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An operator of a network of battery swap stations for electric vehicles must make a long term investment

decision on the number of batteries and charging bays in the system and periodic short term decisions on

when and how many batteries to recharge. Both decisions must be made concurrently, because there exists

a trade-off between the long term investment in batteries and charging bays, and short term expenses for

operating the system. Costs for electric energy as well as demand rates for batteries are stochastic and we

consider an infinite time horizon for operation of the system. We derive a complex optimization problem,

which cannot be solved optimally in a reasonable time for real world instances. In various small test cases we

show fundamental effects of the different parameters using an optimal solution algorithm. We then develop

a near-optimal solution heuristic based on Monte-Carlo sampling for the infinite horizon dynamic program.

We show that operating battery swap stations in a network where lateral transshipments are allowed can

substantially decrease expected operating costs.

Key words : Battery Swapping, Approximate Dynamic Programming, Lateral Transshipments, Stochastic

Optimization
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1. Introduction

Increasing emissions of green house gases and oil supply risks on the rise have intensified the

search for alternative power-train technologies (World Energy Council 2007). Because CO2 emis-

sions induced by the transportation sector grow fastest among all energy consuming sectors (U.S.
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Environmental Protection Agency 2006), a key to a greener environment is seen in the develop-

ment of alternative fuel vehicles. Especially electric vehicles (EVs) have lately attracted increasing

attention to cut down green house gas emissions and to limit the automotive industry’s impact on

the environment.

Compared to vehicles powered by internal combustion engines, EVs do not have tailpipe (local)

emissions and thus lower total well to wheel emissions, even with the current mix of energy sources

in power generation systems of more developed countries (MIT Electric Vehicle Team 2008). Grow-

ing shares of renewable energy sources in energy generation would even further increase this benefit.

The batteries of EVs could be used by the power grid as a storage helping to bridge phases of low

availability of intermittent energy sources in power generation (Nationale Plattform Elektromo-

bilität 2013).

However, adoption of EVs is still slow, because there are a number of challenges to overcome

before EVs could reach significant shares in car sales. Three fundamental problems limiting the

success of EVs are their low range on a single charge, long charging times, and high battery

prices. Current battery technology admits EVs to travel distances of 150 to 250 kilometers between

charges (Boston Consulting Group 2010, Hensley et al. 2012) and the fear to run out of energy

before reaching the destination, also referred to as range anxiety, still discourages many potential

customers from purchasing an EV. Additionally, recharging a battery with 30 kWh at a standard

110-volt outlet takes more than 18 hours. This time reduces considerably when charging at spe-

cialized fast charging systems, but high costs are incurred for installation of outlets with increased

power. Another factor limiting the success of EVs is that the cost of batteries is still high (around

USD 500 per kWh) and expected to remain above USD 250 per kWh of energy storage capacity

(Boston Consulting Group 2010) in the near future.

Because major breakthroughs in battery technology are not expected any time soon (Boston

Consulting Group 2010), other approaches to cope with the problems of limited range and long

charging times were developed.

One concept to handle the problem is to establish a system of battery swap stations at which

discharged batteries are replaced by charged ones. A car that requires battery swapping drives onto

a fully automated station, where the depleted battery is removed from the EV and replaced by a

fully charged battery. The removed battery is then recharged in specialized charging bays at the

station. This system promises to swap a battery in less than three minutes and solves the problem

of limited range; of course only if a swap station is en route (e.g., Mak et al. 2013, Avci et al. 2013).

Typically, batteries are not owned by car owners, but by the service provider.

Two companies have started to pursue the concept of battery swapping. While Better Place

has already installed swap networks in Israel and Denmark (Better Place 2013), EV manufacturer
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Tesla has only recently announced plans to install swap stations exclusively for their customers

(Tesla Motors 2013).

Battery swapping is an approach that relies on building a pervasive infrastructure and can only

be profitable if the infrastructure is provided at low cost. There are a number of issues, which

may be disadvantageous if not addressed properly. The most obvious is that battery swapping

requires more batteries than cars in a swapping network, and thus - because the cost of batteries

is high - it is crucial to determine the optimal number of batteries in circulation. Besides costs, the

optimal number of batteries is influenced by many factors such as the total demand rate, charging

time and capacity, and energy price volatility. Determining the optimal solution requires solving

a complex stochastic optimization problem. Another important factor determining infrastructure

and operating costs is the charging capacity, i.e., the number of batteries that can be recharged

concurrently at a station. The energy required to charge an EV battery is high and battery charging

puts a heavy strain on the power distribution network. As a result, possible reinforcements on the

power distribution network must also be accounted for, which makes the charging capacity a major

cost factor.

In this paper, we analyze the characteristics of battery swap stations and determine the optimal

number of batteries and charging bays. We first focus on a model with a single swap station and

assess how demand parameters, volatility of energy prices, and equipment costs affect the optimal

battery and charging capacity configuration. There exists a trade-off between equipment costs for

batteries and charging bays and the long term operating costs of a station. For example, a low

number of batteries at a station reduces investment expenses, but a station operator cannot exploit

varying energy prices when making a decision on when to recharge batteries without compromising

the desired service level. Another aspect to consider is that more batteries in stock can replace

additional charging bays and vice versa, because the risk of stocking out can be reduced either

way. We model the problem as a cyclic dynamic program and solve the infinite horizon problem

optimally.

We then extend our model to a network of swap stations in which the single station models are

building blocks that are interlinked to perform lateral transshipments of batteries. We quantify

the network effect on the optimal configuration of batteries and charging capacity in the system.

Again, we formulate a dynamic program for the swap network model. Because the problem is very

large, we solve it by an algorithm based on approximate dynamic programming (ADP), which

combines Monte-Carlo simulation and mathematical programming.

Our contribution is threefold. First, we present a dynamic programming formulation of a bat-

tery swap station. Unlike previous research, we allow energy prices and demand for batteries to

be stochastic and non-stationary and charging capacity at the station to be finite. Second, we
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show that the dynamic program is in general not coordinatewise convex, and we identify parts

of the state space on which coordinatewise convexity is present. Third, based on our analyses we

develop an algorithm that solves the single station model optimally and an approximation that

produces empirically observed near-optimal solutions for the network model. Our algorithms con-

currently determine the number of batteries and charging bays for each station along with the

operating policy for the station. In the network model, the algorithm additionally makes decisions

on transshipment of batteries between stations.

We also contribute three important managerial implications. Based on an extensive numerical

study using public real-world data, we identify the main parameters influencing the optimal number

of batteries and charging bays at a swap stations with and how these numbers are interrelated. We

show that at the current cost of batteries and energy price fluctuations, it is not profitable to exploit

arbitrage of energy prices. Our results also indicate that substantial savings in infrastructure costs

are possible, if transshipments of batteries between stations is allowed. Finally, we show that it

might be beneficial for station operators to use incentives to level demand for batteries over the

day, because demand volatility is a key driver of infrastructure costs.

This paper is organized as follows. In Section 2, we review the literature that is related to our

problem. In Section 3, we present our model for a single battery swap station and prove a number of

properties and derive a lower bound. In Section 4, we extend the single station model to a network

of swap stations and derive several properties. In Section 5, we present our solution approach for

both models. In Section 6, we discuss our findings from a numerical study, which is based on actual

data for energy prices, demand profiles and infrastructure costs. We conclude the paper in Section

7. Notation is summarized in the appendix.

2. Literature Review

In this section we review literature related to our work. Our model shares many characteristics

with classical inventory management models, especially with research on closed-loop supply chains

with repairable items. We first review literature on closed-loop supply chains and then literature

on extensions of these models to account for transshipment in inventory networks. We conclude by

reviewing the emerging body of literature specifically pertaining to battery swap stations.

The problem of managing a battery swap station is similar to a closed-loop inventory system

in which failed items (depleted batteries) are returned and replaced by functioning ones (charged

batteries). The returned items are then repaired (recharged) and absorbed as stock. A large body

of literature on this topic exists (see, e.g., Muckstadt 2005 and Nahmias 1981 for an overview).

Most work is based on the METRIC system of Sherbrooke (1968) and makes use of the implicit

assumption of infinite repair capacity (Graves 1985). As a result, optimization only involves the
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level of spares and not the repair capacity and no trade-off between inventories and capacity must be

made. There exist extensions of these models to capacitated systems that are modeled in continuous

time as queues or in discrete time as periodic review models. Queuing models typically assume

single-server queues (Gross and Harris 1971), exponential repair times (Gross et al. 1983), or only

approximate the steady state probability distribution (Dı́az and Fu 1997). In general, costs for the

repair of items and demand rates are assumed to be stationary, while our paper specifically takes

non-stationary energy costs and demands into account to quantify the effect of their volatility on

the optimal solution. Periodic review models assume per-period capacity limits (e.g., Glasserman

1997, Glasserman and Tayur 1994, and Roundy and Muckstadt 2000). However in our problem

charging capacity is not limited per period, but limits the total number of batteries that can be

recharged concurrently.

A second stream of literature related to our work is concerned with transshipments in an inven-

tory network. In our extended network model, we allow for lateral shipments of batteries between

swap stations. The literature distinguishes between models for repairable items and those pertain-

ing to consumable items. Both types of models are either queuing models assuming stationary

independent demands and ample repair capacity (Axsäter 1990 and Lee 1987) or periodic review

models that assume instantaneous transshipments (Muckstadt 2005). All models considering lateral

shipments in the context of repairable items assume a multi-echelon structure with a central repair

depot replenishing the decentral facilities at which demand for replacement occurs. In our model,

each base runs its own charging bay to recharge batteries. Similar to models with repairable items,

consumable item models with transshipments have been proposed as continuous time or periodic

review models. Periodic review models have been solved optimally for zero lead and transshipment

times for two stations (Archibald et al. 1997) and approximately in other settings (see, e.g., Jönsson

and Silver 1987, Minner et al. 2003, and Tagaras 1999). For recent advances in inventory models

with lateral transshipments the reader is referred to the overview by Paterson et al. (2011).

In summary, none of the models found in the literature incorporates all characteristics of the

problem considered in this paper, especially capacitated decentral charging facilities, non-zero

charging and transshipment times, and non-stationary cost and demand parameters in an infinite

time horizon setting. Additionally, none of the models allows for concurrent optimization of the

number of batteries and the charging capacity in the system.

Because it is still a very new concept, research on managing operations of electric vehicles is

scarce. Kaschub et al. (2012) show feasibility of battery swapping for urban public transport in

a case study, but no optimization is performed. To the best of our knowledge, Mak et al. (2013)

and Avci et al. (2013) are the only papers that study a battery swap station model. The former

focuses on developing a model that aids planning the locations of stations in a battery swap
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network. Avci et al. (2013) consider the battery management problem to assess the effectiveness of a

swapping network in reducing carbon emissions and oil dependence. Both papers apply a repairable

item inventory model such as the METRIC model in the context of a battery swap station and

assume stationary demand rates and energy prices along with ample charging capacity at the

swap station. In many applications, costs for electric energy and demand rates are highly volatile

with strong periodicity. Additionally, assuming ample capacity at swapping stations is not always

reasonable, because due to the strain induced on power grids by battery charging costly upgrades

to transmission capacities in local power distribution networks might have to be performed. We

relax both, the assumption of stationary parameters and infinite charging capacity, because they

lead to an underestimation of the optimal battery inventory (see, e.g., Gross 1982 and Dı́az and

Fu 1997) and an inaccurate estimate of expected operating costs of a station in the long run.

Our paper addresses both issues by developing a dynamic programming model for battery swap

stations. We are the first to address the problem of managing and concurrently determining the

optimal number of batteries and charging capacities at a battery swap station and performing

a numerical analysis based on public real-world data. We solve small instances of the dynamic

program optimally and approximate larger instances with an algorithm based on the ideas of

ADP. For an overview on ADP, the reader is referred to Powell (2007), Bertsekas and Tsitsiklis

(1996), Sutton and Barto (1998), and Powell and Van Roy (2004); for recent applications of ADP

to inventory management and resource allocation problems see, e.g., Topaloglu and Kunnumkal

(2006), Choi et al. (2006), and Van Roy et al. (1997).

3. Single Station

We begin by introducing our model of a single battery swap station, which is a building block for

the multi-station model with transshipments introduced subsequently. We next describe the model,

a number of properties, a lower bound to the optimal solution, and the structure of the optimal

solution.

3.1. Model

We consider a battery swap station providing charged batteries for arriving customers. Our goal

is to determine the optimal number of charging bays, total number of batteries required in the

system, and operating policy at a station.

We consider a fixed planning horizon, e.g., a week, that is divided into T + 1 time periods, e.g.,

into T + 1 = 168 hours. The planning horizon is cycled through infinitely many times as we want

to assess infinite horizon operating costs. We allow probability distributions for random variables

and cost parameters to be non-stationary over time to model the fact that electricity prices and

demand for batteries depend on time of the day and day of the week.
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In our model, batteries require L time periods to be fully recharged, i.e., all batteries require

the same charging time. This is a mild assumption if the majority of returned batteries has a state

of charge close to zero. The reason lies in the physical characteristics of recharging lithium-ion

batteries, because states of charge show a sharp increase in initial charging periods, followed by

a saturation phase. As a result, total charging time is approximately equal for returned batteries

with different states of charge in terms of time periods, if the period length is sufficiently large

compared to recharging times (e.g., Mak et al. 2013 and Chen 2007).

The sequence of events in each time period is as follows. At the beginning of period t, batteries

that have been charged for L periods become available and backlogged demand for batteries is filled

from on-hand inventory. We assume that demand that cannot be satisfied from on-hand inventory

is backlogged, because drivers most likely will have to wait for the next available battery at the

station and cannot keep driving. Next, after current prices for electric energy Et are revealed, the

station operator decides how many batteries xt to start charging. The station has finite charging

capacity of K and a number of uncharged batteries available, which constrain the charging decision.

Then, demand Dt is realized and filled from on-hand inventory. Demand that cannot be satisfied

is backlogged. At the end of the period, holding and penalty costs of batteries are charged.

We model demand as a discrete non-negative random variable that can be arbitrarily distributed.

Demand in our model follows a cyclic distribution, i.e., to follow the same distribution each time

period t is visited, but we assume demand to be independent across periods t= 0, . . . , T − 1.

Since we study the infinite time horizon setting, in what follows t = 0,1, . . . . We denote the

number of uncharged batteries at the station by Ut and the number of charged batteries that

become available in n periods by Wt,n. The current number of batteries on hand Wt,0 may also

take negative values in case of backlogged demand.

The number of uncharged batteries at the beginning of period t after on-hand inventory was

assigned to satisfy backlogged demand depends on the on-hand inventory, the charging decision,

the number of batteries that became available and the demand for batteries in period t− 1. If

demand exceeds on-hand inventory, then at most [Wt−1,0]+ +Wt−1,1 empty batteries can be returned

(we assume that empty batteries can be returned only, if a recharged battery is available for

replacement). On the other hand, if there are enough batteries to satisfy demand, then for each

demanded charged battery an empty one is returned. The transition equation for empty batteries

is given by

Ut =Ut−1−xt−1 + min
(
[−Wt−1,0]+ +Dt−1, [Wt−1,0]+ +Wt−1,1

)
.

The number of charged batteries on hand at the beginning of period t depends on the number

of charged batteries on hand and the demand in the previous period, and also on the number of
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batteries that finished charging, i.e., Wt,0 =Wt−1,0−Dt−1 +Wt−1,1. The transition for the charging

batteries is given by Wt,n =Wt−1,n+1 for n<L and Wt,L = xt−1.

The total number of batteries at a station is constant during its operation, because empty

batteries can only be dropped off at the station when a fully charged battery is available as

replacement. We denote the total number of batteries at the station by N . It is determined by

N(Wt,Ut) = [Wt,0]+ +
L∑
n=1

Wt,n +Ut. (1)

In each period, penalty costs for backlogged demand and costs for electric energy to charge

batteries are incurred. We denote the per unit backlogging cost by pt. Unlike previous research (Mak

et al. 2013, Avci et al. 2013), we assume that customers are provided with a fully charged battery,

if available, and paid a compensation of pt per period for waiting for a full battery otherwise.

Charging costs depend on the current price for electric energy Et and we model the price as a mean-

reverting process (e.g., Kim and Powell 2011, Eydeland and Wolyniec 2003) with cyclic mean and

noise variance (e.g., Lucia and Schwartz 2002). We define Et+1−Et = (µt+1−µt) +κ(µt−Et) + ζt,

where the noise term ζt is i.i.d. with distribution N (0, σ2
t ). We only consider cost in our model,

because contracts between the customer and operator of the swap station are typically designed

to work with either fixed monthly or per swap charges (Tesla Motors 2013, Better Place 2013). In

both cases revenue, as well as demand for batteries, is an exogenous parameter in our model that

depends only on the number of contracted customers of the operator.

The cost incurred in one period is given by

Ct(Wt, xt,Et,Dt) = et

(
β0xt +

L∑
n=1

βnWt,n

)
+ pt [Dt−Wt,0]

+
,

where βn corresponds to the amount of energy in kWh per battery in period n of the charging

process.

The decision on how many batteries to start charging is constrained by the number of available

uncharged batteries, i.e., 0≤ xt ≤Ut, and by the number of available charging bays at the station

K, i.e., 0≤ xt ≤K−
∑L

n=1Wt,n. Let St = (Wt,Ut,Et) be the state of the station at the beginning of

time period t, i.e., before actions are taken and random information is revealed, and let Et represent

the energy price in the previous time period. We denote the set of feasible charging decisions, given

the current state of the system and the charging capacity by X (St,K) = {x∈Z : x≥ 0, x≤Ut, x≤

K −
∑L

n=1Wt,n}.

We do not consider holding costs for batteries, because the capital cost for energy bound in

the batteries is negligible compared to penalty and energy costs. However, for each battery and

for each charging bays at the station an initial investment of CN and CK is necessary. In these
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investments, we include the expected infinite horizon maintenance or replacement costs for batteries

and charging bays, and therefore do not include it into Ct. Our goal is to find the cost minimizing

total number of batteries and charging bays at the station.

Without loss of generality, we assume that in t = 0 all available batteries are charged, i.e.,

W0 = [N, . . . ,0] and U0 = 0, and denote the initial state including the current price for electric

energy E0 by S0.

The optimization problem is

Z∗ = min
N≥0,K≥0

{
KCK +NCN +

∞∑
t=0

γtEEt
[

min
xt∈X (St,K)

EDtCt(Wt, xt,Et,Dt)
∣∣∣St]} , (2)

where 0≤ γ < 1 is a discount factor.

We reformulate the objective function of Problem (2) as a dynamic program and recursively

define the optimal value functions for each period of the problem. We denote the state space of the

problem by S(K) =W(K)×U ×E , where W(K) = {W ∈ ZL+1 :Wn ≥ 0, n = 1, . . . ,L,
∑L

n=1Wn ≤
K}, U = Z+, and E ⊂ R. We denote the optimal value function of the system at state S, given

charging capacity K, in period t by Vt(S,K), which represents the expected infinite horizon cost

from period t on, if cost optimal actions are taken in subsequent periods.

The optimality equation for periods 0≤ t < T is

Vt(St,K) = min
xt∈X (St,K)

{
EDt,Et+1

[
Ct (Wt, xt,Et,Dt) + γVmod(t+1,T ) (St+1,K)

∣∣∣St]} , (3)

where mod(t+ 1, T ) = t+ 1 mod T and St+1 is defined based on the transition equations for Wt,

Ut, and Et. Note that the expectation in Equation (3) is with respect to Dt and Et+1, because the

current price of electricity Et is known when making the charging decision, while the demand of

period t, Dt is a stochastic quantity. It can easily be shown that the value functions in Equation

(3), which involve only V0, . . . , VT−1, also solve the infinite time horizon problem in (2), because the

input data is periodic. The intuition behind this is to rewrite the optimization problem in a single

optimality equation for periods t= 0, . . . , T − 1 and treat the resulting problem as a conventional

infinite horizon dynamic program.

Our objective is to compute the cost minimizing number of batteries and charging capacity for

a predefined initial state of the system. We define the initial state as S0(N) = ([N, . . . ,0],0,E0).

The goal is to solve

(N∗,K∗) = arg min
N≥0,K≥0

{
KCK +NCN +V0 (S0(N),K)

}
. (4)

Solving this problem requires calculating the value functions Vt for all t= 0, . . . , T − 1, which - as

a byproduct - yields the optimal recharging policy for the station. In the next section we analyze

the infinite horizon value function.
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3.2. Properties

In this section we analyze the infinite horizon dynamic program for the single station model. We

prove a number of properties on which we rely in our solution approach.

A complicating element of the dynamic program is the nonlinear transition function for

uncharged batteries. Our first result shows that in general the value function is not coordinatewise

convex in S.

Property 1. The value function Vt(S,K) is not coordinatewise convex in S on S(K).

All proofs are contained in the Appendix.

If Vt(S,K) is not coordinatewise convex in S, it is hard to solve Problem (3) efficiently. Although

Vt is not in general coordinatewise convex, we can prove convexity on a subset of the state space

that is relevant for optimal solutions. We transform the dynamic program into an equivalent form

with a structure that is easier to handle and reformulate X (St,K) as

X̃ (Wt,K,N) = {x∈Z+
0 : x≤N −

L∑
n=0

Wt,n, x≤N −
L∑
n=1

Wt,n, x≤K −
L∑
n=1

Wt,n}.

Using this relation, we can express all quantities in terms of Wt, Et, K, and N . We define

Ṽt(Wt,Et,K,N) = min
xt∈X̃

{
EDt,Et+1

[
Ct (Wt, xt, et,Dt) + γṼmod(t+1,T ) (Wt+1,Et+1,K,N)

∣∣∣St]} . (5)

The state space of Ṽt is given by S̃(K,N) = {(Wt,Et)|[Wt,0]+ +
∑L

n=1Wt,n ≤N,
∑L

n=1Wt,n ≤K}×

R.

Proposition 1 establishes the relation between Vt and Ṽt.

Proposition 1. For any t it holds Vt((Wt,Ut,Et),K) = Ṽt(Wt,Et,K,Ut + [Wt,0]+ +
∑L

n=1Wt,n)

for all (Wt,Ut,Et)∈ S(K).

The proof follows from a simple inductive argument and is omitted.

It directly follows from Proposition 1 that instead of solving Problem (4), we can solve the

problem

(N∗,K∗) = arg min
N≥0,K≥0

{
KCK +NCN + Ṽ0(W0,E0,K,N)

}
. (6)

The solution (N∗,K∗) then also solves Problem (4).

We continue by analyzing Ṽt and the next result provides coordinatewise convexity of Ṽt.

Property 2. For pt ≥ 0 the value function Ṽt(W,E,K,N) is coordinatewise convex in all com-

ponents of W , in K, and in N for all t.

We say that a function of a single discrete variable is convex if its first difference is increasing.

The interpretation of Property 2 is that Vt is coordinatewise convex in S only on a subspace

Sc(N,K) = {(W,U,E) :E ∈ E ,W ∈W(K), [W0]+ +
∑L

n=1Wn+U =N,K ∈Z+
0 ,N ∈Z+

0 } of the state
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space S. The convex part of the state space corresponds to regions in which the effect on the total

number of batteries caused by perturbing the state remains constant. To illustrate this, consider

an increase in Wt,0 from -10 to -9. Here, the number of batteries at the station remains constant,

if all other state coordinates remain constant. However, increasing Wt,0 from 0 to 1 also increases

N by 1, if all other state coordinates remain constant. The reformulation of the model forces N to

remain constant, when varying a state coordinate.

The next results provides convexity of the charging decision problem in Equation (3). The proof

uses Ṽt and Property 2.

Property 3. For all K, N , t and pt ≥ 0, it holds that

1. Vt(S,K) is coordinatewise convex in W and U on Sc(N,K) and

2. Vt(([W0, . . . ,WL +x],U −x,E),K) is convex in x on Sc for −WL ≤ x≤U .

By the second part of Property 3, we can solve the minimization problem in Equation (3)

efficiently, if the state remains in Sc when transitioning between periods. Because the action space

restricts x to 0≤ x≤U , and because Ct is a convex function, the minimization in Equation (3) is

a convex problem.

Convexity in the decision variable allows us to solve the dynamic program efficiently and to

evaluate Vt(S0(N),K) for fixed values of K and N . We analyze the behavior of Vt with respect to

K and N next. Let ft :Z+
0 ×Z+

0 →R with ft(N,K) = Vt(S0(N),K).

It is well known that for functions defined on the integers, optimality conditions are more complex

than in the continuous case. While convexity of the objective and domain is sufficient for finding

an optimal solution in the continuous case, a clear definition of convexity does not exist for integer

domain problems. However, analogous concepts like L\-convexity and M \-convexity (Murota 2003),

are sufficient for optimality of a locally optimal solution. In this case an optimal solution can be

found with a simple greedy approach. Efficient algorithms also exist for optimizing submodular

functions on integer domains (e.g., Iwata et al. 2001 and Orlin 2009).

Unfortunately, ft does not exhibit any of these properties as our next property states.

Property 4. Function ft(N,K) is neither L\-convex, nor M \-convex or submodular.

Instead, we can show that ft(N,K) is coordinatewise convex and non-increasing in K and N

and we rely on these properties to solve Problem (4) optimally.

Property 5. Function ft(N,K) is coordinatewise convex and non-increasing in K and N for

all t.

Because ft(N,K) is coordinatewise convex and non-increasing, NCN +KCK + ft(N,K) is also

coordinatewise convex in N and K. Coordinatewise convexity does not suffice for a local opti-

mum to be globally optimal, but it allows us to develop an optimal solution algorithm based on

coordinatewise convexity and a lower bound, which we introduce next.
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3.3. Lower Bound

In this section, we present lower bounds on ft(N,K). We rely on these bounds in our solution

approach to restrict the solution space. The bounds are computed by solving an infinite horizon

dynamic program of lower dimension than the exact model.

Global Lower Bound. By Property 5, ft(N,K) is non-increasing in N and K. As a result,

ft(N,K) ≥ limÑ→∞,K̃→∞ ft(Ñ , K̃) for all t, N , and K. For an infinite number of batteries and

infinite charging capacity, there is no upper limit on the number of batteries we can charge and

the action space simplifies to xt ≥ 0. As a result, we do not need to keep track of the number of

uncharged batteries U at the station and the state reduces to (W,E).

Because we allow for backlogging of unsatisfied demand for batteries, the dynamic program

without the upper limit on the charging decision can be transformed into an equivalent dynamic

program of lower dimension (e.g., Zipkin 2000).

Let W̄t =
∑L

n=0Wt,n, which represents the inventory position of charged batteries, i.e., the num-

ber of batteries on hand plus the number of batteries currently charging, at the station at the

beginning of time period t. We define

C̄t(W̄t, xt,Et) = xt

(
β0Et +E

[
L∑
τ=1

γτβτEmod(t+τ,T )

])
+ γLpmod(t+L,T )E

[
(Dt,mod(t+L,T )− W̄t)

+
]

and

V̄t(W̄t,Et) =EEt+1,Dt

[
min
xt≥0

{
C̄t(W̄t, xt,Et) + γV̄mod(t+1,T )(W̄mod(t+1,T ),Emod(t+1,T ))

}]
. (7)

The state transition function for W̄t is W̄mod(t+1,T ) = W̄t−Dt +xt. Cost C̄t incorporates penalty

costs from period t + L on only, because penalty costs in periods t to t + L − 1 cannot be

influenced by the charging decision in period t. To obtain a valid lower bound on ft, we addi-

tionally must account for the penalty and charging cost from period t to t + L for Wt, which

is given by Ft(Wt,Et) = E[
∑t+L−1

τ=t γτ−tpmod(τ,T )(Dmod(τ,T ) − Wmod(τ,T ),0)+] + Et
∑L

n=1 βnWt,n +

E[
∑t+L−1

τ=t+1 γ
τ−tEmod(τ,T )

∑L−τ+t

n=1 βnWmod(τ,T ),n]. The expected value can easily be evaluated, because

we assume that initially all batteries are charged, i.e., W̄0 =N .

Let Vt = V̄t(Wt,Et) + Ft(Wt,Et). The following proposition asserts that Vt is a global lower

bound, i.e., independent of N and K, on ft(N,K).

Proposition 2. Vt ≤ ft(N,K) for all N , K, and t.

Note that the state space of this dynamic program has only two dimensions which allows us to

solve large problem instances efficiently.

Coordinatewise Lower Bounds. We can obtain tighter coordinatewise bounds by restricting

the charging decision depending on the values of N and K.



Schneider, Klabjan, and Thonemann: Battery Charging and Purchasing at Electric Vehicle Battery Swap Stations
Article submitted to Transportation Science; manuscript no. (Please, provide the mansucript number!) 13

For N batteries in the system, the inventory position W̄t cannot exceed N , i.e., W̄t ≤N for all

t. Using this relation, we restrict the charging decision in each period to values 0≤ xt ≤N − W̄t.

The resulting action space is X̄N(W̄t) = {x : x ∈ Z+
0 ,0 ≤ x ≤ N − W̄t}. Set X̄N neglects capacity

restrictions, but models the upper limit on the charging decision caused by the number of batteries

correctly for Wt,0 ≥ 0. For Wt,0 < 0, the maximum feasible charging decision is −Wt,0 units higher

than in the exact model. We denote the coordinatewise lower bound for given N by VN
t .

Similarly, for given capacity K, the charging decision cannot exceed K, i.e., xt ≤K for all t.

While the number of batteries in the system is neglected, for L= 1 the action space is exact with

respect to the restriction imposed by the charging capacity. For L > 1, the maximum charging

capacity is too large compared to the exact model whenever
∑L

n=1Wt,n ≥ 0. The resulting action

space is given by X̄K = {x : x∈Z+
0 ,0≤ x≤K} and we denote the coordinatewise lower bound for

given K by VK
t .

To calculate the value of the coordinatewise lower bounds, we solve dynamic program (7) with

action space X̄N for coordinate N and with action space X̄K for coordinate K. As for the global

lower bound, we additionally need to account for penalty costs from period t to t+L, which are not

included in dynamic program (7). The resulting lower bounds are VK
t = V̄t(Wt,Et)

K +Ft(Wt,Et)

and VN
t = V̄t(Wt,Et)

N +Ft(Wt,Et) for given N and K, respectively. We rely on the following result

when developing our solution strategy in Section 5.

Proposition 3. Vt ≤VK
t ≤ ft(N,K) and Vt ≤VN

t ≤ ft(N,K) for all N , K, and t.

In the next section we state a number of properties of the optimal solution to Problem (4) based

on the result in Proposition 3.

3.4. Properties of the Optimal Solution

Based on the properties of the value function established in Subsection 3.2 and the lower bounds on

the optimal solution from Subsection 3.3, we next derive conditions for the optimality of a solution

to Problem (4).

Let (N∗,K∗) denote the optimal solution to Problem (4). The following relations describe prop-

erties of the optimal solution in terms of VN
t , VK

t , and Vt.

(1) K∗ ≤ N∗: In the optimal solution, there are at least as many batteries in the system as charging

capacity is available.

(2) (N∗,K∗) /∈ {N,K) : ft(N,K−1)−Vt <C
K}: If the gap between Vt and ft(N,K−1) is smaller than

CK , an additional unit of charging capacity can never amortize its investment.

(3) (N∗,K∗) /∈ {(N,K) : ft(N − 1,K)−Vt < CN}: If the gap between Vt and ft(N − 1,K) is smaller

than CN , an additional battery can never amortize its investment.
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Figure 1 Illustration of Conditions 1 to 7

(4) (N∗,K∗) ∈ {(N,K) : ft(N,K)− ft(N,K − 1)≤−CK}: If increasing K does not decrease operating

cost by at least CK , then the solution cannot be improved by increasing K.

(5) (N∗,K∗) ∈ {(N,K) : ft(N,K)− ft(N − 1,K)≤−CN}: If increasing N does not decrease operating

cost by at least CN , then the solution cannot be improved by increasing N .

(6) (N∗,K∗) /∈ {(N,K) : ft(N,K − 1)−VN
t <CK}: If the gap between ft(N,K − 1) and VN

t is smaller

than CK , an additional unit of charging capacity can never amortize its investment.

(7) (N∗,K∗) /∈ {(N,K) : ft(N − 1,K)−VK
t <CN}: If the gap between ft(N − 1,K) and VK

t is smaller

than CN , an additional battery can never amortize its investment.

Condition (1) is intuitive, because a charging bay has no value, if it is never used. Conditions

(2) and (3) are similar to Conditions (6) and (7), as both relate the cost of an additional battery

or unit of charging capacity to the maximum savings possible by increasing these quantities. The

maximum achievable savings are estimated by the gap between ft(N,K) and Vt in Conditions (2)

and (3) and by the gap between ft(N,K) and VK
t or VN

t in Conditions (6) and (7).

Conditions (4) and (5) use the coordinatewise convexity of ft(N,K) to check whether an addi-

tional battery or unit of charging capacity can decrease the operating cost sufficiently to amortize

the investment. If for fixed N Condition (4) is violated for K, it is also violated for all K ′ >K,

because by Property 5 ft is coordinatewise convex. Similarly, if for fixed K Condition (5) is violated

for N , it is also violated for all N ′ >N .

Figure 1 illustrates the parts of the solution space that are excluded by the formulated conditions.

In Section 5 we develop a solution algorithm that finds the optimal solution to Problem (4) by

bounding the solution space based on the above conditions and searching the remaining possible

solutions.

4. Network of Stations

In this section, we extend the single station model to a network of swap stations. We consider a set

of swap stations I. Each station is described by the single station model introduced in Section 3.1.

The stations in the network are interlinked by the possibility to transship charged and uncharged
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batteries. We use subscript i for variables and parameters whenever we refer to a quantity that

can vary across stations.

4.1. Model

We model charging and transshipment decisions as a centralized decision making process, i.e.,

decisions are made to minimize total cost and not cost of an individual station. In the sequence of

events, transshipment decisions are system wide made concurrently with charging decisions after

current prices of electric energy have been revealed and before demand is realized. We denote the

decision on the number of charged and uncharged batteries to transship from station i to station

j by yt,i,j and zt,i,j, respectively. We assume that the transshipment time between two stations is

deterministic and denote it by Li,j. We define L̄i = maxj Lj,i. For the transshipment, fixed cost cft,i

per dispatch and variable cost cvt,i,j per battery is incurred.

The number of uncharged batteries at station i is a vector with L̄i coordinates, because we have to

capture uncharged batteries that are in transit to the station. The first coordinate, i.e., Ut,i,0, refers

to the number of uncharged batteries on hand. Vector Wt,i,j captures not only charging batteries

at the station, but also charged batteries in transit to the station. We introduce an additional state

variable capturing the number of batteries currently being charged at station i and denote it by

Rt,i. This additional component is necessary, because we cannot calculate the number of charging

batteries from Wt,i, but we must constrain the number of charging batteries to be less than Ki.

We denote the state of a single station in the network by St,i = (Wt,i,Ut,i,Rt,i,Et,i).

The number of charged batteries that become available at the beginning of period t+n in the net-

work model additionally depends on the transshipment decisions at all other stations, i.e., Wt,i,n =

Wt−1,i,n+1 +
∑

j 6=i δ(Lj,i, n)yt−1,j,i for n 6= L and Wt,i,n = Wt−1,i,n+1 + xt−1,i +
∑

j 6=i δ(Lj,i, n)yt−1,j,i

for n = L, where δ(x, y) = 1 for x = y and δ(x, y) = 0 otherwise and n = 0, . . . ,max(L, L̄i). The

number of charged batteries on hand depends on outgoing transshipments from the station and is

given by Wt,i,0 =Wt−1,i,0−Dt−1,i +Wt−1,i,1−
∑

j 6=i yt−1,i,j.

Likewise, the number of uncharged batteries that become available at the beginning of period

t + n is given by Ut,i,n = Ut−1,i,n+1 +
∑

j 6=i δ(Lj,i, n)zt−1,j,i for n = 0, . . . , L̄i and the number of

uncharged batteries on hand is given by

Ut,i,0 =Ut−1,i,0 +Ut−1,i,1−xt−1,i−
∑
j 6=i

zt−1,i,j + min
(
[−Wt−1,i,0]+ +Dt−1,i, [Wt−1,i,0]+ +Wt−1,i,1

)
.

The total number of batteries at a station in the network model is not constant, but the total

number of batteries at all stations or in transit is constant. We denote the number of batteries at

or in transit to station i by

Ni(Wt,i,Ut,i) = [Wt,i,0]+ +

max(L,L̄i)∑
n=1

Wt,i,n +

L̄i∑
n=0

Ut,i,n. (8)
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The total cost incurred at station i in period t is given by

Ct,i(Wt,i,Rt,i, xt,i, yt,i, zt,i,Et,i,Dt,i) =Et,i

(
β0xt,i +

L−1∑
n=0

βnRt,i,n

)
+ pt,i [Dt,i−Wt,i,0]

+

+
∑
j 6=i

cft,iσ(yt,i,j + zt,i,j) + cvt,i,j(yt,i,j + zt,i,j),

(9)

where σ(x) = 0 for x≤ 0 and σ(x) = 1 otherwise.

The charging and transshipment decisions are constrained by xt,i+
∑

j 6=i zt,i,j ≤Ut,i,0,
∑

j 6=i yt,i,j ≤

[Wt,i,0]+, and xt,i ≤ Ki −
∑L−1

n=0 Rt,i,n. We denote the set of feasible charging and transshipment

decisions, given the current state and the charging capacity of the station by Xi(St,i,Ki).

The optimization problem for the network model is

(N∗0 , . . . ,N
∗
I ,K

∗
0 , . . . ,K

∗
I ) =

arg min
N0,...,NI
K0,...,KI

∑
i∈I

NiC
N +KiC

K+
∞∑
t=0

γtEEt,i

[
min

xt,i,yt,i,zt,i
EDt,iCt,i(Wt,i,Rt,i, xt,i, yt,i, zt,i,Et,i,Dt,i)

∣∣∣St] .
Again, we reformulate the problem as a dynamic program and recursively define the optimal value

functions for each period of the problem as

Vt(St,K1, . . . ,KI) =EEt+1,Dt

[
min
xt,yt,zt

∑
i∈I

Ct,i(Wt,i,Rt,i, xt,i, yt,i, zt,i,Et,i,Dt,i)

+ γVmod(t+1,T ) (St+1,K1, . . . ,KI)
∣∣∣St]. (10)

For the network model, our goal is to solve

(N∗0 , . . . ,N
∗
I ,K

∗
0 , . . . ,K

∗
I ) = arg min

N0,...,NI
K0,...,KI

I∑
i=0

NiC
N +KiC

K +V0 (S0(N1, . . . ,NI),K1, . . . ,KI) , (11)

where S0 = [S0,0, . . . , S0,I ], W0,i = [Ni,0, . . . ,0], R0,i = [0, . . . ,0], and U0,i = [0, . . . ,0].

4.2. Properties

The cost function Ct,i includes a fixed cost component for transshipments and is non-convex for

cf > 0. As a result, Vt is also non-convex for cf > 0 and the properties of the single station model

do not carry over to the network model in this case. Our further analyses therefore assume cf = 0.

In the single station model, we showed coordinatewise convexity of Vt(S,K) on subspace Sc by

using a reformulated model, in which we can omit the nonlinear transition function for U . For the

network model, the constraint
∑

j 6=i yt,i,j ≤ [Wt,i,0]+ causes the action space to be non-convex.

However, for a slightly restricted model we can again show coordinatewise convexity. If we

disallow transshipments of charged batteries, i.e. set yt,i,j = 0, we can express the action space as

a polyhedron as follows.
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To keep track of the number of batteries at station i in period t, let Nt+1,i =Nt,i +
∑

j 6=i(yt,j,i−
yt,i,j + zt,j,i− zt,i,j). The action space is then given by

0≤ xt,i +
∑
i 6=j

zt,i,j ≤Nt,i−
max(L,L̄i)∑

n=0

Wt,i,n−
L̄i∑
n=1

Ut,i,n

0≤ xt,i +
∑
i6=j

zt,i,j ≤Nt,i−
max(L,L̄i)∑

n=1

Wt,i,n−
L̄i∑
n=1

Ut,i,n,

and

0≤ xt,i ≤Ki−
L∑
n=0

Rt,i,n.

Coordinatewise convexity can then be shown by considering a convex continuous extension of

the value function, which takes the same function values at integer points.

Property 6. If transshipments of charged batteries are not allowed and cf = 0, then the value

function of the network model is coordinatewise convex in W , Ki and Ni for all i.

In our solution approach, we approximate the exact value function Vt by a convex function of

lower dimensionality, because the restricted model is convex. Note, however, that the complete

model is not necessarily convex, though in all numerical experiments we could not find a coun-

terexample.

5. Solution Approach

In this section we present our solution approaches for solving the models presented in Sections 3.1

and 4.1. The model for a single station can be solved optimally for small instances within reasonable

computational time, but larger instances and the network model, because it grows exponentially in

the number of stations, are computationally intractable. We present an optimal solution algorithm

for the single station model and an approximation for the network model, and report optimality

gaps for small instances and lower bounds for instances of relevant size in Section 6.

5.1. Single Station

Our goal is to find (N∗,K∗) = arg minN,K f0(N,K) +NCN +KCK . From Properties 4 and 5 we

know that ft is coordinatewise convex, but neither L\-convex, nor M \-convex or submodular. As a

result, local optimality of a point does not guarantee global optimality (Murota 2003) and a pure

greedy search algorithm is not guaranteed to find an optimal solution. Instead, we combine the

lower bounds from Section 3.3 and greedy search to develop an efficient solution algorithm.

Our solution approach consists of two phases. In the first phase, we use the global lower bound

from Section 3.3 to bound the solution space. In the second phase, we use the coordinatewise

lower bounds and coordinatewise convexity to search the remaining solution space for the optimal

solution.
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In our algorithm, we have to compute the minimum expected infinite horizon cost for given N ,

K, and S0(N). We do so by solving the dynamic program in Problem (4) using value iteration

and denote the value function after iteration k by V k
t . We use MacQueen-Porteus error bounds

(Bertsekas 2007) to accelerate convergence and also to check for optimality of the current solution.

This strategy allows us to stop evaluating the dynamic program, before its optimal solution has

been calculated.

Let

b̄kt (N,K) = V k
t (S0(N),K) +

γL

(1− γL)
sup
S

{V k
t (S,K)−V k−1

t (S,K)}

and

bkt (N,K) = V k
t (S0(N),K) +

γL

(1− γL)
inf
S
{V k

t (S,K)−V k−1
t (S,K)}.

For all k, the relation b̄kt (N,K)≤ ft(N,K)≤ bkt (N,K) holds.

We introduce both phases of our solution algorithm next.

Bounding the solution space. We first calculate an upper bound on K by increasing K

and N along the diagonal K =N through the solution space until further increases of K and N

cannot amortize the initial investment, i.e., until f0(N,K)≤ V t + min(CN ,CK). We set K =N ,

because according to Condition (1) in Section 3.4, N∗ ≥ K∗ holds. For each point (N,K), we

compute the value of f0 by solving the dynamic program in Problem (4) using value iteration. In

our approach we use the upper bound on value f0 after k iterations, b̄k0 , instead of f0, because

we can stop the value iteration algorithm as soon as the criterion b̄k0(N,K)≤V 0 + min(CN ,CK)

is met (this corresponds to Conditions (2) and (3) from Section 3.4). At this point, adding more

batteries or charging bays will not reduce expected operating costs enough to justify the initial

investment. Algorithm 1 summarizes the proposed procedure and returns an upper bound on the

optimal charging capacity that we denote by K̄.

Finding the optimal solution. Given K̄, the remaining solution space to search for the

optimal solution is {N ≥K ≥ 0,K ≤ K̄} (see Figure 2 on the left). We set N =K = 1, calculate

the coordinatewise lower bound V K
0 , and increase N until either f0(N,K) +CN > f0(N − 1,K)

(Condition (5)) or f0(N,K)<V K
0 +CN (Condition (3)) to obtain N∗(K) and the corresponding

expected cost. We then increment K, calculate V K
0 , and increase N until either f0(N,K) +CN >

f0(N − 1,K) (Condition (5)) or f0(N,K) < V K
0 + CN (Condition (3)), or we decrease N until

f0(N,K) +CN < f0(N − 1,K) (Condition (5)) to obtain N∗(K). We then again increment K and

repeat the procedure until K = K̄. Algorithm 2 summarizes the procedure. Algorithm 2 uses bk0

and b̄k0 instead of f0 when applying Conditions (3) and (5) in steps 5, 13, and 15 to exploit the

possibility to terminate the computation of f0(N,K) early. In each step of the algorithm, we store
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Algorithm 1 Upper Bound on K∗

1: Set K = 1, N = 1, k= 0 and bk0(N,K) =−∞, b̄k0(N,K) =∞ for all N > 0, K > 0.

2: Compute V 0 by using standard dynamic programming.

3: while b̄k0(N,K)>V 0 + min(CN ,CK) do

4: k← k+ 1

5: Compute V kT by solving Problem (3) for all S ∈ Sc(N,K) with V k−1
0 in the right hand side.

6: for t= T − 1→ 0 do

7: Compute V kt by solving Problem (3) for all S ∈ Sc(N,K) with V kt+1 in the right hand side.

8: end for

9: Compute b̄k0(N,K) and bk0(N,K).

10: if bk0(N,K)≥V 0 + min(CN ,CK) then

11: Set K =K + 1, N =N + 1, k= 0, and go to Step 3.

12: end if

13: end while

14: K̄←K − 1

N

K

N

K

(K*,N*)

Kഥ
N

K

N

K

(K*,N*)

Kഥ
Figure 2 Phase 1 (left) and Phase 2 (right) of the Solution Algorithm

and update the current best solution. Figure 2, right picture, illustrates a sample search path of

the algorithm. Dots indicate pairs (N,K) for which f0(N,K) was evaluated. Shaded areas were

excluded from the search because they violated an optimality condition. Dark shaded fields are

coordinatewise optimal, but a better solution (N∗,K∗) was found.

5.2. Network of Stations

When considering a network of swap stations, the dynamic program in Equation (10) becomes

computationally intractable and we cannot compute the system cost exactly within reasonable

computational time. Instead, we rely on a solution heuristic to solve the problem. We introduce

an approximate dynamic programming (ADP) algorithm that approximately solves Problem (11)
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Algorithm 2 Finding (N∗,K∗)

1: Set K =K∗ = 0, N =N∗ = 0, k= 0, t= 0, C∗ =∞, and tolerance ε > 0.

2: while K ≤ K̄ do

3: Set b0
0(N,K) =−∞, b̄00(N,K) =∞ for all N .

4: Compute VK
0 by standard dynamic programming.

5: while b̄k0(N,K)>VK
0 +CN and |b̄k0(N,K)− bk0(N,K)|> ε and |b̄k0(N − 1,K)− bk0(N − 1,K)|> ε do

6: Compute V kT (N,K) by solving Problem (3) for all S ∈ Sc(N,K) with V k−1
0 (N,K) in the right hand side.

7: Compute V kT (N − 1,K) by solving Problem (3) for all S ∈ Sc(N − 1,K) with V k−1
0 (N − 1,K) in the right

hand side.

8: for t= T − 1→ 0 do

9: Compute V kt (N,K) by solving Problem (3) for all S ∈ Sc(N,K) with V kmod(t+1,T )(N,K) in the right

hand side.

10: Compute V kt (N − 1,K) by solving Problem (3) for all S ∈ Sc(N − 1,K) with V kmod(t+1,T )(N − 1,K) in

the right hand side.

11: end for

12: Compute b̄k0(N,K), bk0(N,K), b̄k0(N − 1,K), and bk0(N − 1,K).

13: if bk0(N − 1,K)≥ b̄k0(N,K) +CN then

14: Set b0
0(N,K) = bk−1

0 (N,K), b̄00(N,K) = b̄k−1
0 (N,K), N =N + 1, and k= 0.

15: else if b̄k0(N − 1,K)≤ bk0(N,K) +CN then

16: Set N =N − 1, b0
0(N,K) = bk−1

0 (N,K), b̄00(N,K) = b̄k−1
0 (N,K), and k= 0.

17: end if

18: k← k+ 1

19: end while

20: if
bk

0 (N,K)+b̄k0 (N,K)

2
+NCN +KCK ≤C∗ then

21: Set N∗ =N , K∗ =K, and C∗ =
bk

0 (N,K)+b̄k0 (N,K)

2
+NCN +KCK

22: end if

23: K←K + 1

24: end while

by approximating the value functions of the dynamic program using a analytical function whose

parameters we estimate based on Monte-Carlo simulation.

ADP for the Network of Stations. We approximate the exact value functions Vt by replacing

their table lookup form by an analytical form that is defined by a smaller number of parameters

(Powell 2007). The approximation is chosen to be of sufficiently low dimensionality and we estimate

its parameters by sampling the stochastic information process and updating the parameters using

the information of the incumbent solution. Often, problems exhibit special structure suggesting a

certain form for the approximating function. We use a separable convex piece-wise linear approx-

imation, because our problem has integer decisions and it is coordinatewise convex for a mildly

restricted model. Additionally, convexity of a separable piece-wise linear function can easily be

maintained by simple projection algorithms, e.g., the SPAR algorithm (Powell 2007).
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We introduce our approximate value function next and then provide details on how to iteratively

update the approximation and concurrently optimize the charging capacity and number of batteries

at each station.

Separable piece-wise linear approximation. The state space of Problem (11) is too large

to enumerate, because even small problem instances with 24 periods, 5 stations, and 100 batteries

have state spaces with far more than 24 ∗ 1005 states. To reduce the number of parameters of the

value function, we replace the exact value function by a separable piece-wise linear approximation

V̂t(St).

Let Πi be the set of all coordinates of W , U , and R corresponding to station i and let Π =∪i∈IΠi

be the joint set over all stations. For every station i, coordinate j ∈Πi, and energy price interval

e ∈ Et,i, we define a separable piece-wise linear function ge,jt,i (Sj), where Sj is the battery count of

coordinate j. As an example, g5,j
2,4(15) estimates the value of having Sj = 15 charged batteries (i.e.,

the value of coordinate j which can correspond to W4,3 is 15) that become available in 3 time

periods at station 4 in period 2, if the current price of electric energy is in interval 5. We denote

the slope vector of ge,jt,i by ve,jt,i .

The value function approximation for a single station is given by

V̂t,i(St,i) =
∑
j

g
Et,i,j

t,i (St,i,j), (12)

where ge,jt,i (St,i,j) =
∑St,i,j

m=0 v
e,j
t,i (m). We assume without loss of generality that ge,jt,i (0) = 0 and thus

the value of the piece-wise linear function at a point is the sum of its slopes up to that point. The

value function approximation for the complete network model is given by

V̂t(St) =
I∑
i=0

V̂t,i(St,i).

To approximate Problem (11) we replace the exact value function Vt(St,K0, . . . ,KI) by V̂t(St).

We show how to iteratively update the slope vectors ve,jt,i next.

Updating the Approximation. The value function approximation has a lower number of

parameters that must be estimated, because it assumes a separable structure. However, the number

of parameters is still too large to enumerate and the expected value in Equation (13) is computa-

tionally expensive to evaluate.

We circumvent this problem by iteratively updating the parameters using solution information

obtained from solving Problem (11) using the current value function approximation V̂mod(t+1,T ) and

sampling random variables Et and Dt.

First, we replace the exact value function Vt(St) by the approximate value function V̂t(St). The

optimality equation for period t then reads

Ṽt(St) =EEt+1,Dt [Ŷt(St,Et+1,Dt, V̂mod(t+1,T ))|St], (13)
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where

Ŷt(St,Et+1,Dt, V̂mod(t+1,T )) =

min
xt,yt,zt

I∑
i=0

Ct,i(Wt,i,Rt,i, xt,i, yt,i, zt,i,Et,i,Dt,i) + V̂mod(t+1,T )

(
Smod(t+1,T )

)
.

Second, instead of computing the expected value in Equation (13) explicitly, we approximate it

by sampling Et+1 and Dt. Let k be the current iteration of our procedure. We denote the value

function approximation after its last update by V̂ k−1
t and the samples of the energy prices and the

demands in iteration k by ekt,i, d
k
t,i, respectively.

Given the current state, Skt , to obtain next period’s value function approximation, we solve

(x̂kt , ŷ
k
t , ẑ

k
t ) = arg min

xt,yt,zt

I∑
i=0

Ct,i(W
k
t,i,R

k
t,i, xt,i, yt,i, zt,i, e

k
t,i, d

k
t,i) + V̂ k−1

mod(t+1,T )

(
Skmod(t+1,T )

)
. (14)

Third, to update the slope vectors, we perturb the current state and calculate numerical deriva-

tives in direction of all coordinates j ∈Πi for all i. Let Skt,i,j denote the perturbed state obtained

by setting Skt,i,j = Skt,i + 1j, where 1j corresponds to the unit vector in direction of coordinate j.

For all j ∈Πi and all i, we calculate ∆j,k
t,i = Ŷt(S

k
t,i,j, e

k
t,i, d

k
t,i, V̂

k−1
mod(t+1,T ))− Ŷt(Skt , ekt,i, dkt,i, V̂

k−1
mod(t+1,T ))

and update the slope vectors by setting

v
ekt,i,j,k

t,i (Skt,i,j) = (1−αk)ve
k
t,i,j,k−1

t,i (Skt,i,j) +αk∆j,k
t,i (15)

for some step size αk. Here, v
ekt,i,j,k

t,i is the slope in iteration k.

After the update step in Equation (15), the piece-wise linear functions ge,jt,i are not necessarily

still convex. We thus complete the update by executing the SPAR algorithm (Powell 2007) on the

updated slopes to maintain convexity and obtain the value function approximation V̂ k
t in period t

of iteration k.

The final step is to use actions (x̂kt , ŷ
k
t , ẑ

k
t ) and samples ekt,i and dkt,i to transition from state Skt

into state Skmod(t+1,T ). Then the procedure is repeated for the next time period and we set k= k+1

when revisiting time period t= 0.

Algorithm 3 summarizes the update process for the value function approximation.

Optimization of Charging Capacity and Number of Batteries. The update process for

the value function described in the previous section assumes fixed charging capacities and numbers

of batteries. To optimize these quantities, we adjust all Ki and Ni after a fixed number of iterations

of Algorithm 3 were performed based on the following logic.

The slopes of the value function correspond to the marginal value of an additional battery, i.e.,

Vt(St+1j)−Vt(St), represents the infinite horizon value of an additional battery with characteris-

tics corresponding to coordinate j of the state space, if the state is St in period t. As an example, if
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Algorithm 3 ADP Algorithm for fixed Ki, Ni

1: Initialize ve,jt for all e∈Et, j ∈Π, and t= 0, . . . , T − 1 such that ge,jt are convex functions.

2: Set k← 0, t← 0 and choose α0 > 0.

3: while stopping criterion is not met do

4: if t= 0 then

5: Set k← k+ 1, and choose new step size αk > 0.

6: end if

7: Obtain ekmod(t+1,T ),i and dkt,i by sampling Emod(t+1,T ),i and Dt,i for all i.

8: Obtain (x̂kt , ŷ
k
t , ẑ

k
t ) by solving Problem (14).

9: for all j ∈Π do

10: Set Sπ,kt = Skt +1j .

11: Calculate ∆k
t (j,Skt ) = Ŷt(S

π,k
t , ekmod(t+1,T ), d

k
t , V̂

k−1
mod(t+1,T ))− Ŷt(S

k
t , e

k
mod(t+1,T ), d

k
t , V̂

k−1
mod(t+1,T )).

12: Set v
Ek

t,i,j,k

t (Skt,j) = (1−αk)v
Ek

t,i,j,k−1

t (Skt,j) +αk∆k
t (j,Skt ).

13: Execute SPAR algorithm on v
Ek

t,i,j,k

t .

14: end for

15: Compute Skmod(t+1,T ) from Skt , (x̂kt , ŷ
k
t , ẑ

k
t ), and ekmod(t+1,T ) and dkt .

16: Set t←mod(t+ 1, T )

17: end while

j corresponds to R2, then Vt(St+1j)−Vt(St) represents the infinite horizon value of an additional

battery (compared to state St) that is currently charging and becomes available in 2 periods.

Similarly, the slopes of the value function approximation ve,jt,i estimate the value of an additional

battery with characteristic corresponding to coordinate j. We can thus use the approximation ve,j,kt,i

in iteration k to estimate the optimal values of Ni and Ki.

To estimate the optimal number of batteries at each station we solve the problems

N∗i = arg min
Ni

{NiC
N + V̂t,i(St,i)} (16)

for all i subject to Wt,i,0 ≤Ni, Wt,i,n = 0 for n> 0, Ut,i,n = 0, and Rt,i,n = 0 for all n. We allow only

charged batteries to be “purchased”, because we use the convention that initially all batteries are

charged.

Similarly, to estimate the optimal charging capacity we balance the cost of a unit of charging

capacity against the estimated infinite horizon value of charging batteries. We solve the problems

K∗i = arg min
Ki

{KiC
K + V̂t,i(St,i)} (17)

for all i subject to
∑L

n=1Rt,i,n ≤Ki, Wt,i,n =Rt,i,n and Ut,i,n = 0 for all n.

Setting new values for Ni and Ki leads the ADP algorithm to explore new parts of the state

space and the value function approximation only gradually adapts to the new parameters. Thus,

we do not solve Problems (16) and (17) in each iteration, but optimize over Ni and Ki only every
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k̄ iterations of Algorithm 3 instead. This strategy admits “enough time” to the ADP algorithm

to estimate the value function for the newly explored parts of the state space, before readjusting

capacities and the number of batteries.

Algorithm 4 illustrates how to integrate the optimization over Ki and Ni into the approximate

dynamic programming algorithm.

Algorithm 4 Optimizing Ni and Ki

1: Execute Steps 1-2 of Algorithm 3.

2: Set initial Ki ≥ 0 and Ni ≥Ki for all i= 1, . . . , I.

3: while stopping criterion is not met do

4: while mod(k, k̄)> 0 do

5: Execute Steps 4-16 of Algorithm 3.

6: end while

7: for all i= 1, . . . , I do

8: Obtain new value for Ni from solving Problem (16).

9: Obtain new value for Ki from solving Problem (17).

10: end for

11: end while

Calculation of Expected Infinite Horizon Operating Cost. Algorithm 4 returns an esti-

mate of the optimal number of batteries N∗ and charging capacity K∗ along with an approximate

value function. We use these data to calculate the infinite horizon operation cost of the system by

Monte-Carlo simulation.

We start in state S0(N∗1 , . . . ,N
∗
I ) and run the simulation for a given number of ζ iterations

and compute the operating cost Ck in each iteration. We then run the simulation for another ζ

iterations and use the average operating cost in these ζ iterations as an estimate for the average

per period operating costs. For discount factor γ, we estimate the total expected infinite horizon

operating cost by V̂ m
0 (S0(N∗1 , . . . ,N

∗
I )) =

∑ζ

k=0 γ
kCk + γ

ζ(1−γ)

∑2ζ

k=ζ Ck.

This procedure is repeated M = 100 times and the mean over all V̂ m
0 (S0(N∗1 , . . . ,N

∗
I )) serves as

the expected infinite horizon operating cost.

6. Computational Results

We apply our solution approach to a potential network of swap stations in the Bay Area in Califor-

nia. We chose this region for our scenario, because EV adoption rates here are highest in California

and EV sales in California account for nearly 25 percent of EV sales in the United States (Center

for Sustainable Energy California 2013). We first consider a single station and show the influence

of different parameters on the expected optimal operating cost and the optimal solution for N
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and K. We then extend our scenario to a network of stations. We compare the performance of

our heuristic solution approach for the network to the optimal solution for a small test instance

to show that our approximation yields near-optimal results. We then assess the value of allowing

transshipments in a battery swap network by applying our approach to problem instances based

on actual data. The algorithms were implemented in C++ and the integer problems of Algorithm

3 and Algorithm 4 were solved using CPLEX 12.5 under Linux on a single Westmere Hexa-Core

Xeon X5650 processor with 2.66 GHz.

6.1. Data and Parameters

Our model requires data about demand for batteries, prices of electric energy, cost of batteries

and charging capacity, station locations, and transshipment cost and times. To obtain the data,

we rely on a number of sources and we pre-process data when necessary. All data used in the

computational study can be obtained from the authors’ website1.

For all experiments we use a period length of one hour and a planning horizon of one week

(T = 168). We set the per-period discount factor to γ = 0.99999 corresponding to an annual cost

of capital of about 8%.

Demand for Batteries. We use data from the distribution of trips by time of day (US Depart-

ment of Transportation 2003; Table A-12) and from the distribution of daily trips by day of the

week (US Department of Transportation 2003; Table A-13) to estimate the relative distribution of

demand for batteries by hour over the planning horizon. Figure 3 on the right shows the relative

estimated demand rates over a day, i.e., λt∑
τ λτ

, where λt is the parameter of the Poisson distribution

in period t.

The absolute demand for batteries is hard to estimate, as it depends mainly on the EV adoption

rate, which in turn is determined by many factors (e.g., prices for EVs, gasoline prices, marketing

spent of the system operator, etc.). Because we do not have reliable real world data for the absolute

demand, we perform an extensive sensitivity analysis.

Electric Energy Prices. Historical locational marginal prices for electric energy of the Califor-

nia ISO region are available from California ISO OASIS (2011). We assumed the station operator

to purchase electric energy based on a market-based rate tariff. We therefore used the hourly prices

from Monday 12 a.m. to Sunday 12:00 p.m. of the years 2009 to 2013 to estimate the mean price

and the noise variance for each hour of a typical week and added a margin of 10% for distribution

charges. We estimated the mean price and the noise variance quantities for each swap station sep-

arately, as energy prices may vary by location in the locational marginal pricing system employed

1 http://www.scenos.de/research/swapping/data.zip
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Figure 3 Energy Spot Price and Demand Distribution Profile for a Sample Day

by the California ISO. We use the estimated mean and noise variance to parameterize the mean-

reverting price process as outlined in Section 3.1. We then discretized the energy prices into eleven

intervals of equal probability around their means for each time period for the computations. Figure

3 on the left shows average energy spot prices for Mondays at the San Diego Gas and Electric

Advanced Pricing Node.

Cost of Batteries and Charging Capacity. The price of a complete automotive lithium-ion

battery pack in 2012 amounted to about USD 450 per kilowatt hour (kWh) (Hensley et al. 2012).

The battery pack built in the Renault Fluence Z.E., the only car currently available for use with

swap stations, has a capacity of 22 kWh amounting to a total cost of roughly USD 10,000 per

battery. With an expected lifespan of 8 years, expected reductions in battery cost Hensley et al.

(2012), and cost for remanufacturing of a pack, we estimated the discounted infinite horizon cost

of a battery to be USD 12,500 (see Appendix A for details).

The cost of installing a unit of charging capacity depends on the available connection to the

power grid. While charging a few batteries in parallel does not put too much strain on the grid, large

charging capacities require enough available energy distribution capacities. Cost for installation of a

charging bay is very hard to estimate, because it highly depends on the existing energy distribution

infrastructure and used automation hardware of the swap station. Considering the fact that a

mass-produced consumer charging station with manual control currently costs around USD 1,700,

which does not include installation cost and possible required extensions to the energy distribution

network, we believe a cost of CK = 25,000 to be of the right magnitude for the overall infinite

horizon cost of a fully automated charging bay. In any case, we perform a parameter sweep and

our results show that the optimal number of charging bays is very robust with respect to CK .

Station Locations, Transshipment Cost and Transshipment Times. We chose ten loca-

tions for swap stations along the bay area freeway network and did not consider intracity streets.
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This is justified by the fact that battery swapping will mainly be needed for long-distance travel,

while charging for shorter trips is likely to be performed at a charging station at home (Mak et al.

2013).

We calculated travel times between any two stations using Microsoft Map Point 2012. We rounded

the times up to the next full period and added another period for arrival of the transshipment

shuttle. We assume transshipment cost to be charged by battery and distance. As a proxy, we

used taxi rates of San Francisco, CA, which we believe to be an upper bound on the cost for

transshipment services. The taxi rate in San Francisco is USD 2.75 per mile plus a fixed cost of

USD 3.50 for the first 1/5 mile. We set the variable transshipment cost to be USD 2.75 per battery

and mile and the fixed cost to USD 3.50 per trip.

Table 1 summarizes parameters that have common values in all our experiments.

Parameter Symbol Value

Number of periods T 168
Charging time L 7
Discount Factor γ 0.99999
Penalty Cost p 100
No. of Energy Cost Intervals |E| 11
Unit Cost Battery CN 12,500
Unit Cost Charging Bay CK 25,000
Mean Reversion Factor κ 0.50

Table 1 Parameter Values in all Experiments

6.2. Single Station

We first consider a single station to identify the fundamental effects of different parameters on the

optimal solution. Because of the huge state space of the exact model, we can solve the problem

optimally only for a single station and for low demand rates.

6.2.1. Base Case. In our base case for the single station model we normalize the absolute

mean demand for batteries over all T = 168 modeled periods to equal T
∑

t λt = 168, i.e., on average

168 batteries are requested in a week. The relative mean demand rates λt in each period are

chosen according to the profile shown in Figure 3. Additionally, we discretized the energy price

state space into eleven intervals of equal probability around the mean in each period. Figure 4

shows the optimal expected operating cost and equipment cost for increasing charging capacity.

The minimum expected total cost is incurred for N = 27 batteries and K = 11 charging bays. The

infinite horizon expected operating cost is USD 151,120 for these values and total cost amounts to

USD 763,280. While lower operating costs could be achieved for higher values of K, the reduction

in operating costs is not sufficient to make the expenses for additional charging bays profitable.
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6.2.2. Sensitivity. The base case assumes the parameter values summarized in Table 1. Some

of the parameters were estimated and are subject to variation over time (in case of, e.g., battery

cost, energy cost) or depend on the specific contract between the operator and customer (for

penalty costs in case of stockouts). To quantify the effects of these exogenous parameters on the

solution, we next perform a sensitivity analysis.

There is an intuitive relation among all cost factors. Keeping all other factors constant, lower

cost for batteries and charging bays will result in higher optimal values for N and K; higher penalty

costs for stockouts will have a similar effect. Total expected cost will in general increase, when

increasing any of the cost parameters and decrease otherwise. Of special interest are the relations

of the components between each other. For example, for increasing energy prices and lower battery

cost, exploiting price arbitrage over the day will get more attractive compared to our base case,

leading to a higher optimal value for N .

Effect of Energy Price Volatility. To assess the effect of variable energy prices, we computed the

optimal values of N and K for three different price scenario. In the first scenario, energy prices are

constant, deterministic and equal to the daily mean energy price, which refers to a typical retail

tariff. In the second scenario, energy prices are deterministic, but the hourly rate varies over the

168 periods according to the profile in Figure 3. This represents a Time-Of-Usage contract, where

prices depend on the hour of the day. In the third scenario, we model energy prices to be stochastic

and use the estimated values for mean and variance as described. The last scenario corresponds to

purchasing electricity from the spot market at real time prices and we model the price process as

a mean reverting process (see Section 3.1).
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To isolate the effect of price volatility, we calculated the optimal values of N and K for a constant

demand rate of λt = 1.0 for all t= 0, . . . , T .

As a reference point, Table 2 reports the optimal values for N and K along with the expected

total cost for the analyzed scenarios.

The first observation is that the expected operating cost is almost identical for variable determin-

istic and stochastic prices. This is an intuitive result, because we assume stationary distributions

and the average energy procurement costs equal their mean in each period in the long run.

The second key observation is that for constant demand rates the expected operating cost is also

almost identical for variable and constant energy prices. This effect is surprising at first, because

one would expect that lower energy purchasing costs are possible by exploiting price variations.

While technically this is possible, we cannot observe this effect due to the high costs for batteries

and charging bays. Both N∗ and K∗ do not vary between variable and constant, and deterministic

and stochastic energy price scenarios, because the lower operating costs achievable by exploiting

energy price variations are not sufficient to balance cost of additional batteries at a cost of USD

12,500 per battery, i.e., at the assumed ratio of energy cost to battery cost. In other words, it is not

beneficial to delay charging batteries to periods with lower expected energy prices if this results in

an increased number of batteries, because the savings achievable do not justify the investment in

additional batteries that are required to prevent stockouts.

For variable demand rates, the operating cost is a bit lower for variable energy prices. This is

caused by the fact that energy prices tend to be high, when demand for batteries is high, but

charging times shift the procurement of energy for recharging to periods with lower average prices

(see Figure 3).

Effect of Demand Volatility. Similarly, to quantify the effect of demand volatility over the day

on the optimal values of N and K, we solve the problem for constant demand rates of λt = 1.0

to demand rates that vary over the week. In both scenarios, the expected total demand over the

planning horizon equals T
∑

t λt = 168.0. Comparing the two columns of Table 2, it can be seen

that in general volatile demand requires considerably more batteries in the system than constant

demand, which shows that neglecting the variability of demand leads to an underestimation of

expenses for batteries.

Effect of Infrastructure Cost. Especially the cost of batteries is changing rapidly (see, e.g.,

Boston Consulting Group 2010). To quantify effects on the optimal solution, we perform a sweep

over the cost for batteries and charging bays and solve instances for CN between USD 5,000 and

USD 25,000 and instances for CK between USD 10,000 and USD 40,000. Table 3 summarizes the

results of our computations.
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Demand
Energy Price constant λ variable λ

variable
stochastic

N∗ 21 27
K∗ 11 11
cost 696,832 763,280

variable
deterministic

N∗ 21 27
K∗ 11 11
cost 696,002 762,640

constant
deterministic

N∗ 21 27
K∗ 11 11
cost 695,981 765,951

Table 2 Optimal N and K and Minimum Expected Cost in USD

CN

CK 5,000 10,000 12,500 15,000 20,000 25,000

10,000
N∗ 29 27 26 26 26 25
K∗ 11 12 12 12 12 12
Cost 389,223 528,164 595,263 660,263 790,263 916,384

20,000
N∗ 29 27 27 27 26 25
K∗ 11 11 11 11 11 12
Cost 499,223 640,140 707,640 775,140 906,910 1,036,384

25,000
N∗ 29 27 27 27 26 26
K∗ 11 11 11 11 11 11
Cost 554,223 695,140 763,280 830,140 961,910 1,091,910

30,000
N∗ 31 27 27 27 26 26
K∗ 10 11 11 11 11 11
Cost 599,651 750,140 817,640 885,140 1,016,910 1,146,910

40,000
N∗ 32 30 29 27 26 26
K∗ 10 10 10 11 11 11
Cost 699,356 852,382 926,376 995,140 1,126,910 1,256,910

Table 3 Optimal N and K and Minimum Expected Cost in USD

It can be observed that in general the optimal values for N and K are very robust with respect

to varying equipment cost. The optimal number of batteries remains between 25 and 32 for all

combinations of CN and CK , while the optimal number of charging bays ranges between 10 and

12. Our results also show the intuitive result that batteries and charging bays are a substitute for

each other to a certain extent.

Effect of Penalty Cost to Energy Price Ratio. For the relation of average energy prices

to penalty costs, we perform calculations for per unit per period penalty costs from USD 40 to

USD 200 in steps of USD 20. Table 4 summarizes the results and shows that total cost increases

for higher penalty costs.

p 40 60 80 100 120 140 160 180 200

N∗ 25 26 27 27 27 28 28 28 28
K∗ 11 11 11 11 11 11 11 11 11
Op. Cost 155,739 151,688 145,794 151,120 154,436 145,272 147,678 150,077 152,447
Tot. Cost 743,239 751,688 758,294 763,280 766,936 770,272 772,678 775,077 777,447

Table 4 Optimal N and K and Minimum Expected Cost in USD
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Again the optimal values of N and K are very robust with respect to the relation of the penalty

cost to energy prices. In general, lower penalty costs lead to slightly lower optimal number of

batteries, and, for our values of CN and CK , the optimal number of charging bays remains constant.

6.3. Network of Stations

For the network of stations, we cannot solve Problem (11) exactly and instead we approximate the

solution. We first validate our approximation approach and then analyze effects on the operating

cost, battery and charging capacity expenses induced by the network structure.

6.3.1. Algorithm Validation. To validate the performance of Algorithms 3 and 4 that are

used to solve the network model, we perform a number of tests on problem instances that can be

solved optimally by Algorithm 2 and compare the solutions. However, we can solve the problem

optimally only for a single station and low demand rates. We therefore must rely on the comparison

of the results obtained from the approximate algorithms (Algorithm 3 and 4) to the results obtained

from the optimal solution algorithm (Algorithm 2) for a single station.

For the first test, we optimized the number of batteries for a fixed charging capacity, i.e., we

applied Algorithm 4 for fixed values of K. For charging capacities lower than the average demand

rate, the system always operates at an inventory position below zero and at full utilization of the

charging bays. In this case the optimal number of batteries equals the charging capacity, because

the value of an additional battery is zero, as it can never be charged.

Figure 6 shows the optimal number of batteries for increasing charging capacity up to K =

19 along with the best solutions found by Algorithm 4 for values K ≥ 8. We cannot compute

the optimal solution for values of K > 19, because the problem becomes too large for the exact

algorithm and we must rely on our approximation algorithm.
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The solutions found by the approximation are either equal to the optimal solutions or slightly

underestimate the optimal number of batteries for higher values of K. For lower values of K

the algorithm takes more iterations to converge and we had to stop the simulation early, before

convergence sets in.

We then concurrently optimized the number of batteries and charging bays for a single station.

Figures 7 and 8 compare the performance of the ADP algorithm to the optimal values. Figure 7

shows the values of N and K found by Algorithm 4 and Figure 8 shows the expected operating cost

resulting from simulating the current value function approximation in the corresponding iteration

along with confidence intervals. The dashed lines show the upper and lower boundary of the 95%

confindence interval for 100 replications of the simulation procedure outlined in Section 5.2.
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The upper bound of the confidence interval for the expected operating cost is at USD 151,683

after 11,000 iterations, which corresponds to an optimality gap of 0.80% for this instance. The

upper bound of the confidence interval for total cost is at USD 789,183 for the ADP solution

compared to USD 763,280 in the optimal solution. The difference is mainly caused by the fact

that the ADP solution had K = 12 charging bays in its last iteration vs. K = 11 for the optimal

solution. For practical problems, one can easily simulate a number of points around the optimal

solution and implement the lowest cost solution.

In the second test we solved a test instance consisting of a network of swap stations with identical

parameters to compare it to the optimal results for ten single stations that are operating isolated

from each other. Doing this we can check whether the solution obtained from the approximate

algorithms for the network instance shows the expected properties, e.g., total expected cost must
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be less than or equal to the solution for isolated stations. Additionally, we can quantify the effect

that operating swap stations in a network has on the optimal equipment of a station with batteries

and charging bays.
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Figure 9 shows the intuitive result that in a network of stations lower investment in equipment

is necessary. However, this is especially true for charging bays, whereas the number of batteries in

the system is not considerably lower. This can be explained by the relatively long transshipment

lead times of between four and six periods in our test scenario. In this case, the advantage of

a network based system lies especially in sharing charging bays, while transshipment of charged

batteries cannot reduce the required safety stock considerably.

6.3.2. Base Case. Our base case considers ten battery swap stations spread out over the bay

area in California (see Figure 10). We chose this region for our scenario, because the EV adoption

rates here are highest in California. We chose prominent locations near highways for the stations,

because battery swapping is mainly required for longer distance travel. We used energy price

data of ten different advanced pricing nodes from CAISO and assumed equal demand distribution

parameters for all stations.

Table 5 compares the solutions for the network model with and without transshipments. For

total cost we can only state minimum achievable savings, because the solution for the model with

transshipments was calculated by the ADP algorithm and is an upper bound on the optimal cost.

The solution shows minimum potential savings of USD 473,872 (6.2%) when transshipments are

allowed between battery swap stations. If no transshipments are allowed, the optimal expected

total cost amounts to USD 7,606,504 vs. USD 7,132,632, with transshipments. The savings stem
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not only from lower expected operating cost, but also from lower investment in batteries and

charging infrastructure. Interestingly, mainly the number of required charging bays is lower when

transshipments are allowed (90 vs. 110), while the total number of batteries does not differ much

in both cases (268 vs. 270).

Base Case with Transshipments abs. Difference rel. Difference

N 270 268 -2 -0.7%
K 110 90 -20 -18.2%
Oper. Cost [106] 1,533 1,360 -173 -11.3%
Tot. Cost [106] 7,607 7,133 -473 -6.2%

Table 5 Results Network Model Base Case vs. with Transshipments

6.3.3. Sensitivity. So far, all exact calculations and validation scenarios as well as the base

case assumed an average demand rate of 1
T

∑
t λt = 1.0 per station. Additionally, the relevant factor

in determining the benefit of operating a network of swap stations compared to operating them

separately is the transshipment cost. This cost depends highly on the specific transshipment process

and contractual details. To capture the effects of both factors, we analyze the solution sensitivity

with respect to demand rate and transshipment cost. As mentioned, we can solve instances for

higher demand rates only approximately using Algorithms 3 and 4.

Effect of Demand Rate. We performed experiments for average demand rates of 1
T

∑
t λt

between 1.0 and 10.0. A single battery swap takes about 2-3 minutes, which allows a maximum

of 20 swaps per hour. For an average demand rate of 10.0, the peak demand rate is 19.84 (see

Figure 3), and we therefore use an average demand rate of 10.0 as an upper bound on the average

acceptable demand rate.

Our results in Table 6 show that the total number of batteries in the system grows sublinearly

and the number of charging bays in the system grows approximately linearly in the demand rate.

The behavior with respect to batteries can be explained by the fact that we model the demand

for batteries in each period to follow a Poisson distribution. In this case, the standard deviation

of the arrivals equals the square root of the demand rate and, as a result, an increasing demand

rate causes the safety stock to increase approximately proportionally to the standard deviation of

demand. Table 6 summarizes the results for varying the demand rate.

Avg. Demand Rate 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

N 268 482 682 881 1,073 1,269 1,455 1,648 1,836 2,016
K 90 178 271 360 453 538 622 714 809 898
Oper. Cost [106] 1,533 3,021 4,569 6,129 7,593 9,287 10,703 11,932 13,547 15,252
Tot. Cost [106] 7,133 13,490 19,875 26,142 32,335 38,599 44,446 50,376 56,716 62,897

Table 6 Cost and Optimization Results for varying Demand Rate
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Transshipment Cost. The assumed transshipment costs were calculated based on taxi rates in

the bay area. Most likely, transshipment service can be purchased at a lower price from dedicated

service providers. We therefore perform calculations for transshipment costs from 10% to 90% of

the estimated cost.

Our results show the intuitive result that for lower transshipment costs, total operating costs

decrease. Additionally, the optimal numbers of batteries and charging bays also decrease slightly,

because the pooling effect can be achieved at a lower cost than providing more batteries and spare

charging capacity for the risk of stocking out. Of course, in any instance the total average demand

rate multiplied by the charging time is a lower bound on the optimal number of charging bays.

Table 7 summarizes the results for varying transshipment cost.

% of Base Cost 10 20 30 40 50 60 70 80 90 100

N 240 245 246 247 250 253 255 260 264 268
K 78 78 80 81 82 84 86 89 90 90
Oper. Cost [106] 1,564 1,546 1,527 1,512 1,500 1,487 1,499 1,506 1,520 1,533
Tot. Cost [106] 6,514 6,558 6,602 6,625 6,675 6,749 6,836 6,981 7,070 7,133

Table 7 Cost and Optimization Results for varying Transshipment Cost

7. Conclusion

In this paper, we have modeled and analyzed the problem of operating and equipping a network

of battery swap stations with charging bays and batteries. The goal is to calculate the optimal

equipment configuration of a single station and of a network of swap stations, while considering the

uncertainty in demand for swap service and prices of electric energy. To solve our model, we have

developed an optimal solution algorithm for small problems and an approximating algorithm based

on dynamic programming and Monte-Carlo-Sampling for instances of relevant size. Our approx-

imation provides near-optimal results for single station problems and its results for the network

problem provide a lower bound on the savings achievable by allowing lateral transshipments of

batteries between swap stations.

To identify relevant parameters influencing the optimal equipment choice of a station operator,

we have implemented our solution approach and conducted an extensive numerical study based

on publicly available data. Our implementation is a decision making tool for the equipment and

charging decisions in a battery swap network and can be readily applied by system operators. Our

results show that equipment costs account for a large portion of total infinite horizon costs of a

battery swap station, especially during the launch phase when demand rates are low. As a result,

identifying the optimal quantities of batteries and charging bays is a crucial task, and our tool is

capable of performing it.
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We also derived important managerial implications for operating a network of battery swap

stations. Our calculations show that expenses for equipment can be substantially reduced, if trans-

shipments between stations are allowed. We also identified unleveled demand over the day as a

key driver of equipment costs, which suggests incentivizing customers to shift their demand for

swapping service to off-peak hours. Another key finding with implications beyond battery swap

stations is that at the current cost of batteries, it is not profitable to purchase more batteries for

exploitation of arbitrage due to the differences in electricity costs over the day.

We also hope to spark interest in further investigating the characteristics of battery swap stations

and networks to help increase success of EVs. Especially integrating battery recharging decisions

with dispatch of intermittent energy sources seems to be a field of research worth investigating.
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Appendix A: Estimation of CN and CK

The price of a complete automotive lithium-ion battery pack in 2012 amounted to about USD 450 per kilowatt

hour (kWh) (Hensley et al. 2012). The battery pack built in the Renault Fluence Z.E., the only car currently

available for use with swap stations, has a capacity of 22 kWh. We therefore used a current price for a 22 kWh

battery of USD 10,000. Using the hourly discount factor of γ = 0.99999 and an expected life span of 8 years

(this is the warranty period for the battery of a BMW i3), the cost for remanufacturing/replacing for the first

time is multiplied by γ1 = 0.50 and for the second time by γ2
1 = 0.25 and so forth. Assuming 25% of purchasing

cost for remanufacturing of a battery, this results in infinite horizon cost of CN = 10,000+ γ1

1−γ1
2500≈ 12,500.

Cost for installation of a charging bay is very hard to estimate, because it highly depends on the existing

energy distribution infrastructure and used automation hardware of the swap station. Considering the fact

that a mass-produced consumer charging station with manual control currently costs around USD 1,700,

which does not include installation cost and possible required extensions to the energy distribution network,

we believe a cost of CK = 25,000 to be of the right magnitude for the overall infinite horizon cost of a fully

automated charging bay. In any case, our results show that the optimal number of charging bays is very

robust with respect to CK .
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Appendix B: Notation

bkt lower bound on optimal value in iteration k

b̄kt upper bound on optimal value in iteration k
βn amount of energy absorbed by the battery in period n of the charging process
Ct cost contribution in period t
C̄t cost contribution in period t of lower bounding model
CK infinite horizon cost per charging bay
CN infinite horizon cost per battery
Dt demand for batteries in period t
et price of electric energy in period t
Et price of electric energy in period prior to period t
ft infinite horizon operating cost from period t
E space of possible values for E
γ discount factor
K number of charging bays
κ mean reversion parameter
λt demand rate in period t
L battery charge time
N number of batteries
µt mean of energy cost distribution in period t
pt per period, per unit penalty cost for stockouts
Π set of all coordinates of state space
Rt,i number of charging batteries in period t that become available in i periods
σt standard deviation of energy cost distribution in period t
St state
S state space
Sc convex subspace of state space
T planning horizon, i.e., number of periods
Ut number of available uncharged batteries in period t
U space of feasible values for U
Wt,i number of charged batteries in period t that become available in i periods
W̄t inventory position of charged batteries in period t
Vt value function
Vt global lower bound
VK
t coordinatewise lower bound for K charging bays

VN
t coordinatewise lower bound for N batteries

Ṽt value function of transformed model

V̂t value function approximation
V̄t value function of lower bounding model
W space of feasible values for W
xt number of batteries to start charging in period t
X action space

X̃ action space of transformed model
X̄ action space of lower bounding model
yt,i,j number of uncharged batteries transshipped from station i to j starting in t
zt,i,j number of charged batteries transshipped from station i to j starting in t
ζt normally distributed noise term of energy price in period t

Appendix C: Proofs of Statements

All properties from Sections 3.2 and 4.2 are proven for finite horizon versions of the dynamic program. In

this dynamic program the fixed planning horizon of T periods is cycled through I times, resulting in a total

of T̂ = IT periods. The corresponding results for the infinite horizon case follow by taking the limit I→∞

(see, for instance, Bertsekas 2007, Chapter 1).
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C.1. Proof of Property 1

We prove the property by a counterexample.

We consider a deterministic model with L = 1, Dt = 10, Et = 3, and pt = 100 over a horizon of T̄ = 2

periods, i.e., all cost is zero from the third period on. Without loss of generality, we set K =M , where M is

a big number. We omit dependence of Vt on K.

We assume VT̄+1 = 0 and U0 = 0.

In t= T̄ = 2 it is always optimal not to start charging batteries, because the terminal value VT̄+1 = 0 and

energy prices Et > 0. Then V2(S2,100) = 100[10−W2,0]+ + 2([W2,0]+ +U2) and V2 is convex in S2. Function

V2 takes its minimum at (W2,0,U2) = (10,0).

For L= 1, St is a function of St−1, xt−1, and Dt−1. It is defined by Wt,0 =Wt−1,0 +xt−1−Dt−1 =Wt−1,0 +

xt−1−10 and Ut =Ut−1−xt−1 +min([−Wt−1,0]+ +Dt−1, [Wt−1,0]+ +xt−1) =Ut−1−xt−1 +min([−Wt−1,0]+ +

10, [Wt−1,0]+ +xt−1).

Since U0 = 0, we have x0 = 0. As a result, V0(−11,0) = 2100 + V1(−21,0) and V0(−10,0) = 2000 +

V1(−20,0), V0(0,0) = 1000 + γV1(−10,0), V0(1,0) = 902 + γV1(−9,1), V0(20,0) = 40 + V1(10,10) and

V0(21,0) = 42 +V1(11,10).

Consider V1(S1). It is given by

V1(S1) = 100[10−W1,0]+ + 2([W1,0]+ +U1) + min
x≤U1

{
3x+ γ(100[10−W2,0]+ + 2([W2,0]+ +U2))

}
.

We obtain V1(−10,0) = 2000 + γ · 3000, V1(−9,1) = 1902 + 3 + γ · 2802, V1(−21,0) = 3100 + γ · 4100,

V1(−20,0) = 3000 + γ · 4000, V1(10,10) = 40 + 30 + γ · 40 and V1(11,10) = 42 + 27 + γ · 42.

Let us assume γ = 0.9. The first difference of V0 is then not increasing for all S0, because

V0(−10,0)−V0(−11,0) = 2000− 2100 + γ(3000− 3100) + γ2(4000− 4100) =−100(1 + γ+ γ2) =−271

V0(1,0)−V0(0,0) = 902− 1000 + γ(1905− 2000) + γ2(2802− 3000) =−98− 95γ− 198γ2 =−343.88

and

V0(21,0)−V0(20,0) = 42− 40 + γ(69− 70) + γ2(42− 40) = 2− γ+ 2γ2 = 2.72.

This completes the counterexample and shows that Vt(St,K) is not coordinatewise convex in St ∈ S.

C.2. Proof of Property 2

We prove coordinatewise convexity of Ṽt in W , K, and N by analyzing a continuous extension V̄t. We first

show that V̄t is convex in W , K, and N . We then show that Ṽt is the restriction of V̄t to integer values for

W , K, and N . Coordinatewise convexity then follows from the fact that V̄t is convex.

We define:

• X̄ (W,K,N) = conv X̃ (W,K,N)

• W̄(K) = conv W(K).

• Jt(x,Et,Wt,Et+1,Dt,K,N) =Ct(Wt, x,Et,Dt) + γV̄t+1 (Wt+1,Et+1,K,N)
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• x∗t (Et,Wt,Et+1,Dt,K,N) = arg minx∈X̄ Jt(x,Et,Wt,Et+1,Dt,K,N)

• J̄t(x,Et,Wt,Et+1,Dt,K,N) = Jt(bxc,Et,Wt,Et+1,Dt,K,N)(dxe − x) +

Jt(dxe,Et,Wt,Et+1,Dt,K,N)(x−bxc)

• V̄t(Wt,Et,K,N) = EEt+1,Dt

[
minx∈X̄(Wt,K,N)

{
J̄t (x,Et,Wt,Et+1,Dt,K,N)

} ∣∣∣Et]
Note that:

1. Jt is convex, if Ct and V̄t+1 are convex and Wt+1 is an affine function of Wt and x.

2. J̄t is convex, if Jt is convex, because it is the linear interpolation of Jt between integer points in x.

The state transition function is given by Wt+1(Wt,Dt, x) = [Wt,0 + Wt,1 −Dt,Wt,2, . . . ,Wt,L, x], and it is

clearly an affine function of Wt and x. We also use the standard trick to turn a constrained convex problem

into an unconstrained convex problem via the set characteristic function.

We denote the domain of Jt for given Et, Et+1, and Dt by J (Et,Et+1,Dt) and the domain of V̄t,i for given

Et by V(Et). We have

J (Et,Et+1,Dt) = {(x,Et,Wt,Et+1,Dt,K,N) :K ∈R+
0 ,N ∈R+

0 ,Wt ∈ W̄(K), x∈ X̄ (Wt,K,N)}

and

V(Et) = {(Wt,Et,K,N) :K ∈R+
0 ,N ∈R+

0 ,Wt ∈ W̄(K), x∈ X̄ (Wt,K,N)}.

Sets J (Et,Et+1,Dt) and V(Et) are polyhedra and therefore convex.

We show convexity of V̄t(Wt,Et,K,N) by induction. First note that Ct(Wt, x,Et,Dt) is convex in x and

Wt for all Et, Dt, and t when pt ≥ 0.

Base Case.

Let us assume V̄T̄+1 = 0. Then JT̄ (x,ET̄ ,WT̄ ,ET̄+1,DT̄ ,K,N) = CT̄ (WT̄ , x,ET̄ ,DT̄ ). Set

J (ET̄ ,ET̄+1,DT̄ ) is convex and nonempty. Additionally, JT̄ and J̄T̄ are convex. Then

minx∈X̄(Wt,K,N)

{
J̄T̄ (x,ET̄ ,WT̄ ,ET̄+1,DT̄ ,K,N)

}
is convex in WT̄ , K, and N , because it is the minimum of

a convex function over a nonempty convex set (Boyd and Vandenberghe 2004, Section 3.2.5). Taking the

expected value with respect to e preserves convexity and we conclude that V̄T̄ (WT̄ ,E,K,N) is convex in

WT̄ , K, and N .

Induction Step.

Now assume that V̄t+1(Wt+1,Et+1,K,N) is convex in Wt+1, K, and N on V(Et+1).

Then, Jt and J̄t are convex in Wt, K, and N , because Ct is convex and Wt+1 is an affine mapping of

Wt and x. Then, because V(E) is convex and nonempty, and because taking the expected value preserves

convexity, we conclude that V̄t,i(W,E,K,N) is convex in W , K, and N on V(E).

This concludes the first part of the proof.

It remains to show, that Ṽt(W,E,K,N) = V̄t(W,E,K,N) for all (E,W,K,N) ∈ E × {W ∈ W(K),K ∈

Z0,+,N ∈ Z0,+} ⊆ E × V(E). We show this by induction. First, note that for (E,W,K,N) ∈ E × {W ∈
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W(K),K ∈Z0,+,N ∈Z0,+} we have max{x : x∈ X̄ (W,K,N)}= max{x : x∈ X̃ (W,K,N)} ∈Z+
0 and min{x :

x∈ X̄ (W,K,N)}= min{x : x∈ X̃ (W,K,N)} ∈Z+
0 .

Base Case.

Assume V̄T̄+1 = 0. Function J̄T̄ is piece-wise linear in x and has integer breakpoints. Then it holds

min
x∈X̄(WT̄ ,K,N)

J̄T̄ (x,ET̄ ,WT̄ ,ET̄+1,DT̄ ,K,N)

= min{J̄T̄ (bx∗T̄ c,ET̄ ,WT̄ ,ET̄+1,DT̄ ,K,N), J̄T̄ (dx∗T̄ e,ET̄ ,WT̄ ,ET̄+1,DT̄ ,K,N)}

= min
x∈X̃(WT̄ ,K,N)

CT̄ (WT̄ , x,ET̄ ,DT̄ ).

It follows that ṼT̄ (WT̄ ,ET̄ ,K,N) = V̄T̄ (WT̄ ,ET̄ ,K,N) for all (ET̄ ,WT̄ ,K,N) ∈ E × {WT̄ ∈ W(K),K ∈

Z0,+,N ∈Z0,+}.

Induction Step.

The induction assumption is Ṽt+1(Wt+1,Et+1,K,N) = V̄t+1(Wt+1,Et+1,K,N) for all (Et+1,Wt+1,K,N)∈

E ×{Wt+1 ∈W(K),K ∈Z0,+,N ∈Z0,+}.

From the induction assumption, it follows that Ct (Wt, x,Et,Dt) + γṼt+1 (Wt+1,Et+1,K,N) =

Ct (Wt, x,Et,Dt) + γV̄t+1 (Wt+1,Et+1,K,N) = J̄t(x,Et,Wt,Et+1,Dt,K,N) for all (Et+1,Wt+1,K,N) ∈ E ×

{Wt+1 ∈W(K),K ∈Z0,+,N ∈Z0,+}.

We have that (Et+1,Wt+1,K,N) ∈ E ×{W(K),K ∈ Z0,+,N ∈ Z0,+}, where Wt+1 is a function of Wt, xt,

and Dt, if the following conditions hold:

1. xt ∈ X̃ (Wt,K,N)

2. Dt ∈Z+
0

3. (Et,Wt,K,N)∈ E ×{W(K),K ∈Z0,+,N ∈Z0,+}.

Condition 2 holds by definition and condition 3 holds, if W0 ∈Z+ and xt ∈Z+ for all t= 0, . . . , t− 1. This is

true since W0 = (N,0, . . . ,0) and N ∈Z+ and all x∗t and Dt are integer.

We show that x∗t ∈ X̃ (Wt,K,N). Since J̄t is piece-wise linear in x with integer break-

points, arg minx∈X̄(Wt,K,N) J̄t(x,Et,Wt,Et+1,Dt,K,N) is integer, if condition 3 holds (for the

case J̄t(bx∗t c,Et,Wt,Et+1,Dt,K,N) = J̄t(dx∗t e,Et,Wt,Et+1,Dt,K,N), we use the convention

arg minx J̄t(x,Et,Wt,Et+1,Dt,K,N) = bx∗t c). This means that x∗t ∈ X̃ (Wt,K,N).

This establishes that (Et+1,Wt+1,K,N)∈ E ×{W(K),K ∈Z0,+,N ∈Z0,+} and this in turn yields, by the

induction assumption, that minx∈X̄ J̄t = minx∈X̃ Jt.

It directly follows that Ṽt(Wt,Et,K,N) = V̄t(Wt,Et,K,N) and we conclude that Ṽt,i(W,E,K,N) is coor-

dinatewise convex in W , K, and N .

C.3. Proof of Property 3

By Property 2, we know that Ṽt is coordinatewise convex in W for W , K, and N integer. Additionally, for

any W by Proposition 1 equation Vt((Wt,Ut,Et),K) = Ṽt(Wt,Et,K,Ut + [Wt,0]+ +
∑L

n=1Wt,n) holds. The

statements then follows by noting that Ṽt(Wt,Et,K,Ut + [Wt,0]+ +
∑L

n=1Wt,n) is coordinatewise convex on

{(W,U) :W ∈W(K), [W0]+ +
∑L

n=1Wn +U =N}.
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C.4. Proof of Property 4

It is easy to construct counterexamples showing that ft does not inherit any of the mentioned properties in

general.

C.5. Proof of Property 5

We show coordinatewise convexity of ft(N,K) in N and K first.

Because ft(N,K) = Ṽt(W0(N),E0,K,N) and W0(N) = (N,0,0, . . . ,0) for all N and K, we can

rely on the proof of Property 2 to show coordinatewise convexity of ft. From the proof we know

that Ṽt(W,E,K,N) = V̄t(W,E,K,N) for integer values of W , K, and N . Because W0(N) is integer,

Ṽt(W0(N),E,K,N) = V̄t(W0(N),E,K,N). Additionally, V̄t(W0(N),E,K,N) is convex and coordinatewise

convexity of Ṽt(W0(N),E,K,N) in N follows. Coordinatewise convexity of ft(N,K) in K, follows from

similar arguments.

We show that ft(N,K) is non-increasing in N and K next.

The following relations are easily verified:

1. W(K1,N)⊆W(K2,N) for K2 >K1

2. W(K,N1)⊆W(K,N2) for N2 >N1

3. X̃ (W,K,N1)⊆ X̃ (W,K,N2) for N2 >N1 and W ∈W(K,N1)

4. X̃ (W,K1,N)⊆ X̃ (W,K2,N) for K2 >K1 and W ∈W(K1,N)

We show that ft(N,K) = Ṽt(W0(N),E,K,N) is non-increasing in K by induction on t first. Let K2 >

K1 ≥ 0.

Base Case.

We show ṼT̄ (WT̄ ,ET̄ ,K1,N)≥ ṼT̄ (WT̄ ,ET̄ ,K2,N) for all WT̄ ∈W(K1,N). By relation 4,

min
x∈X̃(WT̄ ,K1,N)

CT̄ (WT̄ , x,ET̄ ,DT̄ )≥ min
x∈X̃(WT̄ ,K2,N)

CT̄ (WT̄ , x,ET̄ ,DT̄ )

and, as a result,

ṼT̄ (WT̄ ,ET̄ ,K1,N)≥ ṼT̄ (WT̄ ,ET̄ ,K2,N).

The statement of the property follows for the base case by noting that W =W0(N)∈W(K1,N).

Induction Step.

We assume that Ṽt+1(Wt+1,Et+1,K1,N)≥ Ṽt+1(Wt+1,Et+1,K2,N) for all Wt+1 ∈W(K1,N), Et+1, and

N . Note that from Wt ∈W(K1,N) it follows Wt+1 ∈W(K1,N), if x∈ X̃ (Wt,K1,N). It immediately follows

that

min
x∈X̃(Wt,K1,N)

Ct(Wt, x,Et,Dt) + Ṽt+1(Wt+1,Et+1,K1,N)

≥ min
x∈X̃(Wt,K1,N)

Ct(Wt, x,Et,Dt) + Ṽt+1(Wt+1,Et+1,K2,N)

≥ min
x∈X̃(Wt,K2,N)

Ct(Wt, x,Et,Dt) + Ṽt+1(Wt+1,Et+1,K2,N),
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where the first inequality is by the induction assumption and the second inequality is by relation 4. This

implies Ṽt(Wt,Et,K1,N)≥ Ṽt(Wt,Et,K2,N) for Wt ∈W(K1,N), Et, and N .

The statement of the property then follows, because W0(N)∈W(K1,N).

The proof that Ṽt(W0(N),E0,K,N) is non-increasing in N follows similar arguments for two number

N2 >N1 and is omitted.

C.6. Proof of Property 6

The proof is essentially identical to the proof of Property 2 and thus omitted.

C.7. Proof of Proposition 2

The proof of Proposition 2 is a byproduct of the proof of Proposition 3.

C.8. Proof of Proposition 3

We prove the statement by induction.

Base Case. We want to show that VT̄ ≤VN
T̄ ≤ fT̄ (N,K) and VT̄ ≤VK

T̄ ≤ fT̄ (N,K). Because for all t > ˆ̄T ,

Vt = Vt = 0 and pt =Et =Dt = 0, it suffices to show that

min
xT̄≥0
{xT̄ET̄} ≤ min

0≤xT̄≤N−W̄T̄

{xT̄ET̄} ≤ min
xT̄∈X(ST̄ ,K)

{xT̄ eT̄}

and

min
xT̄≥0
{xT̄ET̄} ≤ min

0≤xT̄≤K
{xT̄ET̄} ≤ min

xT̄∈X(ST̄ ,K)
{xT̄ET̄}

for all W̄T̄ =
∑L

n=0WT̄ . The relations hold obviously by definition of X (ST̄ ,K).

Induction Step. Let us assume that Vt+1 ≤ VN
t+1 ≤ ft+1(N,K) and Vt+1 ≤ VK

t+1 ≤ ft+1(N,K) for all

W̄t+1 =
∑L

n=0Wt+1,n.

We show relation Vt ≤ ft(N,K). The other relations are obtained similarly.

Lower bound Vt is defined by

Vt =V̄t(W̄t,Et) +Ft(Wt,Et)

=E
[

min
xt≥0

{
C̄t(W̄t, xt,Et) + γV̄mod(t+1,T )(W̄mod(t+1,T ),Emod(t+1,T )) +Ft(Wt,Et)

}]
.

By noting that

Ft(Wt,Et) = γF (Wt+1,Et+1)+ptE[(Dt−Wt,0)+]− γLpt+LE[(Dt+L−Wt+L−1,0 +xt)
+]

+et

L∑
n=1

βnWt,n−xt

(
E

[
L∑
τ=1

γτβτEt+τ |Et+τ−1

])
,

this simplifies to

Vt =E

[
pt(Dt−Wt,0)++et

(
β0xt +

L∑
n=1

βnWt,n

)
+ γLpt+L((Dt,t+L− W̄t)

+− (Dt+L−Wt+L,0)+)

+ min
xt≥0

{
γV̄t+1(W̄t+1,Et+1) + γFt+1(Wt+1,Et+1)

}]
.

Because E[(Dt,t+L− W̄t)
+] = E[(Dt+L−Wt+L,0)+], this is the same as

Vt =E
[

min
xt≥0

{
Ct(Wt, xt,Et,Dt) + γV̄t+1(W̄t+1,Et+1) + γFt+1(Wt+1,Et+1)

}]
. (18)

The relation Vt ≤ ft(N,K) then follows from the induction assumption, comparing Equation (18) to

the definition of ft(N,K) and noting that the feasible set of actions xt ≥ 0 always includes all feasible

x∈X (N,K).
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