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Abstract

Emissions intensive firms, like utility companies with coal-fired power plants, can invest in process

improvement projects at their existing facilities to reduce carbon emissions. An example of such

an investment is to retrofit coal-fired power plants with the carbon capture and sequestration

technology. Under different carbon regulations, their investment decisions result in a change of

the production cost structure and/or impose a constraint on production quantity. We study joint

production capacity and investment decisions under command-and-control and market-based reg-

ulations (including carbon tax and cap-and-trade) for an emissions intensive company that faces

stochastic demand. We analytically compare the company’s performance along four dimensions,

including profit, total emissions, investment amount, and investment timing. We find that the

company can perform better under either command-and-control and cap-and-trade along any of

these four dimensions, depending on the company’s investment cost and emissions regulation pa-

rameters.
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1 Introduction

Firms have long recognized the importance of controlling Green House Gas (GHG) emissions due

to the threat of potential carbon emissions regulations and the intention of establishing a good

public image. In the United States, progressive firms are investing to reduce their GHG emissions

on a voluntary basis without established carbon emissions regulations. They participate in certain

environmental leadership programs, like the Climate Leaders of the U.S. Environmental Protection

Agency. Emission intensive manufacturers and utility companies are among these environmental

leaders, such as the world’s leading producer of aluminum Alcoa, and the well known environmental

steward American Electric Power (AEP).

Investment in process improvement projects is crucial for firms with a large existing capital

investment to stay competitive or even viable in a carbon constrained world. Such firms usually

cannot completely forgo their existing expensive plants and equipments, which is the reality that

many existing plants are facing. Due to large capital investment, a firm’s only option is to improve

its existing technology instead of switching to a completely new technology. One such example is

the investment by Alcoa in a new smelting control algorithm to reduce GHG emissions during the

aluminum production process (Hoffman (2006)). Another example is the investment by AEP in the

Carbon Capture and Storage (CSS) technology for coal-fired power plants. Using CSS, coal-fired

power plants capture CO2 emitted during the generation process through pipelines and store it

underground permanently. Process improvement investment can be a practical cost-effective way

to control carbon emissions. This type of investment is different from a fundamental technology

change investment, under which a firm abandons its existing technology and switches to a new

one. One example of the latter is the investment in new power plants with renewable clean energy,

like wind farms, by utility companies that mainly operate coal-fired plants.

Although progressive firms in the United States are investing in carbon emissions reduction

projects without the existence of emissions regulations, government regulations on carbon emis-

sions seem a matter of time. However, the outlook is still quite vague in terms of the eventual

form of an emissions regulation. A possible regulation is cap-and-trade (Tietenberg (2006)), under

which a regulated firm is allocated with some amount of initial emissions allowances either for free

(i.e. grand-fathering) or through auctions. If the firm emits less than its initial allowances, it

can sell the extra allowances to the emissions trading market. Otherwise, it needs to purchase

extra allowances to cover its excessive emissions. A large-scale emissions cap-and-trade system

was first implemented in the United States for SO2 emissions as required by the 1990 Clean Air

Act Amendment. The most well known emissions trading system for carbon emissions is the

European Union Emissions Trading System (EU-ETS). Another type of a regulation is carbon

tax, under which a regulated firm needs to pay tax per unit emissions. Both cap-and-trade and

carbon tax regulations are market-based regulations, which impose a price on carbon. In con-

trast, there are command-and-control based regulations, one important type of which is to limit
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the total emissions of a firm during a certain time period.1 This type of a command-and-control

regulation is referred to as emission standards in Montero (2002a,b)2. An example of emission

standards in practice is the Volatile Organic Compound (VOC) regulations under the Clean Air

Act Amendment.3 Emission standards have received much attention among economists (Helfand

(1991), Milliman & Prince (1989), Montero (2002a,b), Dietz & Michaelis (2004), and Requate

(2005)).4 We refer to it by the command-and-control regulation. The effect of a firm’s investment

depends on the type of emissions regulation the firm is subjected to. Therefore, it is important

for firms to evaluate their possible investments to reduce carbon emissions under different types

of carbon emissions regulations.

The effect of investment also depends on a firm’s production capacity. If the firm can produce

more, then it can benefit more from its investment. Once the firm has installed CCS, the more

it can produce, the more emissions allowances it can save and sell to the emissions trading mar-

ket under cap-and-trade. Hence interaction exists between investment and production capacity

decisions under emissions regulations. In this paper, we study the joint production capacity and

investment problem for an emissions-intensive company that operates several plants under cap-

and-trade, carbon tax and command-and-control regulations. It turns out that the cap-and-trade

and carbon tax models are very similar and do not require separate analyses. We characterize

optimal investment in process improvement projects and production capacity under these regula-

tions with uncertain demand. We analytically compare the expected profit, total emissions, and

investment amount using a single period model under cap-and-trade and command-and-control.

Contrary to the preference for the cap-and-trade regulation by economists, we find out that the

company can be better off with regard to any comparison criterion under the command-and-control

regulation. For example, we derive sufficient and necessary conditions for the company to have

higher expected profit under command-and-control. Furthermore, we compare the investment

timing under cap-and-trade and command-and-control using a two-period model, and derive suf-

ficient conditions for the company to invest earlier under either regulation. The company should

not always invest earlier under the cap-and-trade regulation as claimed by economists (Tietenberg

(2006)). Our results show different tendencies and insights due to the stochastic demand in our

models and the flexibility of production quantity adjustments. The economics literature assumes

that the company do not adjust production after a regulation. In our model the company makes

an optimal production decision.

1See Helfand (1991) for five different types of command-and-control regulations.
2Another type of a command-and-control regulation, performance standards, is also studied in Montero (2002b).

Performance standards, also known as concentration standards, limit the emissions per unit output instead of total
emissions. Since emission standards bear greater similarity with the cap-and-trade regulation, we choose to compare
emission standards and cap-and-trade regulations, which makes the comparison more relevant.

3Such regulations limit the emissions of VOC in order to reduce smog formation. Exact requirements vary by state,
but generally include obtaining a permit allowing a specific amount of VOC emissions from all sources within a facility.

4In Requate (2005)), an emissions standard is referred to as an absolute standard while a performance standard is
referred to as a relative standard.
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All of the comparisons are mainly from the company’s perspective. The comparisons can

inform the company which regulation is better for it based on its own strategic standpoints and

parameters so that it could support and lobby for that regulation. For example, the company

may prefer a regulation under which it has a higher expected profit and requires less upfront

investment. Our analyses identify conditions for such a preference. Throughout the paper, a

numerical example with parameters estimated from published industry and research data is used

to illustrate the analytical results.

The contributions of our work are as follows. First, we introduce demand uncertainty into

single period models about investment in emissions reduction technologies. Deterministic models

are found in the economics literature regarding technology innovations induced by emissions reg-

ulations, see Montero (2002b), Dietz & Michaelis (2004) for examples.5 Demand uncertainty is

an important operational issue, and derivation of an optimal investment strategy becomes much

more involved by introducing this aspect. Second, using the single period models, we provide a

thorough analytical comparison of cap-and-trade and command-and-control regulations from the

company’s perspective with demand uncertainty. We compare the two regulations in multiple

dimensions, including expected profit, total emissions and investment amount of the company,

while the above mentioned economics literature only compares the incentive6 of the company to

invest from a policy maker’s point of view. Contrary to the conventional wisdom, we observe that

it is possible for the company to have both a higher profit and lower total emissions under cap-

and-trade. In addition, adding demand uncertainty makes our comparisons very different from the

economics literature. The most important contribution is the development of a two period model

to analytically compare investment timing of the company under the cap-and-trade and command-

and-control regulation. To the best of our knowledge, our work is the first one to perform such

a timing comparison for investment in process improvement projects while taking into account

the interaction between investment and production capacity decisions. We find that the company

should not always invest earlier under cap-and-trade regulation as claimed by economists.

The rest of the paper is organized as follows. Section 2 reviews the relevant literature and

positions our work. Section 3 introduces the single period models under cap-and-trade and

command-and-control regulations for comparisons of the expected profit, total emissions and in-

vestment amount in Section 4. Section 5 introduces the two period models under cap-and-trade

and command-and-control, and compares the investment timing. The production cost of the com-

pany may change as a result of an investment to reduce emissions. Sections 3, 4 and 5 assume that

the production cost does not change with the investment to reduce emissions. Section 6 discusses

the impact of a change of the production cost on our results. Section 7 presents managerial insights

that can be drawn from our study and discusses possible extensions.

5In this stream of economics literature, an emissions reduction technology is referred to as an abatement technology.
6Except in Montero (2002b), incentive to innovate is defined as the profit difference of a firm after and before possible

innovation. In Montero (2002b), it is defined as the optimal investment amount in innovation for some given reduction
level of abatement cost.
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2 Literature Review

Our work is closely related to papers that study incentives for technology innovations induced

by emissions regulations in the economics literature, see Downing & White (1986), Milliman &

Prince (1989), Jung et al. (1996), Requate (1998, 2003, 2005), Requate & Unold (2001, 2003),

Montero (2002a,b), Fischer et al. (2003), and Dietz & Michaelis (2004) among others. These

papers compare the incentive for a firm to innovate in an emissions reduction technology under

various regulations, including command-and-control or market-based regulations. Our work differs

from these economics papers in three ways. First, we consider the investment decision by a firm

that does not yet possess an existing abatement technology, while all these economics papers focus

on firms that do already possess some abatement technology. Firms do not have incentives to

acquire an abatement technology without emissions regulation. When an emissions regulation is

in place, firms face the investment decision to reduce emissions without abatement earlier than

the investment decisions to innovate on their existing abatement decisions. Second, our work

explicitly models demand uncertainty while these papers assume deterministic demand. Demand

uncertainty is an important operational issue, and makes the analysis more involved than when the

demand is deterministic. Third, our work is mainly from a firm’s perspective while these papers

are from a policy maker’s perspective. We compare a firm’s expected profit, total emissions,

investment amount and timing under command-and-control and cap-and-trade regulations, while

these papers only compare a firm’s incentive to innovate.

The economics papers that study investment under uncertainty are also relevant to our study,

see Leahy (1993), Insley (2003), Zhao (2003), and Krysiak (2008) among others. These papers

explicitly take uncertainty into account when modeling firms’ investment decisions, and employ

real options approaches. The book by Dixit & Pindyck (1994) provides a nice overview of this

topic. Among these papers, Zhao (2003) and Krysiak (2008) compare the investment incentives

of firms under emissions tax and cap-and-trade regulations, and bear the most similarity to our

work. However, they leave out the firms’ production decision and ignore the interaction between

the abatement investment and production quantity, while we capture this interaction. In addition,

their study only compares the firm’s investment incentive while we have performed a much more

thorough comparison from a firm’s perspective, covering in addition the expected profit, total

emissions, and investment timing. Finally, their comparison is between emissions tax and cap-and-

trade regulations, while ours is between the cap-and-trade and command-and-control regulation.

The studies by Leahy (1993) and Zhao (2003) touch on the firms’ investment timing problem, and

state the conditions for investment in terms of the realization of some random variables (e.g. price

for the output good as in Leahy (1993)). However, they do not compare under which regulation

a firm is optimal to invest earlier as in the current study.

Recently, there has been a surge of papers in the operations research and management science

field that study the implications of carbon regulations on firm’s emissions reduction investment.
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In a two-stage model, Drake et al. (2010) study the technology choice and capacity investment

decisions under two regulations, namely cap-and-trade and carbon tax for power plants and mature

capital intensive manufacturers like cement and steel. At the first stage, the firm chooses the

capacities in two technologies when demand is uncertain. After demand uncertainty is resolved, the

firm chooses production quantities subject to capacity constraints. Technology shares, expected

profit, expected production and total emissions are compared under these two regulations. This

paper is about selecting technologies and capacity investment for new plants. However, our work

is about investment in process improvement projects for existing plants. Furthermore, it focuses

on cap-and-trade and carbon tax regulations while we also consider the command-and-control

type of regulation. Subramanian et al. (2004) study firm’s compliance strategies under the permit

auction regulation on emissions. Under this regulation, firms need to purchase permits through an

auction to cover their emissions. Possible compliance strategies include investing in an abatement

technology, purchasing permits in the auction, and changing the production quantity. Krass et al.

(2010) analyze the effects of using carbon taxes in motivating the choice of emissions-reducing

technologies by a profit-maximizing monopolistic firm. There is a finite number of technologies

for the firm to choose from, which vary in the up-front investment, variable operating cost and

emissions reduction effectiveness. Subramanian et al. (2004) and Krass et al. (2010) only study

a single type of regulation while we compare two types of regulations (i.e. cap-and-trade and

command-and-control).

Studies on investment in process improvement projects trace back to the 1980’s in the context of

just-in-time and lean supply chains in manufacturing. Porteus (1985) considers the investment to

reduce setup cost in the EOQ model with a one-time investment opportunity. He jointly optimizes

the investment and lot size decisions. Porteus (1986) further captures the relationship between

quality and lot size, and considers the investment to improve the production quality as well as

to reduce setup costs. Fine & Porteus (1989) study a dynamic version of the work by Porteus

(1986), allowing an investment opportunity in each time period with random investment effects.

More recently, Zhu et al. (2007) examines investment for quality improvement for both buyers

and suppliers in a supply chain. Our work employs similar ideas from these papers to model the

investment needed to reduce the unit emissions level. To achieve a certain level l of the production

factor to improve (e.g. setup cost or defective probability in these papers), the money needed to

invest is a function f(l) of the factor level. Our production factor to improve is the unit emissions

level, which has different implications on the production cost or flexibility than to reduce setup

cost or improve production quality. In addition, our work captures various regulations while the

previous papers do not.

Next we present our models about investment and production capacity decisions for an emis-

sions intensive firm under GHG regulations. For expositional simplicity, we assume the production

cost does not change with the investment to reduce emissions in the following models. We discuss

the impact of a change of production cost on our results in Section 6.
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3 Single Period Models

We consider a company operating several plants subject to certain carbon regulations, including

cap-and-trade, carbon tax and command-and-control. We assume that the emissions trading price

under cap-and-trade regulation is given exogenously. The demand is stochastic with gross margin

profit p per unit, which is equal to price minus production cost. The demand has continuous

cumulative distribution function F . The cost for preparing the production capacity is constant c

per unit. For example, the preparation cost can be the unit cost for materials purchased before

the actual production. Note that the gross margin profit only occurs for quantity produced and

sold while the cost for preparing capacity is accounted for the production capacity even if the

company does not produce up to the capacity.

As of current, the firm does not possess an abatement technology. The initial unit emissions

level is e0 per unit production. However, the firm can invest in process improvement projects to

reduce the unit emissions level to e per unit production with a technologically possible lower bound

e. Let ce denote the unit emissions cost, which can be the expected emissions trading price under

the cap-and-trade regulation or the unit tax under the carbon tax regulation. We assume that the

firm’s profit margin p−c−cee0 is positive (otherwise, the firm is optimal to produce nothing). The

investment needed to reach unit emissions level e is f(e), which decreases in e with f(e0) = 0. The

investment to reduce emissions can be through either adopting an existing abatement technology

or improving production process. For example, a utility company with coal-fired power plants can

invest in the CCS abatement technology.

We do not use the same way to model the effect of investment as in the economics papers on

induced technology innovation due to emissions regulations (e.g. Dietz & Michaelis (2004)) for

two reasons. On the one hand, although the model in these economics papers can be adapted for

a firm without any abatement technology to adopt an existing one, it is not easy to specify the

abatement cost function such that the firm’s optimal abatement level before innovation is zero.7

Our model is more natural for investment in an existing abatement technology. On the other hand,

we model investment in a similar way as existing models for investment in process improvement

projects in the literature (e.g. Porteus (1985)). We often assume that the investment function

f(e) is linear, and it is equal to a(e0 − e). Here a is the unit investment cost needed to reduce the

unit emissions level by one unit. An example of such investment is a utility company operating

several coal-fired power plants that needs to decide how many plants to retrofit with the CCS

technology to reduce carbon emissions.

Throughout the paper, we use a numerical example with parameters estimated from published

industry and research data to illustrate our results. We introduce the example in the following

before further discussing the details of our models.

7Note that for firms without any abatement technology, the abatement level should be zero before investing in
innovation.
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Example: American Electric Company (AEP) is one of the largest utilities in the U.S. and

an environmental leader that actively engages in GHG emissions reduction activities. We use a

possible investment by AEP in CCS to retrofit its existing pulverized coal-fired power plants as an

example to illustrate our results. We point out that as of year 2012, there is no commercial scale

operation of CCS at any existing power plant in the US. The CCS technology under consideration

is post-combustion with chilled ammonia (see McKinsey (2008) for more about different types of

CCS). The investment cost to retrofit an existing power plant varies with the type of the plant.

Table 1 presents AEP’s model parameters.

Table 1: AEP’s Model Parameters

Parameter Description Value Unit Source
µ AEP’s annual demand

mean
140,474 106 kWh AEP (2011a),

AEP (2011b)
σ AEP’s annula demand stan-

dard deviation
4,120 106 kWh AEP (2011a),

AEP (2011b)
c Capacity preparation cost 2.42 cents/kWh EIA (2012b),

AEP (2011b)
p Profit margin with capacity

preparation cost
6.4 cents/kWh EIA (2012a),

AEP (2011a)
e0 Initial unit emissions level 0.976 tonne/MWh NETL (2007a)
e Unit emissions lower bound 0.0976 tonne/MWh NETL (2007a)
a Unit investment cost to re-

duce unit emissions level by
1 tonne/kWh

1,071,399 million dollars NETL (2007a)

We use the historical sales data of AEP to estimate its demand. According to American

Electric Power (AEP) (2011a,b), the total retail electricity sales by coal fired plants are 143,654

(year 2011), 141,948 (year 2010), and 135,819 (year 2009) million kilowatt hours. If we assume

that demand follows the normal distribution, then the mean and standard deviation are 140,474

and 4,120 million kilowatt hours, respectively. The cost for preparing production capacity is the

cost of coal needed to generate electricity. According to the Energy Information Administration

(EIA) (2012b), 1,942 kilowatt hours of electricity is generated by a ton of coal. The average cost

of coal is $47 per ton based on American Electric Power (AEP) (2011b). Therefore, the cost

of coal per kWh is 2.42 (= 47/1, 942 × 100) cents. According to EIA (2012a), the average retail

electricity price for year 2011 is 9.55 cents/kWh. The electricity price is expected to increase under

emissions regulations. The electricity price increased on average 25% based on German forward

prices for 2006 under EU-ETS (Hyvarinen (2006)). Islegen & Reichelstein (2011) conclude that

the upper bound for the increase in the electricity price under emissions regulations is around 30%

in the United States. Therefore we assume that the electricity price will increase 30% under an

emissions regulation in the United States. In addition, the profit margin is 10% of the revenue
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generated from the sales of electricity based on American Electric Power (AEP) (2011a). With

these assumptions, the marginal profit p per kWh is equal to 6.40 (=9.55×1.3− 9.55×0.9+2.42)

cents. For AEP, as long as the unit emissions cost ce is smaller than 41.25 dollars, we have positive

marginal profit p− c− cee0 without any investment.

According to the National Energy Technology Laboratory (NETL) (2007a), the total invest-

ment IOhio needed to retrofit AEPs Conesville, Ohio, Unit #5 plant to reduce its CO2 by 90% is

400 million dollars. The initial emissions e0 of this plant are 0.976 tonne/MWh, and hence the

emissions lower bound e is 0.0976 tonne/MWh. For AEP, the investment cost across its entire coal-

fired fleet is approximately linear in the unit emissions level under the following two assumptions:

(1) the retrofit cost is linear in terms of the retrofitted capacity; and (2) the long-run capacity

utilization at each power plants is almost constant. The calculation of the unit investment cost is

illustrated in Figure 1. We denote the generation capacity of the AEPs Conesville, Ohio, Unit #5

Figure 1: Unit Investment Cost

plant by COhio, and the total generation capacity for coal-fired power plants of AEP by CAEP. Note

that the total emissions of AEP after applying CCS at Ohio are equal to (CAEP−COhio)e0+COhioe,

which on the other hand are equal to CAEP×unit emissions. Hence for an investment of IOhio, the

unit emissions are equal to
(CAEP − COhio)e0 + COhioe

CAEP
. We know that COhio is 450 MW based on

National Energy Technology Laboratory (NETL) (2007a). According to American Electric Power

(AEP) (2011a), CAEP is 25,725 MW. The investment cost to reduce unit emissions I, which is

the slope in Figure 1, is equal to $26,032 million per tonne/MWh (=
IOhio

COhio/CAEP(e0 − e)
). In

perspective, it costs AEP around 8,000 millions to reduce its current unit emission level by 30% for

its entire coal-fired fleet. We amortize the investment cost over n = 20 years to obtain investment

per year. Discount rate δ is assumed to be 2%.8 The total amount I is timed with the annuity

factor
δ

1− (1 + δ)−n
to get the investment per period. Therefore, the unit investment cost a to

reduce unit emissions by 1 tonne/kWh is 1,071,399 millions. �
8Discount rate δ is between 2 to 3 percents based on the return for treasury bond on bankrate.com in May of 2012.
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3.1 Model under Cap-and-Trade

Under cap-and-trade, the emissions trading price is stochastic with expected value ce, and is

exogenously determined through the emissions trading market. The sequence of events for the

model under cap-and-trade is shown in Figure 2. At the beginning of a period before demand

and emissions trading price under the cap-and-trade are realized, the firm decides the production

capacity x and emissions level e per unit production. During the period, uncertain demand D and

emissions trading price are resolved. At the end of the period, the firm chooses to produce the

optimal amount, which is min(D,x). The optimal production quantity is min(D,x) because it is

never optimal to produce more than the demand. In addition, the firm can not produce more than

its prepared capacity. In addition, the firm sells or buys extra emissions allowances if it emits less

or more than its initial allowances A in the emissions trading market.

Figure 2: Sequence of Events under Cap-and-Trade Regulation

The firm chooses the optimal production capacity x and unit emissions level e to maximize its

expected profit as follows:

maxx≥0,e≤e≤e0 pE[min(D,x)]− cx− ce(eE[min(D,x)]−A)− f(e) (1)

where the first term is the expected marginal profit from selling; the second term is the cost to

prepare the production capacity; the third term is the expected cost or revenue from selling or

buying extra allowances; and the last term is the investment cost. After uncertain demand is

realized, if emin(D,x) ≥ A, the firm has to purchase (emin(D,x) − A) amount of allowances.

Otherwise, it sells (A− emin(D,x)) amount of allowances.

There are two variations of the cap-and-trade regulation based on the allocation scheme of

initial allowances. One allocation scheme is named “grand-fathering,” under which the initial

allowances are given to regulated firms free of charge. The model under this allocation scheme

is shown in (1). The other allocation scheme is by auction, under which initial allowances are

purchased by firms through an auction held by a regulating entity. If we assume that the expected

auction price for the initial allowances is the same as the expected emissions trading price, then
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the model under this allocation scheme is a special case of (1) with A = 0.

The model under the carbon tax regulation is the same as the model under the cap-and-

trade regulation with auctioned initial allowances. If ce represents the tax rate under the carbon

tax regulation, then (1) models the carbon tax regulation. Since the cap-and-trade and carbon

tax regulations yield the same model, we herein refer to both regulations as the cap-and-trade

regulation.

To facilitate the presentation, before deriving an optimal solution under the cap-and-trade

regulation, we define some additional variables. In these definitions, the superscript ct denotes

cap-and-trade. The superscript nv denotes the classic news vendor, and the superscript cc denotes

command-and-control, defined later.

xnv(p): the news vendor production quantity with unit marginal profit p which satisfies F (xnv(p)) =
p− c

p
;

πnv(x, p): the news vendor profit function with production capacity x and purchase cost c; Note

that xnv(p) is its corresponding optimal ordering quantity, and we have

πnv(x, p) = pE(D)− p

∫ +∞

x
(d− x)dF (d)− cx. (2)

xct or xcc: the optimal production capacity under cap-and-trade or command-and-control;

ect or ecc: the optimal unit emissions level per unit production under cap-and-trade or command-

and-control;

πct(x, e) or πcc(x, e): the expected profit of the firm under cap-and-trade or command-and-control

with production capacity x and unit emissions level e per unit production;

πct
max or πcc

max: the optimal expected profit under cap-and-trade or command-and-control. Quan-

tity πct
max equals (1) while πcc

max will be defined later.

The optimal solution under cap-and-trade is given in the following theorem. The condition

about the demand CDF F (·) is a technical condition needed in the proof of the theorem, and it is

satisfied by any continuous distribution with finite support, by normal, log-normal, Gamma (with

Erlang and exponential distributions as special cases), and Weibull distributions.

Proposition 1 Under the linear investment function f(e) = a(e0 − e), if the demand CDF F (·)
satisfies limx→+∞ x(1 − F (x)) = 0, then for a given unit emissions cost ce, there exists a unit

investment cost threshold

act(ce) =
πnv(xnv(p− cee), p− cee)− πnv(xnv(p− cee0), p− cee0)

e0 − e
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such that the optimal solution is

(xct, ect) =

(xnv(p− cee), e) a ≤ act(ce),

(xnv(p− cee0), e0) otherwise,

with the maximum expected profit

πct
max =

πnv(xnv(p− cee), p− cee)− a(e0 − e) a ≤ act(ce),

πnv(xnv(p− cee0), p− cee0) otherwise.

In addition, the investment threshold act(ce) increases in ce, and is equal to 0 when ce = 0.

All proofs are presented in the appendix. The optimal investment under cap-and-trade is

illustrated in Figure 3. There exists a unit investment threshold act such that for a given unit

emissions cost ce, if the unit investment cost a is higher than the threshold, then the firm should not

invest to reduce the unit emissions level. Instead, it should reduce its prepared production capacity

to accommodate the increase in the unit production cost due to carbon emissions. Otherwise, the

firm should invest to reduce the unit emissions level as much as possible. The unit investment

threshold act is an increasing function of the unit emissions cost ce. It is zero when the unit

emissions cost is zero. As the unit emissions cost ce increases, the investment to reduce carbon

emissions is more likely to bring higher profit for a firm.

Figure 3: Optimal Investment under Cap-and-Trade Regulation

3.2 Model under Command-and-Control

Under the command-and-control regulation, firms are subject to the strict emissions cap B. We

assume that the total emissions of a firm cannot exceed B. The command-and-control regulation
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can be implemented by imposing high penalties on firms for exceeding their emissions caps. In

practice, firms may not want to violate the regulation for other reasons, including (1) to avoid

frequent monitoring and scrutiny of the government, (2) to obtain additional negotiation power

with the government in hope of less restrictive regulation in the future, or (3) to establish a good

corporate image by being a socially responsible corporation (Downing (1982)).

The sequence of events for the model under command-and-control is shown in Figure 4. At the

beginning of the period before the demand is realized, the firm decides the production capacity

x and the unit emissions level e for unit production. During the period, uncertain demand is

realized. At the end of the period, the firm chooses to produce the optimal amount, which is

min(D,x). In addition, the total emissions of the firm cannot exceed its emissions cap B.

Figure 4: Sequence of Events under Command-and-Control Regulation

The firm chooses the optimal production capacity x and unit emissions level e to maximize its

expected profit as follows:

maxx≥0,e pE[min(D,x)]− cx− f(e)

s.t. ex ≤ B

e ≤ e ≤ e0

Note that the firm is not allowed to exceed the emissions cap for any production level. Therefore,

we impose the constraint that the firm cannot exceed the emissions cap when producing at its

capacity.

The optimal solution under command-and-control is characterized in the following theorem.

Proposition 2 Under the linear investment function f(e) = a(e0− e), when the emissions cap is
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not tight, i.e. xnv(p)e0 ≤ B, the optimal solution is

(xcc, ecc) = (xnv(p), e0);

otherwise, there exists an investment lower bound acc > 0 and upper bound ācc > 0 such that the

optimal solution is

(xcc, ecc) =


(B/e0, e0) a ≥ acc,

(B/ē, ē) a < acc,

(B/ẽ, ẽ) acc ≤ a < ācc,

where ẽ ∈ (max{B/xnv(p), e
¯
}, e0] and ē ∈ (max{B/xnv(p), e

¯
}, e0).

Under the command-and-control regulation, a firm should invest to reduce the unit emissions

level if xnv(p)e0 > B and a < acc, i.e. when the emissions cap is tight, and the unit investment cost

is not too high. Based on Proposition 2, a firm should not invest to reduce the unit emissions level

when the emissions cap is not tight, or the unit investment cost is too high. When the investment

cost is between acc and ācc, it is not clear whether the firm should invest or not. In addition, even

if it is optimal for the firm to invest, it may not be optimal to reduce the unit emissions as much

as possible as under cap-and-trade. It suffices to reduce the unit emissions level to the point where

the firm satisfies the emissions cap. There is no incentive for a further investment.

Example: We assume the unit emissions cost ce to be 20 dollars per tonne,9 and AEP’s initial

emissions allowances and emissions bound to be 69.18 million metric tons, which is 50% of the

total emissions without any emissions regulations.10 With these assumptions, we get the invest-

ment threshold values for AEP, shown in Table 2. Figure 5(a) and 5(b) present AEP’s optimal

Table 2: AEP’s Investment Threshold Values

million dollars million metric tons
act acc ācc xnv(p)e0

2,783,626 2,893,295 9,711,189 138.35

production capacities and unit emissions levels under the cap-and-trade and command-and-control

regulations, respectively.

9The carbon price under the EU ETS system varies from 0 to 47 dollars a tonne. See http://www.pointcarbon.com/
for the historical trading price of carbon.

10According to Eilperin & Shear (2009), the White House announced on 25 November 2009 that President Barack
Obama is offering a U.S. target for reducing greenhouse gas (GHG) emissions in the range of 42% below 2005 levels by
2030. Due to political oppositions in the Congress, we suspect the cap is more likely to be 50%.
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(a) Cap-and-Trade (b) Command-and-Control

Figure 5: AEP’s Optimal Solutions

The unit emissions levels are shown on the vertical axis with unit being tonne/kWh, and the

production capacities shown on the horizontal axis with unit being millions of kWh. The maximum

expected profits are shown in parentheses with unit being millions of dollars. In case CT1, we

have AEP’s current unit investment cost being 1,071,399 millions of dollars, smaller than act. In

case CT2, we suppose AEP’s unit investment cost to be 306,180 (= 1.1act) millions of dollars,

greater than act. In case CC1, we have AEP’s current investment cost smaller than acc, and

current emissions bound smaller than xnv(p)e0. In case CC2, AEP’s emissions bound is assumed

to be any value greater than xnv(p)e0. In case CC3, we suppose AEP’s unit investment cost to

be 10,682,307 (= 1.1ācc) millions of dollars, greater than ācc. �

4 Comparisons of Expected Profit, Total Emissions

and Investment

All of the following comparisons are carried out under the assumption that the initial allowance

amount A for cap-and-trade is the same as the emissions cap B for command-and-control. In this

section, we use A to denote both the initial allowances and emissions cap. All the results consider

a firm’s maximum expected profit, and optimal production capacity and investment decisions.
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4.1 Expected profit

There are two variations of cap-and-trade regulations, one with grandfathered and the other one

with auctioned initial allowances. Recall that the initial allowances are allocated to regulated firms

for free with grandfathering, and are purchased by regulated firms through an auction held by a

regulating entity with auction. We first compare the expected profit of a firm under command-

and-control and cap-and-trade with grandfathered initial allowances.

Theorem 3 For a general investment function f(e), a firm has higher expected profit under cap-

and-trade with grandfathered allowances than under command-and-control.

Since a firm may obtain extra revenue by selling the unused allowances under cap-and-trade,

and has the freedom to exceed its emissions cap, the firm has a higher expected profit under cap-

and-trade. This results justify why a firm would prefer cap-and-trade with free initial allowances

than command-and-control with regard to the expected profit of the firm.

To compare the expected profit of a firm under command-and-control and cap-and-trade with

auctioned initial allowances, we assume that the expected auction price of initial allowances is the

same as the expected trading price, which is denoted by ce. Let πcc
max(A) denote the maximum

expected profit of the firm under command-and-control as a function of the emissions cap A, and

let πct
max(ce) denote the maximum expected profit of the firm under cap-and-trade with auctioned

initial allowances as a function of the unit emissions cost ce. The following lemma states how these

maximum profits change with the corresponding parameters.

Lemma 4 Function πcc
max(A) is nondecreasing in A, and function πct

max(ce) is nonincreasing in

ce.

The maximum expected profit of a firm under command-and-control is nondecreasing in the emis-

sions cap A since the firm has higher production flexibility with a larger emissions cap. The

maximum expected profit of a firm under cap-and-trade with auctioned initial allowances is non-

increasing in the unit emissions cost ce since the firm has to pay for all of its emissions, and the

payment is higher with larger unit emissions cost.

Theorem 5 For a given ce, there exists A∗(ce) such that

(1) if the emissions cap for command-and-control A < A∗(ce), then πct
max(ce) > πcc

max(A);

(2) if A ≥ A∗(ce), then πct
max(ce) ≤ πcc

max(A);

(3) furthermore, A∗(ce) is nonincreasing in ce and A∗(0) = xnv(p)e0.

Theorem 5 is illustrated in Figure 6. For a given unit emissions cost ce, there is an emissions

cap threshold such that a firm has higher expected profit under command-and-control than under

cap-and-trade with auctioned initial allowances if and only if the emissions cap of the firm is larger

than the threshold. The maximum profit of a firm under command-and-control increases as the

emissions cap increases while the maximum profit under cap-and-trade does not change with the
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emissions cap. Therefore, the maximum profit under command-and-control is larger than the one

under cap-and-trade when the emissions cap is high. In addition, the emissions cap threshold is

nonincreasing in the unit emissions cost ce. Under auctioned initial emissions allowances, a firm

has to pay for all of its emissions, and the payment is larger when the unit emissions cost is higher.

Hence, its maximum profit under cap-and-trade decreases with the unit emissions cost. The firm

does not pay anything for its emissions under command-and-control. Hence, its maximum profit

under command-and-control does not change with the unit emissions cost. Therefore, the firm is

less likely to have a higher profit under cap-and-trade than under command-and-control when the

unit emissions cost is high.

For fixed unit emissions cost, when the emissions cap is large enough such that it has no effect

under command-and-control, a firm will achieve the maximum possible expected profit without

any form of carbon regulations. In this case, the maximum expected profit under command-and-

control must be greater than the maximum expected profit under cap-and-trade with auctioned

initial allowance for any positive expected carbon price. This is because the firm has to pay to

emit under cap-and-trade no matter what the emissions amount is. Hence, with a larger emissions

cap, the firm is more likely to have higher expected profit under command-and-control than under

cap-and-trade with auctioned initial allowances. For a fixed emissions cap, the larger the emissions

price, the higher a firm has to pay for its emissions, while the expected profit under command-

and-control does not change with carbon price. Hence the firm is more likely to have higher

expected profit under command-and-control. Although cap-and-trade is perceived as a regulation

with lower compliance cost, a firm may actually have a lower expected profit under cap-and-trade

with auctioned initial allowances than under command-and-control with a large emissions cap. It

could also be the case that a firm may have a lower expected profit under cap-and-trade with

auctioned initial allowances than under command-and-control if the unit emissions cost is high.

When interpreting the unit emissions cost ce as the unit tax and πct
max(ce) as the maximum expected

profit under carbon tax, Theorem 5 can also be understood as a comparison of the expected profit

of a firm under command-and-control and carbon tax.

4.2 Total Emissions and Total Investment

The comparisons of total emissions and investment amount of a firm do not change with regard to

different allocation schemes of the initial allowances. In the following theorems, the cap-and-trade

regulation can have either allocation scheme.

Theorem 6 Under the linear investment function f(e) = a(e0 − e), a firm has lower total emis-

sions under command-and-control if and only if a > act and A < xnv(p− cee0)e0, or a ≤ act and

A < xnv(p− cee)e.

This theorem states that a firm is likely to have larger total emissions under cap-and-trade if

and only if the emissions cap is tight and low. When the emissions cap is tight, the firm’s total
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Figure 6: Comparison of Maximum Expected Profit

emissions under command-and-control equal the emissions cap. When the emissions cap is low,

the firm is better off exceeding the cap under cap-and-trade. Hence the firm will have higher total

emissions under cap-and-trade.

From Theorems 3 and 6, we observe that it is possible for a firm to have both higher profit

and less emissions under the cap-and-trade system than under the command-and-control system.

This is contradicting the conventional wisdom of more profit means more emissions, e.g. the case

of coal-fired power plants versus nuclear power plants.

In terms of the investment amount, the following result outlines both possible cases.

Theorem 7 Under the linear investment function f(e) = a(e0− e), a firm invests more to reduce

unit emissions under command-and-control if A < xnv(p)e0, a
cc > a > act and acc > act, which

holds for any small enough ce. On the other hand, a firm invests more to reduce unit emissions

under cap-and-trade if a < act.

A firm may have a larger total investment under command-and-control if the carbon trading

price is small compared to the unit investment cost, and the emissions cap is tight. In this case,

the extra revenue from selling the extra carbon allowances cannot offset the investment cost under

cap-and-trade. Hence the firm has no incentive to invest under cap-and-trade. On the other hand,

the firm is more profitable to invest under command-and-control to bring the production level up

under a very tight cap. Contrary to the claim that firms invest more to reduce emissions under cap-

and-trade than under command-and-control in the economics literature, when the carbon trading

price is low and the emissions cap is tight, the firm may invest more under command-and-control.

When the unit investment cost is small comparing to the carbon price, the firm will invest

more under cap-and-trade no matter if the emissions cap is tight or not, because the firm has no

incentive to invest beyond the carbon cap under command-and-control, while it always has the

incentive to invest under cap-and-trade as long as the unit investment cost is small enough.
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Example: As in the previous example, we assume ce = 20 dollars/tonne, and A = B = 69.18

millions of metric tons unless otherwise indicated. Figure 7 presents a comparison between AEP’s

maximum expected profits, πct
max under cap-and-trade and πcc

max under command-and-control, with

different initial emissions allowances or bounds. The numbers in parentheses are emissions bounds

under command-and-control when comparing with cap-and-trade with auctioned initial allowances.

With free initial allowances, as in Theorem 3, AEP has higher expected profit under cap-and-trade

than under command-and-control. With auctioned initial allowances, we have A∗(20) = 12.80

millions of metric tons. As shown in Theorem 5, AEP has higher expected profit under command-

and-control if and only if A ≥ A∗(20). When the initial emissions bound is 11.52 (= 0.9 ·A∗(20))

or 14.08 (= 1.1 · A∗(20)) millions of metric tons, AEP has lower or higher expected profit under

command-and-control.

Figure 7: Comparison of AEP’s Maximum Expected Profit

Based on Theorem 6, Figure 8 presents a comparison between AEP’s total emissions, Ect under

cap-and-trade and Ecc under command-and-control. The units on the horizontal and vertical axes

are millions of dollars and millions of kWh, respectively. AEP has lower (higher) total emissions

under command-and-control in the lower right (upper left) region. With our current assumptions

about AEP, its unit investment cost a is less than act, and the total emissions under cap and trade

being 13.82 millions of metric tons are smaller than under command-and-control, being 69.18

millions of metric tons.

AEP’s total investments under cap-and-trade and command-and-control are compared for dif-

ferent unit emissions costs in Figure 9, with the unit on the vertical axis being millions of dollars.

When ce = 20 dollars/tonne, AEP satisfies the second conditions in Theorem 6, and thus it has a

higher total investment under cap-and-trade. Meanwhile, when ce = 6 dollars/tonne, AEP meets

the first conditions in Theorem 6, and thus it has a higher total investment under command-and-

control. �
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Figure 8: Comparison of AEP’s Total Emissions

Figure 9: Comparison of AEP’s Total Investment
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5 Investment Timing

Economics literature claims that a firm always invests earlier under cap-and-trade than under

command-and-control. This assertion is based on fixed production. To the contrary, we derive

conditions under which the firm invests earlier either under the cap-and-trade or command-and-

control regulation. This is a consequence of adjustable production quantity in our models. To

study the investment timing problem faced by the firm, we propose the following two period models

with a similar structure as the one period models above. Although the two period models can

also be used to analyze the previously studied investment decisions, we believe that the one period

models are more appropriate for the more strategic decision concerning whether or not to invest.

In addition, these one period models provide valuable insights to analyze the more involved two

period models for the investment timing decisions. Besides, one period results are impossible to

obtain in the two period setting due to complexity. The comparison of the investment timing of

the firm does not change with regard to different allocation schemes of the initial allowances. In

the following propositions and theorems, the cap-and-trade regulation can have either allocation

scheme.

5.1 Two Period Models

The sequence of events for two period models is shown in Figure 10. At the beginning of period

i, the firm chooses its production capacity xi and unit emissions level ei for i = 1, 2. During a

period, demand uncertainty is resolved, and so is the emissions trading price if the firm is under

the cap-and-trade regulation. At the end of period i, the firm has to comply with the carbon

regulation. Recall that under the cap-and-trade regulation, the firm needs to sell or buy extra

emissions allowances if it emits less or more than its initial allowances Ai in the emissions trading

market. Under the command-and-control regulation, the total emissions of the firm cannot exceed

its emissions cap Bi. Unsatisfied demand at the end of a period is lost. The investment function for

period one is f1(e1; e0) with e0 being the unit emissions level parameter without investment, and

it is f2(e2; e1) for period two with e1 being the unit emissions level parameter without investment.

The connection between two periods is through investment in emissions reduction. We assume that

the investment cost of the second period is lower than that of the first period due to advancements

of technology. Each parameter introduced earlier now has a subscript indicating the time period,

i.e., ci is the cost for preparing the production capacity in period i for i = 1, 2.

With these assumptions, the two-period model under cap-and-trade is as follows:

maxx1,e1 p1E[min(D1, x1)]− c1x1 − c1ee1E[min(D1, x1)]− f1(e1; e0) + δπct
2 (e1)

s.t. e1 ≤ e1 ≤ e0
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Figure 10: Sequence of Events for Two Period Models

x1 ≥ 0.

Here δ is the time discount factor, and πct
2 (e1) is the expected profit under the cap-and-trade

regulation for period two with the initial initial unit emissions level for period two being e1.

Formally,

πct
2 (e1) = maxx2,e2 p2E[min(D2, x2)]− c2x2 − c2ee2E[min(D2, x2)]− f2(e2; e1)

s.t. e2 ≤ e2 ≤ e1

x2 ≥ 0.

Banking is a possible design feature for cap-and-trade, under which firms can save their current

unused emissions allowances for a later period. We do not explicitly model banking in the two

period model for two reasons. First, firms may not want to bank their allowances under cap-and-

trade since the regulations may change in an unfavorable direction such that the value of banked

allowances may drop drastically. This is what happened with the acid-rain cap-and-trade system

(Peters (2010)). Second, banking can be interpreted and captured in our model as follows. If the

expected emissions trading price in period two is larger than the realized emissions trading price

in period one, then it is optimal to bank as many allowances as possible in order to sell them for

profit in period two. Otherwise, the firm should not bank them at all.

The two-period model under command-and-control is as follows:

maxx1,e1 p1E[min(D1, x1)]− c1x1 − f(e1; e0) + δπcc
2 (e1; e0)

s.t. e1x1 ≤ B1

e1 ≤ e1 ≤ e0

x1 ≥ 0,

where πcc
2 (e1) is the expected profit under the command-and-control regulation for period two
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when the initial emissions level for period 2 is e1, and

πcc
2 (e1) = maxx2,e2 p2E[min(D2, x2)]− c2x2 − f2(e2; e1)

s.t. e2x2 ≤ B2

e2 ≤ e2 ≤ e1

x2 ≥ 0.

5.2 Investment Timing Comparison

When comparing investment timing under the cap-and-trade and command-and-control regulation,

for simplicity of exposition, in what follows, we assume that p1 = p2 = p, c1 = c2 = c, and

c1e = c2e = ce. We also assume that D1 and D2 have the same distribution with cumulative

distribution function F . Furthermore, we assume that the investment functions are linear with

f1(e1) = a1(e1 − e0) and f2(e2) = a2(e1 − e2). Here a1, a2 represents the unit investment cost in

period one, two, respectively. As emissions reduction technology advances and matures over time,

we expect the unit investment cost to decrease over time. Hence we assume that a2 ≤ a1. Besides,

we assume that the technology possible lower bounds are the same for both periods, which means

e1 = e2 = e. For the emissions regulations, we assume that B2 ≤ B1 because regulations are

expected to be more stringent in the future.

The following propositions specify sufficient conditions for a firm to invest for sure in period

two. Intuitively, this happens when unit investment cost a2 in period two is small enough. Let α

denote a2/a1. A sufficient condition for definitely investing in period two under the cap-and-trade

regulation is as follows.

Proposition 8 For any unit investment cost a1 in period 1, a firm invests for sure in period two

under cap-and-trade if α ≤ act2 /a1, where act2 = ce
∫ xnv(p−cee0)
0 d̄dF (d̄) + xnv(p− cee0)

cce
p− cee

.

Under command-and-control, if e0x
nv(p) ≤ B2, a firm can carry out the production as if there

is no emissions regulation in both periods. For this reason the firm never invests in period two

no matter how small the unit investment cost is. The following proposition specifies a sufficient

condition for a firm to invest in period two if e0x
nv(p) > B2. Intuitively, this happens when the

unit investment cost a2 in period two is small enough.

Proposition 9 When e0x
nv(p) > B2, for any unit investment cost a1 in period one, there exists

ê >
B1

xnv(p)
such that a firm invests for sure in period two under command-and-control if α ≤ acc2 /a,

where

acc2 =


minê≤e1≤e0 −

B2

e21
(c− p(1− F (

B2

e1
))) e0x

nv(p) > B1,

−B2

e20
(c− p(1− F (

B2

e0
))) B2 < e0x

nv(p) ≤ B1.
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In the following propositions and theorems, act1 , a
cc
1 , and ācc1 are respectively equal to act, acc,

and ācc from the single period models. Besides, act2 and acc2 are as defined in Proposition 8 and 9.

Suppose a firm invests for sure in period 2 under cap-and-trade. A condition for the firm to

invest in period one under the cap-and-trade regulation is given in the following proposition.

Proposition 10 Suppose α ≤ act2 /a1. A firm invests in period 1 under cap-and-trade if (1)

a1 ≤ act1 , or (2) act1 < a1 ≤ δact2 + act1 , and α ≥ 1

δ
(1 − act1

a1
). A firm does not invest in period 1 if

(3) a1 > act1 and α <
1

δ
(1− act1

a1
).

Note that the negation of cases (1) and (2) also includes a1 > δact2 + act1 and α ≥ 1

δ
(1 − act1

a1
).

However, these conditions cannot hold at the same time with α ≤ act2 /a1. In (2), the condition

a1 ≤ δact2 + act1 is a technical condition for α to exist. Under condition (1), the firm has enough

incentive to invest in period one by looking at the benefit of emissions reduction in period one

alone. Under condition (2), the firm faces the tradeoff between investing in period one or not, which

weighs the benefits of emissions reduction in both periods if investing in period one against the

reduction in investment cost if delaying the investment until period two. Comparing to the single

period problem under cap-and-trade, a firm invests in period one even when the unit investment

cost in period one is greater than the single period threshold value as long as the unit investment

cost in period two is not too small. This happens because the firm has higher incentive to invest

in period one since it enjoys the benefit of such an investment in both periods.

Suppose a firm invests for sure in period two under command-and-control. The sufficient

conditions for a firm to invest or not in period one under the command-and-control regulation is

given in the following proposition.

Proposition 11 Suppose α ≤ acc2 /a1, and B2 < e0x
nv(p). A firm does not invest in period one

if (1) e0x
nv(p) ≤ B1, or (2) e0x

nv(p) > B1, a1 ≥ ācc1 , and α ≤ 1

δ
(1 − ācc1

a1
). A firm invests in

period one if (3) e0x
nv(p) > B1, and a1 < acc1 , or (4) e0x

nv(p) > B1, a
cc
1 ≤ a1 < acc1 + δacc2 , and

α >
1

δ
(1− acc1

a1
).

In (4), the condition a1 < acc1 +δacc2 is a technical condition for α to exist. Comparing to the single

period problem under command-and-control, a firm also invests in period one under additional

scenarios due to the carryover effect of the investment from period one to period two.

Next we assume the sufficient conditions in Propositions 8 and 9 for a firm to always invest

in period two are satisfied. The following two theorems discuss the sufficient conditions for firms

to invest earlier under command-and-control or cap-and-trade. In other words, the sufficient

conditions under which firms invests in period one only under one regulation but not the other.

Theorem 12 If α ≤ min(act2 /a1, a
cc
2 /a1), then a firm invests in period 1 under command-and-

control but not cap-and-trade if one of the following conditions hold.
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• Condition 1: e0x
nv(p) > B1, act1 < a1 < acc1 , ce is small enough such that act1 < acc1 ,and

α <
1

δ
(1− act1

a1
);

• Condition 2: e0x
nv(p) > B1, a

cc
1 ≤ a1 < min(acc1 + δacc2 , acc1 + δact2 ), ce is small enough such

that act1 < acc1 , and
1

δ
(1− acc1

a1
) < α <

1

δ
(1− act1

a1
).

Condition 1 says that when the emissions trading price is small in period one, the unit invest-

ment cost in period one is large comparing to the emissions trading price in period one but not

too large in absolute value, the emissions cap is tight in period one, and the unit investment cost

in period two is much smaller than in period one, the firm will invest in period one only under

command-and-control. Under condition 1, when the emissions cap is tight under command-and-

control, the firm is better off to invest in period one due to the low unit investment cost. However,

the unit investment cost is high comparing to the emissions trading price. Hence the firm does

not have enough incentive to invest under cap-and-trade in period one and is better off to delay

investment until period two due to the sharp decrease of the unit investment cost in period two.

The condition a1 < min(acc1 + δacc2 , acc1 + δact2 ) is a technical condition for α to exist. Condition

2 says that when the emissions trading price is small in period 1, the emissions cap is tight in

period 1, the unit investment cost in period 1 is large, and the unit investment cost in period

2 is small enough to discourage investment in period 1 under cap-and-trade but large enough

to encourage investment in period 1 under command-and-control, the firm invests in period 1

only under command-and-control. Under condition 2, when the emissions cap is tight, the firm

is better off to invest in period 1 to explore the benefit of investing earlier under command-and-

control. Since the unit investment cost in period 1 is large and the unit investment cost in period

2 does not drop sharply enough, there is not much benefit to delay investment until period 2

under cap-and-trade. Hence the firm does not have enough incentive to invest in period 1 under

cap-and-trade.

The reverse situation is covered by the following result.

Theorem 13 If α ≤ min(act2 /a1, a
cc
2 /a1), then a firm invests in period one under cap-and-trade

but not command-and-control if one of the following conditions hold.

• Condition 3: B2 < e0x
nv(p) ≤ B1, and a1 ≤ act1 ;

• Condition 4: B2 < e0x
nv(p) ≤ B1, a

ct
1 < a1 ≤ min(act1 + δact2 ,a

ct
1 + δacc2 ), and α ≥ 1

δ
(1− act1

a1
);

Example: For the two period models, we assume AEP’s total investment I2 to invest in period

2 is 90% of the total investment I1 to invest in period one. In addition, the numbers of years to

amortize the total investment cost are n1 = 20 for period one and n2 = 19 for period two. Because

emissions bounds are expected to decrease over time, we also assume that B2 = 0.9B1. Table 3

lists AEP’s model parameter values under these assumptions for this example unless otherwise

indicated. From this table, we obtain that AEP invests in period two under cap-and-trade if

25



α ≤ 1.10, according to Proposition 8, and under command-and-control if α ≤ 1.23, according to

Proposition 9. Because α = a2/a1 = 0.53, AEP invests in period two under both regulations.

Table 3: AEP’s Parameters for Two-Period Models

million dollars million metric tons dollars/tonne
a1 a2 act2 acc2 B1 B2 ce

2,121,190 1,131,476 2,340,463 2,601,230 69.18 62.26 12

Figures 11(a) and 11(b) illustrate whether AEP invests in period one under cap-and-trade and

under command-and-control for several unit investment costs a1. The bottom lines correspond to

AEP’s current situation. Because α is equal to 0.53, AEP invests in period one under both cap-

and-trade and command-and-control, according to Proposition 10 condition (1) and 11 condition

(3). In Figure 11(a), the unit investment costs for the upper and middle lines are greater than act1 ,

which are within the ranges of a in Proposition 10 conditions (2) and (3). In Figure 11(b), the

unit investment cost for the top line is greater than ā1
cc, satisfying Proposition 11 condition (2),

and the unit investment costs for the middle two lines are greater than a1
cc, satisfying Proposition

11 condition (4). Besides what is shown in Figure 11(b), AEP should not invest in period one if

B1 ≥ 138.35 million metric tons, according to Proposition 11 condition (1).

(a) Cap-and-Trade (b) Command-and-Control

Figure 11: AEP’s Investment Decision in Period 1

Although with parameter values listed in Table 3, AEP invests in period one under both cap-

and-trade and command-and-trade, there are conditions under which it only invests under one

regulation. Figure 12 presents intervals of α’s for AEP to invest under only one regulation for

different unit investment costs a. The regulation for solid lines is cap-and-trade, and the regulation

for dotted lines is command-and-control. The unit emissions cost ce under cap-and-trade is set to
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Figure 12: Investment under Only One Regulation for AEP

be six dollars/tonne, and the investment threshold act for this ce is 835,836 millions of dollars. The

emissions cap B1 under command-and-control is set to be 152.19 millions of metric tons, which is

greater than e0x
nv(p). The lower solid line satisfies conditions in Theorem 12 condition (1), the

upper solid line Theorem 12 condition (2), the lower dotted line Theorem13 condition (1), and the

upper dotted line Theorem13 condition (2). �

6 Change of Production Cost

With investment to reduce emissions, firms’ production cost can either increase, for example, due

to extra processing of emissions as is the case with CCS, or decrease, for example, due to energy

savings and improvement on fuel efficiency. We now consider the impact of a change of production

cost on our results.

Let β indicate the increase in the production cost for eliminating one tonne of emissions. The

model with change of production cost under cap-and-trade is as follows:

maxx≥0,e≤e≤e0 pE[min(D,x)]− cx− ce(eEmin[(D,x)]−A)− β(e0 − e)Emin[(D,x)]− f(e), (3)

where the term β(e0 − e)Emin[(D,x)] indicates the total additional production cost due to the

elimination of emissions. The optimal solutions for the above model can be derived similarly as

in Proposition 1.
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Corollary 14 Under the linear investment function f(e) = a(e0 − e), if the demand CDF F (·)
satisfies limx→+∞ x(1 − F (x)) = 0, then for a given unit emissions cost ce, there exists a unit

investment cost threshold

act(ce) =
πnv(xnv(p− cee− β(e0 − e)), p− cee− β(e0 − e))− πnv(xnv(p− cee0), p− cee0)

e0 − e

such that the optimal solution is

(xct, ect) =

(xnv(p− cee− β(e0 − e)), e) a ≤ act(ce);

(xnv(p− cee0), e0) otherwise,

with the maximum expected profit

πct
max =

πnv(xnv(p− cee− β(e0 − e)), p− cee− β(e0 − e))− a(e0 − e) a ≤ act(ce);

πnv(xnv(p− cee0), p− cee0) otherwise.

In addition, the investment threshold act(ce) increases in ce, and is equal to 0 when ce = β.

The model with change of production cost under command-and-control is as follows:

maxx≥0,e pE[min(D,x)]− cx− β(e0 − e)Emin[(D,x)]− f(e)

s.t. ex ≤ B

e ≤ e ≤ e0.

However, due to the complexity incurred as a result of the additional production cost term, we

are not able to quantify the optimal solutions.

Intuitively, without a change of production cost, the incentive to invest under cap-and-trade is

through the emissions charge, while the incentive to invest under command-and-control is through

the emissions bound. With a change of production cost, although there are additional cost savings

incentives to reduce emissions under both regulations, the original drivers of investment still exist

to serve as the main differentiator for these two regulations. Therefore, similar comparison results

as those without a change of production cost should hold. Theorem 3, Lemma 4 and Theorem 5

remain the same in this new setting. Slight changes need to be made for the comparison of total

emissions and investment amounts, as shown below.

Corollary 15 Under the linear investment function f(e) = a(e0 − e), the firm has lower total

emissions under command-and-control if and only if a > act and A < xnv(p− cee0)e0, or a ≤ act

and A < xnv(p− cee− β(e0 − e))e.

Corollary 16 Under the linear investment function f(e) = a(e0 − e),

(1) a firm invests more to reduce unit emissions under command-and-control if A < xnv(p)e0, a
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is small such that the firm invests under command-and-control, and ce is small enough such that

a > act;

(2) a firm invests more to reduce unit emissions under cap-and-trade if a < act.

Example: According to the National Energy Technology Laboratory (NETL) (2007b), the ad-

ditional variable cost vOhio for running CCS at AEPs Conesville, Ohio, Unit #5 is 1.32 cents/kWh.

Therefore, the additional variable cost β is 15.03 ( =
vOhio

e0 − e
) dollars per ton of CO2 reduced. We

assume, as for the case when not considering a change of production cost, the unit emissions cost ce

to be 20 dollars/tonne, and the initial emissions allowance or emissions bound to be 69.18 million

metric tons. Figure 13(a) presents the optimal solutions under cap-and-trade and command-

and-control for AEP with a change of production cost. We rely on numerical methods to find

the optimal solutions under command-and-control. The investment threshold act is 689,483 mil-

(a) Optimal Solutions (b) Maximum Profit

(c) Total Emissions (d) Total Investment

Figure 13: AEP’s Comparison with Change of Production Cost

lion dollars, which is smaller than AEP’s unit investment cost a, being 1,071,399 million dollars.
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Therefore, for AEP it is not optimal to invest under cap-and-trade. However, based on numerical

experiments, it is optimal to invest under command-and-control, with the optimal unit emissions

being 0.497 tonne/MWh. Figures 13(b), 13(c), and 13(d) compare AEP’s maximum profits, total

emissions, and total investments under cap-and-trade and command-and-control. These figures

can be understood similarly as those for the case without a change of production cost. �

7 Conclusions

In this paper, we have characterized the optimal investment in process improvement projects

and production capacity decisions for an emissions intensive company with several plants under

the cap-and-trade and command-and-control regulation. We compare the company’s expected

profit, total emissions and investment amount and timing under cap-and-trade and command-

and-control. Sufficient conditions are given for one regulation to be better than the other for

each of the comparison criteria. Our results help the company understand implications of each

regulation on its profit, public image in terms of total emissions, and financial resource planning

in terms of investment amount and timing.

Economics literature has been touting the benefits of the cap-and-trade over command-and-

control regulation. One important managerial insight that can be drawn from our study is that

cap-and-trade is not always better. For the company, cap-and-trade may give a lower expected

profit for auctioned initial allowances with a large emissions cap. Cap-and-trade may bring a worse

public image for the company due to larger total emissions for tight and low emissions caps. In

addition, cap-and-trade may not be as effective in motivating investment in emissions reduction

projects as command-and-control. If the emissions cap of the company is tight, emissions trading

price is small, and the unit investment cost is large comparing to the emissions trading price but

not too large comparing to the emissions cap, cap-and-trade may drive a smaller total investment.

If in addition, the unit investment cost drops sharply over time, cap-and-trade may also result in

a later investment.

Our work can be extended in several ways. In this paper, we frequently assume the investment

cost is linear in the emissions level. It would be interesting to study how a nonlinear investment

cost impacts our results. Since the main differences of the investment incentives between the

cap-and-trade and command-and-control regulations are not influenced by the function forms of

the investment cost, we believe similar insights should still hold with a nonlinear investment cost.

Nonetheless, it is worthwhile to verify this with a rigorous analysis. We also assume that demand

does not change with the company’s emissions level. However, demand may change with the com-

pany’s emissions level due to the fact that consumers may become more and more environmentally

conscious. The dependence of demand on the emissions level adds an interesting aspect to our

models.
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Appendix

In all of the proofs, we assume the technology possible emissions lower bound e is equal to zero

for simplicity of exposition.

Proof of Proposition 1:

From (1), we get

πct(x, e) = (p− cee)E(D)− (p− cee)

∫ +∞

x
(d− x)dF (d)− cx− f(e) + ceA. (4)

Since f(e) = a(e0 − e), for a given x, we have

∂πct(x, e)

∂e
= −ceE(D) + ce

∫ +∞

x
(d− x)dF (d) + a. (5)

Let e(x) denote the optimal unit emissions for a given production level x. If a − ceE(D) ≥ 0,

according to (5), we have ∂πct(x,e)
∂e ≥ 0. Therefore, if a − ceE(D) ≥ 0, we have that πct(x, e)

increases in e for any given x, and thus e(x) = e0. If a − ceE(D) < 0, according to (5), we have
∂πct(x,e)

∂e = a > 0 when x = 0, while when x → +∞, according to (5), we have

lim
x→+∞

∂πct(x, e)

∂e
= lim

x→+∞

(
−ce

∫ x

0
d̄dF (d̄)− cex

∫ +∞

x
dF (d) + a

)
= a− ceE(D)− ce lim

x→+∞
x(1− F (x))

= a− ceE(D) < 0.

The last equality is due to the assumption limx→+∞ x(1− F (x)) = 0. In addition, we have

d∂πct(x,e)
∂e

dx
= −ce(1− F (x)) < 0.

We conclude that ∂πct(x,e)
∂e decreases in x, and thus there exists a unique x̄ such that ∂πct(x̄,e)

∂e = 0,

which implies

−ceE(D) + ce

∫ +∞

x̄
(d− x̄)dF (d) + a = 0. (6)

Therefore, if a− ceE(D) < 0, we have ∂πct(x,e)
∂e ≥ 0 and thus e(x) = e0 when x < x̄, while we have

∂πct(x,e)
∂e < 0 and thus e(x) = 0 when x ≥ x̄.

It remains to find the optimal production quantity x. We consider three cases.

Case 1 when a − ceE(D) > 0: We have e(x) = e0, and πct(x, e0) = (p − cee0)E(D) − (p −
cee0)

∫ +∞
x (d − x)dF (d) − cx + ceA, which is concave in x. An optimal x∗1 should satisfy the
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following first order condition:

∂πct(x∗1, e0)

∂x∗1
= (p− cee0)(1− F (x∗1))− c = 0,

which implies that

F (x∗1) =
p− cee0 − c

p− cee0
.

Therefore, we have

(x∗1, e
∗
1) = (xnv(p− cee0), e0).

Case 2 when a − ceE(D) ≤ 0 and x ≤ x̄: We have e(x) = e0. Similar derivation as in case 1

yields

(x∗2, e
∗
2) =

(x̄, e0) x̄ ≤ xnv(p− cee0),

(xnv(p− cee0), e0) x̄ > xnv(p− cee0).

Case 3 when a − ceE(D) ≤ 0 and x ≥ x̄: We have e(x) = 0. Similar derivation as in case 1

implies that if there is no constraint on x, the optimal solution for x is xnv(p). With constraint

x ≥ x̄, because πct(x, 0) is concave in x, the optimal solution is

(x∗3, e
∗
3) =

(xnv(p), 0) x̄ ≤ xnv(p),

(x̄, 0) x̄ > xnv(p).

Next we need to compare the optimal solutions for the above three cases to get the optimal

solution under the cap-and-trade regulation. When a > ceE(D), we have xct = xnv(p − cee0)

and ect = e0. When a ≤ ceE(D), it is clear that, if x̄ ≤ xnv(p − cee0), we have xct = xnv(p)

and ect = 0 since πct(x̄, e0) = πct(x̄, 0) ≤ πct(xnv(p), 0). The first equality holds because πct(x̄, e)

does not change with e by the definition of x̄. If x̄ > xnv(p), we have xct = xnv(p − cee0) and

ect = e0 since πct(x̄, 0) = πct(x̄, e0) ≤ πct(xnv(p − cee0), e0). Further work is needed for the case

xnv(p− cee0) < x̄ ≤ xnv(p). We need to compare πct(xnv(p), 0) and πct(xnv(p− cee0), e0).

Before the comparison, we write the conditions for the optimal values of xct and ect in terms

of the unit investment cost a. From (6), it follows

a = ceE(D)− ce

∫ ∞

x̄
(d− x̄)dF (d),

which implies that x̄(a) increases as a increases. Let

act1 = ceE(D)− ce

∫ ∞

xnv(p)
(d− xnv(p))dF (d),

and

act2 = ceE(D)− ce

∫ ∞

xnv(p−cee0)
(d− xnv(p− cee0))dF (d),

32



from which we can observe that x̄(act2 ) = xnv(p− cee0) and x̄(act1 ) = xnv(p). Since x̄(a) increases

in a, it follows that x̄ ≤ xnv(p − cee0) if and only if a ≤ act2 , and x̄ ≤ xnv(p) if and only if

a ≤ act1 . In summary, when a ≤ ceE(D), if a ≤ act2 , then xct = xnv(p) and ect = 0, if a > act1 , then

xct = xnv(p− cee0) and ect = e0.

Next we address the case act2 < a ≤ act1 . We compare πct(xnv(p), 0) and πct(xnv(p− cee0), e0).

According to (4), we know

πct(xnv(p), 0) = πnv(xnv(p), p)− ae0,

and

πct(xnv(p− cee0), e0) = πnv(xnv(p− cee0), p− cee0).

It follows

πct(xnv(p), 0)− πct(xnv(p− cee0), e0) = πnv(xnv(p), p)− πnv(xnv(p− cee0), p− cee0)− ae0,

and from this, we can see that πct(xnv(p), 0)−πct(xnv(p− cee0), e0) is strictly decreasing in a. Let

us define

act =
πnv(xnv(p), p)− πnv(xnv(p− cee0), p− cee0)

e0
. (7)

When a ≥ act, we have πct(xnv(p), 0) ≤ πct(xnv(p − cee0), e0), and otherwise πct(xnv(p), 0) >

πct(xnv(p− cee0), e0).

Therefore, we have when a ≤ ceE(D), if act2 < a ≤ act1 and a > act, then xct = xnv(p − cee0)

and ect = e0, while if act2 < a ≤ act1 and a ≤ act, then xct = xnv(p) and ect = 0. To simplify these

conditions, we show that act2 < act < act1 . From (2) and (7), we know that

act =
1

e0

[
pE(D)− p

∫ ∞

xnv(p)
(d− xnv(p))dF (d)− cxnv(p)−(

(p− cee0)E(D)− (p− cee0)

∫ ∞

xnv(p−cee0)
(d− xnv(p− cee0))dF (d)− cxnv(p− cee0)

)]
(8)

= act1 +
c

e0
(xnv(p− cee0)− xnv(p))−

(p− cee0)

e0

[∫ ∞

xnv(p)
(d− xnv(p))dF (d)−

∫ ∞

xnv(p−cee0)
(d− xnv(p− cee0))dF (d)

]
(9)

= act2 +
c

e0
(xnv(p− cee0)− xnv(p))−

p

e0

[∫ ∞

xnv(p)
(d− xnv(p))dF (d)−

∫ ∞

xnv(p−cee0)
(d− xnv(p− cee0))dF (d)

]
. (10)
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We also know that∫ ∞

xnv(p)
(d− xnv(p))dF (d)−

∫ ∞

xnv(p−cee0)
(d− xnv(p− cee0))dF (d)

=−
∫ xnv(p)

xnv(p−cee0)
d̄dF (d̄)− xnv(p)

c

p
+ xnv(p− cee0)

c

p− cee0
. (11)

Plugging (11) into (9), we get

act = act1 +
c

e0
(xnv(p− cee0)− xnv(p))−

(p− cee0)

e0

(
−
∫ xnv(p)

xnv(p−cee0)
d̄dF (d̄)− xnv(p)

c

p
+ xnv(p− cee0)

c

p− cee0

)

= act1 − cec

p
xnv(p) +

(p− cee0)

e0

∫ xnv(p)

xnv(p−cee0)
d̄dF (d̄)

< act1 − cec

p
xnv(p) +

(p− cee0)

e0
xnv(p)

(
p− c

p
− p− cee0 − c

p− cee0

)
= act1 − cec

p
xnv(p) +

cec

p
xnv(p)

= act1 .

Substituting (11) in (10), by following the same steps we get act > act2 . Since act2 < act < act1 , it

follows that when a ≤ ceE(D), we have xct = xnv(p) and ect = 0 if a ≤ act, while xct = xnv(p−cee0)

and ect = e0 if a > act. When a > ceE(D), we have xct = xnv(p− cee0) and ect = e0.

Next we show that act < ceE(D). According to (8), we have

act = ceE(D) +
c

e0
(xnv(p− cee0)− xnv(p))− 1

e0
×(

p

∫ +∞

xnv(p)
(d− xnv(p))dF (d)− (p− cee0)

∫ +∞

xnv(p−cee0)
(d− xnv(p− cee0))dF (d)

)

= ceE(D)− ce

∫ +∞

xnv(p−cee0)
d̄dF (d̄) +

p

e0

(∫ xnv(p)

xnv(p−cee0)
d̄dF (d̄)

)
(12)

= ceE(D)− ce

∫ +∞

xnv(p)
d̄dF (d̄) + (

p

e0
− ce)

(∫ xnv(p)

xnv(p−cee0)
d̄dF (d̄)

)

< ceE(D)− cex
nv(p)(1− p− c

p
) + (

p

e0
− ce)x

nv(p)

(
p− c

p
− p− cee0 − c

p− cee0

)
= ceE(D)− cex

nv(p)
c

p
+ cex

nv(p)
c

p

= ceE(D).

Since act < ceE(D), it follows that xct = xnv(p) and ect = 0 if a ≤ act, while xct = xnv(p−cee0)

and ect = e0 if a > act.
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It remains to show that act(ce) increases in ce and act = 0 when ce = 0. From (7), it follows

that act is a function of ce, and act = 0 when ce = 0. Next we show that act(ce) increases in ce.

We know that

πnv(xnv(p), p) = pE[min(xnv(p), D)]− cxnv(p)− ae0.

From the Envelop Theorem it follows that

dπnv(xnv(p), p)

dce
= 0. (13)

We also know that

πnv(xnv(p− cee0), p− cee0) = (p− cee0)E[min(xnv(p− cee0), D)]− cxnv(p− cee0)− ae0.

From the Envelop Theorem it follows that

dπnv(xnv(p− cee0), p− cee0)

dce
= −e0E[min(xnv(p− cee0), D)]. (14)

From (13) and (14), we conclude

dπnv(xnv(p), p)

dce
− dπnv(xnv(p− cee0), p− cee0)

dce
= e0E[min(xnv(p− cee0), D)] > 0,

and according to (7), this implies
dact

dce
> 0.

Therefore, act increases in ce. �

Proof of Proposition 2:

For any given e, if there is no emissions bound on total emissions, the optimal x(e) must satisfy

∂π(x(e), e)

∂x
= p− c− pF (x) = 0,

which implies F (x(e)) =
p− c

p
, and thus the optimal x(e) = xnv(p). Taking into account the

emissions bounds, we get that if xnv(p) ≤ B/e, then x(e) = xnv(p). If xnv(p) > B/e, then

x(e) = B/e. We derive the optimal solution based on two cases of the emissions cap B.

Case 1: The emissions cap is not tight.

If xnv(p)e0 ≤ B, then xcc = xnv(p) and ecc = e0. The total emissions under this case are e0x
nv(p).

Thus when the emissions bound is not tight, it has no effect.

Case 2: The emissions cap is tight.

If xnv(p)e0 > B, then the carbon emissions constraint is binding. We have x(e) = B/e. By
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plugging x(e) = B/e into π(x, e) to find the optimal emissions level, we have

πcc(x(e), e) = pE[D]− p

∫ ∞

B/e
(d−B/e)dF (d)− cB/e− a(e0 − e).

It follows that
dπcc(x(e), e)

de
=

B

e2
(c− p(1− F (

B

e
)) + a.

If e ≤ B/xnv(p), we have
dπcc(x(e), e)

de
≥ a > 0 since F (xnv(p)) =

p− c

p
. Because we are

maximizing, we conclude that the optimal e must be greater than B/xnv(p). However, at e = e0,

we have
dπcc(x(e), e)

de
|e=e0 =

B

e20
(c− p(1− F (

B

e0
)) + a,

the sign of which depends on the value of a. Let

acc = −B

e20
(c− p(1− F (

B

e0
)).

Since we are in case 2, e0 > B/xnv(p), which implies
B

e20
(c− p(1− F (

B

e0
)) < 0. We conclude that

acc > 0. Let

ācc = max
B/xnv(p)≤e≤e0

−B

e2
(c− p(1− F (

B

e
)).

Note that ācc ≥ acc > 0. We derive the optimal e for three different intervals of a defined by acc

and ācc as follows.

(1) When a ≥ ācc, we know that πcc(x(e), e) is increasing in the interval [B/xnv(p), e0]. Hence

xcc = B/e0 and ecc = e0.

(2) When acc ≤ a < ācc, we know that πcc(x(e), e) is increasing in e at the neighborhoods of both

B/xnv(p) and e0. Hence xcc = B/ẽ and ecc = ẽ for some ẽ ∈ (B/xnv(p), e0].

(3) When a < acc, we have that
dπcc(x(e), e)

de
is greater than 0 at e = B/xnv(p), and smaller than

0 at e = e0. Due to the continuity of
dπcc(x(e), e)

de
, there must be some ē ∈ (B/xnv(p), e0) such

that
dπcc(x(e), e)

de
|e=ē = 0, and is the global maximizer. Hence xcc = B/ē and ecc = ē for some

ē ∈ (B/xnv(p), e0).

To summarize case 2, if xnv(p)e0 > B, we have (1) xcc = B/e0 and ecc = e0 if a ≥ ācc, (2)

xcc = B/ẽ and ecc = ẽ for some ẽ ∈ (B/xnv(p), e0] if a
cc ≤ a < ācc, and (3) xcc = B/ē and ecc = ē

for some ē ∈ (B/xnv(p), e0) if a < acc. The total emissions under this case are always B.

Note that we also showed

acc = −B

e20
(c− p(1− F (

B

e0
)) (15)

and

ācc = max
B/xnv(p)≤e≤e0

−B

e2
(c− p(1− F (

B

e
)). (16)
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Proof of Theorem 3:

The optimal solution xcc and ecc for command-and-control is feasible under cap-and-trade. Fur-

thermore, by using (4), we have

πct(xcc, ecc) =pE(D) + p

∫ ∞

xcc

(xcc − d)dF (d)− cxcc − f(ecc) + ce(A− eccE[min(xcc, D)])

≥pE(D) + p

∫ ∞

xcc

(xcc − d)dF (d)− cxcc − f(ecc) = πcc.

This holds due to eccE[min(xcc, D)] ≤ eccxcc ≤ A. �

Proof of Lemma 4:

As A increases, the optimal value is increasing since we are optimizing over a larger region.

Therefore πcc
max(A) is nondecreasing in A.

Let πct(x, e; ce) denote the expected profit under cap-and-trade for production capacity x and

unit emissions level e with expected trading price ce.

Consider ce1 ≥ ce2. For any x and e, we have from (4) that πct(x, e; ce1) ≤ πct(x, e; ce2). Hence

it follows

πct(xct(ce1), e
ct(ce1); ce1) ≤ πct(xct(ce1), e

ct(ce1); ce2). (17)

Here xct(ce1) and ect(ce1) denote the optimal production capacity and unit emissions level under

cap-and-trade with unit emissions price ce1, respectively. We know that

πct(xct(ce1), e
ct(ce1); ce2) ≤ πct(xct(ce2), e

ct(ce2); ce2) (18)

since xct(ce2) and ect(ce2) is an optimal solution for unit emissions price ce2. Hence from (17) and

(18) we have

πct(xct(ce1), e
ct(ce1); ce1) ≤ πct(xct(ce2), e

ct(ce2); ce2),

which states πct
max(ce1) ≤ πct

max(ce2). Therefore, π
ct
max(ce) is nondecreasing in ce. �

Proof of Theorem 5:

For any given emissions cost ce ≥ 0, we know that

πcc
max(0) = 0 < πct

max(ce)

and

πcc
max(x

nv(p)e0) = πct
max(0) ≥ πct

max(ce).

Note that πcc
max is a function of A. The last inequality is due to πct

max(ce) being nondecreasing in

ce according to Lemma 4. From Lemma 4, we also know that πcc
max(A) is nondecreasing in A. In
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addition, πcc
max(A) is continuous in A according to the Maximum Theorem. Hence there exists an

A∗(ce) such that if A < A∗(ce), then πcc
max(A) < πct

max(ce), and otherwise πcc
max(A) ≥ πct

max(ce).

We have A∗(0) = xnv(p)e0 since the problem under cap-and-trade with 0 emissions price is an

uncapped version of command-and-control. The emissions cap under command-and-control does

not have an effect as long as it is no less than xnv(p)e0.

The reason thatA∗(ce) is nonincreasing in ce is as follows. For any ce1 ≥ ce2, let π
cc
max(A

∗(ce1)) =

πct
max(ce1), and πcc

max(A
∗(ce2)) = πct

max(ce2). Since ce1 ≥ ce2, we have πct
max(ce1) ≤ πct

max(ce2)

since πct
max(ce) is nondecreasing in ce. It follows that πcc

max(A
∗(ce1)) ≤ πcc

max(A
∗(ce2)), and thus

A∗(ce1) ≤ A∗(ce2) since πcc
max(A) is nondecreasing in A. Therefore, A∗(ce) is nonincreasing in ce.

�

Proof of Theorem 6:

When a > act, the total emissions Ect under cap-and-trade are xnv(p − cee0)e0 according to

Proposition 1. If A < xnv(p − cee0)e0, then A < xnv(p)e0 since xnv(p − cee0) ≤ xnv(p), due to

xnv(p̄) being nondecreasing in p̄. Hence the emissions cap is binding under command-and-control,

and therefore, the total emissions Ecc under command-and-control are A. We also have Ect > Ecc

since A < xnv(p− cee0)e0. If A ≥ xnv(p− cee0)e0, the total emissions under command-and-control

are either A or xnv(p)e0. Therefore, the total emissions under command-and-control are greater

than under cap-and-trade.

When a < act, the total emissions Ect under cap-and-trade are xnv(p − cee)e according to

Proposition 1. If A < xnv(p − cee)e, then A < xnv(p)e0 since xnv(p − cee)e < xnv(p)e0 due to

xnv(p) being nondecreasing in p and e ≤ e0. Hence the emissions cap is binding under command-

and-control. Therefore, the total emissions Ecc under command-and-control are A. Therefore,

we have Ect > Ecc since A < xnv(p − cee)e. If A ≥ xnv(p − cee)e, the total emissions under

command-and-control are either A or xnv(p)e0. We know that xnv(p)e0 ≥ xnv(p − cee)e since

xnv(p) is nondecreasing in p and e ≤ e0, and A ≥ xnv(p − cee)e by assumption. Therefore, the

total emissions under command-and-control are greater than under cap-and-trade. �

Proof of Theorem 7:

According to Proposition 2, the total investment Icc under command-and-control is either 0, or

a(e0− ē) for some ē ∈ (A/xnv(p), e0), or a(e0− ẽ) for some ẽ ∈ (A/xnv(p), e0] . According to Propo-

sition 1, the total investment Ict under cap-and-trade is either 0 or ae0. When Ict = 0 and Icc =

a(e0 − ē), it is possible that Icc > Ict. By Propositions 1 and 2, the condition for that to happen

is acc > a > act and A < xnv(p)e0. Recall that a
ct =

πnv(xnv(p), p)− πnv(xnv(p− cee0), p− cee0)

e0
,

and acc = −A

e20
(c− p(1− F (

A

e0
)). When the cost of carbon ce is 0, we have acc > act = 0. Due to

continuity of act as a function of ce, for every ce small enough, we have acc > act.

When a < act, we have Ict = ae0. Meanwhile, we have Icc < a(e0 −A/xnv(p)) < Ict. �

Proof of Proposition 8
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Under the cap-and-trade regulation, the problem in period 2 has exactly the same structure as

the single period problem. For a given e1, there exists an act2 (e1) = (πnv(xnv(p), p)− πnv(xnv(p−
cee1), p − cee1))/e1 such that xct2 (e1) = xnv(p) and ect2 (e1) = 0 if a2 ≤ act2 (e1), and xct2 (e1) =

xnv(p− cee1) and ect2 (e1) = e1 otherwise. According to (12), we have

act2 (e1) =ceE(D)− ce

∫ +∞

xnv(p−cee1)
ddF (d) +

p

e1

(∫ xnv(p)

xnv(p−cee1)
ddF (d)

)

≥ceE(D)− ce

∫ +∞

xnv(p−cee1)
ddF (d) +

p

e1
xnv(p− cee1)

(
p− c

p
− p− cee1 − c

p− cee1

)
=ce

∫ xnv(p−cee1)

0
ddF (d) + xnv(p− cee1)

cec

p− cee1

≥ce

∫ xnv(p−cee1)

0
ddF (d) + xnv(p− cee1)

cec

p

≥ce

∫ xnv(p−cee0)

0
ddF (d) + xnv(p− cee0)

cec

p
.

The last inequality is due to xnv(p− cee0) ≤ xnv(p− cee1) since e1 ≤ e0. By defining

act2 = ce

∫ xnv(p−cee0)

0
ddF (d) + xnv(p− cee0)

cec

p
,

we have act2 ≤ act2 (e1) for every e1 ≤ e0. Hence if a2 ≤ act2 , the firm always invests in period 2 under

cap-and-trade. �

Proof of Proposition 9

Under the command-and-control regulation, the problem faced by the firm in period 2 has the

same structure as the single period problem:

πcc
2 (e1) = maxx2,e2 pE[min(D2, x2)]− cx2 − f2(e2)

s.t. e2x2 ≤ B2

0 ≤ e2 ≤ e1.

Hence, for a given e1, if e1x
nv(p) ≤ B2, then ecc2 (e1) = e1. If e1x

nv(p) > B2, there exists

acc(e1) = −B2

e21
(c− p(1− F (

B2

e1
))) such that if a2 < acc2 (e1), then ecc2 (e1) < e1. We want to find a

boundary value acc2 such that if a2 ≤ acc2 , then the firm invests in period 2 for any possible value

of ecc1 if e0x
nv(p) > B2.

The boundary value acc2 may take different values depending on the value of e0x
nv(p).

(1) If B2 < e0x
nv(p) ≤ B1, then ecc1 = e0. We set acc2 = acc2 (e0). Note that acc2 > 0 since

e0 > B2/x
nv(p).

(2) When e0x
nv(p) > B1, for the 1st period, according to the Envelop Theorem, the optimal ecc1
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must satisfy the following first order conditions:

∂πcc
1 (xcc1 (e1), e1)

∂e1
=


−B1

e21
(c− p(1− F (

B1

e1
))) + a1 − δa2 + λa2 ecc2 (e1) = e1,

−B1

e21
(c− p(1− F (

B1

e1
))) + a1 − δa2 ecc2 (e1) < e1.

Here λ ≥ 0 is the Lagrangian multiplier for the inequality constraint e2 ≤ e1. Let ê be the

smallest root in the interval

[
B1

xnv(p)
, e0

]
of −B1

e2
(c − p(1 − F (

B1

e
))) + a1 − δa2 = 0 if there is

such a root. Otherwise, we set ê = e0. We know that ecc1 must be greater than or equal to ê since
∂πcc

1 (xcc1 (e1), e1)

∂e1
> 0 for any e < ê under both cases (ecc2 (e1) = e1 and ecc2 (e1) < e1). Hence we can

add the constraint e1 ≥ ê to the problem in period 1 without changing the optimal solutions and

objective value. Let acc2 = minê≤e1≤e0 −
B2

e21
(c − p(1 − F (

B2

e1
))). We know that ê >

B

xnv(p)
since

−B1

e2
(c− p(1− F (

B1

e
))) ≥ 0 for any e ≤ B

xnv(p)
and a1 − δa2 > 0. Therefore, we have acc2 > 0.

If a2 ≤ acc2 , then a2 < acc2 (e1) for any possible value of ecc1 . Hence when e0x
nv(p) > B2, the

firm always invests in period 2 under command-and-control if a2 ≤ acc2 and acc2 > 0. �

Proof of Proposition 10:

Examining the first order condition in period 1, we have

∂πct
1 (x1, e1)

∂e1
= −ceE(D) + ce

∫ +∞

x1

(D − x1)dF + a1 + δ
dπct

2 (e1)

de1
.

Since a2 ≤ act2 , we have
dπct

2 (e1)

de1
= −a2 according to the Envelop Theorem. Hence we get

∂πct
1 (x1, e1)

∂e1
= −ceE(D) + ce

∫ +∞

x1

(D − x1)dF + a1 − δa2. (19)

We also know that
∂πct

1 (x1, e1)

∂x1
= (p− cee1)(1− FD1(x1))− c. (20)

By examining the first order conditions (19) and (20) in period 1, we find that the problem

in period 1 has a similar structure as the single period problem except that now the effective

unit investment cost is a1 − δa2. The optimal solution can be obtained similarly. Let act1 =

(πnv(xnv(p), p)− πnv(xnv(p− cee0, p− cee0))/e0. If a1 − δa2 ≤ act1 , then xct1 = xnv(p) and ect1 = 0.

Otherwise, xct1 = xnv(p− cee0) and ect1 = e0.

In summary, under the assumption that α ≤ act2
a1

, if a1 ≤ act1 , then the firm invests in period

1. If a1 > act1 , α ≤ act2
a1

and (1− δα) ≤ act1
a1

, then the firm also invests in period 1. In this case, α

exists if a1 ≤ δact2 +act1 . If a1 > act1 , α ≤ act2
a1

and (1− δα) >
act1
a1

, the firm does not invest in period
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1. �

Proof of Proposition 11:

For the problem in period 1, if e0x
nv(p) ≤ B1, then xcc1 = xnv(p) and ecc1 = e0. If e0x

nv(p) > B1,

we can add the constraint e1 ≥ ê to the problem without impacting optimality according to the

proof of Proposition 9. Plugging xcc1 (e1) =
B1

e1
into the objective function πcc

1 (x1, e1), we have

∂πcc
1 (xcc1 (e1), e1)

∂e1
=

B1

e21
(c − p(1 − F (

B1

e1
))) + a1 − δa2 since a2 ≤ acc2 . Recall that if a2 ≤ acc2 ,

the firm invests in period 2 and hence
dπcc

2 (e1)

de1
= −a2 according to the Envelop Theorem. Note

that the problem in period 1 has the same structure as the single period problem. Therefore, the

optimal solution can be obtained similarly. Let

acc1 = −B1

e20
(c− p(1− F (

B1

e0
))

and

ācc1 = max
B1/xnv(p)≤e1≤e0

−B1

e21
(c− p(1− F (

B1

e1
)).

If a1 − δa2 < acc1 , the firm invests in period 1. If a1 − δa2 ≥ ācc1 , the firm does not invest in period

1.

In summary, under the assumption that a2 ≤ acc2 , i.e. α ≤ acc2
a1

, when e0x
nv(p) ≤ B1, the firm

does not invest in period 1. When e0x
nv(p) > B1, the firm does not invest if a1(1 − δα) ≥ ācc1 .

This implies that a1 ≥ ācc1 since α ≥ 0 and δ ≥ 0. When e0x
nv(p) > B1, the firm invests in period

1 if a1 < acc1 , or if a1 ≥ acc1 and (1− δα) <
acc1
a1

. Note that if α ≤ acc2
a1

and (1− δα) <
acc1
a1

, value α

exists if and only if a1 < acc1 + δacc2 . �

Proof of Theorem 12:

We derive sufficient conditions under which the firm invests in period 1 under command-and-

control but not cap-and trade under the assumption that α ≤ act2
a1

and α ≤ acc2
a1

.

• Condition 1: Under condition (3) in Proposition 10, a firm does not invest under cap-and-

trade. Under condition (3) in Proposition 11, a firm invests under command-and-control.

When putting these conditions together, for a1 to exist, we need act1 < acc1 . We know that

act1 < acc1 if and only if ce is small enough as shown in Theorem 7.

• Condition 2: Under condition (3) in Proposition 10, a firm does not invest under cap-and-

trade. Under condition (4) in Proposition 11, a firm invests under command-and-control.

When putting these conditions together, for α to exist, we need act1 < acc1 . We know that

act1 < acc1 if and only if ce is small enough as shown in Theorem 7. For α ≤ act2
a1

and

α >
1

δ
(1− act1

a1
) to hold at the same time, we also need a1 < acc1 + δact2 .
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�

Proof of Theorem 13:

The proof is similar to the proof of Theorem 12 except that we use conditions (1) and (2) in

Proposition 10, and condition (1) in Proposition 11. �
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