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Abstract

Driven by a real-world application in the beverage industry, this paper provides a design of a new VNS variant to
tackle the annual production budget problem. The problem consists on the assigning and scheduling of production
lots in a multi-plant environment, where each plant has a set of filling lines that bottle and pack drinks. Plans also
consider final product transfers between the plants. Our algorithm fixes setup variables for family of products and
determines production, inventory and transfer decisions by solving a linear programming (LP) model. As we are
dealing with very large problem instances, it is inefficient and unpractical to search the entire neighborhood of the
incumbent solution at each iteration of the algorithm. We explore the sensitivity analysis of the LP to guide the partial
neighborhood search. Dual re-optimization is also used to speed-up the solution procedure. Tests with instances from
our case study have shown that the algorithm can substantially improve the current business practice, and it is more
competitive than state-of-the-art commercial solvers and other VNS variants.

Keywords: Long-term production planning, Beverage industry, Very large neighborhood search, Mathematical
programming

1. Introduction

The beverage industry is a sub-sector of the food industry, the second largest sector in the European manufacturing
industry in terms of value added. It supplies a variety of products from wine, beer and spirits to mineral and sparkling
water and soft drinks. Markets world wide are strongly affected by cultural differences, especially in Europe. This
effect creates the environment for the appearance of small to medium size companies that are specialised in local
products and/or local brands. Nevertheless, there are a number of large multinational companies able to compete in
markets across the globe offering a wide variety of products, such as soft drinks. Today’s competition in this sector
leads companies to expand their product portfolio, which combined with the advanced technology present in modern
production sites, raises the need for efficient production planning. Moreover, production sites in this industry tend to
be geographically disperse allowing companies to satisfy local demands at lower costs. Production planning is often
conducted considering only one plant at time, ignoring the potential benefits of coordination. This paper is inspired
by a real industrial case from a company competing in the beer and soft drink industries. The focus is to define a long-
term production plan to a series of production (filling) lines located in different plants. The scheduling of product
families at each filing line is the basis for product production, inventory, and transfer decisions. Transfer decisions
represent movements of finished products and come from the fact that demand observed at a geographical area around
each plant can be satisfied by other production sites to cope with under capacity of a given plant. Under these
conditions, plants act both as production and distribution centers since warehouses are located near them and have
individual demand. Decisions are traditionally made for a rolling planning horizon of 12 to 18 months with a monthly
bucket. Real-world production planning problems often result in untractable models, and even simplified versions
result in NP-hard problems. However, only realistic modelling of the problem features can help managers in their
decisions, which was already pointed out as a field of future research of two previous literature reviews on production
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planning problems [1, 2]. Furthermore, to deal with the complexity of industrial applications, Jans and Degraeve [2]
encourage the use of metaheuristics. Naturally, the large scale instances that arise in our application demand their use.
Metaheuristics are frameworks used to solve combinatorial optimization problems, guiding other simple heuristics
to search for high quality solutions. Local search (or neighborhood search) is among these heuristics. They attempt
to iteratively improve an incumbent solution by replacing it with a better solution found in its neighborhood leading
to a local optimum. Several schemes have been developed to overcome the entrapment in local optima. Variable
Neighborhood Search (VNS) is a local search framework based on systematic change of neighborhoods both to find
local optimum and to perturb the solution to emerge from entrapment [3]. We make use of VNS principles and of
our problem formulation to develop a heuristic for the problem. Our local search attempts to find a better assignment
of families to filling lines, and the subsequent decisions on production, inventory and transfers are achieved through
linear programming (LP). This neighbor evaluation methodology can be expensive as we are dealing with very large
neighborhoods, therefore we test different techniques to speed-up the local search. The final tableu of the LP simplex
algorithm provides valuable information that we use to guide the search. Other, speed-up techniques involve the use
of dual-reoptimization to quickly identify and get rid of low quality solutions. Tests performed on a set of randomly
generated instances attested the algorithm superiority over commercial solvers and other VNS variants for medium
and large size instances. Later the benchmark against industry current practice revealed its potential cost saving
capability. The remainder of the paper is as follows. In Section 2 we start by describing the production process
of the two different types of products (beer and soft drinks) tackled here. Planning process and major planning
constraints are introduced in Section 3. We also integrate long-term planning in the industry planning framework and
pinpoint industry practices. Section 4 presents the real-world case study and related work in the literature. Section 5
is dedicated to the problem modelling and solution methodology. Section 6 reports numerical experiments, first on a
collection of randomly generated instances to asses the quality and robustness of the algorithm, and later on real-world
instances, together with a benchmark against the current practice at a company. Finally, the paper ends with a short
summary and outlook.

2. The beer and soft-drink production process

Beer and soft drinks industries share some common features in their production process. Both encompass two
main production stages: liquid production (stage I) and liquid bottling (stage II).

Stage I of the beer production process, also known as brewing, it has the purpose of converting the sugars present in
the starch source into alcohol through a reaction of a yeast. Different beers have different recipes that determine their
production process. Yet, generally there are three main processes in beer production: wort preparation, fermentation
and maturation, and filtering. Wort preparation consists in the extraction of the fermentable sugars from usually barley
malt and, in addition, of hop. Fermentation follows next and its goal is to transform the sugars into ethanol through the
action of fermenting yeasts. Undesirable substances from the censorial point of view, are removed in maturation in a
series of chemical, biological and physical steps. Fermentation and maturation processes have the longest processing
times, depending on the beer recipe, they can last from 4 days to 3 weeks. The beer resulting from the previous process
is turbid, therefore a filtration process is conducted. During this step for some flavoured beer, syrups or concentrates
are also added. Non-alcoholic beers pass through a stripping process to remove the ethanol. For more detail about the
beer production process the reader is referred to [4–6].

On the other hand, soft drinks are beverages consisting primarily of carbonated water, sugar, and flavourings.
Stage I of soft drink production starts with water clarification. Liquid flavour preparation follows next, and is con-
ducted in specialized mixing tanks. Sugar, flavour concentrates and water are pumped in a specific sequence and then
carefully mixed. Sophisticated machines control the flow of the ingredients to ensure the perfect recipe. Carbonation
is generally the last step in soft drink production, normally performed just before liquid bottling. For more information
on soft drink production see [7].

In the second stage, different sized cans, glass bottles (disposable and reusable), kegs and plastic (PET) bottles
(less common in the beer case) are filled with beer and soft drinks. A filling line consists on a series of conveyor belts
and machines that wash, fill, seal, label and pack the bottles, cans or kegs [8, 9]. The first step involves washing and
disinfection of containers, which afterwards pass through an inspection to guarantee the absence of potential hazards.
The next machine performs the filling and capping of containers. To ensure product shelf life over a determined
period, a pasteurization step follows container filling. For soft drinks, the pasteurization step may take place in a
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mixing tank instead. Its duration depends on the product features. Labelling is carried out next. Filled containers
inspection certificates that the specified volume has been introduced and no defects occurred during the process.
Packing containers into paper-boxes, packs or other selling units precedes palletization and storage. Since these
processes are done in series from hereafter, we will refer to the set of machines that compose a filling line as a whole.

3. Planning production in the beverage industry

Planning production in the beverage industry, specifically in the beer industry, is a complex process. Not only are
there several processes involved, but also increasing competitiveness of the market forces companies to enlarge their
product portfolio posing new challenges and raising the need for decision support tools to help managers.

3.1. Main planning constraints

One of the main planning constraints is related to the sales profile of these products. Sales of beer and soft drinks
have high seasonality and variability. Beer and soft drinks consumption peaks at Easter and Christmas, but Summer
is by far the highest point in terms of sales. Moreover, there is a clear increase of sales in the second half of each
month. On the other hand, capacity remains almost constant throughout the year and it can be evaluated by the
number of production hours available. Product demand is also affected by other sources of variability, such as brand
management and clients commercial policy. Some of the most important costumers of these companies are large
retailers with extremely aggressive marketing strategies that require almost instantaneous response from suppliers.
These sales characteristics stress production and lead the industry to work on a make-to-stock basis. But, diversity of
the product range makes sales hard to forecast.

Looking at the industry supply chain, a typical beverage industry company has one or more plants relatively close
to the geography of demand, in order to avoid transfer costs, which otherwise would have assumed an important
percentage of the total cost. Within each plant, stages I and II of the production process are most of the time divided
and buffers may exist between stages, with typically a single unit of stage I supplying a series of parallel filling lines.
It is a common practice in industry to consider the filling stage (II) as the bottleneck of the entire production process,
due to several reasons. For the beer case, buffers between the different main processes of stage I allow it to be more
flexible. Moreover, the high number of different products that have to be manufactured in stage II correspond to a few
different types of beer (or syrups for the soft drinks) in stage I, since SKU (Stock Keeping Unit) differences may rely
on a different container, label or package affecting only stage II.

Filling lines are usually divided according to their technological aspects (e.g. filling lines for kegs are unable to
fill bottles or cans). Furthermore, an important distinction is made between filling lines for disposable and reusable
bottles, since an extra step and machine are needed to conduct an additional washing procedure in the latter case.
Hence, disposable bottles filling lines can not fill reusable bottles, but no restrictions are present the other way around.
Even so, filling lines are relatively flexible and often a certain product can be assigned to several alternative lines,
even within the same plant, but with throughput rates (measured in terms of litres per minute (l/min)), that might be
substantially different.

Each filling line can only produce a single product at any time, being adjusted to fill a certain liquid, container
type and size, and final package. A product changeover may involve several changes in the filling line and possibly
a cleaning step. Liquid type switchovers always involve the cleaning of the filling line and sometimes the setup of
the pasteurization machine. On the other hand, switches on the container type and/or size and final packaging trigger
mechanical adjustments in most machine settings. These operations consume scarce production time (capacity) and
can cause loss of material, that depend on the production sequence. Therefore we have the presence of sequence-
dependent changeover times and costs. The increase of the number of products that took place in recent years has
reduced the operational times of filling lines as more setups are needed. In addition, market pressure to work with
less stock and to deliver products more frequently has also increased the number of production batches, reducing their
size and consequently leveraging the appearance of extra setups.

Filling lines operate on a shift basis and their capacity can be translated into the number of hours available for
production. Some of the filling lines operate around the clock, therefore overtime is not always an option. Investing
in new lines is also problematic as it greatly increases fixed costs. Some investments can be made in order to make
filling lines more flexible, but they have to be carefully studied since their cost can be significant. Yet, such changes
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would only produce effects in the long-term, and short-term capacity can be considered constant. All the aforemen-
tioned reasons raise the issue of efficient production planning as it can guarantee a better utilization of resources and,
ultimately, the competitiveness of the company.

In the presence of a multi-plant environment further planning features appear. Some product specialization is
possible, aiming to achieve better throughput rates or standard quality requirements in stage I due to larger production
batches whose process is easier to control. Nevertheless, for standard products production near the consumption
location should yield low cost production plans due to shorter transfer costs.

3.2. Production planning systems in the beverage industry
To face the constraints described above and the different nature of decisions and actions, production planning in the

beverage industry is made by several company echelons with different aims and planning horizons. Although decisions
are strongly dependent, it is virtually impossible to sustain a single decision model for the entire decision-making
process as it would be extremely hard to maintain, solve and interpret. Moreover, market dynamics also determine
that high detailed plans for a distant future are in most occasions useless. Planning decisions are therefore made
in a hierarchical process composed of three levels: strategic (long-term) planning, tactical (medium-term) planning
and operational (short-term) planning. Long term planning assesses investments in the installed capacity, trying to
balance capacity with demand for a planning horizon of 12 to 18 months. Concerning tactical planning, the focus is to
derive plans for operations, essentially production and distribution, aiming at cost efficiency. Here planning horizons
commonly span from 4 to 12 weeks. The lower level of the hierarchy schedules operations to the available resources
looking at a very short planning period from 1 day up to 1 week. These levels operate in a rolling horizon approach,
only a few periods in the begin of the planning horizon are actually executed, furthermore the output of an upper level
constitutes an important input for the following level.

4. The case study

Our study is motivated by a Portuguese company that competes in the beverage industry with sales across the
globe. The company holds many nationally very popular brands of beer, soft drinks, and mineral and sparkling water.
Production sites are spread around the country, accounting for 8 plants and more than 20 filling lines. Mineral and
sparkling water plants are located near a water source, while other production sites are responsible for beer and soft
drink production. Only planning of beer and soft drinks has to be done simultaneously as both product types share
common production resources and this will be the scope of our study. The aim is to create the annual production
budget (PB).

PB is part of the company’s annual budgeting process. The budgeting is a vital tool to align company goals and
translate the strategy defined into the next 12 months. Annual budgeting starts in mid September and lasts until late
October. The first main task is the creation of an annual sales budget (SB). SB is driven by a monthly sales forecast
for each product in the following year. In parallel, the production departments of each plant schedule the filling lines
maintenance calendar and estimate throughput rates for each product. These throughput rates are approximations
based on the previous years and also reflect expected gains or losses of efficiency. Embedded in these estimations are
the sequence-dependent setups witnessed in the years before. The goal of the PB is not to obtain a detailed schedule
for production lines, but rather an estimation of the adequacy of resource capacity to SB. Therefore, production
sequencing is disregarded and capacity loss due to sequence-dependent setups is incorporated in throughput rates.

The PB is conducted by the planning department and aims at validating the SB from an industrial and economical
point-of-view. Besides SB and throughput rates, the available capacity is an input determined from the filling lines
maintenance calendar and the number of available days for production. Capacity is estimated per filling line and
divided into three categories: normal workdays, Saturdays and holidays, and Sundays. This distinguishes normal
capacity from overtime. SB is generally distributed among the plants according to the past years sales. However,
technological constraints, production quality assurance or product specialization can imply a pre-determined plant.
Technological constrains are related to production and filling equipments required to produce certain products. Pro-
duction quality assurance deals with situations in which minimum batch sizes and/or production frequency may not
be achieved if forecasts for family’s demand are disaggregated.

PB only accounts for the filling stage, since this stage is considered the production process bottleneck. Therefore,
the number of working shifts is decided only for the filling stage. PB decides on the assignment of products to
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the different filling lines in the planning horizon and the definition of production lotsizes. Through this step, plant
inventory and inter-plant transfers are also determined. The objective is to satisfy SB while minimizing inventory
holding costs, setup costs, inter-plant transfer costs and overtime costs.

PB conclusion triggers the creation of the transportation and materials procurement budget.

4.1. Company practice and opportunities

The creation of the PB is a hard time-consuming task. The planner is challenged with over 150 products divided by
approximately 60 product families and 14 different filling lines, although technological constrains restrict the problem
size. One of the strategies used by the company to overcome this problem is the choice of a preferential machine to
supply the demand of each product at each plant. Frequently, more than one filling line of the same plant can produce
a certain product gross requirement, but the definition of a preferential filling line rule automatically fixes allocation,
turning the act of planning easier. Nevertheless, throughout the process is natural that some filling lines exceed their
normal capacity. Requirements can be moved to another filling line of the same plant, can anticipate raising inventory
holding costs or can be moved to filling lines of other plants originating transfers and/or inventory costs. Another
possibility is to use overtime capacity, which is limited to a certain maximum. PB is done once a year and the main
key performance indicators regard average filling line utilization, total inventory, transfer and overtime costs.

4.2. Related work

Post literature has focused on the operational and tactical levels and the integration of both in beverage and related
industries (e.g. soft-drinks [10], foundries [11], glass industry [12] and animal feed [13]). Nevertheless, some work is
also available on medium to long-term planning mostly in terms of mathematical formulations. These models often
include production, distribution and inventory management with capacity investments. Chandra and Fisher [14] show
that the integration of production and distribution in a single decision model yields better results than optimizing
separate models. In [15] decisions on production, transportation, purchasing and warehouse capacity extension are
made for a multi-plant and multi-warehouse environment. Martin et al. [16] study a real world case in the flat glass
business. Production, distribution, and inventory operations are managed in a single model. An application in the
chemical process industry is presented by Timpe and Kallrath [17]. Batch and campaign production in a multi-
plant production system are decided along with distribution and marketing decisions. A real-world problem in steel
manufacturing is approached by Sambasivan and Yahya [18]. Almada-Lobo et al. [19] present a long term production
planning model in the glass industry. A multi-plant production system where each plant has a set of production lines
is considered but with common demand, i.e. demand is not attached to a specific location. The significant sequence-
dependent setup costs and time that arise in this industry lead to the need of sequencing of product families. A
VNS-based heuristic is used to solve the problem. Another industrial example at a metal item manufacturer is given
by Dhaenens-Flipo and Finke [20]. The authors formulate an integrated production-distribution model considering
a production system composed of multiple factories having several parallel production lines. Sequence-dependent
setups are managed through predefined sequences. The need of explicitly considering them at this level is again due
to their magnitude. Distribution decisions relate to transfers among plants-warehouses and warehouse-clients. Other
examples occur in production environments where items are produced in a series of processes occurring in different
plants [21].

5. Solution methodology

In this section we first present a mixed integer optimization model representing the problem that arises in the PB,
hereafter called long-term production planning problem (LT3P). Based on this model a solution procedure is described
aiming to achieve good quality solutions in limited computational time, which is not accomplished by exact methods.

5.1. Mathematical formulation

The model considers a multi-plant environment with P plants. Each plant has its own individual demand and
storage capacity. As mentioned before, a certain plant can supply demand for another plant but additional transfer
cost has to be accounted for. Common filling lines force us to simultaneously plan both beer and soft drink products.
Furthermore, since filling lines are considered the production bottleneck of the production system decisions are taken
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only for this step. Products sharing common production features, the same container type and final package, are
grouped into product families. The model considers a planning horizon divided into T periods, usually months. To
formulate the model the following nomenclature is used:

Indices

i product: i ∈ N = {1, . . . ,N}

f family: f ∈ F = {1, . . . , F}

j, k plant: j, k ∈ P = {1, . . . , P}

m filling line: m ∈ M = {1, . . . ,M}

t period: t ∈ T = {1, . . . ,T }

Sets

M j set of filling lines belonging to plant j

Fm set of families that can be produced on filling line m

N line
m set of products that can be produced on filling line m

N
f am
f set of products belonging to family f

Parameters

capmt available capacity at filling line m in period t (in time units)

jm plant of filling line m

fi family of product i

di jt demand of product i at plant j at the end of period t

hi jt unitary holding cost of product i at plant j at the end of period t

ri jkt unitary transfer cost of product i from plant j to plant k in period t

c f mt setup cost of family f on filling line m in period t

p f mt throughput rate of family f on filling line m in period t

bimt upper bound on production quantity of product i on filling line m in period t

To capture decision making the following variables are defined:

Ximt production quantity of product i on filling line m in period t

Ii jt stock of product i at plant j at the end of period t

Wi jkt transfer quantity of product i from plant j to plant k in period t

Y f mt (=1) if a setup occurs to family f on filling line m in period t,

(=0) otherwise.

The model is stated as follows:

min Ob j1 =
∑
i∈N

∑
j∈P

∑
t∈T

hi jt · Ii jt +
∑
k∈P

ri jkt ·Wi jkt

 +
∑
f∈Fm

∑
m∈M

∑
t∈T

c f mt · Y f mt (1)

Ii j,t−1 +
∑

m∈M j

Ximt +
∑

k∈P\{ j}

Wik jt = Ii jt + di jt +
∑

k∈P\{ j}

Wi jkt, ∀ i ∈ N , j ∈ P, t ∈ T (2)

∑
i∈N line

m

Ximt

p fimt
≤ capmt, ∀m ∈ M, t ∈ T (3)
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Ximt − bimt · Y fimt ≤ 0, ∀ i ∈ N line
m , m ∈ M, t ∈ T (4)

(Ii jt, Wi jkt, Ximt) ≥ 0, Y f mt ∈ {0, 1} (5)

The objective function (1) minimizes the sum of the holding, transfer and setup costs. Inventory balance constraints
(2) control product flow in each plant. Demand for product i at plant j in period t is either met by available stock, pro-
duction within the plant or from transfers from other plants, not considering backlogging. Without loss of generality,
we assume that transfer cost ri jkt satisfies the triangular inequality, ri jkt ≤ ri jlt + rilkt for all i ∈ N , ( j, k, l) ∈ P, t ∈ T .
Links between setup and production variables are guaranteed in (4). Production of product i on filling line m in period
t can only occur if the filling line has been set up for the respective family fi (Y fimt = 1). Additionally, production is
limited to bimt = min {capmt · p fimt,

∑
j∈P

∑T
u=t di ju}.

The problem described is similar to the single stage, multi-plant, multi-item and multi-period capacitated lot sizing
problem (MPCLSP) described in [18, 22, 23]. Few papers address this variant of the standard capacitated lot sizing
problem (CLSP). In [22] the authors describe a heuristic to solve the problem based on transfers of production lots.
The paper [18] presents a heuristic based on Lagrangian relaxation. The authors dualize capacity constraints and
solve the N uncapacitated subproblems via reformulation into a set of shortest path problems with common fixed-
charge constraints. Computational experiments are conducted with instances of up to 15 products, 6 periods and 4
plants. Nascimento et al. [23] propose a greedy randomized adaptive search procedure (GRASP) combined with path-
relinking. Results are compared to the method described in [18] and the authors claim to achieve a better performance
in terms of the mean gap of the linear relaxation of the problem. In addition, the proposed heuristic was also tested in
the parallel machine lot sizing problem, which in fact is a special case of MPCLSP, when transfers among plants are
discarded. In this scenario each plant corresponds to a machine.

Although similar to the MPCLSP, our model has different assumptions. As we can not agregate machine resources
of the same plant due to technological constraints, each plant may have one or more machines, contrarily to the
MPCLSP that assumes a single machine. Moreover, setup times are not considered here as throughput rates used by
the company already include them considering an average lotsize. Still, such a generalization could be easily made
considering s f mt, the time to set up family f on machine m in period t, and replacing constraints (3) by:∑

i∈N line
m

Ximt

p fimt
+

∑
i∈Fm

s f mt · Y f mt ≤ capmt, ∀m ∈ M, t ∈ T .

In addition, production costs are neglected, which could be overcome by introducing the parameter vimt defining the
unitary production cost of product i on machine m in period t, and adding production cost into the objective function
(1):

min Ob j2 = Ob j1 +
∑
m∈M

∑
t∈T

∑
i∈N line

m

vimt · Ximt.

Finally, setups are not considered in terms of products but rather of product families. Such assumption relies on the
purpose of our model. The setup costs try to minimize the number of production lines producing the same family as
an indicator of future capacity losses at the operational level when sequence dependent setup times are considered.
Products within each family are strongly related representing minor setups among them as few characteristics vary
from one to another. In other words, sequence-dependent setups among products of different families are much more
costly in terms of time and cost. Hence, by minimizing the number of times a family is produced we are also faced
with a reduced number of major setups between families in detailed plans. Regardless these observations, if each
family is only composed by a single product we end up with setups defined by product.

Further modifications to the model incorporate other important planning decisions. One of them is the use of
overtime. Overtime can be used to face lack of production capacity and is especially important during peak seasons.
Distinction is made between overtime on Saturdays and holidays (type I) and overtime on Sundays (type II). Type I
overtime is less costly than type II. To introduce these decisions in the model we first need to define the following
parameters and decision variables.
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Parameters

coI
mt (coII

mt) unitary cost of an extra time unit of type I (type II) overtime on filling line m in period t

moI
mt (moII

mt) maximum available overtime capacity of type I (type II) on filling line m in period t

Variables

OI
mt (OII

mt) overtime of type I (type II) used on filling line m in period t

To integrate overtime decisions in the model, objective function (1) must be transformed into:

min Ob j3 = Ob j1 +
∑
m∈M

∑
t∈T

(
coI

mt · O
I
mt + coII

mt · O
II
mt

)
, (6)

and constraints (3) become: ∑
i∈N line

m

Ximt

p fimt
≤ capmt + OI

mt + OII
mt, ∀m ∈ M, t ∈ T . (7)

Finally, the following constraints impose limits on overtime utilization:

0 ≤ OI
mt ≤ moI

mt, 0 ≤ OII
mt ≤ moII

mt, ∀m ∈ M, t ∈ T . (8)

Hence, the overall LT3P model reads:
min Ob j3

satisfying (2), (4), (7) − (8),

(Ii jt, Wi jkt, Ximt, OI
mt, OII

mt) ≥ 0, Y f mt ∈ {0, 1}.

5.2. Solution procedure
Standard single-item CLSP has been proven to be NP-hard [24], so are the respective multi-item and multi-plant

versions. In this paper, we present results that confirm the difficulty of solving to optimality moderate and large size
instances, thus motivating heuristics to find approximate solutions to the problem. We propose heuristics inspired
by the VNS principles. As briefly mentioned before, VNS systematically exploits the change of neighborhood both
in descent to local optima and in escape from them [3]. VNS relies on local search heuristics that starting from
an initial solution x attempt to find an improvement within a neighborhood N(x). Until such an improvement is
possible, the heuristic iterates, otherwise it stops. To create a VNS scheme, one must provide a set of pre-defined
neighborhoods structures Nk(k = 1, . . . , kmax) and an initial solution x. The initial solution can be obtained from any
simple construction heuristic. A basic scheme of VNS (see [25]) combines stochastic and deterministic changes of
neighborhoods using the following three steps that are repeated until the stopping criteria is reached.

Shaking: The stochastic component of the method, where a point x′ is randomly generated from Nk(x) in order to
avoid cycling.
Local Search: The local search heuristic is applied to x′ until a local optimum (x′′) is achieved.
Move and Neighborhood Change: If the local optimum x′′ found during the search is better than the incumbent
best solution x, then x′′ is accepted and replaces x, setting k = 1. Otherwise, the algorithm proceeds to the next
neighborhood structure k = k + 1 (if k > kmax, then k = 1).

Several VNS variants have been developed since it first appeared to solve many combinatorial optimization problems.
One of the best known variants is the variable neighborhood descent (VND) method, which is a deterministic ver-
sion of VNS where several neighborhood structures in sequence within the Local Search phase are searched, but no
Shaking step is performed. Furthermore, VND can replace the Local Search phase in VNS giving origin to General
VNS (GVNS). When local search is costly in computational terms, these methods can suffer from efficiency prob-
lems. The Reduced VNS (RVNS) is useful in such cases, as it is a pure stochastic method where random points are
generated from Nk and the incumbent solution is updated in case of an improvement. Naturally, this variant reduces
the effectiveness of the search. VNS design and consequently its efficiency and effectiveness are closely related to
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the selection of neighborhoods and their order. VNS conducts the search through different neighborhoods usually in
increasing distances, evaluated by some metric (or quasi-metric). In 0-1 mixed integer problems like ours, the distance
between two solutions can be based on the Hamming distance (∆H) that states the number of elementary changes in
0-1 variables to turn one solution into another. Most applications rank the neighborhoods in increasing order of their
complexity, which usually corresponds to a bigger Hamming distance. Moreover, the use of nested neighborhoods,
i.e., N1(x) ⊂ N2(x) ⊂ . . . ⊂ Nkmax (x), is often a common choice. Still, the understanding of the problem structure
can be crucial to a suitable choice of neighborhoods and their sequence. VNS also represents a trade-off between
intensification of the search (Local Search) and diversification (Shaking), which is important to balance.

5.2.1. Solution representation
We use an incomplete representation of the solution, considering the different permutations of the binary family

setup variables Y f mt, which are controlled by our algorithm. Given a fixed set of binary values (setup pattern Y ′f mt),
the remaining problem can be solved optimally as a linear program (LP). The neighborhood structures are induced
from the changes in the setup pattern.

5.2.2. Initial solution
Finding a feasible solution for the LT3P is difficult, specially in tight capacity scenarios. In our case, it implies

selecting a setup pattern, which can be translated into a plan that verifies demand and capacity constraints. We
overcome this problem by introducing artificial decision variables defined as the initial stock of product i at plant
j (I0

i j). This initial stock is heavily penalized in the objective function using h0
i j. Doing so, we allow any setup

pattern to be feasible, which is also important during the execution of the algorithm. Under these conditions, the term∑
i∈N

∑
j∈P h0

i j · I
0
i j becomes a measure of the infeasibility. Even though solutions with empty setups or with setups for

every family in each period are now feasible, we want to test the impact of the initial solution on the search efficacy
and effectiveness. For that purpose we have developed three procedures to define an initial setup pattern.

1. LotForLot is inspired in a lot-for-lot policy. The procedure works period-by-period and plant-by-plant identifying
the total gross requirements for a certain product family R f jt =

∑
i∈N f am

f
di jt. If R f jt > 0, a setup will be triggered

on machine m ∈ M j having the highest throughput rate p f mt.
2. The second and third procedures are both inspired by the work of Nascimento et al. [23]. Ignoring capacity

constraints and/or inter-plant transfers, the problem can be compared to F uncapacitated lot sizing problems on
parallel machines, which are solvable through the optimal algorithm of Sung [26].
a) Uncap works plant by plant and a minimum production schedule is found for each family satisfying the demand

for the incumbent plant ( j) having as potential sources the filling lines belonging to that same plant (M j), thus
only ignoring capacity constraints.

b) UncapNoTransf attempts to find a production schedule for each family satisfying the demand for all plants
having as potential sources the set of available filling lines (M), therefore ignoring both capacity constraints
and transfer costs.

Next, we describe the general procedure for UncapNoTransf as it is a generalization of Uncap. For each family f let
φ f mut be the production cost of family on production line m in period u to meet requirements D f ut from periods u to t
for all plants:

D f ut =
∑

i∈N f am
f

∑
j∈P

t∑
s=u

di js,

φ f mut = c f mu + v′f mt · D f ut +

t∑
s=u+1

h′f mt · D f st,

where v′f mt and h′f mt correspond to weighted average production and holding costs of the family as follows:

v′f mt =

∑
i∈N f am

f
vimt · di jt∑

i∈N f
di jt

, h′f mt =

∑
i∈N f am

f
hi jt ·

∑T
u=t+1 di jt∑

i∈N f

∑T
u=t+1 di jt

.
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Moreover, let ϕ f t be the minimum production cost from period 1 up to period t (ϕ f 0 = 0). Quantity ϕ f t can be obtained
recursively using:

ϕ f t = min
{
ϕ f ,u−1 + φ f mut

}
u ∈ 1 . . . t, t ∈ T .

A dynamic programming forward recursion algorithm has been used to solve each subproblem and thus fixing the
setup pattern. The assumptions made during this procedure allow us to have a rough approximation of a possible
interesting setup pattern.

5.2.3. Neighborhood structures
Neighbors of an incumbent solution x are obtained by slightly changing the setup pattern and solving afterwards

the resulting LP. The set of all possible minor changes, also called moves, constitute the neighborhood N(x). We have
defined three different type of moves:

a) insertion( f ,m, t) consists in changing the setup state of family f on machine m at period t from 0 to 1, therefore
neighborhood NI(x) include all possible changes of the variables Y ′f mt from 0 to 1,

b) remove( f ,m, t) is the inverse move of insertion, thus NR(x) are the potential changes of variables Y ′f mt from 1 to 0,
c) transfer( f ,mo, to,md, td) reallocates a production lot by means of moving the setup of family f from its origin

(machine mo at period to) to a new destination (machine md at period td). The neighborhood NT (x) corresponds to
all possible moves where Y ′f moto

= 1 and Y ′f md td
= 0.

All neighbor solutions of NI(x) and NR(x) will have a ∆H = 1, while to neighbor solutions of NT (x) have ∆H = 2. The
size of the neighborhood of NT (x) can be controlled by setting limits to td, i.e. td = [to − δb, to + δ f ], when δb and δ f

control the backward and forward searching range, respectively. Note that when to , td and only in this case mo may
equal to md.

These three types of neighborhoods try to explore different ideas. The insertion move attempts to find a new
family allocation such that the additional setup cost incurred is shorter than the savings resulting from production,
holding, transfer and overtime costs. On the other hand, its inverse remove tries the opposite allowing an increase
of the other costs through the mitigation of setup costs. Moves resulting from transfer are more difficult to interpret.
When changing a setup within the same machine we attempt to introduce or eliminate inventory, whether we try
backward or forward movements, and possibly decrease overtime costs. Moving setups to other machines in the same
period tries to save setup costs that may benefit potential transfers. Moving to other machines in different periods can
cause or eliminate inventory, transfers and overtime and eventually reduce setup costs. Nevertheless, when evaluating
a neighbor, the LP mathematical model is optimized over the entire planning horizon, therefore performing a change
in the setup pattern can have multiple effects on the production, inventory, transfer and overtime decisions, and the
above description is myopic in those cases. In fact, this constitutes the reason for the partial solution representation,
since heuristically determining production, inventory, transfer and overtime quantities may wrongly reject interesting
setup patterns. The price to pay for such decisions is a more costly local search in terms of computational times.

5.2.4. Algorithm design
In theory, the larger the neighborhood, the better is the quality of locally optimal solutions, and the greater the

accuracy of the final solution obtained. Standard VNS examines the entire neighborhood during local search. For
large problem instances it is impractical to search the neighborhood explicily as it can be too time consuming. In
practice, strategic/tactical decisions can be taken in a relatively wide time window, but if one wants to test different
scenarios varying data inputs the available time for response is substantially shorter. It is required to partially search
the neighborhood in an efficient manner.

To speed-up the algorithm, the evaluation of each neighbor can incorporate rules to quickly identify expensive
neighbors and save time in the LP optimization. Since moves are performed based on a known solution, plenty of
information is available. In addition, changes in the setup pattern are usually rather small. Solving the LP from scratch
can be very time-consuming, thus the previous best found solution constitutes the initial basis in the new LP and then
it is just re-optimized. To early discard expensive neighbors, let f t

best denote the best solution found to date and f s
best

the respective setup pattern cost. The remaining costs related to production, inventory and transfers calculated by
the LP are expressed as f o

best = f t
best − f s

best. After generating a new neighbor, f s
neighbor can be easily computed based

on f s
best, therefore we can reject a neighbor whose f s

neighbor > f t
best without making any iteration in the LP. Besides,
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f t
best − f s

neighbor is the maximum value that f o
neighbor can take before being refused. If the LP is solved using a dual

method at each iteration, the dual solution corresponds to a lower bound on f o
neighbor, and therefore we can stop the

method as soon as it exceeds f t
best − f s

neighbor, potentially saving precious computational time. If the method does not
stop the LP optimization in course, it means that we have found a new best solution. This technique has already been
explored by Meyr [27].

Although these rules can save valuable computational time, for large size instances the result of exhaustively
exploring the entire neighborhood still remains unsatisfactory. The ultimate goal is to somehow explore only a portion
of each large neighborhood and still find the local optima, or at least find an improvement move, if such a move exists.
Traditional techniques to improve efficiency of VNS such as the aforementioned RVNS often compromise efficacy,
especially because neighbors are selected randomly. Hung et al. [28] propose in the context of Tabu Search the usage
of ranking heuristics based on the information provided by the LP to prune the search of the neighborhood. Their
techniques were able to reduce running time through one of two strategies: explore a portion of the ranked neighbors
according to the heuristics or to evaluate sequentially the ranked neighbors until an improvement is found. They have
developed heuristics to rank neighbors that are obtained either by insertion or remove moves.

RVNS can be a solution to explore large neighborhoods due to its smaller CPU effort vital in the case study.
Still, the randomness of the Shaking Phase can lead the algorithm to randomly suggest expensive neighbors too often,
despite that the dual reoptimization process may perform an early rejection. Inspired by the work [28], we have
designed new rules to improve the standard RVNS. The idea is to associate a probability to each neighbor according
to its potential cost savings. For that purpose we make use of the information available after solving the LP. Let us
define βmt and πimt as the shadow prices (dual variables) of constraints (7) and (4), respectively. Additionally, we define
S Lmt as the surplus of capacity on machine m in period t in the current best solution. An insertion( f ,m, t) move can
be evaluated through the criteria presented in Algorithm 1. Initially the potential improvement of an insertion( f ,m, t)
move is the cost of the extra setup that has to be performed (line 1). Then the maximum production quantity of family
f is determined considering the surplus of capacity on machine m in period t (line 2). The procedure then iterates
through the products belonging to family f (N f am

f ) selecting the one with maximum value of πimt (line 5). Let Θ

be the set of products selected previously. The potential improvement is increased by the term πiminmt · a, where a
may equal the total demand of the selected product at the plant of machine in the incumbent period (line 7) or the
maximum of the remaining surplus of capacity (line 11). In both situations, the remaining surplus of capacity, and Θ

are updated (lines 8-9, 12-13). The algorithm loops until no remaining surplus is available or all products belonging
to the family have been selected (Θ = N

f am
f ). Move remove( f ,m, t) is evaluated according to Algorithm 2. Its initial

potential improvement is the saving coming from removing the existent setup (line 1). The potential improvement
is then updated (line 3) using βmt over the total production quantity of family f determined in line 2. Evaluating

Algorithm 1 Potential improvement of an insert( f ,m, t) move
1: Potential improvement: Imp f mt := −c f mt

2: Maximum family production: MaxProd = S Lmt
p f mt

3: Current produced products: Θ← Ø
4: while MaxProd > 0 and Θ ⊂ N

f am
f do

5: imin = argmax{πimt | i ∈ N
f am
f \ Θ}

6: if MaxProd > dimin jmt then
7: Imp f mt = Imp f mt + πiminmt · dimin, jm,t

8: MaxProd = MaxProd − dimin jmt

9: Θ← Θ ∪ {imin}

10: else
11: Imp f mt = Imp f mt + πiminmt · MaxProd
12: MaxProd = 0
13: Θ← Θ ∪ {imin}

14: end if
15: end while
16: return Imp f mt
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Algorithm 2 Potential improvement of a remove( f ,m, t) move
1: Potential improvement: Imp f mt := c f mt

2: Actual family production: X f
mt =

∑
i∈N f am

f
Ximt

3: Imp f mt := Imp f mt + βmt ·
X f

mt
p f mt

4: return Imp f mt

a transfer( f ,mo, to,md, td) move is hard because it introduces more changes in the model and therefore the available
information is less reliable, yet it can be seen as a combination of an insertion( f ,md, td) and a remove( f ,mo, to), thus
summing both potential improvements. Shadow prices can be seen as the marginal utility of the resources. Move
insertion( f ,m, t) explores the marginal utility of an additional setup of family f on machine m in period t assuming
that it remains valid for the maximum between the surplus of capacity and the total demand of the family. The
same principle is behind the evaluation of remove( f ,m, t), but this time making use of the marginal utility of freeing”
capacity. The potential improvements are only estimations of the real improvement on the objective function, thus we
should not restrict too much the search based on them. After calculations are made, the candidate neighbors r ∈ Nk(x)
are sorted according to the potential improvement (Imp f mt). Let σ(r) be the rank of neighbor r. The probability µ(r)
of choosing a candidate neighbor is given by:

µ(r) =
bias(r)∑

r′∈Nk(x) bias(r′)

where bias(r) is called the bias function. Pure RVNS makes use of a random bias, i.e. bias(r) = 1. Since our
idea is to prioritize candidates at the top of the list, any one of the following bias functions can be used: linear bias
bias(r) = 1/σ(r), log bias bias(r) = log−1(σ(r) + 1) and exponential bias bias(r) = e−σ(r). Exponential bias is the
most extreme case were mostly the top candidates are chosen, liner bias is less extreme than exponential and log
bias is the least differentiator function. We call this enhancement to standard RVNS as Adaptive Reduced Variable
Neighborhood Search (ARVNS).

6. Production plans validation and comparison

In this section we present computational experiments divided in two sections. First we validate our solution
procedures on a randomly generated set of small to medium sized instances (Tests I). Afterwards, we use the algorithm
with the best performance to solve two real-world instances based on the annual production budget of the case study
for the years of 2010 and 2011 (Tests II). All heuristics were implemented in C++, compiled using Microsoft Visual
Studio 2008 and run on an Intel Core i7 Q720 1.60 GHz processing unit with 6 GB of random access memory, using
a single core. IBM ILOG Cplex 12.1 was used both as mixed integer and liner programming solver and was limited
to one thread to have a fair comparison.

6.1. Tests I
This set of tests is designed to validate the proposed algorithm and prove its superiority against other variants

reported in the literature. Nevertheless, the features from the case study instances are kept, such as the absence of
setup times and production costs, and the use of overtime. All parameters with the exception of demand are considered
to be time independent, for example p f mt = p f m, ∀t ∈ T . This applies only for the generated instances since our
heuristics can manage time dependent parameters. Input parameters of each problem instance were generated based
on the uniform distribution. The ranges used for the parameters are given in Table 1.
Available capacity of all machines of the same plant is calculated according to:

capmt =
∑

m∈M jm

∑
i∈N f am

f
di jmt

p f mt
· (α|M jm |)

−1,

with α = 1.25. The maximum amount of both types (moI
mt, moII

mt) of overtime is set to 10% of the available capacity.
Test classes are defined by the quintuplet (F,N, P,M,T ). The number of families F and the number of plant P are
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Table 1: Parameter ranges
di jt U[40,180] p f mt U[1,5]

hi jt U[0.2,0.4] coI
mt U[1,2]

ri jkt U[0.2,0.4] coII
mt U[3,6]

c f mt U[50,950]

always less or equal to the number of products N and the number of machines M, respectively. The process to assign
product to families and machines to plant is the same. For example, if 5 products have to be assigned to 3 families, the
first 3 are assigned each one to a different family and the remaining 2 are randomly allocated to a family. Tests were
conducted using F = {5, 10, 15}, N = {10, 20, 30}, P = {3}, M = {4, 6} and T = {6, 9, 12} and for each combination 10
different instances were generated, corresponding to a total of 180 instances.

We have run each test instance using Cplex 12.1 on the mathematical formulation LT3P presented in Section 5
with a maximum running time of 600s. Thus, at the end of each run we potentially have an upper bound (the current
best integer solution found by the branch-and-cut algorithm) and a lower bound also provided by the same algorithm.
The mean gap obtained through Cplex 12.1 is our solution evaluation metric. The percentage Gap to the best known
lower bound is then computed as:

Gap =
zh − zlb

zlb
· 100,

where zh is the solution obtained by the method under evaluation ans zlb is the best lower bound known provided
by Cplex 12.1. All instances were feasible without considering initial inventory. Furthermore, for some problems
the optimal solution was found. Table 2 reports the number of optimal solutions (out of 10) found in each test class
by Cplex 12.1. Naturally, as the number of famlies, machines and periods increase, the number of intances solved
until optimality decrease sharply. We then tested our solution approach for two variants: RVNS ans ARVNS. RVNS
random bias function, while ARVNS makes use of a linear bias function. Neighborhoods were ordered according to
insertion, transfer and remove, as it was proved during pre-testing to be the most promising sequence. The maximum
number of successive iterations without improving was used as stopping criterion and set to 1000. Both methods were
run for the three different types of initial solutions (LotForLot, Uncap and UncapNoTransf ). Five runs were executed
for each configuration: initial solution and solution approach variant.

Table 2: Number of optimal solutions found by Cplex 12.1 for the different test classes
T

F N 6 9 12

P = 3, M = 4

5 10 9 4 1

10 20 4 1 0

15 30 0 0 0

P = 3, M = 6

5 10 8 3 2

10 20 4 0 0

15 30 3 0 0

Tables 3 and 4 report the average solution gap and Tables 5 and 6 present the average running times for the three
methods under evaluation in the different test classes. The performance of our solution approach clearly depends on
the initial solution. LotForLot yields the overall best mean gap and Uncap generally outperforms UncapNoTransf, in
particular when using ARVNS. Running times increase as the problem size increases, specially when using LotForLot
as initial solution. Regarding solution quality, for small sized instances exact methods have, as expected, the best
mean gaps. Nevertheless, for medium size instances, such as test class (15,30,3,4,12) and (15,30,3,6,12) our solution
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Table 3: Results for the average Gap (%) for the different test classes with P = 3 and M = 4 for the three methods under evaluation. Best average
gaps are in boldface.

T = 6 T = 9 T = 12

Initial Solution F N RVNS ARNVS Cplex RVNS ARNVS Cplex RVNS ARNVS Cplex

LotForLot

5 10 4.09 2.83 0.10 7.08 5.47 2.90 9.29 7.55 4.81

10 20 4.94 3.36 1.70 7.58 5.90 5.31 11.97 9.96 10.49

15 30 7.13 5.19 3.08 8.54 6.66 6.41 10.09 8.31 10.52

Mean 5.39 3.79 1.63 7.73 6.01 4.87 10.45 8.61 8.60

Uncap

5 10 4.26 3.29 0.10 7.45 6.70 2.90 9.51 8.86 4.81

10 20 5.04 3.49 1.70 7.38 5.95 5.31 11.56 10.25 10.49

15 30 7.36 5.56 3.08 8.29 6.56 6.41 9.62 8.36 10.52

Mean 5.55 4.11 1.63 7.71 6.40 4.87 10.23 9.16 8.60

UncapNoTransf

5 10 4.94 4.68 0.10 8.03 6.47 2.90 10.03 8.47 4.81

10 20 5.88 4.01 1.70 8.15 6.41 5.31 11.92 10.54 10.49

15 30 7.86 5.59 3.08 8.49 7.22 6.41 9.64 8.72 10.52

Mean 6.23 4.76 1.63 8.22 6.70 4.87 10.53 9.24 8.60

approaches are more competitive than exact methods both in solution quality and running time. Thus, we conclude
that our solution approaches are more competitive for large-scale problems. Exact methods are less attractive as
problems grow in size, specially as the number of periods increases. Enhanced neighbor selection present in ARVNS
proved to be profitable. ARVNS is always superior to standard RVNS and generally takes less running time. Iterations
in ARVNS take longer to perform because both evaluation of potential improvement and sorting of neighbors have
to be done to properly calculate µ(r). Yet, this type of neighbor selection allows the search to converge faster and
to a better local optimum. Hence, ARVNS is a very promising tool to effectively explore large neighborhoods and
therefore to be used in real-world problems.

6.2. Tests II

The second set of instances are based on real data from the case study. There are two instances corresponding
to the annual production budget of 2010 and 2011, respectively. Both only consider the planning of beer and soft
drinks plants. The instance related to the year of 2009 comprises data from 3 plants, each one having a set of 1
to 5 filling lines, totalizing 10 filling lines. Sales budget forecasts are available over the next 12 months for a total
of 125 products, which can be aggregate into 62 different product families. Technological restrictions limit family
assignments to filling lines, nevertheless more than 100 family-filling line allocations are possible in each time period.
In the year of 2011, again the total number of plants is 3, but the total number of filling lines increased to a total of
14, ranging between 4 to 5 in each plant. The total number of products also increased to over 160, which are now
aggregated into 68 different product families. As a result, the number of possible family-filling line allocations are
now over 120. For both instances, data relative to family throughput rates, product holding and transfer costs, and
overtime costs are estimations made by the company based on previous years.

The benchmark was conducted on the following PB scenarios:

U1: Company’s PB transformed into a solution of our optimization model (LT3P), thus allowing to compute the
objective function.
U2: Fixed family allocation (setup pattern Y ′f mt) from the company’s PB solving the subsequent problem optimally
through the LT3P LP model.
U3: PB obtained using ARVNS with a maximum number of iterations without improvement of 1000, LotForLot as
the initial solution strategy and the same neighborhood order from the previous tests (configuration with best overall
performance in Tests I). The final solution is the best among 5 runs.
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Table 4: Results for the average Gap (%) for the different test classes with P = 3 and M = 6 for the three methods under evaluation. Best average
gaps are in boldface.

T = 6 T = 9 T = 12

Initial Solution F N RVNS ARNVS Cplex RVNS ARNVS Cplex RVNS ARNVS Cplex

LotForLot

5 10 4.05 1.70 0.23 5.71 3.63 2.14 8.75 6.66 5.54

10 20 3.95 2.22 1.22 6.55 4.12 3.63 7.84 6.07 6.44

15 30 3.30 1.89 1.17 5.18 3.65 3.45 6.83 4.89 6.69

Mean 3.77 1.94 0.88 5.81 3.80 3.07 7.81 5.87 6.22

Uncap

5 10 3.79 2.35 0.23 5.29 3.95 2.14 8.69 7.07 5.54

10 20 4.50 2.42 1.22 6.04 4.38 3.63 8.04 6.38 6.44

15 30 3.56 2.13 1.17 4.79 3.82 3.45 6.37 5.05 6.69

Mean 3.95 2.30 0.88 5.37 4.05 3.07 7.70 6.17 6.22

UncapNoTransf

5 10 3.19 3.17 0.23 5.57 4.37 2.14 8.54 7.29 5.54

10 20 3.75 2.73 1.22 6.23 4.80 3.63 8.17 6.49 6.44

15 30 3.54 1.96 1.17 5.37 3.86 3.45 6.41 4.87 6.69

Mean 3.49 2.62 0.88 5.73 4.34 3.07 7.70 6.22 6.22

Nowadays, PB is done using spreadsheets, but is mainly a manual process. Previous experience in PB creation
constitutes the pillar of the planning process as it follows implicitly cost based decisions. A comparison with company
planning is not always straightforward since a manual planning solution does not always strictly obeys all restrictions.
Scenario U2 tries to reduce this gap by creating the best possible scenario with the current family allocation and also
shows the drawback of pre-defined family-filling line allocatios. Table 7 reports results for the three scenarios for the
two real-world insatances. All costs are measured in terms of monetary units (m. u.). Not surprisingly, optimizing
production, inventory, transfer and overtime decisions, for the company’s family allocation (scenario U2) has a strong
impact. Manually performing these decisions will likely lead to sub-optimality. Creating PB with ARVNS by relaxing
family allocations can further improve these results. Scenario U2 achieves a total cost saving of 24% and 34% in 2010
and 2011, respectively. A large portion of cost savings comes for overtime reduction, an interesting result since the
company is obsessed with the holding costs. Our heuristic obtained the best plans, yielding 35% cost reduction in
2010 and 39% in 2011. Plans clearly show the existing trade-offs among costs. For example, in 2010 PB for both
U2 and U3 have higher holding costs than in company’s plan and still improved the solution, while in 2011 transfer
costs suggested by U3 increase as this can lessen overtime. Moreover, scenario U3 always reduces the total number
of setups. Excluding setup costs, all other costs are relatively easy to quantify and, therefore, very accurate. The
direct potential cost savings from inventory, transfer and overtime costs in both years is quite impressive, representing
36% and 40%, respectively for 2010 and 2011. Savings in 2011 are bigger because we are considering more products
and filling lines. Figure 1 and 2 help to understand the obtained results. For the instance in 2011, scenario U1
comprehensibly shows the difficulty of dealing with peak demand that occurs during Summer. Inventory is built up
early in the year to face seasonality, in addition during the summer season both transfers and overtime requirements
increase. The two optimized scenarios can deal with this effect more smoothly. Scenario U3 in the last part of the year
uses notably less overtime, but it uses more inventory and transfers quantities compared to scenario U2 as a means to
achieve a more cost-efficient plan. The average running times of our heuristic were 100s and 180s for the 2010 and
2011 instances, respectively. This confirms the ability of the heuristic of effectively solving large problems.

7. Discussion

This paper is motivated by a real production planning problem in the beverage industry. The goal is to produce
a long-term plan assigning and scheduling product family production lots in a multi-plant environment, having each
plant one or more production lines. Total setup, inventory, transfers and overtime costs constitute the objective to
minimize. We first formulate the problem as a mixed integer program. Based on our mathematical formulation we
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Table 5: Average running times for the different test classes with P = 3 and M = 4 for the three methods under evaluation. Best average running
times are in boldface.

T = 6 T = 9 T = 12

Initial Solution F N RVNS ARNVS Cplex RVNS ARNVS Cplex RVNS ARNVS Cplex

LotForLot

5 10 1.15 1.24 119.45 2.15 2.60 444.68 3.35 3.79 544.17

10 20 3.18 3.29 411.41 5.87 7.42 574.44 9.83 11.24 601.67

15 30 6.23 6.95 601.84 12.73 13.27 601.83 18.64 23.51 600.76

Mean 3.52 3.83 377.57 6.91 7.76 540.31 10.61 12.85 582.20

Uncap

5 10 1.03 1.17 119.45 2.01 2.26 444.68 2.91 3.37 544.17

10 20 2.92 2.70 411.41 5.59 6.15 574.44 9.37 9.47 601.67

15 30 5.73 6.08 601.84 11.37 10.64 601.83 18.03 17.71 600.76

Mean 3.23 3.32 377.57 6.32 6.35 540.31 10.11 10.19 582.20

UncapNoTransf

5 10 1.31 1.14 119.45 2.03 2.23 444.68 3.20 3.13 544.17

10 20 3.23 2.39 411.41 6.06 5.55 574.44 10.00 8.46 601.67

15 30 6.33 5.28 601.84 12.58 10.09 601.83 17.09 15.95 600.76

Mean 3.62 2.94 377.57 6.89 5.96 540.31 10.10 9.18 582.20

have developed a heuristic suitable for the large size instances present in industrial applications. A partial solution
representation of product family setup decisions (binary variables) was used and the production, inventory, transfer and
overtime quantities (continuous variables) are determined by solving a linear program. We make use of the information
provided by sensitivity analysis of the linear program to guide the local search. Neighbors are evaluated and sorted
according to their potential improvement and neighbor selection is done according to this rank. We are dealing with
very large problem instances in the case study and as tests proved, the heuristic is able to efficiently explore wide
solution spaces. Another important feature of our heuristic is its flexibility, due to the partial solution representation.
One can add different requirements to the model, for example production costs, family setup times, minimum family
production batches, that were not considered in this application, without having to change the procedure. These
adjustments are only needed in the mixed integer problem, which constitutes the base of the linear program.

Tests on real-world instances validated our approach, as we are able to notably improve current company prac-
tice. Therefore, this study can constitute the basis for the implementation of a decision support tool for long-term
production planning within the company. The test of different planning scenarios and the introduction of a rolling
horizon procedure for long-term planning can be features of the planning tool with great capability of enhancing
current planning decisions.

It would be interesting to test the new heuristic in other large scale problems to further validate its potential.
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Table 7: Results of the different scenarios for the two real-world instances
U1 U2 Savings (U2) U3 Savings (U3)

2010

Objective Function 1.962.720 1.509.115 453.605 (23%) 1.275.769 686.951 (35%)

Holding Costs 108.589 185.748 -77.159 (-71%) 134.426 -25.837 (-24%)

Tranfer Costs 204.129 162.247 41.883 (21%) 148.772 55.357 (27%)

Setup Costs 42.550 42.550 0 (0%) 41.650 900 (2%)

Total Number of Setups 851 851 0 (0%) 833 18 (2%)

Overtime Costs 1.607.451 1.118.570 488.881 (30%) 950.921 656.530 (41%)

Objective Function (without Setup Costs) 1.920.170 1.466.565 453.605 (24%) 1.234.119 686.051 (36%)

2011

Objective Function 3.259.777 2.163.237 1.096.540 (34%) 1.976.865 1.282.912 (39%)

Holding Costs 450.926 171.429 279.496 (62%) 163.060 287.866 (64%)

Tranfer Costs 317.965 312.157 5.808 (2%) 365.503 -47.538 (-15%)

Setup Costs 48.350 48.350 0 (0%) 46.050 2.300 (5%)

Total Number of Setups 967 967 0 (0%) 921 46 (5%)

Overtime Costs 2.442.536 1.630.334 812.202 (33%) 1.402.252 1.040.283 (43%)

Objective Function (without Setup Costs) 3.211.427 2.114.887 1.096.540 (34%) 1.930.815 1.280.612 (40%)

Figure 1: Comparison of inventory, transfer and overtime decisions of the different scenarios for the 2010 PB
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Figure 2: Comparison of inventory, transfer and overtime decisions of the different scenarios for the 2011 PB
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