 1

n n n n n n

max i i i i max i i i i
i i i i i i

( r d )min( x , y ) s( x y ) ( r d ) min( x , y ) s ( x y )+ +

= = = = = =

− + − ≥ − + −∑ ∑ ∑ ∑ ∑ ∑ . 

Proof: A simple case analysis proves the statement for 2=n . The general case then follows by 

induction.                      □ 

Proof of Theorem 1:  The only difference between the PBS model and the exact model is in ob-

taining the distribution quantities for fixed purchasing quantities y  and demand realizationD . 

The exact model requires the optimal shipping quantities while the PBS model assumes only 

feasible shipping quantities. Hence we have 1ZZ ≤ .  

    Given any solution x  for the LBS model, we can always construct a feasible solution 

∑
∈

=
Mj

iji xy  for the PBS model under the same shipping order. Let ),( DyPBS
kw , ),( DxLBS

kw  be the 

shipping quantities obtained from Algorithm 1 and 2, respectively. Then  

≤−∑
⋅

=

nm

k

LBS
k

PBS
kk wwd

1
)),(),(( DxDy  

=−∑
⋅

=

nm

k

LBS
k

PBS
k wwd

1
max ))),(),((( DxDy  

∑ ∑∑∑∑
∈ ∈∈∈ ∈

−
Mj

j
Ni

ij
Mj

j
Mj Ni

ij DxDxd )),min(),(min(max  

provides an upper bound on the transportation cost difference. The other cost difference is the 

selling income plus the salvage value (i.e., the revenue). The revenue is 
+

∈∈ ∈∈∈ ∈
∑∑∑∑∑∑ −+ )(),min(

Mj
j

Mj Ni
ij

Mj
j

Mj Ni
ij DxsDxr  

for the PBS model and ij j ij j
j M i N j M i N

r min( x ,D ) s ( x D )+
∈ ∈ ∈ ∈

+ −∑ ∑ ∑ ∑ for the LBS model. By Lemma 1, 

if maxdsr +≥ , we know that 2Z is no larger than the upper bound of corresponding 1Z . Hence we 

have 21 ZZ ≤ .                                                                                                                                □ 

The following example shows that when maxdsr +< , the reverse inequality 2Z Z>  can happen. 

Example 2: Consider the example with 2,1 == mn . Demand 1D  can be either 2 or 4 with equal 
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probability, while demand 2D  is fixed at 1. The selling price is 100=r , the procurement cost is 

41=c , and the salvage value is 40=s . The shipping costs are 111 =d  and 7112 =d . Note that 

12dsr +<  in this example. The optimal Z  is obtained by 4=y , which gives 

5.167)))4140(1)7141100(1)141100(2(5.0)141100(45.0( −=−×+−−×+−−××+−−××−=Z . 

The optimal 2Z  under the shipping order )2,1()1,1( →  is obtained when 411 =x  and 012 =x , 

which gives 

 2 0 5 4 100 41 1 0 5 2 100 41 1 2 40 41 173Z ( . ( ) . ( ( ) ( ))) Z .= − × × − − + × × − − + × − = − <         □ 

Next we give conditions under which ZZ =1 . These conditions are closely related to the 

Monge property of the transportation problem, see e.g. Burkard (1996). 

Theorem 2: Let us assume that the shipping cost has the following property: 

                                                     1, +≤ jiij dd   for all Ni∈  and Mj∈ ,                                (5) 

                                     jiij dd ,1+≤   for all Ni∈ and Mj∈ , and     (6) 

jijijiij dddd ,11,1,1 ++++ +≤+    for all i and j .                       (7) 

Then 1ZZ =  for the shipping orders given either by the sequence 

                                  (1,1),(1,2),…,(1,m),(2,1),…,(2,m),…,(n,1),…,(n,m)                             (8) 

or 

                                   (1,1),(2,1),…,(n,1),(1,2),…,(n,2),…,(1,m),…,(n,m)                            (9) 

Proof: Consider )( Dy,g  for any y and a demand realizationD . Assume first that ∑∑
∈∈

>
Mj

j
Ni

i Dy . 

Thus )( Dy,g  equals to the transportation problem 

∑ ijijvdmin  

  ∑
∈

=+
mj

iiij ysv   ni ,...,1=  

        ∑
∈

=
ni

jij Dv   mj ,...,1=  

                                                                0≥ijv      ni ,...,1= mj ,...,1=  

  0≥is     ni ,...,1=  

Properties (5) and (7) imply that this problem has the Monge property and by the result of 

Hoffman (1963), the northwest corner rule is optimal. This rule corresponds to the sequence giv-
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en either by (8) or (9) in the statement of the theorem. We conclude that for any )( Dy,  with 

∑ ∑> ji Dy , )( Dy,w  from Algorithm 1 using either the shipping order (8) or (9) is optimal to 

this transportation problem. By using (6) and (7), we get the same conclusion for the case 

∑ ∑≤ ji Dy with either the shipping order (8) or (9). Hence clearly we have .        □ 

3. Single Market Analysis 
In this section we study the problem with a single market. We first show that the LBS model de-

composes with respect to markets. Then we analyze the optimal solutions of the LBS model with 

a single market. We first make an observation regarding the shipping order. 

Note that each shipping order can in essence give a different PBS and LBS models. The op-

timal shipping order for Algorithm 1 depends on D  and y  and therefore we are not able to de-

termine an optimal shipping order for the PBS model. On the other hand, as shown next, we can 

explicitly give an optimal order giving the lowest Z2. We start by showing that the LBS model 

decomposes with respect to the markets. 

Proposition 1: Let ).,...,( 1 njj
j xx=x  Then ∑

∈

=
Mj

j
j

jD DZEZ
j

))~,(ˆ(min ~2 x  for some functions

RRZ n
j →+1:ˆ . 

Proof: Recall that from Algorithm 2 ),( Dxk
jD  is the remaining demand of market j  before as-

signing shipment for link kl . We first show that ),(ˆ),( j
jk

j
k

j DDD xDx =  for every Mj∈ , 

mnk ⋅= ,...,1 , and functions RRD nk
j →+1:ˆ . This means that k

jD  is a function of only jx and 

jD .   

We prove this by induction. The statement holds for 1=k . Let now 1>k . By Algorithm 2 

and induction hypothesis we have )),(ˆ,min()(
k

k

kkk j
jk

jjik DDxw xDx, = , which is a function of 

only kjx  and 
kj

D . For kjj ≠  we have ),(ˆ),(),(1
j

jk
j

k
j

k
j DDDD xDxDx ==+

 by the induction 

hypothesis. On the other hand, for kjj =  we have k
k

j
k

j wDD
kk

−=+ ),(),(1 DxDx

kj
jk

j wDD
k

k

k
−= ),(ˆ x , which is again a function of kjx  and 

kj
D .  

Above we have also proved that kw  is a function of only kjx  and 
kj

D . The statement now 

1ZZ =
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easily follows from the definition of 2Z .                          □ 

As opposed to the PBS model, the greedy order does give the lowest 2Z  as shown next.  

Theorem 3: Among all shipping orders, the order corresponding to the non-increasing order of 

the shipping cost d  gives the lowest value of 2Z . 

Proof: By Proposition 1 it suffices to consider each market separately. Let j  be fixed and let jx  

be the available shipping quantities for market j . Then the optimal shipping quantity *w~  given 

any demand realization jD  and procurement quantities jx   is given by 

∑
∈Nk

kkj wd ~min  

∑
∈

≤
Nk

jk Dw~
 

∑ ∑
∈ ∈

=
Nk Nk

kjjk xDw },min{~  

           kjk xw ≤≤ ~0  Nk ∈ . 

The optimal solution to this linear program is to ship as much as possible based on the non-

increasing order of d . This strategy corresponds to Algorithm 2 when the fixed shipping order 

corresponds to the non-increasing order of d .                                      □ 

From Proportion 1 and Theorem 3, the LBS model decomposes and for each model the op-

timal shipping order is the non-increasing order of d . We conclude that it suffices to consider 

only a single market. For the remainder of this section, we consider the case with n  distribution 

facilities and only a single market 1=j  with demand distribution D~ . The facilities are ordered 

with respect to the non-increasing order of d . Given demand realization D  and fixed procure-

ment quantity ),...,( 1 mxx=x  for this market, the objective function (the negative of the profit) is 

∑ ∑∑∑∑
=

+
−

=

+

∈∈∈

−+−−−=
n

i

i

j
jii

Ni
i

Ni
i

Ni
ii xDxdDxsDxrxcDZ

1

1

1

))(,min()(),min(),(ˆ x . 

Our goal is to solve )).~,(ˆ(min ~2 DZEZ D x
0x >

=  By the imposed order we have nddd ≤≤≤ ...21 . 

By the standard scaling argument, we can without loss of generality assume that 1)~( =DE . We 

also assume that rcd nn ≤+ . If rcd nn >+  (and from scn ≥ ), it follows that we can fix 0=nx . 

This can be seen by a long but elementary argument combined with a case analysis. 
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Now we characterize the solutions corresponding to .2Z  First we define a partial order ji ∝  

if jjii dcdc +≤+ , ji dd < , and ji cc ≥ . Let kiii ∝∝∝ ...21  be a chain. We define 

sdr
cdr

i

ii
i −−

−−
=σ  and 

ij

iijj

dd
dcdc

ji
−

−−+
=),(ξ . We say that the chain is compatible if 

.1),(...),(),(0 13221 ≤≤≤≤≤≤ − kikk iiiiii σξξξ  An example of a compatible chain is as follows. 

 
Example 3: Consider ,6=n  a single market, and in addition let us assume that 

,... 6321 dddd ≤≤≤≤ and .... 6321 cccc ≥≥≥≥ We also have the condition 2211 dcdc +≤+

55 dc +≤ . Consider the chain 521 ∝∝ . Furthermore, we assume that 5)5,2()2,1( σξξ ≤≤ . Thus 

the chain 521 ∝∝  is compatible.                 □ 

 
If },...,,,{ 321 kiiiiS =  is a compatible chain, it has a solution )(Sx  for 2Z  with the following 

property. For SNi \∈  we have 0=ix . The corresponding solution for Si∈  is computed from 

),(),...,,(),,( 1

...

0

~32
0

~21
0

~

11211

kk

xx

D

xx

D

x

D iidFiidFiidF
kiiiii

−

+++

=== ∫∫∫
−

ξξξ , and
k

kii

i

xx

DdF σ=∫
++...

0

~

1

. 

Here DF~  is the cumulative distribution function of demand D~ . By definition of the partial order 

we have ,1),(0 1 ≤≤ +kk iiξ .10 ≤≤
ki

σ  By the compatibility property, it easily follows that 0≥ix

for Ni∈ . Hence the solution defined on each compatible chain S  is feasible for the LBS model 

with objective function 2Z . For each compatible chain S , let )(Sα  be the corresponding objec-

tive value, i.e., )~),((ˆ(~ DSZED x . Hence )(2 SZ α≤  for any S . 

The compatible chains can be chains of a single element }{ 1iS = . Such a chain is compatible 

if and only if 10
1
≤≤ iσ . The corresponding solution is 0,

1

1

0

~ ==∫ ii

x

D xdF
i

σ  for every }{\ 1iNi∈ . 

Note that this corresponds to the solution of the standard newsvendor problem with production 

cost ic , revenue idr −  and salvage value s . Due to our assumptions, any single element chain is 

a compatible chain.  

We now characterize the optimal solutions. We first need to prove convexity of the objective 

function.  
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Lemma 2: ),(ˆ DZ x  is a convex function of x  and therefore ))~,(ˆ(~ DZED x  is convex in x . 

Proof: It is easy to see from definition that 
1 1

n i

i i i j
i N i j

Ẑ( ,D ) c x h min( x ,D )
∈ = =

= +∑ ∑ ∑x , where 

),min()(),(
1

1
1

DxddDxh
i

j
jii

i

j
ji ∑∑

=
+

=

−=  for .1,...,1 −= ni  For ni = , the definition reads 

=∑
=

),(
1

Dxh
i

j
jn

+

==

−−−− ∑∑ )(),min()(
1

1
1

DxsDxdr
i

j
j

i

j
jn . Since nddd ≤≤≤ ....21 , all ih  for 

1,..,1 −= ni  are convex in u. The function nh−  is concave since ndr ≥ and 0≥s . From all these 

observations it is clear that Ẑ  is convex.                                                                                      □ 

Theorem 3: We have ).(min
chain        

 compatible  2 SZ
S

α=  

Proof:  Let )(min
chain        

 compatible  
S

S
αα = . In view of the above discussion we have α≤2Z .  

In order to show that 2Z≤α , let *x  be an optimal solution corresponding to 2Z  and 

}0|{ * >∈= ixNiS . We consider only variables in S  and discard those not in S  since they are 

fixed at zero. For ease of notation, let NS = . Let }0|{ >= ixU x  and ))~,(ˆ()( ~ DZExu D x= . 

Since U  is an open set and *x  is an optimal solution for 2Z , we must have 0| * =
∂
∂

x
ix

u  for every 

Si∈ . A long but straight forward calculation shows that this is equivalent to ∫
∑

=
=

n

i
ix

nDdF
1

*

0

~ σ  and 

∫
∑

−
−−+

=
=

+

++

k

i
ix

kk

kkkk
D dd

dcdcdF
1

*

0 1

11~  for all 1,...,1 −= nk . It follows now by definition that S  is a 

chain. In addition, since 0* >x , the chain must be compatible. By Lemma 2, every local mini-

mum is a global minimum. This shows that 2)( ZS ≤α , which completes the proof.         □ 

For the simple case 2=n , i.e., when there are only two fulfillment facilities, a close formula 

can be derived for the optimal solution. 

Corollary 1: If n = 2, then  

• if 2211 dcdc +≤+ , 21 dd ≤ , 21 cc ≥  and 2)2,1( σξ ≤ , the optimal solution is given by 
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2
0

~

21

σ=∫
+xx

DdF , ),2,1(
1

0

~ ξ=∫
x

DdF  

• otherwise 01 =x , 
sdr
cdrdF

x

D −−
−−

=∫
2

22

0

~

2

 , or 02 =x , 
sdr
cdrdF

x

D −−
−−

=∫
1

11

0

~

1

. 

4. A Lower Bound 
In this section we provide a lower bound on Z, i.e. on the optimal cost. The bound is based on 

linear programming duality.  

We first provide a lower bound on the distribution cost ),( Dyg . By linear programming 

duality ),(),min( DygyDyD
Ni Ni

i
Mj

jii
Mj

jj ≤+−− ∑ ∑∑∑
∈ ∈∈∈

λαβ  for any Dy,  and 0,0 ≥≥ βα ,λ  

unrestricted with ijji d≤+−− λβα  for all Ni∈ , Mj∈ . Therefore, a lower bound of the objec-

tive function in )4(  is provided by  

∑∑∑∑ ∑∑∑
∈

+

∈∈∈ ∈∈∈

−=−−−−−+−
Mj

jjD
Mj

j
Ni

i
Ni Ni

i
Mj

jiii
Mj

jjD DEDysyDrycDE βλαβ )~(])~(),~min()()(~[ ~~  

].)~(),~min()()([~
+

∈∈∈ ∈∈
∑∑∑ ∑∑ −−−−−+

Mj
j

Ni
i

Ni Ni
i

Mj
jiiiD DysyDrycE λα  

In turn, for any 0,0 ≥≥ βα , λ  unrestricted, we have 

.])~(),~min()()([min)~( ~
0

~ ZDysyDrycEDE
Mj

j
Ni

i
Ni Ni

i
Mj

jiiiDyMj
jjD ≤−−−−−+− +

∈∈∈ ∈∈
≥

∈
∑∑∑ ∑∑∑ λαβ  

It is obvious that there is an optimal solution to the second term on the left-hand side with 0* =iy  

for every }/{kNi∈ , where )(minarg ii
Ni

ck α−=
∈

. The corresponding *
ky  is the solution to 

∫ −−
−−−

=
*

0

~
)(ky

kk
D sr

crdF
λ

αλ , where .~~ ∑
∈

=
Mj

jDD  The resulting objective value of this term is 

0

*
ky

D( s r ) DdF ( D ).λ + − ∫  

Since we want to find the largest lower bound, we need to solve 

0

*
k

j

y

j jD D, , j M

max{ E ( D ) ( s r ) DdF ( D )}.
β α λ

Λ β λ
∈

= − + + −∑ ∫  From ijji d≤+−− λβα , 0≥β , and the 
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fact that β  should be as small as possible, we get +

∈
−−= )(max ijiNij dαλβ  for every Mj∈ . We 

also need to impose 1
)(min

0 <
−−

−−−
< ∈

sr

cr iiNi

λ

αλ
. Let  

)}.(min,)(min,,0|),{( iiNiiiNi
csrcsr ααλλλ −≤≤−+−≤≥=Ω

∈∈
αα  

We conclude that 

0

*
ky

j i ij D( , ) i Nj M

max { E( D )max( d ) ( s r ) DdF ( D )}.
λ Ω

Λ λ α λ+

∈ ∈∈

= − − − + + −∑ ∫α
 

is a lower bound on Z . Since for linear programs Lagrangian duality is equivalent to standard 

linear programming duality, we call this bound the Lagrangian bound. We note that in general it 

is a nonlinear optimization problem to solve for the largest lower bound.  

5. Numerical Experiments 
In this section we present numerical experiments that evaluate the strength of the two approxima-

tions and the Lagrangian lower bound. All computational experiments were performed on a To-

shiba Portégé M200 tablet PC running an Intel Pentium 1.7GHz central processing unit and 

equipped with a 512 Mbytes of random access memory. The operating system is Windows XP 

SP2. The development has been done in Microsoft Excel 2003 by using VBA. For solving opti-

mization problems we used What’s Best 7.0 (www.lindo.com).  

The exact optimization problem and the PBS model do not have an analytical solution. We 

have approximated their values by Monte-Carlo sampling. We generated 1,000 demand scenarios 

denoted by D1, D2, …, D1000 and next we solved the nonlinear optimization problem 

∑
=

≥

1000

10
),(ˆmin

1000
1

j

j

y
Dyz , where ẑ is the corresponding cost function. It takes on average 60 mi-

nutes to compute this value. On the other hand, the lower bounding optimization problem and the 

computation of the link based shipping heuristic requires less than a second of computing time. 

For this reason most of the computational experiments focus on the gap of the LBS value and the 

lower bound. Computing these two values is computationally feasible while computing PBS by 

Monte-Carlo sampling is in many cases excessive. 

We consider only the case with 2 distribution facilities and 2 markets. The demand is always 

normal and independent across the two markets. Unless otherwise stated, the mean of the de-

http://www.lindo.com/�
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mand for the two locations is equal. The two facilities and markets are selected as geographical 

locations and the shipping cost is proportional to the travel distance between the two locations. 

The baseline case has the following parameters:  

441 =c , 422 =c , 60=r , 40=s , .12,9,5.9,5.6 )2,2()1,2()2,1()1,1( ==== dddd  

We investigate only the shipping order (2,2)(1,2)(2,1) (1,1) →→→ , which corresponds to the 

greedy order. In all of the presented instances that are different from the baseline case we always 

maintain the following conditions on the shipping costs: 

.,,,, )2,2()2,1()1,2()1,1()2,2()2,1()1,2()1,1()2,2()1,2()2,1()1,1( dddddddddddd ≤≤≤≤≤≤≤  

The first four conditions are equivalent to (5) and (6) in Theorem 2. The last order imposing 

condition justifies the use of the greedy order.   

In view of Theorem 2 the following quantity defined as )()( )2,1()1,2()2,2()1,1( ddddl +−+=  

plays a role. We call it the shipping factor.  If  0≤l , then Theorem 2 states that the PBS model 

is optimal. In the baseline case 0=l  and therefore PBS gives an optimal value.   

In our first experiment we study the performance of the Lagrangian bound, the LBS model, 

and the PBS model. We selected the demand mean in each market to be 4000, 5000, and 6000 

and we vary the standard deviation of the demand from 100 to 1,500 in increments of 100, 

Figure 3. In what follows, “Lag” denotes the Lagrangian lower bound. The gap is defined either 

as (PBS-Lag)/PBS or (LBS-Lag)/LBS. The value of LBS is obtained by letting ∑
∈

=
Mj

iji xy ** in the 

exact model and calculating the expected transportation cost by simulation. Here *
ijx  is the op-

timal solution from LBS model. Since 0=l , the first ratio corresponds to the gap between the 

Lagrangian lower bound and the optimal solution while the second ratio corresponds to the gap 

between the Lagrangian lower bound and the link based shipping heuristic. In other words, the 

series denoted by “Lag/PBS” denote the effectiveness of the Lagrangian lower bound and those 

denoted by “Lag/LBS” the quality of the link based heuristic with respect to the Lagrangian low-

er bound. 

The series using production based shipping fluctuate due to the Monte-Carlo sampling com-

putation. Nevertheless we believe the sample size of 1,000 is indicative. Two trends can be im-

mediately observed. The Lagrangian lower bound gives a solid lower bound whenever the stan-

dard deviation is small. The quality of the bound deteriorates with the increasing standard devia-
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tion. A similar trend is observed with the gap of the heuristic; it keeps increasing as the standard 

deviation rises. Both gaps keep decreasing as the mean of the demand increases. For even larger 

mean values the heuristic is only within a few percent from the lower bound. We also observe 

that the gap between the lower bound and PBS represents a significant portion and therefore it 

seems that the LBS heuristic performs well. We further elaborate on this later.  

 
Figure 3: Performance with respect to standard deviation 

Unfortunately the gaps keep growing with even larger values of standard deviation, Figure 4. 

In this experiment we consider only the mean of 6,000, which actually yields the smallest gaps. 

We observe that the gap becomes fairly large for excessive values of standard deviation. Again it 

seems that most of the gap in “Lag/LBS” comes from the Lagrangian lower bound.  
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Figure 4: Performance for larger standard deviation 

Next we explore the impact of shipping factor l, Figure 5. We consider several discrete values 

of l, which were all obtained by appropriately varying the geographical locations of markets. The 

demand mean is fixed at 6,000. In view of Theorem 2, we expected that the negative shipping 

factor would create easier problems. However this is not the case. The gap is substantial for very 

negative shipping factors while for positive shipping factors the gap is usually within 5%. It is 

interesting that even for a very small standard deviation the gap is still large. There is a slight 

upwards trend for l=-1.95. For this case PBS represents an optimal solution while for l=6.5 PBS 

might be suboptimal. In the latter case nevertheless the gap between LBS and the Lagrangian 

lower bound is much smaller. The natural question to ask is if the lower bound is weak or the 

LBS heuristic does not yield good solutions. 

A further analysis of the case l=-1.95 is given in Figure 6. Here “PBS/LBS” shows the quan-

tity (LBS-PBS)/LBS. The gap between the LBS heuristic and the optimal solution represented by 

PBS (recall that Theorem 2 holds here) is always lower than 10%. On the other hand the gap be-

tween the Lagrangian solution and the optimal solution (Lag/PBS) is substantial. We conclude 

that in this case the Lagrangian lower bound is very weak. The quality of the LBS heuristic is 

satisfactory.   

0%
2%

4%
6%
8%

10%
12%
14%

16%
18%

1500 2000 2500 3000 3500 4000

Standard Deviation

G
ap

Lag/LBS Lag/PBS



 22

 
Figure 5: Dependency with respect to the shipping factor 

Now we compare the LBS model with a less sophisticated method. A naïve strategy is to as-

sign every market j to a unique distribution facility *i , where )(minarg*
iji

Ni
dci +=

∈
. Then we 

solve the newsvendor problem for each facility. The demand for a facility is the sum of demands 

of all the markets assigned to it. A distribution facility can serve more than a single market. For 

the 2x2 case the optimal naïve heuristic can be computed by solving 2 newsvendor problems. In 

Figure 7 we compare the naïve heuristic against the LBS heuristic. We consider the baseline case 

with the demand mean of 4,000 and we vary the shipping factor. Except for the case l=-0.44 

there is an upwards trend in the gap. Thus the benefits of using the LBS heuristic increase as the 

standard deviation increases. The most significant benefits are obtained for low shipping factors. 

On average the gains are between 1% and 2%. 
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Figure 6: Detailed analysis for the shipping factor l = -1.95 

 
Figure 7: Naive heuristic vs. link based shipping 

We have also performed a sensitivity analysis with respect to the operating margin. We define 

the margin to be ( ))(max
, ijiMjNi

dcr +−
∈∈

, i.e., the largest margin among all links considering the pro-

curement and the distribution costs. Figure 8 shows that the gap between the LBS heuristic and 

the lower bound decreases with the increased margin. In this experiment the mean of the demand 

is 4,000 and the shipping factor is 0. The distribution cost and the salvage value do not vary, 
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however the procurement cost and the selling price vary in order to achieve the desired margin. 

As in all cases so far, the gap increases with the increased standard deviation.  

In all of these experiments, the demand distribution in both markets was equal. The last set of 

experiments considers different demand mean values for the two markets. All the remaining val-

ues are the same as in the baseline case. Figure 9 considers three cases: (4000,4000), 

(3000,5000), (2000,6000), where the first number is the mean of the first market and the second 

number corresponds to the mean of the second market. Note that the total demand is always 

8000. The gaps do not differ substantially, nevertheless with the increased difference between the 

two mean values the gap increases.  

 
Figure 8: Gaps with respect to the margin 
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Figure 9: Different demand means for the two markets 

6. Conclusions 
In this work we present a heuristic using the LBS model and non-increasing shipping order for 

deciding procurement quantities in a multi-market environment. In addition, we provide a lower 

bound on the optimal value. Both of these two values can be quickly computed by today’s opti-

mization software packages. 

We perform a computational study with the case consisting of 2 distribution facilities and 2 

markets under demand being normally distributed. There are several important conclusions of 

these experiments. 

1. The heuristic performs well for small standard deviations. As the standard deviation in-

creases, the performance deteriorates.  

2. The heuristic improves on the naïve heuristic by several percent. The improvements in-

crease as the standard deviation increases. These several percent can correspond to signif-

icant savings in a season.  

3. The performance of the heuristics improves with increased margins. 

4. There are cases where the gap is large. Fortunately in these cases the heuristic is close to 

optimality and the lower bound is weak. 

We conclude that there are benefits of using our heuristic instead of the naïve heuristic. On 
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the other hand, there is still room for development of a better heuristic or solution. 

The most important extension to our work is the multi-period periodic review case. It is very 

unlikely that analytical solutions for such cases exist. Indeed, we believe that even the multi-

period extension of LBS does not have an analytical solution since the state space in the underly-

ing dynamic program is multi dimensional.  

There are also other assumptions in our model that are limiting in many real word cases. 

• We do not consider a fixed cost associated with procurement. 

• In many cases there is a set up cost of using a link (or in other words, of establishing a 

channel). These costs are neglected in our model. 

• We have already argued that many companies to avoid channel conflicts offer the same 

selling price among all channels. There are cases where companies set up different prices 

for different channels. Such an extension of our model is yet to be studied.  

• We do not allow for demand substitution. This is a reasonable assumption in the context 

of geographically dispersed multi-markets. In the multi channel setting, substitution hap-

pens. Indeed, some companies deliberately induce substitutions among channels.  
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