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Abstract 
In tactical planning of an airline, fleeting or capacity planning is the process of assigning an 
equipment type to each flight. The existing fleeting models take into account only passenger flow 
while completely ignoring cargo traffic. We propose a fleeting model that captures both passenger 
and cargo revenue. In addition, the model integrates fleeting and bid price based origin-destination 
revenue management approach. We use Benders decomposition to solve the model. We give 
extensive computational experiments on data obtained by a major carrier.   

1 Introduction 
Airline tactical planning broadly consists of scheduling, fleeting, aircraft routing, and crew 
scheduling (see e.g. Klabjan (2003) for more details). Our work focuses on fleeting or capacity 
planning. The objective of the fleet assignment model (FAM) is to assign a particular equipment type 
to each given leg in a predefined flight schedule while maximizing profit. In a typical FAM, the 
profit is the revenue earned by transporting passengers minus the operating cost of using a given 
equipment type. The constraints in the FAM are the assignment constraints (each flight in the 
schedule is assigned to an equipment type), flow balance (every aircraft that lands must take off), 
and plane count constraints (we cannot use more than the given number of available aircraft).   

The traditional FAM model, also called leg-based FAM or leg-based fleeting, takes into 
consideration only the average fare for each leg. In presence of multi-leg passenger itineraries, the 
fares need to be prorated. This is inconsistent with recent revenue management practices that 
consider revenue at the itinerary level without any prorating. The leg-based FAM gives solutions 
that are biased towards larger aircraft, i.e. they produce significant passenger spill, Barnhart et al. 
(2002b). This leads to better fleeting models and solution methodologies, which are consistent with 
revenue management practices. 

Modeling revenue based on the number of passengers on a given multi-leg passenger itinerary as 
opposed to on each leg gives a better approximation of the passenger revenue. The origin-
destination fleet assignment model implements this improved revenue management approach to 
capture passenger revenue.  

Revenue management as defined above only takes into account the passenger fares. But for 
combination air carriers, revenue management takes into account management of passenger fares 
and seat capacity along with cargo rates and available cargo space. Airlines have separate cargo and 
passenger revenue management systems. These problems are solved in a hierarchical fashion. First, 
the passenger revenue management system determines the number of passengers on each leg. Once 
this has been decided, the available cargo weight and volume is determined by subtracting the 
weight of passengers and their bags (as determined by the passenger revenue management) from the 
payload. The available belly volume for cargo is determined in a similar manner by subtracting the 
volume of passenger bags from the actual belly volume.  
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One of the main differences between the two processes is the booking time period. Passengers 
start booking their itineraries several months in advance and in most cases at least 50% of all 
bookings are done more than one month in advance. On the other hand, cargo bookings typically 
start 10 days in advance and the last 50% of bookings are carried out in the last 4 days. While this 
time difference does not offer great opportunities for integrating the two systems except for data 
synchronization, there are potential benefits in the fleet assignment phase.     

All fleeting models take into account only passenger flow and not the cargo flow. We propose a 
fleeting model that incorporates both passenger and cargo revenue. The main motivation of this 
work comes from a changed environment in the airline industry after the events of September 11th. 
Due to the significant decrease in the number of business class passengers, the passenger revenue is 
decreasing. To compensate for these losses many airlines started paying more attention to the 
revenue obtained from cargo. As a consequence, the current trend shows an increase in air cargo 
volume, which is supposed to double by 2005 (Kasilingam (1996)). It is forecasted that it will grow 
at the annual rate of 6.4% in revenue tonne-kilometers until 2021, Crabtree et al. (2002). Despite the 
fact that these numbers are for freight cargo in general, it implies that cargo can be a significant 
contribution to the revenue of a combination carrier. For example, Singapore Airlines gets 30% of its 
total revenue from cargo, Lufthansa 20%, and the rising star when it comes to cargo Korean Air up 
to 33% (see annual reports of these carriers). While all of these three carriers operate pure freighter 
aircraft, the bellyhold or lower-hold cargo revenue (cargo transported in bellies of passenger aircraft) 
of these airlines is significant: for Korean Air it is 8% of the total revenue from their flight 
operations (see the 2004 annual report) and it is 10% for Lufthansa, Froehlich (2004). For United 
Airlines, who does not have a single pure freighter, the cargo revenue contributes 4% to the total 
revenue. In addition, based on Crabtree et al. (2002), 56% of the total freight capacity consists of the 
aircraft belly capacity in passenger aircraft. This number is even larger in Canada, where 85% of the 
total air cargo is transported as bellyhold cargo on scheduled or charter passenger aircraft, Mathieson 
(2005). Based on these facts among the combination carriers, there is a need for fleeting models that 
incorporate cargo and passenger revenue. Such a model will ensure efficient distribution and 
utilization of aircraft space between passengers and cargo and thereby will provide higher 
cumulative profit. Fleeting decisions are made several months in advance and traditional models 
consider forecasted passenger demand. Fleeting models that capture both streams of revenue take 
into account forecasted passenger and cargo demands.   

We present an integrated fleeting model which takes into account both the cargo and passenger 
revenue. We first propose a cargo routing model called the cargo mix bid price model, which has 
demand, weight and volume constraints. Given a fleeting solution, this model assigns optimal cargo 
allocations in order to maximize cargo revenue. On the passenger side, we use the passenger mix bid 
price model, which is heavily used in revenue management systems, to allocate passengers to each 
itinerary while maximizing passenger revenue. The integrated passenger-cargo fleeting model is 
obtained by combining the traditional leg-based FAM model with these two bid price models. The 
other main distinction between cargo and passengers is the fact that passenger itineraries are given at 
the leg level, however, cargo demand is given at the origin-destination (O-D) level. Since the 
number of passenger and even more cargo itineraries is large, the model size is prohibitive. To 
overcome this, we use Benders decomposition to solve the proposed model.  

In our solution methodology, in each iteration, we first obtain a fleeting, then we run the 
passenger mix bid price model to attain maximum passenger revenue, and then we use the leftover 
capacity to get the cargo revenue by running the cargo mix bid price model. Based on these two bid 
price models, Benders cuts are added. Note that the passenger mix bid price model is run before the 
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cargo one. Although the fleeting solution does take into account the revenue contribution of both the 
entities, the split of capacities is not done in the same proportion. This is aligned with current 
business practices, where all the priority is given to the passenger revenue.  

The main contributions of our work are: 
• a comprehensive cargo mix bid price model, 
• a fleeting model that considers both passenger and cargo revenue, and 
• the solution methodology tailored for our model. 
In Section 2 we present a brief review of the traditional FAM and the passenger mix bid price 

model. We also briefly describe the main differences between the cargo revenue management system 
and the standard passenger revenue management system. Section 3 describes the cargo mix bid-price 
model and the integrated fleeting models. Section 4 outlines the solution methodology. In Section 5 
we present computational experiments.  

2 Traditional Models 

2.1 Fleet Assignment Model 
Given a set of flights and a set of fleets, the fleeting problem is to find a fleeting that maximizes 
profit subject to a set of constraints. The assignment constraints ensure that each flight is assigned to 
an equipment type. Flow balance constraints enforce that each aircraft that lands must take off. In 
addition, the total number of aircraft used cannot exceed the number available in the fleet. This is 
taken care by the plane count constraints. 

The input consists of a flight schedule, which details the origin/destination stations and the 
departure/arrival times, the different equipment types and the available number of aircrafts for each 
equipment type. In strategic planning often it is assumed that the flight schedule is daily, i.e. every 
flight is repeated every day of the week. Throughout this manuscript, we assume that the flight 
schedule is daily. The objective function in FAM captures the operating cost and revenue. The 
average fares per leg, which are calculated based on a prorating scheme, are used to calculate the 
revenue. The operating costs consist of fixed and variable costs associated with using a specific 
equipment type for a flight, e.g. fuel cost, fixed cost of using a specific equipment type at a given 
station, depreciation cost, etc. The model captures revenue on a per leg basis. 

We now briefly describe the network that is built to capture all the flights in the schedule. This 
network is modeled as a timeline at every station. The timeline captures all the activities at the 
station where an activity is defined as a departure or an arrival. For each activity, let tl be the time of 
the activity. For a departure flight, tl is the actual departure time of the flight. For an arrival flight, tl 
is the arrival time plus the minimum aircraft turn time tmt, also called the ready time. The turn time 
can be dependent on the fleet type. For each activity a at station o, there is a node (o,a) in the 
timeline for station o. For each flight, we define a flight arc between the departure and arrival nodes 
of the same flight. For every station o, the activities are ordered based on the time tl, i.e. t1 ≤ t2 ≤ ··· ≤  
tn, where n is the number of activities at the station. We also define ground arcs g = ((o,ai), (o,ai+1)) 
for i=1,2,..,n. There is a wraparound ground arc between the first and the last node of the day.  
 The FAM has two families of variables, the fleet assignment variables x and the ground arc 
variables z. For each flight in the schedule l and each fleet f, we have a binary variable xfl which is 1 
if flight l is assigned the equipment type f. Similarly, for each equipment type f and ground arc g, we 
define a nonnegative variable zgf , which counts the number of planes of fleet f on the ground during 
ground arc g time interval. Let MD be a fixed time, which corresponds to a time with low activity at 
any station, e.g. 3 am. The leg-based FAM model reads 
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Constraints (1) are the assignment constraint, (2) are the flow balance constraints, and (3) are the 
plane count constraints. This FAM model is described in detail in Hane et al. (1995). Maintenance 
requirements and some crew constraints can be incorporated into this FAM model as shown in 
Clarke et al. (1994). Details and enhancements to the FAM model and an extensive literature survey 
can be found in the survey work by Klabjan (2003). 

2.2 Passenger Mix Bid Price Model 
Due to multi-leg itineraries, the average fare per leg does not correspond to the correct revenue 
value. A spilled passenger on one leg effects revenue on all the flights in her itinerary. The leg-based 
fleeting model does not capture these network effects. Many revenue management systems rely on 
the marginal values for selling a seat. These are also known as bid prices; see e.g. Williamson 
(1992), McGill and van Ryzin (1999), or van Ryzin and Talluri (2002). The passenger mix bid price 
model yields passenger revenue based on a given seat capacity and forecasted demand.  

Given a fixed capacity for each leg in the schedule, the passenger mix model decides upon the 
number of passengers on each given itinerary. Let I be the set of all possible passenger itineraries. 
Fare classes for passenger itineraries are denoted by k. Let fi

k be the fare and ui
k (the decision 

variable) the number of passengers for a given itinerary i and fare class k. Each fleet has a specific 
cabin configuration. We index the cabins by j. Let Clj denote the seat capacity of a given leg l in 
cabin j. For cabin j let Fj be the set of fare classes that use j.  

There are two types of constraints in the passenger mix bid price model. The demand constraints 
for each itinerary ensure that we do not exceed the forecasted demand of passengers on a given 
itinerary. The demand in this case is the average forecasted demand. Let di

k be the forecasted 
average demand for itinerary i and fare class k. The other family of constraints is the capacity 
constraints. These impose seat capacity constraints for each leg and cabin. The passenger mix model 
reads 
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Constraints (4) are the capacity constraints and (5) are the demand constraints.  
A big drawback of this model is that it does not incorporate passenger recaptures. If a passenger 

spills, then we assume that the revenue is lost, which is not always the case in practice since the 
passenger might opt for an alternative itinerary with the same carrier. More details on this issue can 
be found in Kniker (1998).  

2.3 Main Differences between Cargo Revenue Management and Passenger 
Revenue Management  

The cargo revenue management system differs from the passenger one in many ways. Unlike 
passengers, for cargo we have shippers, forwarders, and different shapes and sizes of cargo that need 
to be taken into account. Next we list the key differences between the two revenue management 
systems.  

Cargo is two-dimensional, i.e. weight and volume. The third dimension corresponding to 
containers is addressed later. In passenger revenue management since we only need to decide the 
number of passengers on a given flight, we have restrictions only with respect to the seat capacity on 
flights. For all practical purposes, weight and volume constraints are redundant. On the other hand, 
in cargo revenue management, we need to capture weight capacity as well as volume restrictions.  

Unlike passengers who follow pre-defined itineraries, cargo can be shipped through any route as 
long as it reaches the destination before the required delivery time. Another aspect that needs to be 
taken into consideration is that any given shipment of cargo could be possibly split and shipped to 
the destination through different routes. Thus cargo demand is given at the O-D level and not at the 
itinerary level. While passenger demand realizes in a span of approximately six months, most of the 
cargo bookings are done in the last two weeks before the departure.  

Another characteristic specific to cargo is allotments. Big shippers and forwarders reserve some 
space on particular flights for certain days. This space cannot be used for general cargo. To 
complicate the matter even further, a shipper or forwarder might deliver less or more cargo than its 
allotment. Allotments need to be forecasted and taken into account.  

In case of a wide body aircraft, the cargo and passenger bags are stored in containers. Containers 
can be viewed as positions in the belly of a certain shape, size, and volume. In cargo revenue 
management we need to take into account container availability and space restrictions on the cargo 
based on the shape and size of the containers. 
 Along with these basic differences between cargo and passenger traffic, the available cargo 
capacity is not fixed. In passenger revenue management the number of seats on a given flight is 
fixed. But in case of cargo, the capacity is determined by payload, available space in the belly and 
number of passengers and their bags. Payload is not known accurately until the final flight plan is 
constructed, which is only a few minutes before the departure since it depends on the runway 
structure, fuel (depends on the flight route), etc. All these differences show that cargo revenue 
management is more complex than passenger revenue management. 
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2.4 Literature Review 
In this section we present a literature review on O-D fleeting models and work related to cargo 
revenue management and fleeting.  

We first review literature on O-D fleeting. Kniker (1998) gives a comprehensive treatment of 
fleeting. He proposes enhancements and generalizations to the passenger mix model, which capture 
spill and recapture. He illustrates pitfalls of leg-based approaches and proposes approaches to 
enhance them. Barnhart et al. (2002b) present an O-D fleeting model with spill and recapture. 
Barnhart et al. (2002a) propose an alternative model to O-D fleeting. In their model they use 
variables that assign a subset of legs to a fleet as opposed to assigning individual legs to fleets. 
Jacobs et al. (1999) and Smith (2002) propose a different approach to O-D fleeting. They embed the 
passenger mix bid price model to fleeting and then solve it by Benders decomposition. In this work 
we build on their model and solution methodology.  

On the cargo revenue management side, Hendricks and Kasilingam (1992) present a detailed 
discussion of the cargo revenue management problem. Kasilingam and Hendricks (1993) discuss the 
development and implementation of the cargo revenue management system at American Airlines. 
Some of the major differences between cargo revenue management and passenger revenue 
management are detailed in Kasilingam (1996). A decision support system to evaluate and optimize 
a flight schedule of a major cargo airline is presented by Antes et al. (1997). They propose three 
models to generate schedules; two of them are multi-commodity network flow models with O-D’s 
being modeled as commodities. No time restrictions on the cargo shipments are modeled in these 
two models. In the third approach they use the path formulation and they take into consideration the 
time constraints to generate feasible cargo routes. They do not consider containers and the capacity 
of a leg is one-dimensional.  

Chen et al. (2003) propose a model for routing considerations within a cargo revenue 
management system. Capacity is one-dimensional and they do not incorporate containers. They give 
a deterministic and a stochastic model. A model for online cargo routing, i.e. developing cargo 
routes in real time, is proposed by Günther (1998). They first decompose the network by imposing 
hierarchy among stations with respect to their activities. A Dijkstra type shortest path algorithm is 
then used to generate cargo routes.   

Huang et al. (1999) present a model for simultaneous fleet assignment and cargo routing for a 
combination carrier. They estimate the passenger revenue on a per leg basis as is modeled in the 
traditional FAM. The model is solved by Benders decomposition. Our model is more general since 
we capture passenger revenue at the O-D level, our cargo capacity is 2 dimensional, we consider 
containers, and we use cargo classes, which are used in current revenue management systems. On 
the other hand, their model is more general than ours since they consider pure freighter aircraft. As a 
result of O-D passenger revenue, our Benders decomposition is more involved.  

3 The Model 

One of the key differences between cargo and passengers as described earlier is the predefined 
versus flexible routes. Unlike passengers who have fixed itineraries, cargo can be shipped through 
any route while ensuring that it reaches the destination prior to the specified delivery time. For each 
given O-D pair, we can have multiple routings (or itineraries or paths). In this section, we first 
introduce the cargo mix bid price model. Our model is an extension to all existing models since we 
incorporate many considerations present in practice. For example, we capture two dimensions of the 
capacity, we consider standard and express shipments, and we consider containers. The three 
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dimensionality of cargo capacity, i.e. volume, weight, and containers, is stressed by several authors, 
see e.g. Kasilingam (1996), LaDue (2004). We also use cargo rate classes, which are commonly used 
in modern cargo revenue management systems. We then introduce the integrated passenger cargo 
fleeting model that is a combination of O-D FAM and the cargo mix bid price model.  

3.1 Cargo Mix Bid Price Model  
The objective of the cargo mix bid price model is to maximize revenue obtained from cargo without 
exceeding the available capacity on any given leg and ensuring that the cargo is delivered on time. 
The input to this model is the forecasted cargo demand and the available weight and volume on each 
flight. Before introducing the model, we detail notation and terms that are used in the rest of the 
paper. 

Similar to the passenger mix model, we have fare classes in the cargo mix model. These fare 
classes are based on density of the cargo and are termed density fare classes or simply density 
classes. The density classes are denoted by j. Each of these classes corresponds to a range of density 
values (in lb/m3). For each density class we also have the corresponding revenue factors (in 
$/lb/mile). Note that such density classes correspond to pricing schemes used by the airlines. In our 
model, we cater to standard as well as express shipments. Express shipments have to be delivered 
within a certain time window, e.g. 24 hours. This simply means that the elapsed time of the 
underlying routes cannot exceed this time. All other shipments are classified as standard. For each 
density class, we therefore have revenue factors for express and standard shipments separately.  

We first describe the underlying network to generate cargo itineraries or routes. The network 
has nodes representing departures and arrivals of flights. A flight arc connects the departure and the 
arrival node corresponding to the same flight. Connection arcs between a pair of flights are added if 
the arrival station of the first flight is the same as the departure station of the second flight and the 
time between the two activities is more than the minimum turn time tmt. Here the connection arcs 
wrap in time, e.g. a flight arriving at 11 pm can be connected to a flight departing at 6 am from the 
same station. These network components are common to each O-D pair. For each O-D pair, denoted 
by od, we make the following changes to the network. Here o corresponds to the origin station and d 
to the destination station. First, we add a source node s and a sink node t. We remove the flight arcs 
corresponding to the flights arriving at o. This prevents the generation of cargo itineraries, which 
visit the origin station more than once in a route. We connect source node s to all flights that depart 
from o. Similarly we connect all the flights that arrive at d with sink node t and we remove all flight 
arcs departing from d. A small sample network is depicted in Figure 1. Note that additional nodes 
and arcs can be removed from the BOS-ORD network.  

The presented network is very generic and unfortunately it has cycles. In our implementation, 
we use a slightly different acyclic network. For ease of exposition, let us assume that each itinerary 
cannot be longer than two days. In this case, we replicate all the nodes and flight arcs twice. This 
construction automatically forbids all itineraries that are longer than two days. For each od we do not 
replicate the flight arcs departing from o on the second day. This ensures that we do not generate 
duplicate cargo itineraries. It is obvious that every od itinerary corresponds to a path in such a 
network.  

For every given O-D pair od there is a set of feasible cargo itineraries, which is denoted by Sod. 
The set of all O-D pairs is denoted by OD. We also distinguish between the set of itineraries, which 
cater to express shipments, and those that cater to standard shipments. Let , be the set of 
feasible itineraries for a given od that correspond to express and standard shipments, respectively. 
Typically . Cargo itineraries are indexed by p. 

 e
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Figure 1: Generic network on the left, network corresponding to BOS-ORD on the right 

For any given od and density class j, we assume there are forecasts for the weight of bulk cargo 
and the number of containers. Note that we use containers in a generic sense since they can 
correspond to any large shipment. These forecasts are done separately for express and standard 
shipments. The forecasts are denoted as follows:  
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 Although in the real world cargo demand is stochastic, here we use only expected values and 
therefore the resulting model is deterministic. We detail in Section 6 future research using stochastic 
demand so that the results are more inline with the real world. 

Revenue depends on od, weight of the shipment, which is captured by decision variables, and the 
density class. The notation for revenue is as follows:  
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Typically the dependency on od is in terms of the geographical location of stations o and d and the 
fixed distance factor between these two stations.  
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For a given leg , let Ll ∈ lW  be the available weight capacity and let lV  be the available 
volume. Note that these are given since in the cargo mix model we assume that first a fleeting is 
obtained. The weight capacity is also offset by the weight of passengers and their bags and the 
available volume by the volume of passengers’ bags. For our current model, we assume that all the 
containers are of the same volume, which is denoted by v. It is easy to extend the model to the more 
general case of multiple volumes. In addition, let dj be the representative density of density class j. 
Since a density class corresponds to a range of densities, typically this is the average density in this 
range. 

We have two types of variables: the cargo weight and the number of containers. There is a 
variable for each cargo itinerary p and each given density class j. Variables to capture volume of the 
cargo are not required because volume is implicitly calculated from the weight variables and the 
corresponding density class. We further decompose the variables to capture the amount shipped as 
standard and express shipments. The variables are: 

 

. classdensity given  afor  itinerary on shipment  standardfor  containers ofnumber   :  
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 classdensity given  afor  itinerary on  shipped cargo express of (weight)amount   :  
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e objective function maximizes the revenue obtained from express and standard cargo shipments for 
bulk cargo as well as containers. The capacity constraints (6) ensure that the total weight of cargo 
(bulk cargo and containers) for a given leg does not exceed the available capacity for that leg. 
Similarly, the volume constraints (7) ensure that the total volume of cargo on a given leg does not 
violate the available volume on the leg. Constraints (8) and (9) ensure that for any given od and 
density class j, the weight of cargo shipped does not exceed the forecasted weight of bulk cargo. 
Constraint (8) is for express shipments and constraint (9) for standard shipments. Constraints (10) 
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and (11) impose similar restrictions on the forecasted number of containers for express and standard 
shipments for any given od and density class j.  
 While our purpose of using the presented cargo mix model is in obtaining a fleeting that 
captures passenger and cargo revenue, this model can be used in a bid price based cargo revenue 
management system. In such a setting, the relaxation of the model, where integrality requirements 
are dropped, is periodically solved. The dual values or bid prices from (6) and (7) are then used to 
set up the acceptance criteria of a shipment. Clearly the system needs to be run in parallel with the 
passenger revenue management system since the weight and volume capacity needs to be adjusted 
accordingly. Additional information on revenue management in the airline industry can be obtained 
in Williamson (1992), van Ryzin and Talluri (2002) and McGill and van Ryzin (1999).  

3.2 Integrated Passenger-Cargo Fleeting Model 
The O-D fleet assignment model, Kniker (1998), Barnhart et al. (2002b), Jacobs et al. (1999), Smith 
(2002), Smith (2004) captures only the passenger revenue at the O-D level. Thus the cargo flow 
through the network is completely ignored. The fleeting solution determines the available weight and 
volume on each leg and it therefore affects the cargo routing and revenue. Solving the fleeting and 
cargo mix models separately can thus generate suboptimal solutions. With the cargo revenue on a 
rise, suboptimal solutions can imply larger and larger untapped profits. To overcome this, we 
propose an integrated passenger-cargo fleeting model, which takes into account passenger and cargo 
revenue.  

Example: Typical standard cargo rates per pound are less than 50¢. Assuming that a typical 
passenger carries two bags each one weighing approximately 20 lbs, it is clear that it is not beneficial 
to displace a passenger for cargo. The situation is different if expedited handling is considered. A 40 
lbs shipment from Midwest to the east coast in the US can easily cost in excess of $350 with a 2nd 
day delivery. In this case it might be more profitable to displace passengers.  
 Even in the presence of only standard shipping, an integrated passenger-cargo approach is 
beneficial as shown by the following instance. Consider a single flight and two equipment types 
given in Table 1. We assume a single fare class and a single cabin in both equipment types. For 
simplicity we neglect the volume constraints and we do not consider containers. The cargo rate of 
50¢ per pound implies that passenger displacements are not beneficial. Table 2 shows the seat 
capacity, the mass payload, and the operating cost of these two fleets. Let us assume that on average 
each passenger and the corresponding baggage weigh 220 lb.    

 Flight 
Passenger demand 55
Cargo demand 8,000 lbs
Average fare $200
Cargo rate per lb 50¢

Table 1: Flight data 

 Seat capacity Payload (lb) Operating cost 
Fleet A 50 15,000 $5,000 
Fleet B 100 25,000 $7,000 

Table 2: Fleet information 

We have 2 possible assignments, which are analyzed in Table 3.  
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 Passenger 
revenue 

Cargo 
revenue 

Operating 
cost 

Passenger 
profit 

Total profit

Fleet A $10,000 $2,000 $5,000 $5,000 $7,000
Fleet B $11,000 $4,000 $7,000 $4,000 $8,000

Table 3: Fleet assignments 

Considering solely the passenger revenue, the assignment of Fleet A is optimal (see the next to 
the last column). When cargo revenue is taken into account (the last column), the assignment of 
Fleet B becomes the most profitable. Therefore this example shows that even though passenger 
displacements are not beneficial, it is still beneficial to consider both passenger and cargo revenue. 
This additional benefit comes from the fact that different equipment types have different payloads 
and therefore can transport different cargo quantities.                                                                         ⁪ 

The integrated fleeting model is obtained by combining leg-based FAM with the passenger and 
cargo mix bid price models. The linking variables are the fleeting variables , which link the 
capacities. We replace the right hand sides of (6) and (7) in the cargo mix bid price model by 

and , respectively. Wfl is the payload and Vfl is the belly volume for equipment 

type f on leg l. We treat (4) in a similar fashion. The integrated passenger-cargo fleeting model reads 
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where wp is the average weight per passenger, wb is the average weight of baggage per passenger, 
and vb is the average volume of baggage per passenger. Capfj is the seat capacity of fleet f in cabin j.  

Constraints (12)-(14) are the standard leg-based fleeting constraints. (15) and (16) are the 
passenger mix constraints, where the former is linked with the fleeting decision variables. 
Constraints (17) and (18) are the modified constraints (6) and (7) of the cargo mix bid price model, 
where we take into account additional weight from passengers and their bags and volume from 
passenger bags. Constraints (19)-(22) are the demand constraints from the cargo mix bid price 
model. Constraints (17) and (18) link together the passenger and the cargo mix models. 

The solution methodology using Benders decomposition is detailed in Section 4.  

4 Solution Methodology 
The proposed integrated model is too large to be solved by standard optimization software packages. 
We can have as many as 100,000 variables and constraints in the integrated models. However, the 
proposed models can be decomposed into two or three subproblems, which are relatively easy to 
solve. We use Benders decomposition (Benders (1962)) to solve the problems.  
 In Benders decomposition, in each iteration the restricted master problem (RMP) is solved. The 
initial RMP consists of a subset of constraints and variables. It includes all integer variables. Given a 
solution to the RMP, the subproblem is solved. The subproblem consists of the remaining constraints 
and variables. The dual information from the subproblem is then passed to the RMP as a new 
constraint called the Benders cut.  
 In our solution methodology the initial RMP consists of the traditional FAM model. Once the 
fleeting variables x are fixed, the remaining problem is a mixed integer linear program, which can be 
further decomposed into subproblems. In order for the subproblems to be linear programs (which is 
needed to obtain the dual values), we solve the relaxed problem, where we relax the integrality of the 
container variables n. Next we detail the approach. 

4.1 Benders Reformulation for Passenger-Cargo Fleeting Model 
The initial restricted master problem consists of constraints (12)-(14). Once the fleeting variables x 
are obtained, the subproblem consisting of (15)-(22) is a linear program with fixed right hand sides. 
This subproblem contains both passenger itineraries and cargo itineraries and is therefore a large-
scale LP. We further decompose the subproblem by first solving the subproblem consisting of (15)-
(16). Note that this linear program is identical to the passenger mix bid price model (4)-(5) with 

(23)              ∑=
f

flfjlj xCapC  

for every  and cabin j. Once the passenger itinerary variables u are obtained, the cargo mix bid 
price model (6)-(11) (the corresponding constraints in the integrated model are (17)-(22)) is solved 
next with  

Ll ∈
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for every . We then add two Benders cuts; one from the passenger mix model and the other one 
from the cargo mix model. Note that the order of first solving the passenger mix model and then the 
cargo one reflects the fact that most of the revenue can be attributed to passenger operations. This 
decomposition of the subproblem is only an approximate methodology for solving the subproblem, 
which reflects the current practice.   

Ll ∈

 We denote the dual values of (4) and (5) by θ and Π respectively. The duals for (6)-(11) are 
denoted by γ, δ, ζ, λ, µ and ν, respectively. After solving the two LPs, we use these dual values to 
generate two Benders cuts. η represents the passenger revenue in the RMP while σ represents the 
revenue obtained from cargo. We index the Benders cuts by t, where t is the iteration count. The 
RMP containing FAM constraints and the Benders cuts reads 
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Constraints (26) and (27) are the Benders cuts from the passenger and cargo models respectively that 
are added to the RMP.   
 To summarize, in each iteration, first the mixed integer program defined by the RMP is solved. 
Next the passenger mix bid price model is solved with the seat capacities defined by (23). By using 
the fleet assignment from RMP and the passenger allocations u, we solve the cargo mix bid price 
model with weight and volume capacities defined by (24) and (25). Based on the obtained dual 
prices from the two bid price models, we add two Benders cuts to the RMP, which are given by (26) 
and (27).  
 Due to the approximation in subproblem solving, the added Benders cuts overestimate the 
optimal revenue, i.e. the value of the RMP is a lower bound on the optimal profit. In order to obtain 
the optimal profit, the resulting fleeting must be plugged into the subproblem consisting of (15)-(22).   

5 Computational Experiments 
We tested the integrated model on one large data set consisting of five fleets and 1493 flights. The 
problem that we solve is a daily problem. We have thousands of passenger and cargo itineraries. 
Real world data from a major US carrier were used. The carrier has a heavy hub-and-spoke network 
structure with 5 major hubs. The computing environment consists of a PC with a 27 dual 900 Mhz 
Itanium 2 processor running Red Hat 7.3 operating system and the gcc-3.2 development 
environment. Due to lack of data for containers, the presented computational results do not take into 
account containers. For discretionary purposes, the real profit numbers are fudged but the presented 
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numbers show correct proportions and magnitudes. After obtaining the final fleeting by the 
integrated approach, we do not compute the optimal profit (see the discussion at the end of Section 
4.1). Instead the profit is computed based on the decomposition principle presented in Section 4.1, 
i.e. first the passenger allocation is computed and then the remaining capacity is assigned to cargo. 
Note that this profit can clearly be materialized.   

Since we have used only one data set, we modified cargo rates and made additional test cases to 
capture the effect of cargo rates on revenue. In what follows, CR denotes the actual cargo rates that 
we have obtained from the airline. Unless otherwise stated, any increase or decrease is shown with 
respect to CR and the actual values are not quoted. 

The cargo itineraries are generated using an implementation of the kth-shortest path algorithm. 
We generate a pre-defined number of cargo routes for each given od pair. The network used is the 
one described in Section 3.1.  

We first report the increase in savings by using our integrated model as opposed to the 
sequential approach. The traditional sequential approach first solves the O-D based fleeting model 
with respect solely to the passenger revenue. After this step, the remaining volume and weight are 
allocated optimality to cargo. The increase in profit is shown in Table 4. We calculate profit by 
subtracting the operating cost from the revenue obtained from both cargo and passenger 
contributions. In the last column we show the range (for confidentiality reasons) of the increase in 
profit obtained by solving the integrated model vs. the traditional sequential approach. For example, 
in Case 2 the actual additional profit is between $6,000 and $7,000. When these numbers are 
multiplied by the number of days in a year, we obtain yearly profits reaching several million dollars.  

 
Cargo rate 

Increase in 
profit ($) 

Case 1 CR 13,000-14,000 
Case 2 CR/3 6,000-7,000 
Case 3 2·CR 37,000-39,000 

Table 4: Profits 

 Next in Table 5 we break up the obtained profit into cargo revenue, passenger revenue, and 
operating cost. The values are reported as percentage increase or decrease values with respect to 
those obtained by using the sequential model. To ensure confidentiality, we present the range of 
percentages instead of the actual percentage increase or decrease. For example, the cargo revenue 
value shown for Case 1 is between 0.9% and 1.0%. This implies that the cargo revenue obtained 
from the integrated approach is approximately 0.95% higher than the cargo revenue obtained in the 
traditional case. As expected, the passenger revenue decreases while the cargo revenue increases. 
The operating cost does not change substantially. 

 Cargo revenue 
(%) 

Passenger 
revenue (%) 

Operating cost 
(%) Savings (%) 

Case 1 [0.9, 1.0] [-0.15, -0.1]  [0.02,0.03] [0.07,0.08]  

Case 2  [0.9, 1.0] [-0.02, -0.01]  [0.03,0.05] [0.04,0.05] 

Case 3  [0.6,0.8] [-0.02, -0.01]  [0.1,0.2] [0.1,0.2] 

Table 5: Breakup of profit 
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In Case 1 the integrated solution has approximately 97% of tight weight capacity constraints 
(17). A constraint at equality in the underlying solution is tight. The sequential model gives the same 
order of tight weight capacity constraints. These numbers are surprising for volume. Approximately 
80% of the volume capacity constraints (18) are tight in the integrated solution while this number 
increases to 87% for the sequential solution. Further analysis of the integrated solution shows that 
this solution puts aircraft with larger payloads than those of the sequential solution on some of the 
flights. As a result more cargo demand can be carried on these flights but the new fleet assignment 
leaves some unused volume capacity.     

The objective value of the RMP tends to decrease across iterations. The trends for Case 1 and 
Case 2 are shown in Figure 2. These plots exhibit the typical tailing effect known for many iterative 
optimization algorithms. In Benders decomposition it results from degeneracy of the cargo and 
passenger mix models.  
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Figure 2: Objective value improvements 

 The computation times are shown in Table 6. The “average” column for the RMP and LP steps 
shows the absolute value of the average over all iterations. For these two steps, the “%” column 
shows the percentage of the total time that is spent in solving this step over all iterations. The last 
column gives the total time taken to solve the integrated model using Benders decomposition. On an 
average it takes approximately 6-10 hours to solve the integrated model. 

RMP LP subproblems  
Time per 

iteration (min) Average (min) % Average (min) % Total (hrs) 
Case 1 25 15 60 10 40 6 

Case 2 24 14 58 10 42 6 

Case 3 40 30 75 11 25 10 

Table 6: Computation times 

6 Future Directions 
The observed convergence rate using Benders decomposition is rather slow for most practical 
problems. If the primal subproblem is degenerate (either the passenger or the cargo mix bid price 
model), we may obtain multiple optimal dual solutions, which yield more than one Benders cut. The 
approach by Magnanti and Wong (1981) produces pareto-optimal cuts, i.e. nondominated cuts. Their 
procedure requires generating a core point, which is a nontrivial task in our case. Nevertheless, 
pareto-optimal cuts might produce better solutions. A slightly different methodology for solving the 
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model (12)-(22) is by branch-and-bound, where at each node of the branch-and-bound tree the LP 
relaxation is solved by Benders decomposition. In this algorithm the RMP is solved as an LP and 
identical cuts to (26) and (27) are added. After an LP stopping criterion applies, we branch by fixing 
an assignment variable.   
 In our current implementation for each O-D pair we generate a predefined number of cargo 
routes offline and input these as cargo itineraries. Another approach is to use column generation (see 
e.g. Barnhart et al. (1998)) when solving the cargo mix bid price model. In this approach cargo 
itineraries are generated dynamically as needed. A constrained shortest path algorithm is required for 
pricing. This approach could potentially yield more profitable solutions. 
 We believe the most significant improvement can be obtained by using stochastic models. The 
passenger mix model used in our integrated model is a deterministic linear program. For each 
itinerary i and for each fare class k we use the deterministic average demand, which is forecasted in 
advance. We ignore the stochastic nature of demand. A better approach would be to take into 
account the complete probability distribution of demand. Luckily the presented model is extendible 
to this more general case. Next we elaborate more on this extension. 
 Consider the stochastic passenger mix bid price model, see e.g. van Ryzin and Talluri (2002), 
defined by 
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Here is the random variable corresponding to the demand for itinerary i and fare class k. The 
expression  captures the fact that we do not allocate more than the demand. Note that 

. As a function of capacities C this is a concave function and therefore Benders 
decomposition is applicable. In addition, the objective function is separable and concave in u. Given 
fixed capacities implied by the solution to the RMP, we need to solve this nonlinear program, e.g. by 
subgradient optimization or randomized linear programming. In the end we obtain bid prices  
corresponding to (28), where t is the iteration index. Similarly to (25) the Benders cut 

 is added to the RMP.  
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 Similar treatment holds for the cargo mix bid price model. The stochastic linear program in this 
case reads 
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demands. This is again a concave function of weight and volume capacities and therefore bid prices 
δγ ,  for (29) and (30) respectively can be computed by any algorithm for convex optimization. The 

Benders cut ( ) lf
l f

l
t
ll

t
l xVW∑∑ +≤ δγσ  is then added to the RMP. 

 It is also possible to model these stochastic linear programs as deterministic ones, Williamson 
(1992). We show this on the passenger mix model. Let M be the maximum available seat capacity 
among all the flights. For m = 0,1,…,M let Pi,k (m) be the probability of selling the mth seat on 
itinerary i and fare class k. Then the stochastic passenger mix model reads 
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where  is 1 if the mth seat on itinerary i and fare class k is sold, and 0 otherwise. The drawback of 
this model is a large number of variables.  It is straightforward now to change constraints (15)-(18) 
in our integrated model to use this passenger mix model. The cargo mix model can be changed in the 
similar fashion.  

k
miz

 We did not experiment with these stochastic models. We believe it is a very important line of 
research since it addresses the concern of a deterministic model in a stochastic environment. Solving 
the stochastic problem is most likely very challenging due to the poor convergence of the Benders 
algorithm for such problems, Smith (2005). On the positive note, Smith (2005) presents several 
techniques for speeding up the algorithm when only the passenger revenue is considered.     

7 Acknowledgements 

We would like to thank Dirk Günther from Sabre Holdings for valuable inputs and discussions. His 
insight into cargo revenue management practices was extremely useful. Michael Clarke from Sabre 
Holdings was very helpful with data and without his assistance this work would not be possible. We 
are indebted to Professor Karsten Shwan from Georgia Institute of Technology for allowing us to 
use their computing resources. In addition, we are thankful to Professor Eva Lee from the Georgia 
Institute of Technology for assistance with CPLEX licenses. We are also grateful to ILOG Inc. for 
providing the licenses.  

8 References 
[1] Antes, J., Campen, L., Derigs, U., Titze, C., and Wolle, G. (1998). A model based DSS for the 

evaluation of flight schedules for cargo airlines. Decision Support Systems, 22, 307-323. 
[2] Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., and Vance, P. (1998). Branch-and-

Price: Column generation for solving huge integer programs. Operations Research, 46, 316-329. 
[3] Barnhart, C., Farahat, A., and Lohatepanont, M. (2002a). Airline fleet assignment: An enhanced 

revenue model. Technical Report. Massachusetts Institute of Technology. 
[4] Barnhart, C., Kniker, T., and Lohatepanont, M. (2002b). Itinerary-based airline fleet assignment, 

Transportation Science, 36, 199-217.  

 17



[5] Benders, J. (1962). Partitioning procedures for solving mixed-integer programming models. 
Numerische Mathematik, 4, 238-252. 

[6] Chen, V., Günther, D., Johnson, E., and Vate, J. (2003), Routing considerations in airline 
revenue management. Technical Report, The Logistics Institute, Georgia Institute of 
Technology. 

[7] Clarke, L., Hane, C., Johnson, E., and Nemhauser, G. (1994). Maintenance and crew 
considerations in fleet assignment. Transportation Science, 30, 249-260. 

[8] Crabtree, T., Hoang, T., and Edgar J. (2002). The air cargo forecast 2002/2003. Available at 
http://www.boeing.com/commercial/cargo/index.html.  

[9] Froehlich, J. (2004). Key success factors to revenue management at Lufthansa Cargo. AGIFORS 
Cargo Study Group Meeting, Washington D.C. 

[10] Günther, D. (1998). Cargo routing through network decomposition. Technical Report, The 
Logistics Institute, Georgia Institute of Technology. 

[11] Hane, C., Barnhart, C., Johnson, E., Marsten, R., Nemhauser, G., and Sigismondi, G. (1995). 
The fleet assignment problem: Solving a large scale integer program. Mathematical 
Programming, 70, 211-232. 

[12] Hendricks,G., and Kasilingam, R. (1992). Challenging OR problems in air cargo. ORSA/TIMS 
Fall National Meeting, San Francisco, CA. 

[13] Huang, L., Morton, H., and Chew, E. (1999). Simultaneous fleet assignment and cargo routing 
using Benders decomposition. Technical Report, National University of Singapore. 

[14] Jacobs, T., Johnson, E., and Smith, B. (1999). O&D FAM: Incorporating passenger flows into 
the fleeting process. In R. Darrow, editor, Thirty-Ninth Annual AGIFORS Symposium, New 
Orleans. 

[15] Kasilingam, R. (1996). Air cargo revenue management: Characteristics and complexities. 
European Journal of Operations Research, 96, 36-44.  

[16] Kasilingam, R., and Hendricks, G. (1993). Cargo revenue management at American Airlines. 
AGIFORS Cargo Study Group Meeting, Rome, Italy. 

[17] Klabjan, D. (2003). Large-scale models in the airline industry. In Desaulniers, G., Desrosiers, J., 
and Solomon, M.M., editors, Column Generation, Kluwer Academic Publishers.  

[18] Kniker, T. (1998). Itinerary-based airline fleet assignment. PhD thesis, Massachusetts Institute 
of Technology. 

[19] LaDue, M. (2004). Ten challenges in air cargo revenue management. AGIFORS Cargo Study 
Group Meeting, Washington D.C. 

[20] McGill, J., and van Ryzin, G. (1999). Revenue management: Research overview and prospects. 
Transportation Science, 33, 233-256. 

[21] Magnanti, T., and Wong R. (1981). Accelerating Benders decomposition: Algorithmic 
enhancement and model selection criteria. Operations Research, 29, 464-484. 

[22] Mathieson, A. (2005). Canada’s airports: Their role as cargo gateways. Available at 
http://www.statcan.ca/english/freepub/61-532-XIE/13-mathi.html 

[23] Smith, B. (2002). Optimization in airline planning and marketing. Presentation at the Institute 
for Mathematics and its Applications Workshop on Transportation. University of Minnesota, 
Minneapolis. 

 18

http://www.boeing.com/commercial/cargo/index.html
http://www.statcan.ca/english/freepub/61-532-XIE/13-mathi.html


[24] Smith, B. (2004). Robust airline fleet assignment. Ph.D. Thesis, Georgia Institute of 
Technology, Atlanta, GA.  

[25] Smith, B. and Johnson, E. (2005). Robust airline fleet assignment imposing station purity using 
station decomposition. Transportation Science. To appear.  

[26] van Ryzin, G. and Talluri K. (2002). Revenue management. In Hall, R, editor, Handbook of 
Transportation Science, 599-661. Kluwer Scientific Publishers. 

[27] Williamson, E. (1992). Airline network seat inventory control: Methodologies and revenue 
impact. PhD thesis. Massachusetts Institute of Technology.  

 

 19


	F
	Diego Klabjan (klabjan@uiuc.edu)
	University of Illinois at Urbana-Champaign
	Abstract

	Introduction
	Traditional Models
	Fleet Assignment Model
	Passenger Mix Bid Price Model
	Main Differences between Cargo Revenue Management and Passen
	Literature Review

	The Model
	Cargo Mix Bid Price Model
	Integrated Passenger-Cargo Fleeting Model

	Solution Methodology
	Benders Reformulation for Passenger-Cargo Fleeting Model

	Computational Experiments
	Cargo rate
	Increase in profit ($)
	Future Directions
	Acknowledgements
	References

