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Abstract—Modern route-guidance software for conventional
gasoline-powered vehicles does not consider refueling since
gasoline stations are ubiquitous and convenient in terms of both
accessibility and use. The same technology is insufficient for
electric vehicles (EVs), however, as charging stations are much
more scarce and a suggested route may be infeasible given an
EV’s initial charge level. Recharging decisions may also have
significant impacts on the total travel time and longevity of
the battery, which can be costly to replace, so they must be
considered when planning EV routes. In this paper, the problem
of finding a minimum-cost path for an EV when the vehicle must
recharge along the way is modeled as a dynamic program. It
is proven that the optimal control and state space are discrete
under mild assumptions, and two different solution methods are
presented.

I. INTRODUCTION

In the United States, ownership of battery electric vehicles
(EVs) is expected to increase considerably over the next
several years as the major automakers bring new EV models
to market. The limited driving range of EVs renders them
most suitable for short-distance commutes, but access to
public charging infrastructure would alleviate range anxiety
and enable longer trips. However, at least in the short term,
charging stations will be relatively scarce, making long-
distance commutes difficult to plan.

Aside from the difficulty of planning routes that include
visits to charging stations, the charging decisions made at
each station introduce further complications. Unlike gasoline
refueling, which occurs at the same rate regardless of how
full the vehicle’s tank is, battery recharging occurs at different
rates depending on the initial state of charge. The charging
rate is typically highest when the battery’s state of charge
is low, and it decreases gradually until the battery is fully
charged. The longevity of an EV’s battery also depends on
the charging pattern, including the types of charging stations
visited as well as the extent to which the battery is charged.
Fast-charging stations that operate at higher voltages can
greatly diminish battery life, as can perpetually maintaining
a high state of charge in the battery.

In this paper, the problem of finding a minimum-cost path
for an EV when the vehicle must recharge along the way is
modeled as a dynamic program. It is proven that the optimal
control and state space are discrete under mild assumptions,
and two different solution methods are presented. One is
a backward recursion approach that finds an optimal path
when the state space is discrete. The other is an approximate
dynamic programming (ADP) algorithm that is applicable to

general problem instances.

II. LITERATURE REVIEW

The refueling problem for gasoline-powered vehicles,
where drivers must decide at which nodes to refuel as well
as how much to refuel in order to minimize total fuel
costs, has been well studied. It is shown in [1] and [2]
that the optimal refueling policy along a fixed path can be
solved easily with dynamic programming when fuel prices at
each node are static and deterministic. For such a problem,
the optimal decision at each node is always one of the
following: do not refuel, refuel completely, or refuel just
enough to get to the next node where refueling occurs. An
algorithm for simultaneously finding the optimal path and
refueling policy in a network is detailed in [3], and some
combinatorial properties of the optimal policies are explored
in [4]. Specifically, it is proven that the problem of finding
all-pairs optimal refueling policies reduces to an all-pairs
shortest path problem that can be solved in polynomial time.

The objective of the vehicle refueling problem is to
minimize the total cost, or the total amount paid for fuel.
In reality, however, drivers often want to minimize their
travel time as well. While they may be willing to deviate
from the shortest path to their destination in order to reduce
their fuel expenditures, they will not take major detours
for only marginal fuel cost savings. A generic model for
vehicle refueling is presented in [5] that attempts to capture
such behavior, penalizing longer routes and routes with more
refueling stops. The results show that when costs associated
with time are included in the objective, significant reductions
are achieved in the overall trip cost, fuel used, and miles
traveled. Approaches for finding optimal refueling policies
when fuel prices are stochastic are given in [6] and [7]. In
[6], a forecasting model for predicting future fuel prices is
used to generate parameters for a deterministic mixed integer
program, and in [7], a dynamic programming framework is
presented that is designed to grant drivers greater autonomy
to select the stations where they will refuel. These models
are difficult to solve analytically, though, and the authors
develop only simple heuristics that can be implemented to
obtain reasonable solutions.

One assumption that all of the aforementioned models
share is that refueling costs are linear. In other words, the
cost per unit of fuel at a station is the same regardless of how
many units are purchased and how full the vehicle’s tank was
when it arrived at the station. While this assumption may be



true for vehicles powered by liquid fuels such as gasoline, it
does not necessarily hold for EVs. Battery charging times are
nonlinear, and when the time it takes to recharge is on the
order of hours rather than minutes, the value of time during
recharging is significant.

A recent thread of research has tackled the problem of
finding the most energy-efficient path in a network for
EVs. In [8], the authors model the problem as a shortest
path problem with constraints on the charge level of the
vehicle, such that the charge level can never be negative
and cannot exceed the maximum charge level of the battery.
Edge weights are permitted to be negative to represent
energy recapturing from regenerative braking, but no negative
cycles exist. A simple algorithm for solving the problem
is provided, and more efficient algorithms are presented in
[9] and [10]. It is shown in [9] that the battery capacity
constraints can be modeled as cost functions on the edges,
and a transformation of the edge cost functions permits the
application of Dijkstra’s algorithm. The approach described
in [10] avoids the use of preprocessing techniques so that
edge costs can be calculated dynamically, and it achieves an
order of magnitude reduction in the time complexity of the
algorithm from [8]. However, none of these methods consider
recharging decisions at nodes.

III. MODEL

Let G = (N, A) be a directed, acyclic network with
recharging capability at every node in N . Arc lengths are
non-negative and denoted dij for every arc (i, j) ∈ A, and it
is assumed that for each sequence of arcs {(i, j), (j, k)} ⊂ A,
there exists an arc (i, k) ∈ A such that dik ≤ dij + djk (i.e.,
the arc lengths satisfy the triangle inequality). The goal is
to find the minimum-cost path from s to t (s, t ∈ N ) such
that the charge level of the vehicle always remains between a
given minimum threshold, h, and the maximum capacity of
the battery, qmax. The parameter h is permitted to be greater
than zero to account for range anxiety and also the fact that
the vehicle’s performance can be negatively affected when
the battery’s charge level drops too low.

Let ui(q) denote the utility of departing from node i with
charge level q, where ui(·) is continuously differentiable,
nondecreasing, and defined over the interval q ∈ [h, qmax].
If the EV arrives at i with charge level q, then the cost of
recharging up to level r is given by the function

gi(q, r) = ui(r)− ui(q).

Although opportunities may exist for EVs to discharge some
of their power back to the grid at charging stations, it is
assumed in this paper that r ≥ q because an EV driver
may not recover the full retail value of electricity discharged
from the battery, and discharging also incurs time and battery
wear costs. Thus, considering these factors, the actual cost
of discharging the battery down to a level r < q would in
fact be greater than ui(q)− ui(r).

In addition to the previously defined parameters, let f
denote the energy efficiency of the EV (in charge per unit
distance) and c denote the cost per distance of traversing

a link. Both f and c are assumed to be positive constants.
Then the optimality equations for the dynamic programming
formulation are

V (i, q) = min
(j,r)∈A(i,q)

{gi(q, r) + cdij + V (j, r− fdij)}, (1)

where V (i, q) is the value function representing the cost
to reach node t from node i with charge level q, and the
three terms correspond to the cost of recharging, the cost of
traveling from i to j, and the value function upon reaching
j, respectively. The feasible action space, A(·), is defined as

A(i, q) =
{

(j, r) :
(i, j) ∈ A, h + fdij ≤ qmax,
r ∈ [max{q, h + fdij}, qmax]

}
,

(2)
and the state space, S, is defined as

S = {(i, q) : i ∈ N, q ∈ [h, qmax]}. (3)

If the vehicle’s initial charge level at the origin and desired
charge level at the destination are both assumed to be h (i.e.,
the vehicle should begin and end its trip at the minimum
charge level), then the terminal value function is

V (t, h) = 0

and the objective value is V (s, h).

IV. ALGORITHMS

Because S is continuous (in the coordinate q), standard
recursion methods cannot be implemented directly without
first either discretizing the state space or using an approxi-
mation algorithm. These approaches do not necessarily yield
an optimal solution, but when certain assumptions hold it can
be proven that S reduces to a discrete set, and thus a simple
backward recursion algorithm guarantees an optimal solution.
This proof and the related algorithm are presented in the next
section, followed by an ADP algorithm that can be employed
when the assumptions permitting a discrete reduction of S
are relaxed.

A. Backward recursion

In this section, it is proven that under certain assumptions,
S can be discretized without creating an optimality gap. It is
first shown that a feasible path can be improved by removing
nodes where recharging does not occur, and that there exists
an optimal solution where the EV recharges at every visited
node (except t). The optimal recharging policy is then proven
to be solvable using backward recursion.

Lemma 1: Let i, n1, n2, ..., nk, j be a sequence of nodes
visited by a feasible path in G such that the vehicle recharges
at i, recharges at j if j 6= t, and does not recharge at
n1, ..., nk. Then there exists another feasible path at least
as good as the original path that visits j directly from i.

Proof: Since there is no recharging at n1, ..., nk, the
charging cost is zero at those nodes and only the distance
cost is considered. It follows from the triangle inequality that

dij ≤ di,n1 +
k−1∑
`=1

dn`,n`+1 + dnk,j ,



and thus the total distance cost and recharging cost to reach j
from i directly do not exceed the corresponding costs to reach
j indirectly. Therefore, there exists a feasible path containing
arc (i, j) ∈ A that is at least as good as the path visiting but
not recharging at n1, ..., nk.

If the cost of a feasible path can be decreased by removing
nodes where recharging does not occur, then there must exist
an optimal path that only visits nodes where recharging does
occur. This result is formalized in the following theorem.

Theorem 1: There exists an optimal path from s to t in G
such that recharging occurs at every visited node (except t).

Proof: Suppose an optimal path exists that visits but
does not recharge at nodes n1, ..., nk. Then by Lemma 1,
there exists another optimal path that bypasses n1, ..., nk.

A consequence of this theorem is that an optimal path can
be constructed considering only how much to recharge at
each node, not whether or not to recharge. This result alone
does not make the problem of finding an optimal recharging
policy easier, since the state space is still continuous, but it
will simplify the analysis in later parts. In order to reduce the
state space to a discrete set, the optimal action space must
first be discretized. For arbitrary functions ui(·), it is not
possible to reduce the optimal action space without additional
restrictions. However, under mild assumptions, it can be
shown that the optimal recharging decision at each node
simplifies nicely. Let U+

i and U−i denote the maximum and
minimum gradients, respectively, of ui(·) for every i ∈ N .
They can be expressed mathematically as

U+
i = max

q∈[h,qmax]
{∇ui(q)}, U−i = min

q∈[h,qmax]
{∇ui(q)}.

If either U+
i ≤ U−j or U+

j ≤ U−i for any i, j ∈ N , then
the optimal action space at each node is a discrete set. The
following theorem proves this result.

Theorem 2: Let m1, m2, ...,mk be the sequence of nodes
visited by an optimal path where recharging occurs. Then
the following is an optimal policy for recharging at each
node: At mk recharge the battery up to level h+fdmk,t; for
` = 1, ..., k − 1,

a.) if U−` ≥ U+
`+1, recharge the battery up to level h +

fdm`,m`+1 , and
b.) if U+

` ≤ U−`+1, recharge the battery up to level qmax.
Proof: Suppose U−` ≥ U+

`+1 but the optimal solution
recharges the battery to a level greater than h + fdm`,m`+1

at m`. Then the total cost can be decreased by reducing the
amount recharged at m` and increasing the amount recharged
at m`+1, which contradicts the optimality assumption. Simi-
larly, suppose U+

` ≤ U−`+1 but the optimal solution recharges
the battery to a level less than qmax at m`. Then the total
cost can be decreased by increasing the amount recharged at
m` and reducing the amount recharged at m`+1, which also
contradicts the optimality assumption. Therefore, the stated
policy is optimal.

From this theorem, it follows that the size of the optimal
action space at any node i ∈ N reduces to at most 2|N − 1|
actions since there are no more than |N − 1| other nodes
reachable from i and two possible recharging options for

each node. Equation (2) can be updated to give the optimal
action space,

A∗(i, q) =
{

(j, r) :
(i, j) ∈ A, h + fdij ≤ qmax,

r ∈ {h + fdij , qmax}

}
,

(4)
and modifying (3) yields the new state space,

S∗ =
{

(i, q) :
i ∈ N, q ∈ {h} ∪

{qmax − fdji ≥ h : (j, i) ∈ A}

}
,

(5)
which is a discrete set. Therefore, (1) becomes

V (i, q) = min
(j,r)∈A∗(i,q)

{gi(q, r)+ cdij +V (j, r− fdij)} (6)

and backward recursion can be implemented to find an
optimal path that recharges at every node.

In some special cases, it may be difficult to compute U+
i

and U−i precisely. However, for most practical applications,
finding the extreme values of the utility function gradients
is manageable, especially when they are monotone. For
example, the ui(·) functions may be convex if they primarily
account for time costs, as the charge rate typically decreases
at higher charge levels. If ui(·) happens to be linear and
U+

i = U−i for all i ∈ N , then the problem simplifies to the
vehicle refueling problem studied elsewhere in the literature.

B. Approximate dynamic programming

Without the assumptions on the utility functions ui(·) in
the previous section, Theorem 2 no longer holds. In such
a scenario, discretization of the state space may not be
possible without creating an optimality gap, and thus an
approximation algorithm may be appropriate. The following
is an ADP algorithm that can be used to solve the vehicle
recharging problem.

Step 0: Initialization
• Initialize V

0
(i, q) for all states (i, q) ∈ S

• Set initial state: i1 = s, q1 = h
• Set n = 1

Step 1: While (i 6= t) loop
• Update value function estimate:

V
n
(i, q) =

{
V̂ n(i, q), i = in and q = qn

V
n−1

(i, q), otherwise
where

V̂ n(in, qn) = min
(jn,rn)∈A(in,qn)

{gi(qn, rn) + cdin,jn+

V
n−1

(jn, rn − fdin,jn)}
• Update current state: in = jn, qn = rn − fdin,jn

Step 2: Let n = n + 1; if n ≤ iterLimit, go to Step 1

The main difficulty with this algorithm is the initialization
of the value function estimates. The performance of the
algorithm is sensitive to these initial values. Further investi-
gation is needed to find good starting estimates for the value
functions that ensure quality solutions.



V. CONCLUSIONS AND FUTURE WORK

In this paper, the problem of finding a minimum-cost path
for an EV when the vehicle must recharge along the way is
modeled as a dynamic program. It is proven that the optimal
state space can be discretized when certain conditions are
satisfied, and two algorithms for finding an optimal path are
proposed. The first is a backward recursion method that can
be applied when the state space is discrete. The second is an
ADP algorithm that is useful for more general instances of
the model.

As the vehicle recharging problem is still fairly new in
the literature, there are many directions for future work.
One unique aspect of EVs not captured in this paper is
the ability to recapture energy through regenerative braking.
By traveling downhill, an EV can sometimes increase its
battery’s charge level while braking, leading to cases where
the net energy consumption along a link is negative. Time
could also be introduced as another dimension to the model
to permit dynamic and stochastic utilities of recharging. Such
models would inevitably be more complex, necessitating the
development of robust approximation schemes such as ADP.
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