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Abstract

In production planning in the glass container industry, machine dependent setup times and costs
are incurred for switchovers from one product to another. The resulting multi-item capacitated
lot sizing problem has sequence-dependent setup times and costs. We present two novel linear
mixed integer programming formulations for this problem, incorporating all the necessary fea-
tures of setup carryovers. The compact formulation has polynomially many constraints, while,
on the other hand, the stronger formulation uses an exponential number of constraints that can
be separated in polynomial time. We also present a five-step heuristic, which is effective both
in finding a feasible solution (even for tightly capacitated instances) and in producing good
solutions to these problems. We report computational experiments.

Keywords: capacitated lotsizing and scheduling, sequence-dependent setup, integer programming, heuris-

tics

1 Introduction

Production planning arising in the glass container industry is a complex process. It is a semi-
continuous manufacturing process, which includes the glass production (the continuous part) and
the container manufacturing (the discrete part). Furnaces are operated continuously and machine
lines operate on a twenty four hour seven days a week basis. During a product changeover on
a molding machine, the furnace keeps feeding the machine with molten glass, however, the gobs
are discarded and melted down again in the furnace (wasting a huge amount of energy, the main
production cost). Fast job changes with fewer job change parts lower the energy costs. Therefore,
there is a sequence dependent setup time (and proportional cost) in a product changeover. Since
machine setups consume the furnace capacity, it is essential to carry the setup from one period
to the next. This production planning problem results in a capacitated multi-item deterministic
lotsizing problem.

The lotsizing problem is to find production orders or lots in order to satisfy customer demand.
The objective is to minimize holding and setup costs. This problem has been intensively studied
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and, therefore, many models were proposed to describe it, involving different features and assump-
tions. The majority of the models consider a finite planning horizon divided into discrete time
periods. The single stage, multi-item lotsizing problem with capacity constraints is referred to
as the capacitated lotsizing problem (CLSP). CLSP is considered to be a large-bucket problem,
because several products/setups may be produced/performed per period. On the other hand, in
small-bucket problems, at most one setup may be executed during a period. Different models are
distinguished with respect to the number of products that can be produced within a period and to
the period capacity utilization (all-or-nothing assumption or partial). All these models determine
simultaneously the size and sequence of lots. Despite allowing more precise plans, sub-dividing the
(macro-) periods of CLSP into several (micro-) periods increases the complexity of these mixed inte-
ger linear programming models. Drexl and Kimms (1997) present and explain the main differences
of these formal models.

We study single machine CLSP with sequence dependent setup times and costs. In each time
period several products can be produced. Whenever a switch of a product is performed, a certain
amount of time is consumed and the setup cost is incurred. This time and cost depend on the
two products. In each time period at most a given amount of time can be allotted to switchover
times and to the actual production time. This leads to sequence dependent setup times and
costs. A further complicating matter is in the fact that a product can be set up at the end of
a time period and the actual production starts in the next time period. We call this property
setup carryover. We present two novel linear mixed integer programming formulations for single
machine CLSP with sequence-dependent setup times and costs, incorporating all the necessary
features of setup carryovers. The compact formulation has a polynomial number of constraints.
The efficiency of this model is benchmarked against the one proposed by Gupta and Magnusson
(2005), which is actually not a completely accurate formulation (Almada-Lobo et al. (2006)). The
second formulation uses an exponential number of constraints, which makes it impractical to be
solved directly. We generate constraints dynamically by presenting a polynomial time separation
algorithm. We compare the strength of the linear programming relaxations of both formulations.
The two formulations are improved by adding valid inequalities that lead to good lower bounds.
Since this problem is NP-hard, we also present a five-step heuristic to solve large problem instances.
The flexibility of the heuristic’s first two steps allows us to find feasible solutions even under
tightly capacitated scenarios. The last three steps focus on solution quality. We compare the
heuristic solution against the lower bound generated by the strongest model and against other
known heuristics. The main contributions of our work are as follows. To the best of our knowledge,
the two presented formulations are the first exact formulations for the problem under consideration.
We also formally prove a relationship between the two linear programming relaxations. Another
major contribution of our work is the underlying heuristic.

In Section 2 we first present the compact formulation of the problem, which is also benchmarked
against the model presented by Gupta and Magnusson (2005). We then propose the stronger
formulation and prove that it provides a better linear programming relaxation. In Section 3 we
explain the heuristic for finding good solutions. Numerical experiments are given in Section 4. We
conclude this introduction with a literature review.

Literature Review

Standard CLSP does not sequence or schedule products within a period. In addition, it assumes
that setup costs occur for each lot in a period, even if the last product to be produced in a period
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is the first one in the period that follows. For manufacturing environments with considerable setup
times with respect to the length of a period and with tight capacity, which is the case in the glass
container industry, this model may not provide any feasible production plans. Therefore, setup
carryovers need to be incorporated in CLSP. The setup carryover occurs when a product is the last
one to be produced in a period and the first one in the following period. In this case no setup is
required in the latter period. Moreover, setups are preserved over idle periods and an idle time at
the end of a period may be used to perform a setup for the first product to be produced at the
beginning of the next period.

Despite CLSP being intensively studied, modeling setup carryover in CLSP has not received
much attention due to model complexity and computational difficulty, Sox and Gao (1999). The
efficiency of solving CLSP depends on the structure of setups. Different studies have demonstrated
that proper accounting for setup times and carryovers decreases the number of setups and also frees
a significant amount of production capacity, Porkka et al. (2003). Gopalakrishnan et al. (1995)
developed a modeling framework for formulating CLSP with sequence and product independent
setup times and setup carryovers. In their model, a fixed charge is incurred whenever a product
is produced in a period. The authors conclude that the model complexity could be reduced by
looking for alternative ways to model setup carryover. In Gopalakrishnan (2000), a modified
framework for modeling setup carryover in CLSP is presented, incorporating sequence independent
and product dependent setup times and costs. Nevertheless, setup carryover is modeled in a similar
way as in Gopalakrishnan et al. (1995) and decision variables have the same interpretation. Sox
and Gao (1999) present a more efficient mixed integer linear programming model to CLSP with
sequence independent setup costs and no setup times. Kang et al. (1999) propose a different
approach, consisting of breaking the entire schedule into smaller segments, called split-sequences.
A drawback of this model is that the number of split-sequences Lt in period t is a parameter.
Therefore, multiple runs with different values for Lt are needed for optimization. Moreover, setup
times are not considered in this model. Porkka et al. (2003) modify the mixed integer linear
programming based setup carryover model of Sox and Gao (1999) by using sequence independent
setup times. To avoid the complexity of separate setup costs and times, explicit setup costs are
excluded from the model. Suerie and Stadtler (2003) present a new model formulation for CLSP
with sequence independent setup costs and times. The authors start with the standard CLSP
model, use the standard facility location reformulation, and introduce new sets of variables and
constraints to model the setup carryover. Gopalakrishnan et al. (2001) also address CLSP with
setup carryover and present two effective tabu-search heuristics.

All the aforementioned manuscripts address CLSP with constant sequence independent setup
times and/or setup costs, with a setup carryover. In fact, these models do not consider lot sequenc-
ing within a period. They focus only on determining the products produced last and first in two
consecutive periods, and also the configuration of the machine at the end of the period. Due to
the “correct” calculation of the setup costs by linking lots of adjacent periods, these models are
usually referred to as CLSP with linked lot-sizes (Haase (1994)).

Notwithstanding, there are several examples of process industries in which sequence-dependent
setup times and costs are considerable, such as glass container and some chemical industries. Clark
and Clark (2000) model CLSP with sequence-dependent setup times using a new mixed integer
programming formulation. They assume that exactly a given number of setups occur in a time
period between any two given products, independently of their demand patterns. Haase and Kimms
(2000) propose a model for CLSP with sequence dependent setup times and costs in which the
efficient product sequences are pre-determined. Therefore, it is to decide which sequences will be
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used in each period. The authors also assume that the inventory of an item must be null at the
beginning of a period to allow its production in the period. Gupta and Magnusson (2005) extended
the framework proposed by Gopalakrishnan (2000) to incorporate sequence dependent setup times
and setup costs. The setup carryover is modeled in the same way as in Gopalakrishnan et al. (1995)
and Gopalakrishnan (2000).

2 New Models for CLSP with Sequence-dependent Setup Costs
and Times

2.1 The First Formulation

Throughout the exposition, t denotes time periods, which range from 1 to T , and i and j index
products, which are labeled from 1 to N . We denote by [M ] the set {1, 2, . . . ,M}. We consider
a general single-stage model involving multiple items to be scheduled on a single machine, whose
data consist of:

hi cost of carrying one unit of stock of product i from one period to the next,
pi processing time of one unit of product i,
dit demand for product i at the end of period t,
Ct capacity of the machine in period t (measured in time units),
sij time needed to set up the machine from product i to product j,
cij cost incurred to set up the machine from product i to product j.

In addition, let Mit = min
{

Ct
pi

,
∑T

u=t diu

}
be an upper bound on the quantity of product i to be

produced in period t.
The total cost consists of the holding cost and the machine setup cost. We do not allow

stockouts, which is common in the deterministic demand setting. We assume that the triangle
inequality with respect to the setup cost and time holds, i.e., cik ≤ cij + cjk and sik ≤ sij + sjk for
all products i, j, and k. This assumption holds in many practical settings, and definitely in our
glass container case.

In order to capture the lotsizes and the resulting inventory we need the following decision
variables:

Xit quantity of product i produced in period t,
Iit stock of product i at the end of period t.

In order to capture the setup cost and time, we introduce

Tijt =


1 if a setup occurs on the machine configuration state from

product i to product j in period t,
0 otherwise.

We assume that Tiit = 0 for every product i. Recall that we allow the machine to be set up with
product i at the end of a time period and then start the next time period with the same product
but not occurring any extra setup cost. Since such a setting involves two consecutive time periods,
a new decision variable needs to be introduced. Let

αit =

{
1 if the machine is set up for product i at the beginning of period t,
0 otherwise.
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We also need the auxiliary variables Vit that assign product i in period t.
Our first formulation (F1) for CLSP with sequence-dependent setup costs and times, and setup

carryover is as follows:

min
∑

i

∑
j

∑
t

cij · Tijt +
∑

i

∑
t

hi · Iit (1)

Iit =Ii(t−1) + Xit − dit i ∈ [N ], t ∈ [T ] (2)∑
i

pi ·Xit +
∑

i

∑
j

∑
t

sij · Tijt ≤Ct t ∈ [T ] (3)

Xit ≤Mit ·

∑
j

Tjit + αit

i ∈ [N ], t ∈ [T ] (4)

∑
i

αit =1 t ∈ [T ] (5)

αit +
∑

j

Tjit =αi(t+1) +
∑

j

Tijt i ∈ [N ], t ∈ [T ] (6)

Vit + N · Tijt − (N − 1)−N · αit ≤Vjt
i ∈ [N ], j ∈ [N ] \ {i},
t ∈ [T ]

(7)

(Xit, Iit, αit, Vit) ≥ 0, Tijt ∈ {0, 1}. (8)

The objective function (1) minimizes the sum of sequence-dependent setup costs and the holding
cost. Constraints (2) represent the inventory balances and (3) ensure that the total production and
setup time in each period does not exceed the available capacity. Requirement (4) guarantees that
a product is produced only if the machine has been set up for it. Constraints (5)-(7) determine the
sequence of products on the machine in each period and keep track of the machine configuration
state by recording the product that a machine is ready to process (setup carryover information is
thereby tracked). We next discuss these constraints further. Hereafter we refer to Tjit as an input
setup for product i in period t and to Tijt as an output setup for product i in period t.

The model does not explicitly have binary variables representing whether a product is produced
or not in a certain period. Production of product i can occur in period t if the machine is set up for
i at the beginning of t or if at least one input setup is performed for product i. These conditions
are guaranteed by constraints (4).

Constraints (5) ensure that αit is one for exactly one product in a given period, i.e., that the
machine is set up for exactly one product at the beginning of each period.

Constraints (6) ensure a balanced network flow of the machine configuration states and carry
the setup configuration state of the machine into the next period. If no setup is performed in period
t, which happens when Tijt = 0 for every i and j, configuration state of the machine is carried
from period t − 1 to period t + 1. The idle time of a period t may also be used to perform an
empty setup for the first product to be produced at the beginning of the next period. If there is
an input setup and no output one for product i in period t, it means this setup was the last one to
be performed on the machine in period t and, consequently, the machine is configured for product
i at the beginning of the next period, i.e., αi(t+1) = 1. On the other hand, if there is an output
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setup and no input one, it means that the machine is configured for product i at the beginning of
period t, i.e., αit = 1.

In general, constraints (6) impose that flow in equals flow out. We note that constraints (2)-(6)
and (8) allow solutions with cycles that are not disjoint. However, such a scenario will never occur
in an optimal solution since it is easy to see that the triangle inequality assumption implies that
the in flow of every node is at most 1.

Let us define a digraph G = ([N ], A = [N ] × [N ]), where nodes correspond to products and
an arc a = (i, j) corresponds to the setup from product i to product j. It follows that the set
{(i, j)|Tijt = 1} corresponds to a collection of disjoint paths and cycles. Constraints (2)-(6) and
(8) admit solutions that have at most one path, but potentially many cycles, called also subtours,
see Figure 1. The left configuration represents a solution that entails one path from product i1 to
product i4 and 3 disconnected subtours. The right configuration illustrates a solution with a cycle
that starts and ends in product i1 and 2 disconnected subtours.

Figure 1: Possible configurations

In order to obtain a feasible solution, we must impose that we have only a single connected
component linked to α’s. It can be shown that constraints (7) achieve this by using auxiliary
variables that value the machine state through any sequence. It is also not difficult to see that
no feasible solution is excluded by (7). A similar modeling trick is known in the context of the
traveling salesman problem, see, e.g., Nemhauser and Wolsey (1988).

We conclude that the underlaying subgraph associated with an optimal T is either a cycle or
a path. Thus it looks like the one depicted in Figure 1 except that there are no disconnected
subtours.

Note that the integrality condition of αit is not necessary. Let us assume that αi1 = 1. From
(6) it follows that αj2 is an integer for every j. Together with (5) we obtain that αj2 is binary. This
reasoning rolls over to the subsequent periods. If the machine is not set up for any product in the
first time period, then the integrality requirements of αj1’s need to be added. As an alternative to
avoid it, the machine can be set up for a virtual product at the beginning of the planning period.
No setup times and costs would be incurred if a setup occurs between this product and any other
one.

The presented model assumes the single-machine case. The extension of this model to multiple
machines is straightforward, also considering other usual features, such as shortages, backlogging
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costs and lower and upper bounds on lot sizes.

Example 1. Consider the following small data set provided in Table 1 for a three-product, three-
period problem.

Table 1: Data for the three product, three-period problem
dit cij

t = 1 t = 2 t = 3 j = 1 j = 2 j = 3 hi

i = 1 15 5 10 0 3 3 10
i = 2 20 35 20 4 0 3 15
i = 3 0 110 40 5 5 0 20

Setup times are sij = 5 time units for i 6= j and zero otherwise. Moreover, Ct = 100 for every t
and pi = 1 for every i.

We solved the model by using a commercial solver. Figures 2 and 3 show the optimal solution
for this instance, when the machine is set up for product 3 at the beginning of the planning period,
i.e., α31 = 1. Note that there is idle time at the end of period 3.

Figure 2: Gantt chart of the optimal solution

Figure 3: Network representation of the optimal solution

It entails seven productions and five setups. The last setup in period 1 is an empty one, since
the idle time at the end of that period is used to set up for product 3, the first one to be produced
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at the beginning of period 2. In period 2 only product 3 is produced and no setup is performed.
Therefore, the setup state of the machine for product 3 is carried from period 1 to period 3. At
the end of the planning horizon the machine is ready to produce product 2.

2.1.1 Benchmarking the First Formulation

In this section we compare our model F1 against Gupta and Magnusson’s model. The experiments
were conducted on an IBM machine with a 3.2 GHz processor and 1GB of random access memory
and CPLEX 9.0 as a mixed integer programming solver.

In Table 2 we conduct a benchmark on the complexity (in terms of the number of binary
variables, continuous variables and constraints) of F1 against the models presented in Clark and
Clark (2000) and Gupta and Magnusson (2005). Here S is the maximum allowable number of
setups per period used in Clark and Clark’s model.

Table 2: Benchmark of models’ complexity
Model Binary Continuous Constraints

variables variables
F1 N2T 4NT NT (2 + N) + 2T

Clark and Clark (2000) N2(ST − 1) + N SNT
NT (SN + 2S + 2)

+1−N
Gupta and Magnusson (2005) N2T + 4NT 2NT NT (5 + 3N) + 8T

As we can observe from the number of binary variables, F1 requires less variables than the other
two. In Example 1, F1 has 27 binary variables, whilst the Clark and Clark’s model has 75 (S has
to be set to 3 to reach the same optimal solution) and the Gupta and Magnusson’s model has 63
binary variables.

In order to computationally evaluate the models, we generated random instances based on the
parameters used by Haase and Kimms (2000). The machine is always set up for product 1 at the
beginning of the planning horizon. The number of products N ranges from 3 to 10, the number of
periods were 3, 4, 5, 7, 10, and 15, and the capacity utilization (Cut) defined as

∑
i dit/Ct takes

the value 0.6. Processing times (pi) are unitary for all of the products. Demand (dit) is selected
based on the uniform distribution U [40, 60], holding costs (hi) based on U [2, 10], and setup times
(sij) based on U [5, 10] (the triangle inequalities hold). The setup costs cij are proportional to the
setup times, i.e., cij = θ · sij with θ = 50. Note that θ implicity defines a relationship between the
setup and holding costs. In the case of the company producing glass containers that inspired this
work, θ falls in the interval [50, 75].

For each triplet N , T , and Cut, three different instances were generated and the average running
times (in seconds) were calculated. Table 3 gives the computational times to obtain an optimal
solution by model F1. An empty field means that at least one of the instances could not be solved
optimally within a 3600 seconds limit.

A comparison between the efficiency of F1 and the Gupta and Magnusson’s model (denoted
by GM ) for Cut = 0.6 is shown in Figure 4. We did not compare F1 to the Clark and Clark’s
model since multiple runs with different values for S would be needed for reaching the same optimal
solution. The vertical axis denoted by F1/GM represents the ratio of the respective computational
times.
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Table 3: Average running times for Cut = 0.6 and θ = 50 (model F1)
T

N 3 4 5 7 10 15
3 0.1 0.1 0.1 0.2 0.2 14.7
4 0.1 0.1 0.3 2.8 1.3 34.7
5 0.2 0.3 0.7 7.3 7.9 300.1
6 0.2 0.3 0.7 2.3 24.5 593.6
7 0.5 1.2 2.0 5.1 310.7 1628.0
8 0.7 1.1 4.7 37.7 162.9
9 0.7 2.1 9.4 55.5 967.8
10 1.4 1.2 39.7 313.1 2875.7

Figure 4: Comparison of run-time performance between F1 and GM models
for Cut = 0.6

It is clear that F1 model is always more efficient than the GM model. Moreover, as the number
of periods increases, the ratio F1/GM tends to 0, i.e., the performance of F1 is significantly better
with increasing T . It turns out that the number of products does not influence significantly the
relative efficiency.

2.2 The Compact Formulation

In this section we propose an alternative equivalent formulation (F2) to CLSP with sequence de-
pendent setup times and setup costs.

Since the triangle inequality holds for both setup costs and setup times, constraints∑
j

Tijt ≤1 i ∈ [N ], t ∈ [T ] (9)

∑
j

Tjit ≤1 i ∈ [N ], t ∈ [T ] (10)
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are always satisfied in an optimal solution. The following inequalities are an alternative formulation
to constraints (7):

ϑit = αi(t+1) +
∑

j

Tijt i ∈ [N ], t ∈ [T ] (11)

∑
i∈S

∑
j∈S

Tijt ≤
∑
i∈S

ϑit − ϑkt + αkt t ∈ [T ], k ∈ S, S ⊆ [N ]. (12)

By substituting (11) in (12), we obtain the equivalent requirement∑
i∈S

∑
j 6∈S

Tijt +
∑
i∈S

αi(t+1) ≥
∑

j Tjkt t ∈ [T ], k ∈ S, S ⊆ [N ]. (13)

If there is a subtour on a subset S of nodes, the left-hand side of (12) equals to |S|. If αit = 0 for
every i ∈ S, this constraint is violated since its right-hand side equals to |S| − 1 for every product
k in the cycle. Note that ϑit = 1 for every i ∈ S.

Now we argue that a feasible solution is not excluded by (13). To this end, let (X, I, α, T ) be
feasible to F1. It suffices to consider the case in which the right-hand side of (13) equals one. For
a fixed S and k ∈ S, let h ∈ [N ] be such that Thkt = 1. We distinguish two cases: h ∈ S or h 6∈ S.

h ∈ S: If subset S contains the node set of the entire cycle or path corresponding to the solution,
then

∑
i∈S αi(t+1) = 1 and (13) is satisfied. On the other hand, if this is not the case, then

we have to consider three different scenarios.

(a) If the solution entails a cycle, then clearly
∑

i∈S

∑
j 6∈S Tijt ≥ 1 since the cycle must

“enter” and “leave” S.

(b) If the solution consists of a path that ends at node k, then αk(t+1) = 1 and, therefore,∑
i∈S αi(t+1) = 1.

(c) If the solution consists of a path that does not end at node k, then either the path ends
at another node in S (and

∑
i∈S αi(t+1) = 1) or it ends at a node not in S and, in this

case,
∑

i∈S

∑
j 6∈S Tijt ≥ 1.

Each of these scenarios yields constraint (13).

h 6∈ S: This case is similar to the above case.

The F2 formulation reads

min
∑

i

∑
j

∑
t

cij · Tijt +
∑

i

∑
t

hi · Iit

subject to (2)− (6), (9), (10),(13)
(Xit, Iit, αit) ≥ 0, Tijt ∈ {0, 1}.

Let PF1 and PF2 denote the feasible sets of the linear relaxations of the formulations F1 and
F2, respectively. In the following theorem we show that F2 is at least as strong as F1.

Theorem 1. We have PF2 ⊆ proj(PF1), where proj denotes the projection of PF1 on the space of
(Xit, Iit, Tijt, αit).
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Proof. We show the statement by exhibiting the appropriate V ′s. They are defined as shortest
path distances with respect to predefined weights. Since shortest path distances are well defined
on networks with no negative weight cycles, we rely on (12) and appropriately selected weights to
show this.

Let (X∗
it, I

∗
it, T

∗
ijt, α

∗
it) ∈ PF2 be arbitrary. We find V ∗

it such that (7) hold, i.e.,

(X∗
it, I

∗
it, T

∗
ijt, α

∗
it, V

∗
it) ∈ PF1 .

Consider time period t and let wij = (N − 1)+N ·α∗
it−N ·T ∗

ijt for every i, j. Consider network
G defined in Section 2.1, where each arc has weight wij . Let us fix an arbitrary source node s and
let disti denote the length of the shortest path from the source node to node i. We show later that
these distances are well defined. They satisfy the following optimality conditions:

disti + wij ≥ distj (i, j) ∈ A(G).

Then, by setting V it = −disti, we obtain

V it − (N − 1)−N · α∗
it + N · T ∗

ijt ≤ V jt. (14)

To ensure that Vit are non-negative, we define V ∗
it = V it + max

j,t
|V jt|. Clearly, from (14) it follows

that (V ∗
ijt, T

∗
ijt) satisfy (7). We conclude that (X∗

it, I
∗
it, T

∗
ijt, α

∗
it, V

∗
it) ∈ PF1 .

In order to complete the proof, we need to show that disti are well defined. This is equivalent
to showing that there are no negative cost cycles with respect to w (see, e.g., Ahuja et al. (1993)).
We need to show that

∑
(i,j)∈C wij ≥ 0 for any cycle C. Let S be the node set of cycle C and

k ∈ S. From (12) and nonnegativity of T ∗, we have∑
(i,j)∈C

T ∗
ijt ≤

∑
i,j∈S

T ∗
ijt ≤

∑
i∈S

ϑit − ϑkt + α∗
kt. (15)

Since ∑
(i,j)∈C

wij = (N − 1) · |S|+ N ·
∑
i∈S

α∗
it −N ·

∑
(i,j)∈C

T ∗
ijt (16)

and by using (15), we obtain∑
(i,j)∈C

wij ≥ (N − 1) · |S|+ N ·
∑
i∈S

α∗
it −N ·

∑
i∈S

ϑit + N · ϑik −N · α∗
ik. (17)

Replacing (11) into (17), yields∑
(i,j)∈C

wij ≥ (N − 1) · |S| −N ·
∑

i∈S\{k}

∑
j

T ∗
jit.

Taking into account (10), leads to∑
(i,j)∈C

wij ≥ (N − 1) · |S| −N · (|S| − 1) ≥ 0,

since |S| ≤ N .
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Note that F2 has an exponential number of constraints. To introduce the most violated
(t, S, k) inequalities (13) we need to solve the separation problem. We next show how to solve this
problem.

Let (X∗
it, I

∗
it, T

∗
ijt, α

∗
it) satisfy (2) − (6), (9) and (10). Consider network G with capacity T ∗

ijt

on arc (i, j) in A. Next we define a new network G0 by adding sink node z to G and arcs (i, z)
for every product i with capacity α∗

i(t+1). Finally, we solve the min (s, z) cut problem for every
product s. The algorithm hinges on the fact that the value of an s − z cut S in G0 equals to∑

i∈S

∑
j 6∈S T ∗

ijt +
∑

i∈S α∗
i(t+1). If there exists a k ∈ S such that

∑
j T ∗

jkt > Z∗ with Z∗ being the
value of the minimum s− z cut, then (t, S, k) inequality is violated.

Since finding a minimum cut in a directed graph can be performed in polynomial time, this
separation problem is polynomial.

2.2.1 Valid Inequalities

In this section we present two classes of valid inequalities (cuts) that strengthen F2.
The first class of valid inequalities is not a family in the original space, but we need to consider

a higher dimensional space. Let Wt denote a binary variable that equals 0 if at least one setup is
performed in period t and 1 otherwise. Then, the following sets of valid inequalities, denoted as
(Wt) inequalities,

αit ≤
∑

j

Tijt + Wt i ∈ [N ], t ∈ [T ]

αit ≤
∑

j

Tji(t−1) + Wt−1 i ∈ [N ], t ∈ [T ]

1−Wt ≤
∑
kj

Tkjt t ∈ [T ]

Wt ≤1−
∑

kj Tkjt

N
t ∈ [T ]

are valid.
To argue that they are valid, it suffices to consider the case αit = 1. We distinguish the following

four cases.

αi(t−1) = 0, αi(t+1) = 0: In this case
∑

j Tji(t−1) ≥ 1,
∑

j Tijt ≥ 1, and Wt = Wt−1 = 0 and therefore
the inequalities are satisfied.

αi(t−1) = 1, αi(t+1) = 0: In this case
∑

j Tijt ≥ 1 and Wt = 0. If
∑

kj Tkj(t−1) ≥ 1, then also∑
j Tji(t−1) ≥ 1 (and Wt−1 = 0) and they are valid. On the other hand, if

∑
kj Tkj(t−1) = 0,

then Wt−1 = 1 and again they are valid.

αi(t−1) = 0, αi(t+1) = 1: This case is similar to the above.

αi(t−1) = 1, αi(t+1) = 1: It is easy to adapt the second case to this case.

The introduction of Wt does not increase significantly the computational time since there are
only T of them, and, furthermore, their integrality is implied.
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It is also helpful to use the well known (l, S) inequalities for uncapacitated single-item lotsizing
(Barany et al. (1984)). The (l, S) inequalities adjusted for the multi-item case of our problem are
expressed as

di1l ≤
∑

t∈[l]\S

ditl ·
(∑

j Tjit + αit

)
+

∑
t∈S

Xit l ≤ T, S ⊆ [l], (18)

where dipg =
∑g

t=p dit. Since there are an exponential number of these constraints, we introduce
them as cutting planes (instead of adding all of them a priori). To find the most violated (l, S)
inequalities, we use the separation algorithm introduced by Barany et al. (1984), which requires
O(NT 2) time steps.

3 A Heuristic for CLSP

In this section we propose a heuristic for finding good solutions to CLSP, i.e., upper bounds on the
optimal value. The heuristic consists of five basic steps. The first two attempt to find an initial
feasible solution, whilst the last three are geared toward improving the quality of the solution.
In the first step the machine is loaded in each period with production gross requirements. Such a
solution typically violates the capacity requirements. In the second step the production is sequenced
from period T to 1. Whenever the capacity constraint is violated, we perform a procedure to
eliminate overtime, which is the amount of the capacity violation. The third step is geared toward
eliminating setups by anticipating productions, and the forth step tries to reduce holding costs
by postponing productions. Finally, the last step attempts to find a better coordination between
periods, eliminating, whenever possible, empty setups.

The heuristic starts with a lot-for-lot forward pass, allocating to each period the demand for
that period (Xit = dit, for every i, t), without considering the capacity constraints.

The second step works backwards and performs in each period both sequencing and amending
procedures. In a given time period, the sequencing procedure is basically a minmax algorithm; in
each pass a new arc (u, v) is selected due to either the variability of the input setup times of its
initial node u (∆Iu) or the variability of the output setup times of its terminal node v (∆Ou). The
variability is measured as the difference between the two smallest setup time values. The node with
the maximum variability among the head and tail nodes is chosen. Then, the other node of the
arc is the argument that minimizes the setup time of the selected arc. Since feasibility is placed
over optimality in this step, the sequencing procedure tries to minimize the sequence dependent
setup times. This procedure is detailed in Appendix A, together with an example. The option of
considering the difference between the smallest and the second smallest setup time is preferred over
the standard greedy approach of basing the selection only on the smallest setup time to “hedge”
against the possibility of making a bad decision and later having very little room for correction. In
addition, computational experiments have revealed this to be a superior criterion. For t < T , the
last product to be scheduled is the first product in period t + 1 (the sink node is specified before
generating the path in Algorithm 1).

Let Ot = max
{

0,
∑

i pi ·Xit +
∑

ij sij · Tijt − Ct

}
denote the amount of overtime in period t.

After the sequencing procedure, there can be time periods with positive overtime, i.e., with violated
capacity. In the amending pass, we push overtime towards the previous period. While working on
period t, we might create a new overtime at period t− 1. In case Ot > 0, in order to determine the
product or set of products whose (partial or entire) lots will be moved backwards, the following
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options are sequentially taken into account in the amending procedure (an option is only considered
if the preceding one has not eliminated Ot).

(a) Let S = {i ∈ [N ] : pi ·Xit ≥ Ot and Xi(t−1) > 0} and k = arg min
i∈S

hi.

Move Ot/pk of Xkt to period t− 1.

(b) Let S = {i ∈ [N ] : 0 < pi · Xit < Ot and Xi(t−1) > 0}, and let fsit denote the minimum
savings in setup time by not producing product i in period t. Formally,

fsit =


∑

j Tijt · sij if αit = 1 and αi(t+1) = 0 and Xit > 0,
min

Xkt>0 ,Xjt>0
k 6=i, j 6=i

[ski + sij − skj ] if αit = 0 and αi(t+1) = 0 and Xit > 0,

0 otherwise.
Note that αi(t+1) = 1 is not considered because it would modify the production sequence in
downstream periods.
Let k = arg min

i∈S
(pi ·Xit + fsit : pi ·Xit + fsit ≥ Ot). If k is not defined, then k = arg max

i∈S
(pi ·

Xit + fsit).
Move all Xkt to period t− 1 and return to (a) if Ot > 0.

(c) Let S = {i ∈ [N ] : pi ·Xit ≥ Ot} and k = arg min
i∈S

hi.

Move Ot/pk of Xkt to period t− 1.

(d) Let S = {0 < pi ·Xit < Ot} and k = arg min
i∈S

(pi ·Xit + fsit : pi ·Xit + fsit ≥ Ot).

If k is not defined, then k = arg max
i∈S

(pi ·Xit + fsit).

Move all Xkt to period t− 1, and return to (a) if Ot > 0.

We note that steps (c) and (d) are similar to (a) and (b), respectively, however, they lead
to a higher capacity consumption in period t − 1 since a new setup has to be performed. This
is the reason for placing step (c) after step (b) as opposed to execute (a) and (c) simultaneously.
Proceeding from the last period to the first period, the solution is either feasible or there is overtime
in period one (and no feasible solution is generated). We point out that finding a feasible solution
is NP-complete, Trigeiro et al. (1989). If the first two steps do not find a feasible solution, then
the entire heuristic fails.

The following steps try to improve the quality of the initial solution. Let φ = {(i, t) : Xit > 0},
let fcit denote the minimum savings in setup costs by not producing product i in period t (its
expression is identical to fsit with setup costs instead of setup times as one of the arguments),
and let Cat = max

{
0, Ct −

∑
i pi ·Xit −

∑
ij sij · Tijt

}
denote the available (idleness) capacity in

period t. The third step of the heuristic is a backwards pass in time that seeks to avoid the
cost and capacity consumption of a setup, by moving an entire lot of product i∗ from period t to
the closest previous period t∗f in which product i∗ is produced and there is enough idle capacity
(Cat∗f

> pi ·Xi∗t) to absorb the new lot, where

(i∗, t∗f ) = arg max
(i,tf )∈φ,(i,t)∈φ

tf <t,Catf
>pi·Xit

[fcit − hi ·Xit · (t− tf )].

Note that these operations may destroy feasibility which needs to be recovered at the end.
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The fourth step is a forward pass that seeks to reduce inventory holding costs, by shifting
forward a fraction or an entire lot of product i from a source period t to a target period tf in
which product i is also produced (Xitf > 0). This move is similar to the one presented by Hindi
et al. (2003), but with a different purpose. Our objective is optimality, while their is feasibility.
The candidate products have currently a positive inventory level (Iit > 0). In each iteration, the
production quantity Qt

i∗t∗f
of product i∗ is carried over from period t into period t∗f , where

(i∗, t∗f ) = arg max
i∈[N ],tf∈{1,...,T−1}

[
hi ·Qt

itf
· (tf − t) : Xitf > 0

]
,

Qt
itf

=min{Xit, Iit, Ii(t+1), . . . , Ii(tf−1), Ctf }.

Finally, the last step looks for improvements in the links between adjacent periods, in a forward
pass. The sequencing procedure of the second step may generate a schedule in which the machine
is set up to produce product i at the beginning of period t+1 (αi(t+1) = 1), without producing i in
that period (Xi(t+1) = 0). If there is a product j such that Xjt > 0, Xj(t+1) > 0, αj(t+1) = 0, j 6= i,
then by assigning αj(t+1) = 1, αi(t+1) = 0 a setup is eliminated in period t + 1. Let S = {j ∈
[N ] : Xjt > 0, Xj(t+1) > 0, αjt = 0, αj(t+2) = 0} be the set of candidate products. The last two
conditions in the definition of S restrict the current analysis to periods t and t+1 (otherwise other
periods would have to be rescheduled). To select product i∗ from S we compute for every j ∈ S
variables ∆Ij and ∆Oj , in the same way as in the sequencing procedure, except that all quantities
are computed with respect to cij (see Appendix A). To compute ∆Oj and ∆Ij we only take into
account products that are produced in periods t and t + 1, respectively. The selected product has
the minimum aggregated variability i∗ = arg min

j∈S
(∆Oj + ∆Ij). Then, both periods t and t + 1 are

rescheduled with the input αi∗(t+1) = 1.
From all the steps described before, only the third and the fifth steps may generate unfeasible

schedules due to the creation of overtime in a period. Whenever this occurs, we try to recover
feasibility by applying the four options of step 2 from the last period with overtime backwards.

4 Computational Results

All computational experiments in this section were performed on an IBM personal computer with
a 3.2 GHz CPU and 1GB of random access memory. CPLEX version 9.0 from ILOG was used as
the mixed integer programming solver. We used the instance generator described in Section 2.1.1
to generate random instances. For each type of instance, characterized by the quadruple N , T ,
Cut and θ, we present the average of the values obtained in 10 randomly generated instances.

We first compare the LP relaxations of models F1 and F2, both strengthened with the (l, S)
and (Wt) valid inequalities. Let F1LP and F2LP denote the values of the linear relaxations of F1

and F2, respectively, and let F ?
1LP and F ?

2LP denote the values of the linear relaxations of F1 and
F2 including all the (l, S) and Wt cuts, respectively. The separation algorithms for inequalities (13)
and (18) were coded in OPL version 3.7 from ILOG. We solved the minimum cut problem of the
disconnected subtour separation algorithm with the Ford-Fulkerson’s algorithm. The running times
of the linear relaxation of F2 strengthened with the (l, S) and (Wt) valid inequalities were always
less than 150 seconds for all instances. As an example, with T = 10 and N = 25, model F1 has 6760
columns and 4135 rows. Figure 5 presents the gap F ?

2LP−F ?
1LP

F ?
1LP

. As proved in Section 2.2, formulation
F2 is stronger than formulation F1. The gap increases with the number of time periods.
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Figure 5: Comparison of F ?
1LP and F ?

2LP for Cut = 0.6 and θ = 100

We next determine the impact of the (l, S) and (Wt) inequalities with respect to F2LP . Let F
(l,S)
2LP

be the value of the linear relaxation of F2LP including the (l, S) cuts and let F
(Wt)
2LP be the value of

the linear relaxation of F2LP including the (Wt) cuts. The computational results are displayed in
Table 4. Both (l, S) and (Wt) inequalities improve the lower bound, with an effect that increases
(decreases) with the number of periods (products). Clearly, the improvement provided by the (l, S)
cuts is especially noteworthy.

Table 5 reports the average deviation of the optimal solution from the lower bound F ?
2LP , i.e.,

its integrality gap. As in Section 2.1.1, the empty buckets mean that at least one of the instances
could not be solved optimally within a 3600 seconds time limit.

Table 4: Comparison (%) of F
(l,S)
2LP and F

(Wt)
2LP with F2LP for Cut = 0.6 and θ = 100

(F (l,S)
2LP − F2LP )/F2LP (F (Wt)

2LP − F2LP )/F2LP

T T
N 5 7 10 5 7 10
5 102.1 177.1 276.0 16.1 44.1 86.1
7 96.1 148.8 256.3 3.8 16.4 41.2
10 87.1 142.7 231.9 0.9 3.3 14.3
15 81.5 133.0 204.0 0.4 0.6 2.4
25 79.5 124.5 191.3 0.2 0.2 0.3

It is clear that the quality of the lower bound is significantly improved as the number of products
(N) increases, and the quality seems to be independent of the number of periods (T ). The results
show that, on average, the integrality gap of the instances with θ = 50 is lower than the integrality
gap of the instances with θ = 100. Nevertheless, this difference becomes smaller as the number of
products in a problem instance increases. In both cases, from 25 onwards the gap is below 1%.

To generate an upper bound, we implemented the heuristic from Section 3 in C++ by using
Visual Studio 6.0 as development environment. Tables 6 and 7 display the minimum, average, and
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Table 5: Integrality gap (%) for Cut = 0.6
θ = 50 θ = 100

T T
N 5 7 10 5 7 10
5 2.7 3.1 2.5 5.6 6.7 5.9
7 1.5 2.1 2.3 4.3 4.5 4.6
10 1.5 0.9 0.9 2.5 3.1
15 1.0 0.9 1.5
25 0.8 1.0 0.7

maximum gap of the heuristic solution from the lower bound, for θ = 50 and θ = 100, respectively.
The running times of the heuristic were always less than 0.4 seconds for all of the instances.

Table 6: Gap (%) between the lower and upper bounds for Cut = 0.6 and θ = 50
T

N 5 7 10
5 2.8/6.4/12.7 2.5/8.3/19.2 2.0/6.4/15.6
7 2.3/6.0/9.9 2.7/7.0/12.7 2.6/6.6/10.3
10 5.6/9.5/18.0 4.7/8.9/13.4 3.3/7.7/14.9
15 4.7/9.7/14.6 4.9/10.0/18.9 6.3/10.1/12.4
25 6.5/9.9/11.9 6.0/11.1/14.9 8.6/12.0/16.3

minimum / average / maximum gap (%)

Table 7: Gap (%) between the lower and upper bounds for Cut = 0.6 and θ = 100
T

N 5 7 10
5 6.8/15.4/22.6 10.3/15.8/18.5 5.1/15.2/26.4
7 4.6/12.9/19.0 6.4/13.5/19.1 9.5/14.5/17.9
10 6.6/13.6/20.1 9.6/13.4/15.5 7.7/13.5/20.7
15 12.9/17.0/20.5 10.4/16.7/21.4 11.9/16.7/23.1
25 20.3/24.0/26.4 21.9/24.1/25.9 20.2/23.6/26.7

minimum / average / maximum gap (%)

The heuristic found a feasible solution for all problem instances. The flexibility of the four
options of step 2 of the heuristic enables us to find feasible solutions, even for tightly capacitated
instances. The results indicate that for both θ = 50 and θ = 100 the heuristic performance
deteriorates as the number of products increases. This situation is pronounced when the setup
costs are considerable higher than the inventory costs (θ = 100). The performance of the heuristic
is not influenced by the number of periods. The amplitude of the gap between the lower and upper
bounds tends to decrease as the number of product increases. Recall that in our production setting
from the glass industry, typically θ = 50 and thus Table 6 is more relevant. Based on Table 5, we
also conclude that the most significant portion of the gap comes from the heuristic (and not from
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a weak lower bound).
To the best of our knowledge, Gupta and Magnusson (2005) is the only paper in the literature to

publish results (gaps between lower and upper bounds) for this problem. However, since inventories
and production quantities are expressed in units of capacity (normalized to one), they adapted
the parameters of the instance generator used by Haase and Kimms (2000). By comparing our
parameters with the parameters of their generator, their instances are similar to the case with
θ = 50. The authors present the performance of their heuristic from N = 2 to N = 15 for T = 4,
and from T = 2 to T = 15 for N = 4. For problem instances with 15 products and 4 periods, Gupta
and Magnusson (2005) report an average gap between lower and upper bounds of approximately
20%, and for problem instances with 4 products and 15 periods an average gap of approximately
30%. From Table 6 it clearly follows that our models and the heuristic are better.

5 Concluding Remarks

We have presented two novel exact formulations for modeling setup carryover in the challenging
CLSP problem with sequence dependent setup times and costs. The models are simpler than other
available in the literature. Note that all the models published so far only perform a setup whenever
there is sufficient time available to do it entirely. In the case of very large setup times (as the ones
observed in the glass container industry that may reach 120 hours), setup operations may start at
the end of one period and finish at the beginning of the following period. This new feature has not
yet been incorporated in CLSP models.

We have formally shown that one of the formulations is stronger than the other and we have
implemented valid inequalities that enable us to reduce the integrality gap of the LP relaxation
with a desirable property: the integrality gap reduces as the number of products increases (it is
independent on the number of periods). It is clearly important to find strategies to combine even
stronger valid inequalities based on the polyhedral structure of this problem with tighter reformula-
tions. These inequalities should take into account the capacity constraints and the potential cycles
and paths of products sequence in each time period.

We have described a five-step heuristic that is effective both in finding a feasible solution and
in producing good solutions to these problems (measured by the gap between the lower and upper
bounds). The simplicity of this heuristic enables its implementation as a building block of more
complex heuristics and metaheuristics. It is worth pointing out that it may effectively generate
good initial solutions and repair infeasibilities due to capacity requirements of solutions generated
by any local search procedure.
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A The Sequencing Heuristic

In this section, we present a heuristic to sequence N products in order to minimize the sequence
dependent setup times sij . Since cycles are not taken into account and each product is produced,
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the final sequence (path) has N − 1 edges. The sequencing heuristic is given in Algorithm 1, where
Θ is a large number, e.g., Θ = 1 + max

i,j
sij .

loop N − 1 times
for k = 1 to N

i1 = arg min
i∈[N ]

(sik : sik 6= Θ)

i2 = arg min
i∈[N ]\{i1}

(sik : sik 6= Θ)

j1 = arg min
j∈[N ]

(skj : skj 6= Θ)

j2 = arg min
j∈[N ]\{j1}

(skj : skj 6= Θ)

∆Ok = skj2 − skj1

∆Ik = si2k − si1k

end for
i′ = arg max

i
(∆Oi), j′′ = arg min

j∈[N ]
(si′j)

j′ = arg max
j

(∆Ij), i′′ = arg min
i∈[N ]

(sij′)

if ∆Oi′ > ∆Ij′ or (∆Oi′ = ∆Ij′ and si′j′′ ≤ si′′j′) then
Ti′j′′t = 1

else
Ti′′j′t = 1, i′ = i′′, j′′ = j′

end if
sj′i′′ = Θ
for k = 1 to N

si′k = skj′′ = Θ
end for

end loop

Algorithm 1: The Sequencing Procedure in Period t

Figure 6 gives an example of the above procedure. Instead of setting the time of already
considered arcs to Θ, we delete such arcs.
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Figure 6: Illustrative example
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