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Abstract

We develop methods for reducing the dimensionality of large data sets, common in biomed-
ical applications. Learning about patients using genetic data often includes more features
than observations, which makes direct supervised learning difficult. One method of reduc-
ing the feature space is to use latent Dirichlet allocation to group genetic variants in an
unsupervised manner. Latent Dirichlet allocation describes a patient as a mixture of topics
corresponding to genetic variants. This can be generalized as a Bayesian tensor decompo-
sition to account for multiple feature variables. Our most significant contributions are with
hierarchical topic modeling. We design distinct methods of incorporating hierarchical topic
modeling, based on nested Chinese restaurant processes and Pachinko Allocation Machine,
into Bayesian tensor decomposition. We apply these models to examine patients with one
of four common types of cancer (breast, lung, prostate, and colorectal) and siblings with
and without autism spectrum disorder. We linked the genes with their biological pathways
and combine this information into a tensor of patients, counts of their genetic variants, and
the genes’ membership in pathways. We find that our trained models outperform baseline
models, with respect to coherence, by up to 40%.

1. Introduction

A tensor is a multidimensional array of data. Tensors can be decomposed into parts for easier
analysis. This decomposition is typically done by grouping data along each mode into topics.
Particularly, we examine two variations on the tensor decomposition formula: Bayesian
tensor decomposition, i.e., the use of Bayesian inference to compute the components, and
hierarchical decomposition, which applies a structure to the topics.

Bayesian non-hierarchical and non-Bayesian hierarchical tensor decompositions have al-
ready been studied. For example, Yang and Dunson (2016) developed a conditional Bayesian
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Tucker decomposition, the probability of a categorical response depending on p categorical
predictors. Grasedyck (2010) developed a hierarchical Tucker decomposition format. Also,
Luo et al. (2015) constructed a Tucker decomposition with a hierarchy of modes.

We first define a non-hierarchical conditional Bayesian Tucker decomposition as multiple
feature variables depending on a sample variable. Then, we develop hierarchical topic
models for multiple modes. We use these topic models in the conditional Bayesian Tucker
decomposition to group patients based on their counts of genetic variants and pathways.
Then, we examine and compare the groups generated by different models.

Our contributions are as follows.

• We define a new formulation for conditional Bayesian Tucker decomposition.

• We develop methods for incorporating hierarchical topic models into the Bayesian
Tucker decomposition.

• We study three known properties of Chinese restaurant processes (CRP) in the context
of multimodal topic models.

• We derive a collapsed Gibbs sampler for the conditional Bayesian Tucker decomposi-
tion with an arbitrary number of modes.

• We present a novel method of feature reduction for sparse count data.

In Section 2, we review existing literature related to our research. In Section 3, we define
our decomposition and topic models. In Section 4, we discuss which properties apply to
our models. In Section 5, we discuss algorithms used to compute our decompositions. In
Section 6, we evaluate our models trained on the example data sets.

2. Related Work

Two tensor decomposition methods are considered generalizations of singular value decom-
position: Tucker decomposition, which decomposes a tensor as a core tensor multiplied
by matrices along each mode, and CANDECOMP/PARAFAC (CP) decomposition, which
decomposes a tensor as the sum of rank-one tensors (Kolda and Bader, 2009). Luo et al.
(2017b,a) suggested using tensor decompositions to identify latent groups in biomedical
fields, including genotyping and phenotyping.

Models exist for decomposing probability tensors using a Dirichlet prior. Dunson and
Xing (2009); Zhou et al. (2015) proposed using a Bayesian model to decompose a joint
probability tensor using CP decomposition. Also, Yang and Dunson (2016) proposed a
Bayesian model to decompose a conditional probability tensor according to the Tucker
decomposition. They used a finite sized core tensor, which can be adjusted as part of
the posterior algorithm. Dunson and Xing (2009); Yang and Dunson (2016); Zhou et al.
(2015) imposed Dirichlet priors (or a Dirichlet stick-breaking prior) on the components of
the decomposition and proposed a Gibbs sampler for the posterior computation. Dunson
and Xing (2009); Zhou et al. (2015) used a CP decomposition, while we use a Tucker
decomposition. Yang and Dunson (2016) used a Tucker decomposition with 1 response
variable conditional on p predictor variables, while we use p feature variables conditional on
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1 sample variable. In addition to this different formulation, we add a hierarchical structure
which has not been studied before in the tensor context.

If a conditional Bayesian tensor decomposition consists of only two modes, one sample
variable and one feature variable, then both Yang and Dunson’s (2016) and our model are
equivalent. In this case, both decompositions simplify to a matrix factorization method,
latent Dirichlet allocation (LDA), which has been studied extensively. Hoffman et al. (2010)
and Buntine (2002) stated that LDA can be viewed as a probabilistic matrix factorization
of the counting matrix of words in each document into a matrix of topic weights and a
dictionary of topics. Also, Schein et al. (2016) noted that there is a connection between
Poisson matrix factorization and LDA.

Some researchers studied Bayesian Tucker decomposition with other priors. Schein et al.
(2016) modeled country-to-country interactions using a four-mode tensor to represent an
action performed between two countries in a certain month. They applied a Bayesian
Poisson Tucker decomposition to group countries, actions, and time steps. Xu et al. (2012)
proposed a model for computing the Tucker decomposition of a tensor using a normal prior
and a variational expectation maximization posterior algorithm.

Chi and Kolda (2012) developed a Poisson CP decomposition, called CP Alternating
Poisson Regression, and fit their model using a log-likelihood score.

Hierarchical decompositions were studied in a non-Bayesian context. Hackbusch and
Kühn (2009) defined the hierarchical Tucker format, which defines the hierarchy accord-
ing to vector spaces and subspaces. Grasedyck (2010) developed algorithms for computing
decompositions in the hierarchical Tucker format based on hierarchical singular value de-
composition. Song et al. (2013) defined a recursive decomposition algorithm for estimating
a latent tree graphical model of a hierarchical tensor decomposition. Their model depicts
the joint probability of a set of observed variables as nodes, dependent on their hidden par-
ents. Schifanella et al. (2014) proposed a method for hierarchical decomposition of tensors
by adjusting the resolution or size of the core tensor to provide different resolution decom-
positions of the same data. Unlike our model, none of these models used Bayesian inference
nor expressed the hierarchy of latent topics in each mode. Instead, these models depicted
a hierarchy of the vector spaces, a hierarchy of hidden variables, or different resolutions.
Also, Teh et al. (2006) developed hierarchical Dirichlet process to cluster grouped data.

In summary, our hierarchical Bayesian Tucker decomposition model is different from
previous Bayesian tensor decomposition models because we use a unique formulation and
impose a hierarchical structure to the latent topics.

3. Models

In what follows, we use bold font to denote vectors, matrices, and tensors and non-bold to
denote scalars. If u is a vector, we denote uj as its jth component. Table 1 summarizes the
variables used and their corresponding definitions for the autism spectrum disorder (ASD)
and cancer examples.

In Section 3.1, we define our conditional non-hierarchical Bayesian Tucker decomposi-
tion. In Section 3.2, we discuss hierarchical topic models for a single mode. In Section 3.3,
we define the conditional hierarchical Bayesian Tucker (HBT) decomposition. In Appendix
C.1, we discuss generalizations of the hierarchical topic models to p ≥ 3 feature modes.
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Definition Example
x sample variable id patient index
y feature variables genes and pathways
z hidden topic gene and pathway group
π conditional probability tensor P (y|x) patients’ gene and pathway prevalence
φ topic prevalence for each sample each patient’s topic distribution
ψ prevalence of each feature in each topic prevalence of genes and pathways in their

respective topics
λx total count for sample x total genetic variants for patient x

cj specific value of

{
x, if j = 0

yj , if j > 0
a specific patient, gene, or pathway

dj size of tensor in mode j number of patients, genes, or pathways
p number of feature modes 2 modes (genes and pathways)
Kj number of topics for mode j number of gene or pathway topics
K set of possible topics set of gene and pathway topics
h specific topic set specific gene and pathway topics
T x sample x’s path through hierarchical model path of patient x through PAM
L depth of hierarchical model 3-level PAM
` level in hierarchical model level of PAM

τ (`,j) number of topics in level ` for mode j number of topics in specific level of PAM
α,β priors for φ,ψ uniform prior with value 1
γ prior or parameter for T uniform prior over topics in next level

Table 1: Notation

3.1. Conditional Bayesian Tucker Decomposition

First, we define our tensor decomposition for a counting tensor without a hierarchical struc-
ture. This model details how the Bayesian Tucker decomposition is constructed and per-
formed, i.e., which quantities the core tensor and factor matrices represent. In the context
of applications to ASD and cancer, this model decomposes a tensor of the count of each
patient’s genetic variants and pathways as the mixture of the patient’s genetic variant and
pathway groups, the mixture of genetic variants in each genetic variant group, and the mix-
ture of pathways in pathway groups. The decomposition provides proportions of genetic
variant and pathway groups to which each patient belongs, as well as the proportion of each
genetic variant within the genetic variant groups and pathways within the pathway groups.

Given a counting tensor B = {bc0···cp},1 we first normalize it by dividing by λc0 =
d1∑
c1=1
· · ·

dp∑
cp=1

bc0···cp to obtain the d0×· · ·×dp conditional probability tensor πc0···cp =
bc0···cp
λc0

=

P (y1 = c1, · · · , yp = cp | x = c0), where y and x are the feature and sample vari-
ables. In the genetic applications, π = P (genetic variants, pathways | patient), y rep-
resents the genes and pathways, and x is a patient. We define the conditional Bayesian
Tucker decomposition as the Tucker decomposition of the conditional probability tensor,

πc0···cp =
∑
h∈K

φc0h
p∏
j=1

ψ
(j)
hjcj

, with K = {(h1, · · · , hp) | hj ∈ {1, · · · ,Kj} ∀ j ∈ {1, · · · , p}},

latent classes z, φc0h1···hp = P (z1 = h1, · · · , zp = hp | x = c0), and ψ
(j)
hjcj

= P (yj =

1. Convention dictates that if B is a tensor, bc0···cp are its elements, for ci ∈ {1, · · · , di} and i ∈ {1, · · · , p}.
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Algorithm 1: Generative Process

for x = 1, · · · , d0 do

Draw core tensor φ̃x ∼ Dir(α) ∈ SK
for k ∈ K do

φxk = φ̃xvec(k)

for j = 1, · · · , p do
for k = 1, · · · ,Kj do

Draw auxiliary matrices

ψ
(j)
k ∼ Dir

(
β(j)

)
∈ Sdj

for x = 1, · · · , d0 do
for i = 1, · · · , λx do

Draw latent topics

ε ∼ Mult
(
{1, · · · ,K}, φ̃x

)
z

(x)
i = vec−1(ε)

for j = 1, · · · , p do
Draw features

y
(x)
ij ∼ Mult

(
{1, · · · , dj}, ψ(j)

z
(x)
ij

)

cj | zj = hj) for all j. In our example, φ = P (gene groups, pathway groups | patient),

ψ(1) = P (genes | gene groups), and ψ(2) = P (pathways | pathway groups). In this model,
for each x, a joint topic distribution over topic vectors h ∈ K is first selected, governed
by core tensor φ. Next, for all modes j > 0, the selected topic hj is a mixture of

choices {1, · · · , dj}, governed by auxiliary matrix ψ(j). We note that
∑
h∈K

φc0h = 1 for

all c0 ∈ {1, · · · , d0} and
dj∑
cj=1

ψ
(j)
hjcj

= 1 for all j and hj .

For ease of notation, we define K =
p∏
i=1

Ki and map vec : K 7→ {1, · · · ,K} as a one-

to-one mapping from a tuple of topics to a single topic index. Our model does not depend
on the choice of such map.2 The generative process is presented in Algorithm 1, where

Sd =

{
v ∈ Rd+

∣∣∣ d∑
i=1

vi = 1

}
is the d-dimensional probability simplex.

The model probability is given by the product of components: factor matrices given
their priors, core tensor given its prior, and individual count probabilities. The probability
of the factor matrices ψ given its priors β is a nested product over modes j and topics hj
in that mode given the prior for that mode:

P (ψ|β) =

p∏
j=1

Kj∏
hj=1

P
(
ψ

(j)
hj

∣∣β(j)
)
. (1)

The probability of the core tensor φ given its prior α is a product over all samples x given
the prior:

P (φ|α) =

d0∏
x=1

P (φx|α) . (2)

The individual count probabilities are a nested product over samples x and counts within

each sample λx of the hidden topics z
(x)
i ’s probability given the core tensor ψx and the

2. An example mapping would be vec(k) = k1 + (k2− 1)K1 + · · ·+ (kp− 1)
p−1∏
i=1

Ki. This is a generalization

of the column-major order map.
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feature variable y
(x)
i ’s probability given the feature matrices ψ

z
(x)
i

:

P (Y ,Z|φ,ψ) =

d0∏
x=1

λx∏
i=1

P
(
y

(x)
i

∣∣ψ
z

(x)
i

)
P
(
z

(x)
i

∣∣φx) . (3)

The overall model probability is a product of the components in (1)-(3):

P (Y ,Z,φ,ψ|α,β) = P (ψ|β)P (φ|α)P (Y ,Z|φ,ψ). (4)

3.2. Overview of CRP & PAM

As a prelude to our discussion on hierarchical topic models in multiple modes, we first
discuss relevant hierarchical topic models for a single feature mode. We start with the
nested Chinese Restaurant Process (nCRP) and hierarchical LDA (hLDA). Then, we define
the Pachinko Allocation Machine (PAM) and hierarchical PAM (hPAM).

Blei et al. (2003) defined nCRP as follows. Imagine a city with an infinite number of
infinite-table Chinese restaurants. One restaurant is designated as the root. On each table
in each restaurant, there is a card referring to another restaurant. The root restaurant
never appears on a card and other restaurants appear on one card within the entire city.
Customers visit this city for a set number of nights, starting at the root restaurant and
each subsequent night visiting the restaurant on the previous night’s card. Tables within
a restaurant are selected based on the CRP. Thus, the restaurants are organized into an
infinitely-branched hierarchical tree of set depth L (the length of stay), with each restau-
rant having an associated level. Furthermore, each customer x has a corresponding set of
restaurants T x that they visited (their path through the tree), which determines their set of
topics. In natural language processing, customers correspond to documents and restaurants
correspond to topics. The transition from LDA to hLDA is made by drawing a path through
the nCRP for each document, then using the set of restaurants visited by a customer as the
set of topics in a document (only these topics have non-zero prevalence).

Li and McCallum (2006) defined PAM as a model that connects topics with a directed
acyclic graph (DAG). PAM samples a topic path through the DAG, starting at the root,
and sampling each child according to the multinomial distribution of the current topic.
Although a PAM can use an arbitrary DAG, we use a DAG with a leveled structure, i.e.,
for a set number of levels L, each node on level ` ∈ {1, · · · , L− 1} is a parent of every node
on the next level `+ 1. In this model, the number of topics τ (`) are predetermined for each
level `. Mimno et al. (2007) defined hPAM as a PAM model where all nodes are associated
with distributions over the vocabulary, rather than only those on the lowest level. In this
model, a path is drawn through the PAM for each document, where the set of nodes visited
determines the set of topics in a document.

3.3. Conditional Hierarchical Bayesian Tucker Decomposition

Next, we extend our conditional Bayesian Tucker decomposition to topic hierarchies. For
simplicity, we assume p = 2 feature modes, but we discuss generalizations to p ≥ 3 in
Appendix C.1.
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Mode 1

Lvl 1

Lvl 2

Lvl 3

Lvl 4

Mode 2

(a) Independent Trees

Mode 1, Lvl 1

Mode 2, Lvl 1

Mode 1, Lvl 2

Mode 2, Lvl 2

(b) PAM-Based

Figure 1: Example Hierarchical Topic Models (p = 2)

As outlined in Section 3.2, the transition from LDA to hLDA uses a nCRP. The challenge
with implementing this in our context is that we have multiple modes of topics. It is not
clear how to generalize nCRP with each table representing a pair of topics rather than a
single topic. In the case of hLDA, when a customer sits at a new table, it represents a new
topic. But if each table represents a pair of topics rather than a single topic, what does a
new table represent? A new topic in one or both modes or a new combination of existing
topics? There is no clear way of determining what a new table represents without imposing
an order on pairs of groups; but we prove in Section 4.2 that there is no natural order where
the order of customers does not matter.

We describe two solutions to this problem: the independent topic model and the hier-
archical topic model. The hierarchical model requires an order of modes since the choice
of topic for each mode depends on the topic in its parent mode. Given x ∈ {1, · · · , d0}, let
T x be its path through a conceptual topic model. The topic distribution φx along any such
T x is drawn from Dir(α) ∈ SL, with L being the length of T x. In other words, T x dictates
which topics have positive probabilities.

The probability for a HBT decomposition (illustrated in its plate diagram, Figure 4
in Appendix A) is constructed similarly to that of the non-hierarchical model (4). While
the factor matrices (1) and individual count probabilities (3) are the same, the core tensor
probability (2) must be modified to incorporate the hierarchical model. Here, we incorporate
the probability of each sample’s x path T x given the parameter γ. The core tensor φx’s
probability for each sample depends on both prior α and path T x since the path dictates
which topics have non-zero probabilities:

P (φ,T |α,γ) =

d0∏
x=1

P (φx|α,T x)P (T x|γ) . (5)

Combining (1), (3), and (5) yields the overall model probability:

P (Y ,Z,φ,ψ,T |α,β,γ) = P (ψ|β)P (φ,T |α,γ)P (Y ,Z|φ,ψ). (6)

We define an independent topic model (p = 2) as containing two separate topic models
for each mode (example shown in Figure 1(a)). Each customer x draws two paths, one

for each mode, T
(1)
x and T

(2)
x , represented as a set of topics in that mode. The overall

topic list T x consists of all possible pairs in T
(1)
x and T

(2)
x . A common choice draws these

paths T
(1)
x and T

(2)
x by means of two independent nCRPs as follows: Let P (x,`,m) be the
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probabilities associated with two independent CRPs, with hyper-parameters γ
(`)
m , where

m ∈ {1, 2} is the mode and ` ∈ {1, · · · , Lm} is the level of the tree. In this model, the
number of tables (topics) in each mode τ (`,m) varies. Specifically,

P
(x,`,m)
i =


ni

γ
(`)
m +n−1

, table i occupied

γ
(`)
m

γ
(`)
m +n−1

, next unoccupied table i
,

where customer x is the nth customer at the restaurant and ni customers are already seated
at table i. While others have imposed independent hierarchical structures on the topics of
different modes (Song et al., 2013; Schifanella et al., 2014), none have incorporated nCRP
into their topic models.

We define a hierarchical topic model (p = 2) as a single topic model with a dominant
mode (example depicted in Figure 1(b)). Without loss of generality, we assume the first
mode is dominant. At the first level, each customer x starts at the root topic 1 in mode

1; then, each customer chooses a topic j in mode 2, according to probability P
(1,1)
1 . At

each subsequent level ` ∈ {2, · · · , L}, each customer chooses a topic i in mode 1, according

to P
(`−1,2)
j , then a topic j in mode 2, according to P

(`,1)
i . Here, P

(`,m)
i is the probability

distribution over its children topics. There are two obvious choices for the overall topic list
T x, the pairs of topics visited at each level of the DAG (which we call the level method)
or all possible pairs of elements in the topic lists for each mode (we call this the Cartesian

method). If PAM ideas are used, P
(`,m)
i (for all i ∈ {1, · · · , τ (`,1)} and m ∈ {1, 2}}) are

multinomials drawn from Dirichlet distributions, i.e., P
(`,m)
i ∼ Dir

(
γ

(`,m)
i

)
∈ Sτ (`,m) . While

PAM has been used to model interactions between variables for LDA (Li and McCallum,
2006), it has not been used to model topic interactions between multiple modes.

4. Properties

First, in Section 4.1, we define the exchangeability, partition, and rich-get-richer properties,
based on those of the CRP, which govern topic models. Blei (2007) defined the exchangeabil-
ity property as the probability of a seating being invariant under permutations of customers.
The partition property implies that two seating arrangements, consisting of the same num-
ber of tables with equal occupants, have the same probability. In the single mode case,
this property follows from exchangeability, but we find that this is not necessarily true for
multiple modes. Teh (2010) described the rich-get-richer property as large clusters growing
faster than smaller clusters. For simplicity, we assume p = 2 feature modes and study a
single level. In Section 4.2, we prove that all of these properties cannot strictly apply in the
p = 2 case.

4.1. Definitions

In order to define these properties, we first need to define a partition, an arrangement of
customers into topics. Here, we assume the number of customers n is fixed.

Definition 1 The count of customers assigned to each topic is a partition. For partition
ρ = {ρij}, ρij is the count of customers assigned topic i in mode 1 and topic j in mode 2.
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In other words, ρij is the number of customers sitting at the same table. Here, ρ is a matrix,
with rows and columns representing the topics in each mode. Note that n =

∑
i,j
ρij .

We first define the exchangeability property. This property is necessary because if the
order of customers affects the performance of a model it would be impossible to determine
how well it would perform inference, i.e., predict new customers.

Definition 2 We say that a topic model has the exchangeability property if the probability
of a partition does not depend on the order of the customers, i.e., P (ρ|order of customers) =
P (ρ|Π(order of customers)), where Π is a permutation of the order.

Next, we define two variants of the partition property: strict and loose. This property
implies that the label and order of topics does not matter.

Definition 3 We say that a topic model has the strict partition property if for all parti-
tions ρ and Π(ρ) permutations of the elements of ρ, P (ρ) = P (Π(ρ)).

Definition 4 We say that a topic model has the loose partition property if for all parti-
tions ρ and Π(ρ) permutations of the rows and columns of ρ, P (ρ) = P (Π(ρ)).

Note that if strict partition holds, so does loose partition. However, the converse does not
necessarily hold.

Lastly, we define the rich-get-richer property under the assumption of the exchangeabil-
ity and partition properties. The general idea is that new customers are more likely to join

topics with more customers. Let ρ(·)i =
K1∑
j=1

ρji and ρi(·) =
K2∑
j=1

ρij . In addition, let ξi be the

probability of a new customer being assigned to topic i in mode 1 and θij be the probability
of a new customer being assigned to topic j in mode 2 given that the customer was assigned
to topic i in mode 1. Due to the exchangeability property, ξi and θij do not depend on the
order of the customers. Also, for the independent topic model, we can drop the dependency
in θ on the topic in the first mode and denote θi as the probability of a new customer being
assigned to topic i in mode 2.

Definition 5 We say that an independent topic model has the rich-get-richer property if

1. assuming ρi(·) 6= 0 and ρj(·) 6= 0, then ξi > ξj if and only if ρi(·) > ρj(·) (Mode 1), and

2. assuming ρ(·)i 6= 0 and ρ(·)j 6= 0, then θi > θj if and only if ρ(·)i > ρ(·)j (Mode 2).

Definition 6 We say that a hierarchical topic model has the rich-get-richer property if

1. assuming ρi(·) 6= 0 and ρj(·) 6= 0, then ξi > ξj if and only if ρi(·) > ρj(·) (Mode 1), and

2. assuming ρki 6= 0 and ρkj 6= 0, then θki > θkj if and only if ρki > ρkj, ∀ k (Mode 2).

The difference between definitions 5 and 6 is that the independent version only compares
the fibers (rows and columns) of the partition, while the hierarchical version compares
individual elements within each fiber.
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4.2. Conditions

Now, we determine under which conditions the loose and strong partition properties hold
in multi-modal hierarchical models. While we sketch our proofs here, detailed proofs are
in Appendix E. We begin with the PAM-based model (p = 2), giving the specific case in
which the loose partition property holds.

Theorem 7 The loose partition property holds in the PAM model (p = 2) if and only if
the parameters of the Dirichlet distributions are symmetric.

In the proof, we consider a single Dirichlet distribution and show that a uniform prior
is sufficient for the loose partition property to hold. Then, we use a non-uniform example
to show that uniformity is necessary for this property to hold. Lastly, we argue that the
theorem holds for the entire PAM model if and only if it holds for every node in the model.

Next, we prove that a hierarchical topic model (p = 2) for which all three properties
apply does not exist. First, we show that the probability of a new customer being assigned
a topic in each mode has a functional form.

Lemma 8 If there exists a hierarchical topic model (p = 2) where the rich-get-richer
strong partition, and exchangeability properties hold, then ξ and θ are of the form: ξi ∝{
f
(
ρi(·)

)
, ρi(·) > 0

γ0(K1), ρi(·) = 0
and θij ∝

{
gi(ρij), ρij > 0

γi(K2), ρij = 0
, for some functions f and gi (∀ i).

We show that this formulation is sufficient to satisfy the strong partition property and
necessary to satisfy the rich-get-richer and exchangeability properties.

Next, we show that these functions must be linear.

Lemma 9 Given the assumptions and results of Lemma 8, f and gi (for all i) are linear.

We use the formula from Lemma 8 to compute the probabilities for two different order-
ings. Given the exchangeability property, these formulations must be equal. From this, we
conclude f must be linear.

Finally, we use the linear form to show that such a model does not exist.

Theorem 10 There does not exist a hierarchical topic model (p = 2) where the rich-get-
richer, strong partition, and exchangeability properties all hold.

We exhibit in Appendix E an example to show that the strict partition property is
violated by the formulation in Lemma 9.

However, the independent trees model allows all three properties. This follows from the
properties of each independent CRP.

Theorem 11 The exchangeability, loose partition, and rich-get-richer properties hold in
the independent trees model.
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5. Algorithms

We use a Gibbs sampler to compute the posterior model based on our prior and samples.
This algorithm alternates between drawing new paths through the hierarchical topic model
and solving the Bayesian Tucker decomposition problem. This scheme is similar to that
developed for hLDA by Blei et al. (2003). We present a general overview of our Gibbs
sampler in Algorithm 2.

Algorithm 2: Algorithm Overview

Initialize hierarchical topic model and Bayesian Tucker decomposition
for i = 1, · · · , I do

Draw Bayesian Tucker decomposition φ,ψ and latent topics z (Algorithm 3 or 6)
Draw hierarchical topic model T (Algorithm 4, 5, or 7)

In Section 5.1 we present two algorithms for sampling from the Bayesian Tucker decom-
position, and in Section 5.2 we present Gibbs samplers for both the independent trees and
PAM-based topic models. In Appendix F, we present variations and modifications that can
be made to these models to improve performance.

5.1. Sampling from Bayesian Tucker Decomposition

Here, we present a collapsed Gibbs sampler for our Bayesian Tucker decomposition, Algo-
rithm 3, which we derive in Appendix C. We give a non-collapsed version, Algorithm 6, in
Appendix B. When applying a topic model, we constrain these algorithms so that φxk is
positive for k ∈ T x and zero for k 6∈ T x, for all x.

While these algorithms are based on the Yang and Dunson (2016) algorithm, they did
not derive a collapsed sampler and their model uses a different decomposition form. Our
collapsed algorithm makes sampling easier by integrating out the Dirichlet distributions.

Here, nkx is the count of topic k given sample x, m
(j)
hy is the count of feature y in mode j

given topic h, and a superscript −xi indicates omitting count i. Recall that the bold font

implies m
(j)
h is a vector over y’s.

Algorithm 3: Collapsed Bayesian Tucker Decomposition Gibbs Sampler

for x = 1, · · · , d0 do
for i = 1, · · · , λx do

Compute latent topic probabilities

P
(
z

(x)
i = k

∣∣ n−xi,m−xi,α,β
)
∝
(
nk,−xix + αk

) p∏
j=1

m
(j),−xi
kjyj

+β(j)
yj∑dj

y=1m
(j),−xi
kjy

+β
(j)
y

Draw latent topic z
(x)
i from P

(
z

(x)
i = k

∣∣ n−xi,m−xi,α,β
)

5.2. Hierarchical Topic Models

Next, we present Gibbs samplers for the independent trees and PAM-based hierarchical topic
models. For the PAM-based model, we give both non-collapsed and collapsed versions.
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Algorithm 4 describes how paths are drawn through an independent trees model. This

algorithm is a generalization of the hLDA algorithm by Blei et al. (2003). Here, m
(j),−x
cx,`,y is

the count of features y assigned to topic cx,` in mode j, m
(j),−x
cx,`,(·) :=

dj∑
y=1

m
(j),−x
cx,`,y , and subscript

−x indicates omitting sample x.

Algorithm 4: Independent Trees Algorithm

for j = 1, · · · , p do
for x = 1, · · · , d0 do

for ` = 1, · · · , Lj do

P
(
Y (j)
x |Y

(j)
−x, c

(j),Z(j)
)

=
Γ

(
m

(j),−x

cx,`,(·)
+djβ

(j)

)
∏

y Γ
(
m

(j),−x
cx,`,y

+β(j)
) ∏y Γ

(
m(j)

cx,`,y
+β(j)

)
Γ

(
m

(j)

cx,`,(·)
+djβ(j)

)
P
(
c
(j)
x,`|c

(j)
−x`

)
= prior imposed by CRP

P
(
c
(j)
x,`|Y

(j), c
(j)
−x,`,Z

(j)
)
∝ P

(
Y (j)
x |Y

(j)
−x, c

(j)
` ,Z(j)

)
P
(
c
(j)
x,`|c

(j)
−x`

)

We provide collapsed (Algorithm 5) and non-collapsed (Algorithm 7 in Appendix B)
algorithms to draw paths through the PAM-based model. The collapsed algorithm is derived
by integrating out the Dirichlet distribution and dropping a constant. Li and McCallum
(2006) and Mimno et al. (2007) gave collapsed Gibbs algorithms for four-layered PAM and
hPAM models, but not for arbitrary DAGs. This algorithm uses an arbitrary PAM-based

hierarchical structure, as described in Appendix C.1. In Algorithm 5, n
(`,j)
ik is the count of

customers assigned to topic k in the mode j at level ` and parent topics i.

Algorithm 5: Collapsed PAM-Based Hierarchical Topic Model Algorithm

for ` = 1, · · · , L do
for j = 1, · · · , p do

if ` 6= 1 or j is not a root mode then
for x = 1, · · · , d0 do

P
(
Y (j)
x |Y

(j)
−x, c

(j),Z(j)
)

=
Γ
(
m

(j),−x

k,(·) +djβ
(j)
)

∏
y Γ
(
m

(j),−x
k,y +β(j)

) ∏y Γ
(
m

(j)
k,y+β(j)

)
Γ
(
m

(j)

k,(·)+djβ
(j)
)

P
(
c
(j)
x,` = k|Y (j), c

(j)
−x,`,Z

(j)
)
∝ P

(
Y (j)
x |Y

(j)
−x, c

(j)
` ,Z(j)

)(
γ

(`,j)
ik + n

(`,j)
ik

)

6. Model Evaluation

First, we describe the cancer and ASD data that we used to train and analyze our models
in Section 6.1. We compare the coherence of various models trained on all three data sets
in Section 6.2. Then, we use a held-out non-parametric likelihood estimate to compare
our cancer models to each other, described in Appendix G.7. In Appendix G.5, we discuss
classification results for cancer.
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6.1. Data Sets

The first data set we examined is from The Cancer Genome Atlas and contains patients
with one of four common types of cancer: breast, lung, prostate, or colorectal. It is believed
that genetic factors affect the patients’ risk of developing cancer. This data has a clear
hierarchical structure: variants are on genes, which are part of biological pathways,3 which
are within patients. Furthermore, pathways and genetic variants can be hierarchically
grouped based on functions and interactions. A HBT decomposition would be useful in the
classification of cancer, where we have two modes of feature variables (genetic variants and
pathways) and a clear hierarchical structure of groupings of genetic variants and pathways.
We used the Reactome pathway data set (Fabregat et al., 2018; Croft et al., 2014) to
determine which genes are in each pathway.

Another data set we analyzed is from the National Database for Autism Research and
contains paired siblings – one with ASD and another without – and counts of their ge-
netic variants. We used the same process for including pathway information as with the
cancer data. ASD refers to a group of neurodevelopment disorders defined by a range of
behavioral patterns and difficulty with social interaction. The Centers for Disease Control
and Prevention estimates 1 in 68 children have ASD, but it is more prevalent in boys than
girls. Currently, ASD is typically diagnosed by parent and doctor observation of a child’s
behavior and development. Experts believe ASD is caused by a mixture of genetic and
environmental factors (National Institute of Neurological Disorders and Stroke, 2017).

More details about the data are in Appendix G.1.

6.2. Coherence

We compared the coherence of models trained on the cancer and ASD data. Xing et al.
(2019) stated that co-occurrence and posterior based methods are common evaluation tech-
niques for LDA models. The main posterior method, topic stability, can be undermined by
high frequency genes and pathways (in our case) causing poor topics to have high stability.
Newman et al. (2010) showed that pointwise mutual information (PMI/UCI) consistently
outperformed other methods, in terms of correlation with human subjects. However, we
also provide Mimno et al.’s (2011) measure (UMass), a coherence measure intended for use
without an external reference corpus. Some details on our use of these measures are in
Appendix G.2.

While most of the models we analyzed were Bayesian and hierarchical (using the inde-
pendent trees model), the CP TensorLy model (Kossaifi et al., 2019) was deterministic and
non-hierarchical. In our tables, we bolded the best performing measures for emphasis. We
further explain our methodology in Appendix G.3.

Figures 2 and 3 show that the best HBT models’ topics were more coherent than the
baseline models’ (hLDA, CP tree, and CP TensorLy) on the cancer and ASD data. On
cancer data, our largest improvement was on UMass pathways coherence, where the un-
weighted HBT model using UMass coherence outperformed the best baseline, the CP tree
model using UMass coherence, by 34.52%. However, on the other three measures, the best
HBT models outperformed the best baseline models by only 0.76%-2.44%. On ASD data,

3. We define a pathway as a set of genes working together for a specific biological function. We do not
consider the nature of interactions between genes, only their membership in the pathway.
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Figure 2: Coherence of Cancer Models

Figure 3: Coherence of ASD Models

we saw more significant improvement on all four measures. Our smallest relative improve-
ment was on PMI gene coherence, where the HBT model using PMI coherence and .85 gene
and 1.15 pathway weighting outperformed hLDA using PMI coherence by 12.65%. Our
largest improvement margin was on PMI pathway coherence, where the unweighted HBT
model using PMI coherence outperformed hLDA using PMI coherence by 40.56%. While no
model performed best on all measures, the HBT models using PMI coherence outperformed
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the baseline models on all PMI coherence measures and the weighted HBT UMass models
outperformed the baselines on all UMass coherence measures.

In Appendix G.4, we applied a HBT structure to a different context, natural language
processing, and achieved promising results. Here, our tensor consisted of articles, phrases,
and words. While HBT performed worse than CP TensorLy on UMass phrase coherence,
the HBT model using UMass coherence outperformed the best baseline models by up to
58% on the other three coherence measures.

In general, we found that HBT generates more coherent, and thus more interpretable,
topics than other models. The choice of specific model depends on the coherence measure,
relative priority and structure of modes, number of topics, memory requirements, etc. Other
models have their own drawbacks. hLDA can only evaluate one mode at a time. CP Trees
imposes a more rigid structure, with a single topic hierarchy for both modes. CP Tensorly
does not provide a hierarchical topic structure and is worse suited for sparse counting tensors
than the Bayesian models.

7. Conclusion

We developed methods to perform a Bayesian Tucker decomposition and designed strate-
gies for incorporating dependent and independent hierarchical topic models in the decom-
position. The independent trees model uses independent CRPs to generate hierarchical
structures for each mode, while the PAM-based model creates a single hierarchical struc-
ture across modes. Furthermore, we presented a blueprint for generalizing these models to
more than two feature modes. We generalized the properties of CRP to multiple modes
and prove that the strict versions of these properties cannot apply to a hierarchical model
with multiple modes. Additionally, we derived a collapsed Gibbs sampler for the Bayesian
Tucker decomposition, with an arbitrary number of feature modes. Lastly, we trained our
models on real-world examples and found that our models’ topics were more coherent than
existing methods.
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Appendix A. Plate Diagram

α φc0

Tc0γ

Z Y ψ(j) β

Kj pλc0

d0

Figure 4: Plate Diagram for a Conditional Hierarchical Bayesian Tucker Decomposition

Appendix B. Non-Collapsed Algorithms

Algorithm 6: Non-Collapsed Bayesian Tucker Decomposition Gibbs Sampler

for x = 1, · · · , d0 do

Draw core tensor φ̃x ∼ Dir(α+ nx) ∈ SK
for k ∈ K do

φxk = φ̃xvec(k)

for j = 1, · · · , p do
for k = 1, · · · ,Kj do

Draw auxiliary matrices ψ
(j)
k ∼ Dir

(
β(j) +m

(j)
h

)
∈ Sdj

for x = 1, · · · , d0 do
for i = 1, · · · , λx do

Compute topic probabilities P
(
z

(x)
i = k|−

)
∝ φxkψ(j)

kyi

Draw z
(x)
i from P

(
z

(x)
i = k|−

)

Algorithm 7: Non-Collapsed PAM-Based Hierarchical Topic Model Algorithm

for ` = 1, · · · , L do
for j = 1, · · · , p do

if ` 6= 1 or j is not a root mode then
for i ∈ {possible parent topics} do

P
(`,j)
i ∼ Dir

(
γ

(`,j)
i + n

(`,j)
i

)
for x = 1, · · · , d0 do

P
(
Y (j)
x |Y

(j)
−x, c

(j),Z(j)
)

=
Γ
(
m

(j),−x

k,(·) +djβ
(j)
)

∏
y Γ
(
m

(j),−x
k,y +β(j)

) ∏y Γ
(
m

(j)
k,y+β(j)

)
Γ
(
m

(j)

k,(·)+djβ
(j)
)

P
(
c
(j)
x,` = k|Y (j), c

(j)
−x,`,Z

(j)
)
∝ P

(
Y (j)
x |Y

(j)
−x, c

(j)
` ,Z(j)

)
P

(`,j)
ik
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Appendix C. Collapsed Gibbs Derivation

Here, we derive equations for collapsed Gibbs sampling of a conditional Bayesian Tucker de-
composition. This derivation is similar to that of LDA. We begin with the total probability
of our model and integrate out φ and ψ:

P (Y ,Z|α,β) =

∫
φ

∫
ψ

P (Y ,Z,φ,ψ|α,β) dψ dφ

=

∫
ψ

p∏
j=1

Kj∏
h=1

P
(
ψ

(j)
h |β

) λx∏
i=1

P
(
yxi|ψzxi

)
dψ

∫
φ

d0∏
x=1

P (φx|α)

λx∏
i=1

P (zxi|φx) dφ.

All ψ’s and φ’s are independent from each other and thus can be treated separately. We
first examine the φ’s:∫

φ

d0∏
x=1

P (φx|α)

λx∏
i=1

P (zxi|φx) dφ =

d0∏
x=1

∫
φx

P (φx|α)

λx∏
i=1

P (zxi|φx) dφx.

Now, we look at a single φ:∫
φx

P (φx|α)

λx∏
i=1

P (zxi|φx) dφx =

∫
φx

Γ
(∑K1···Kj

k=1 αk

)
∏K1···Kj
k=1 Γ(αk)

K1···Kj∏
k=1

φαk−1
xk

λx∏
i=1

P (zxi|φx) dφx.

Letting nkx denote the count of topic(s) k given independent variable x, we can express

λx∏
i=1

P (zxi|φx) =

K1···Kj∏
k=1

φ
nkx
xk .

Thus, the φx integral can be rewritten as∫
φx

Γ
(∑K1···Kj

k=1 αk

)
∏K1···Kj

k=1 Γ(αk)

K1···Kj∏
k=1

φαk−1
xk

K1···Kj∏
k=1

φ
nk
x

xkdφx =

∫
φx

Γ
(∑K1···Kj

k=1 αk

)
∏K1···Kj

k=1 Γ(αk)

K1···Kj∏
k=1

φ
nk
x+αk−1
xk dφx.

According to the functional expression of the Dirichlet distribution,∫
φx

Γ
(∑K1···Kj

k=1 nkx + αk

)
∏K1···Kj
k=1 Γ (nkx + αk)

K1···Kj∏
k=1

φ
nkx+αk−1
xk dφx = 1.
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We apply this equation to get rid of the integral, resulting in a fraction made up of products
of Gamma functions,∫

φx

P (φx|α)

λx∏
i=1

P (zxi|φx) dφx =

∫
φx

Γ
(∑K1···Kj

k=1 αk
)

∏K1···Kj

k=1 Γ(αk)

K1···Kj∏
k=1

φ
nk
x+αk−1

xk dφx

=
Γ
(∑K1···Kj

k=1 αk
)
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k=1 Γ
(
nkx + αk

)
Γ
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k=1 nkx + αk
) ∫
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nk
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∏K1···Kj

k=1 Γ(αk)
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Similarly, we derive the ψ part, letting m
(j)
hy denote the count of dependent variable y in

the jth mode given topic h:∫
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By combining the expressions from the φ and ψ parts, we obtain,

P (Y ,Z|α,β) =

d0∏
x=1
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k=1 αk

)
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k=1 Γ(αk)
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) .

Next, we need to derive an expression for the probability distribution of z
(c)
i , which denotes

the hidden variable(s) for the ith count in x = c, where y = v. Let a superscript −ci denote
the count, excluding the ith count in x = c. By Bayes’ Theorem,

P (z
(c)
i |Z

−ci,Y ,α,β) =
P (z

(x)
i ,Z−ci,Y |α,β)

P (Z−ci,Y |α,β)
.
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(a) Hierarchical Model
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(b) Mixed Model

Figure 5: General p Topic Model Examples (p = 3)

By applying this and dropping the denominator, we can express the probability distribution

of z
(c)
i as proportional to the expression we derived above,

P (z
(c)
i = k|Z−ci,Y ,α,β) ∝ P (z

(c)
i = k,Z−ci,Y |α,β)

∝

Γ
(∑K1···Kj

k=1 αk
)

∏K1···Kj

k=1 Γ(αk)

d0 ∏
x6=c

∏K1···Kj

k=1 Γ
(
nkx + αk

)
Γ
(∑K1···Kj

k=1 nkx + αk
) × p∏

j=1

Γ
(∑dj

y=1 β
(j)
y

)
∏dj
y=1 Γ(β

(j)
y )

Kj
Kj∏
h=1

∏
y 6=vj

Γ
(
m

(j)
hy + β(j)

y

)

×
∏K1···Kj

k=1 Γ
(
nkc + αk

)
Γ
(∑K1···Kj

k=1 nkc + αk
) p∏
j=1

Kj∏
h=1

Γ
(
m

(j)
hvj

+ β
(j)
vj

)
Γ
(∑dj

y=1 m
(j)
hy + β

(j)
y

) .
We simplify this expression by dropping multiplicative constants,
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We now split this expression to obtain an h-independent summation, which can be dropped,
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C.1. Generalizations to p ≥ 3

For the independent topic model, we generalize to p independent hierarchical models (such

as trees) and our topic tuples T x are all possible combinations of T
(1)
x , · · · , and T

(p)
x . For

the hierarchical model, with general p, it is possible to have more complex dependence
relations between modes. For example, Figure 5(a) shows a model where modes 2 and
3 depend on mode 1 but do not directly depend on each other. To this end, we assume
we are given a DAG representing the dependency structure of the p modes. At each level,
each customer moves through the DAG, selects a topic in each mode (ordered topologically)
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based on probability P
(`,m)
i , where ` is the level, m is the mode, and i represents the topics

of all parent modes. Similarly to the p = 2 case, the tuples of topics visited at each level
of the DAG or all possible tuples of elements in the topic lists for each mode correspond to
the topic list for each x (those topics with non-zero prevalence). Furthermore, it is possible
to have a mixture of independent and hierarchical topic models; a certain mode or set of
modes could be independent from the other modes. For example, Figure 5(b) presents a
model where mode 1 is independent of modes 2 and 3, while mode 3 depends on mode 2.

Appendix D. Derivatives of Log-Likelihood

We define Log-Likelihood LL as the log of our model probability, found in Section 3.3, (6).

LL = logP (Y ,Z,φ,ψ,T |α,β,γ) = logP (ψ|β) + logP (φ,T |α,γ) + logP (Y ,Z|φ,ψ)

First, we derive the derivative with respect to αi:

∂LL

∂αi
=

∂

∂αi
logP (φ,T |α,γ) =

∂

∂αi
log

d0∏
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 , where B(·) is the Beta function

=

d0∑
x=1

[
B(α)

∂

∂αi

1

B(α)
+
αi − 1

φxi

]

=

d0∑
x=1

Ψ (0)

 K∑
j=1

αj

− Ψ (0)(αi) +
αi − 1

φxi

 , where Ψ (0)(·) is the Polygamma function.

Next, we similarly derive the derivative with respect to β
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Appendix E. Conditions Proofs

First, we prove Theorem 7, showing that the parameters of the Dirichlet distributions in
our PAM model are symmetric.
Proof First, we look at a single Dirichlet distribution, i.e. a single-node PAM model and
show that the partition property applies if and only if the parameters are symmetric. With-
out loss of generality, assume the parameters of the Dirichlet distribution γ = (γ1, · · · , γK)
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are ordered such that γ1 ≤ · · · ≤ γK , where K is the number of topics. Also, by PAM
θ = (θ1, · · · , θK) ∼ Dir(γ).

First, we show sufficiency. To this end, assume γp = γq := γ for any p, q. Here, both the
probability distribution and expectation of all θ’s are equal (this is clear from examining the
probability distribution function of the Dirichlet distribution). We denote the probability
of mp people to topic p and mq people to topic q, along with our assignments of people to
each of the other topics, as P (mp,mq,−). Thus this probability,

P (mp,mq,−) ∝
∫ 1

0

∫ 1

0
P (mp,mq|θp, θq)P (θp, θq)dθpdθq

∝
∫ 1

0

∫ 1

0
θ
mp+γ−1
p θ

mq+γ−1
q dθpdθq

=

∫ 1

0
θmp+γ−1dθ

∫ 1

0
θmq+γ−1dθ,

is equal to the probability of assigning mq people to topic p and mp people to topic q,

P (mq,mp,−) ∝
∫ 1

0
θmp+γ−1dθ

∫ 1

0
θmq+γ−1dθ.

Similarly, since the probability distributions over all θ’s are the same, the probability of
assigning m people to topics 1 through K is equal to the probability of assigning any
permutation of m people to topics 1 through k. Thus the partition property holds.

Next, we show necessity. To this end, assume γp < γq (for some p and q). The probability
of assigning mp people to topic p and mq people to topic q,

P (mp,mq,−) ∝
∫ 1

0

∫ 1

0
θ
mp+γp−1
p θ

mq+γq−1
q dθpdθq =

1

(mp + γp)(mq + γq)
,

is not equal to the probability of assigning mq people to topic p and mq people to topic q,

P (mq,mp,−) ∝ 1

(mp + γq)(mq + γp)
,

for all mp and mq. If mp < mq, then elementary algebra shows (mp + γp)(mq + γq) <
(mp + γq)(mq + γp) and if mp > mq, then (mp + γp)(mq + γq) > (mp + γq)(mq + γp). Thus,
the partition property does not hold.

If and only if the partition property holds for single nodes of the PAM model, it is
possible to re-arrange topics in both modes (i.e., the loose partition property applies).

Next, we prove Lemma 8, showing that for the given properties to hold, then ξ and θ
must be of the given form.
Proof For such a model, ξi = ξj if and only if ρi(·) = ρj(·) and θki = θkj if and only
if ρki = ρkj . This is sufficient because of the strong partition property and necessary
because of the rich-get-richer property. By the strong partition property and the chain rule,
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ξiθij = ξkθkl if ρij = ρkl. Also, because of the rich-get-richer and exchangeability properties,

we can express ξi ∝

{
f
(
ρi(·)

)
, ρi(·) > 0

γ0(K1), ρi(·) = 0
and θij ∝

{
gi(ρij), ρij > 0

γi(K2), ρij = 0
.

Then, we prove Lemma 9, showing that the functions must be linear.
Proof Suppose we want to assign x people to topic 1 and one person to topic 2. One way
(case one) to do this would be to assign all x people at topic 1, then one person to topic
2. Another way (case two) to do this would be to assign x− 1 people to topic 1, then one
person to topic 2, then one more customer to topic 1. The probabilities of these cases can
be expressed as:

P (case one) =
f(1)

γ0(1) + f(1)
· · · f(x− 2)

γ0(1) + f(x− 2)

f(x− 1)

γ0(1) + f(x− 1)

γ0(1)

γ0(1) + f(x)

P (case two) =
f(1)

γ0(1) + f(1)
· · · f(x− 2)

γ0(1) + f(x− 2)

γ0(1)

γ0(1) + f(x− 1)

f(x− 1)

γ0(2) + f(x− 1) + f(1)

Thus, the differences in the probabilities are that the first case has γ0(1) + f(x) in the last
denominator while the second case has γ0(2) + f(x − 1) + f(1) in the last denominator.
If the exchangeability property applies, we have P (case one) = P (case two) and in turn
γ0(1) + f(x) = γ0(2) + f(x − 1) + f(1). Since this must apply for all x, by induction we
have f(x) = xf(1) + γ0(2)− γ0(1). Thus f is linear.

Most generally, ξi ∝

{
ρi(·) − γ02, ρi(·) > 0

γ01 + γ02K1, ρi(·) = 0
and θij ∝

{
ρij − γi2, ρij > 0

γi1 + γi2K2, ρij = 0
. Note

that this is a generalized nCRP.

Finally, we prove Theorem 10, showing that such a model does not exist.
Proof Given the forms of ξ and θ from Lemma 9, suppose we take two elements (i, j) 6=
(m,n), i 6= m and swap them within ρ. Then the ratio ν of the original probability with
the swapped probability is:

ω(ρij , ρmn) :=
Γ(ρm(·) − γ02)Γ(ρi(·) − γ02)

Γ(ρm(·) − ρmn + ρij − γ02)Γ(ρi(·) − ρij + ρmn − γ02)

ν = ω(ρij , ρmn)
Γ(ρij − γi2)Γ(ρmn − γm2)

Γ(ρij − γm2)Γ(ρmn − γi2)
.

If the strict partition property is satisfied, then ν = 1 for all ρij , ρmn, ρi(·), and ρm(·).

Note that
Γ(ρij−γi2)Γ(ρmn−γm2)
Γ(ρij−γm2)Γ(ρmn−γi2) = 1 for all ρij and ρmn if and only if γi2 = γm2, however

ω(ρij , ρmn) 6= 1 for all ρij , ρmn, ρi(·), and ρm(·). For example, if ρij = 1, ρmn = 2, ρi(·) =

3, ρm(·) = 3, and γ02 = 0, then ω(ρij , ρmn) = 2!2!
1!3! = 2

3 6= 1. This shows that ν = 1 is not
always possible.

Appendix F. Model Variations

In our efforts to boost the performance of our models, we implemented and developed a
number of variations and modifications to our original methodology, including:
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• Different seeds: Train the model using ten different random number generator seeds,
picking the best model based on either log-likelihood or coherence.

• Keep best: Check the log-likelihood or coherence during training every ten iterates,
saving the best model rather than the final one. Another variation on this method is
resetting to the current best model after each check.

• MAP estimate: When using the collapsed sampler, use the maximum a posteriori
(MAP) estimate of the auxiliary matrices and core tensors, rather than performing
one non-collapsed iterate.

• Adjust the number of counts: For example, double the number of counts or set
all non-zero counts to one.

• Sparse cutoff: Set a cutoff value, below which all proportional probabilities are set
to zero.

• Initialization: Initialize the auxiliary matrices with those trained using a different
method.

• Relative number of topic model iterates to Bayesian Tucker: Do two Bayesian
Tucker sample iterations for every draw from the hierarchical topic model, or vice-
versa.

• Set a topics goal: Decide on an ideal number of topics. Adjust γ during training
to reach that goal. The formula we used was:

γnew = γold ∗max

{
min

{(
topics goal

# of topics

)1/
∏p
i=1(Li−1)

, 2

}
, 0.5

}
.

• Exponential weighting: Apply an exponential weight to the relative probabilities
in the Collapsed Gibbs Sampler (Algorithm 3) as such:

P
(
z

(x)
i = k|−

)
∝
(
nk,−xix + αk

) p∏
j=1

 m
(j),−xi
kjyj

+ β
(j)
yj∑dj

y=1m
(j),−xi
kjy

+ β
(j)
y

wp ,
where wp is the weight for mode p. This allows us to adjust the relative variance, i.e.,
the uniformity of each mode.

For our coherence measure experiments (Section 6.2 and Appendix G.4), we used dif-
ferent seeds, keep best, MAP estimate, topics goals, and exponential weighting. For our
classification models (Appendix G.5), we used keep best. While we tried some of the other
above methods, they did not perform as well. For the likelihood models (Appendix G.7),
we did not use any of the above modifications.

Appendix G. Experiments

Code available at github.com/ars2240/asdHBTucker.
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Cancer type TCGA designation
Breast Breast Invasive Carcinoma (BRCA)
Lung Lung Squamous Cell Carcinoma (LUSC) or Lung Adenocarcinoma (LUAD)

Prostate Prostate Adenocarcinoma (PRAD)
Colorectal Colon Adenocarcinoma (COAD) or Rectum Adenocarcinoma (READ)

Table 2: Cancer types and TCGA designation

G.1. Data Sets

The cancer data contains 3,037 patients. The Cancer Genome Atlas (TCGA) designations
we considered for each type of cancer are given in Table 2. This data set contained 1,044
patients with breast cancer, 1,066 patients with lung cancer, 494 patients with prostate
cancer, and 433 patients with colorectal cancer. After linking with the Reactome pathways,
we were left with 7,846 genes and 1,678 pathways.

Once we similarly linked the ASD genetic variants to the pathways, our data set contains
7,211 genetic variants and 1,413 pathways.

The Reuters data contains 5,501 articles, 8,820 phrases, and 6,837 unique words.
In our experiments, we split each data set into a 30% held-out test set and performed

10-fold cross-validation (CV) on the remaining training/validation data.

G.2. Coherence Measure

In order to utilize this coherence measure in our context, we made some modifications: 1)
our metric is intrinsic and does not utilize an external corpus to determine the gene or
pathway probabilities and co-occurrence probabilities; and 2) we determined co-occurrence
as having a variant on a pair of genes or pathways, not accounting for sequences as in many
natural language processing examples.

G.3. Coherence Models

For pre-processing our data, we removed genes that appeared in fewer than 200 or more than
2,000 patients and words that appeared in fewer than 200 or more than 2,000 documents,
eliminating both rare and very common genes or words. We also removed phrases numbers
that were present in fewer than 10 articles. Words without an assigned phrase were then
assigned to a single word phrase corresponding to the given word. We modified Ding et al.’s
(2020) implementation to process the R8 data into the article, phrase, word tensor structure.
The CP TensorLy model was trained on the entire training data set, then split into folds;
while the other models were split into folds before fitting the decompositions. Our coherence
measures looked at the top 5 genes, pathways, sentences, or words in each topic.

The Bayesian cancer and ASD models had a topics goal of 500 and the R8 models had
a topics goal of 50; while the CP TensorLy model had 200 topics for all data sets. The
hierarchical models used three levels.

For the R8 models with bad phrases removed, we removed words and phrases.

28



Conditional Hierarchical Bayesian Tucker Decomposition for Genetic Data Analysis

Figure 6: Coherence of R8 Models

Phrases Words
Model PMI UMass PMI UMass

HBT (PMI) 11.80 -12.91 12.38 -12.37
HBT (UMass) 12.61 -11.19 13.39 -10.79

CP (TensorLy) -15.47 -6.64 -4.00 -20.04

Table 3: Coherence of R8 Models with Bad Phrases Removed

G.4. Reuters Experiments

We also applied a similar structure from our genetic models to natural language processing.
Incorporating phrases as another mode may improve grouping of articles. The hierarchical
structure here would be: words make up phrases, which make up articles. We looked at the
eight largest classes (earnings, acquisitions, money - foreign exchange, grain, crude, trade,
interest, and shipping) in the Reuters-21578 data set (denoted R8) (Dua and Graff, 2017).
We used SpaCy (Honnibal and Montani, 2017) to group words into phrases (noun chunks).
This gives us a count of words in each phrase in each article.

While our best HBT model outperformed the baseline models on three-of-four coherence
measures on the R8 data, it under-performed on UMass phrase coherence. Figure 6 shows
that the HBT model using UMass coherence and .25 phrase weighting outperformed the CP
model using PMI coherence, the best baseline model, on PMI phrase and word coherence
by 56.07% and 57.84% respectively. This HBT model also outperformed the CP model
using UMass coherence by 24.54% on UMass words coherence. However, while the CP
TensorLy model performed worst on these three coherence measures, it outperformed our
best model on UMass phrase coherence (2.35 to -9.79). After examining this data set
further, we removed words and phrases that frequently showed up in topics and had few
co-occurrences with other words in the topic. While we tried various word sets and were
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Figure 7: Accuracy of Cancer Models

able to make improvements, due to the Bayesian nature of the algorithms, words with fewer
co-occurrences are more likely to be placed in the same topic than in a deterministic model.
Table 3 shows that while these changes narrowed the gap in performance on UMass phrase
coherence, the CP TensorLy model still outperformed our best HBT model on this measure.

G.5. Classification

We trained logistic regression models using patient groups from the decomposition models
in order to predict each patients’ cancer diagnosis. Figure 7 shows the accuracy of these
models and Appendix G.6 details our implementation. Unfortunately, none of the models
we trained, including the baseline decomposition models, outperformed classifying based
on the genetic variant counts (i.e., not using a decomposition model), which had an accu-
racy of 83.49%. Augmenting the genetic variant data with our decomposition models did
not improve the accuracy of our predictions. Of the decomposition models, CP TensorLy
performed best (69.33% accurate). The other CP models, Zhao et al.’s (2014) Bayesian
CP Factorization (BCPF) (54.94% accurate) and Bader and Kolda’s (2021) alternating
least squares (ALS) CP (44.78% accurate) performed significantly worse. The second-
best decomposition model was LDA on the genetic variants (67.74% accurate), while our
genes-based hLDA model had a 47.68% accuracy. Our independent trees HBT model and
our non-hierarchical Bayesian Tucker model performed about the same, with accuracies of
54.98% and 54.14%, respectively. Our PAM-based HBT model, using genes as the dominant
mode and the level method, performed worse (40.31% accurate). Yang and Dunson’s (2016)
Bayesian Conditional Tensor factorization (36.74% accurate) and Wang et al.’s (2015) Ru-
bik model (35.70% accurate) only slightly outperformed diagnosing all patients with Lung
cancer, the most prevalent class, at 35.10% prevalency.
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G.6. Classification Models

For the CP TensorLy model, we removed genes that appeared in fewer than 200 or more
than 2,000 patients and used 200 topics. For the LDA model, we modified Hoffman et al.’s
(2010) variational Bayes implementation, using 40 topics. For our independent trees HBT
model, we removed genes that appeared in fewer than 400 or more than 1,000 patients and
used three levels, γ = 0.1, and our “keep best” methodology. For our Bayesian Tucker
model, we removed genes that appeared in fewer than 200 or more than 2,000 patients and
used 10 topics on each mode and our “keep best” methodology. For our hLDA model, we
used two levels and γ = 0.1. For our CP ALS model, we used 25 topics. For our PAM-based
HBT, we removed genes that appeared in fewer than 400 or more than 1,000 patients and
used three levels and 10 topics-per-level. For the Rubik model, we used 5 topics.

G.7. Likelihood

One issue with comparing likelihoods across models is that the probabilities from Section 3
are not comparable due to differing hierarchical model structures. To compute the held-out
likelihood, we would need to sum over or integrate out our hierarchical model variables,
which does not have a closed-form solution.

To solve this problem, we use a non-parametric likelihood estimate, similar to Li and
McCallum (2006) and based on empirical likelihood (Diggle and Gratton, 1984). First, we
randomly generate one thousand patients, using the trained generative process. Then, we
compute the probabilities of a held-out test or validation patients as a mixture of the gen-
erated patients. Unlike other likelihood measures, this method is stable, easy to compute,
and yields values that can reasonably be compared across models.

We trained HBT decomposition models using various hierarchical models and computed
the mean validation log-likelihood (over the ten CV folds, using the above methodology).
For each hierarchical model, we trained with varying levels L ∈ {2, 3, 4, 5}. Additionally, we
trained the independent trees model with three CRP hyperparemeters γ ∈ {0.5, 1, 2}. For
the PAM-based model, we compared each choice of dominant mode (genes or pathways)
and topic set composition (Cartesian or level set method, see Section 3.3 for definitions).
We also used varying topics per level τ ∈ {10, 25, 50}.

We plotted the results in Figure 8 and give the values in Table 4. This figure depicts
the mean validation log-likelihood for hierarchical models trained on the cancer data set,
comparing it to the total number of topics (product of the number of gene and pathway
topics) for the model. In the case of the independent trees model, the number of topics is
an average over the CV folds. Though the CRP hyperparameter (γ) and number of topics
per level (τ) are not displayed on the plot, they dictate the number of total topics.

Figure 8 shows that the log-likelihood for models with fewer topics is often larger than
those with more topics (14 of 20 lines peak at the fewest topics), indicating that some models
are overfitted. We observed that some PAM-based models outperformed the independent
trees models, which we hoped would be the case given the inherent hierarchical structure
between genes and pathways, but there was not a clear reason as to which models were
better than others (other than the total number of topics). The PAM-based models with
level set topic composition are the most sensitive to changes in the other parameters (the
standard deviation of the log-likelihoods of all such models with genes as the dominant mode
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Figure 8: Each line has a coded label: The large letter indicates if the point is from the
independent trees model (“T”) or the PAM-based model (“P”). The superscript
indicates the number of levels in the model. The subscript (for the PAM-based
models) indicates the dominant mode, genes (“G”) or pathways (“P”), followed
by the topic set composition method, Cartesian (“C”) or level set (“L”). Every
label (combination of model type, number of levels, dominant mode, and topic
set composition, if applicable) has the same color.

was 23.15 and 19.86 for pathway-dominant models). The independent tree models were the
least sensitive (with standard deviation of 5.68). The PAM-based models with Cartesian
topic composition were in between (with standard deviation of 11.52 for gene-dominant
models and 12.56 for pathway-dominant models). However, the differences between these
models is well within the margin of error, as the standard deviation in log-likelihood over
the CV folds for each model is about 2,090 (or 10% of the log-likelihood).

Table 4 gives the hierarchical topic model (independent trees or PAM-based), dominant
mode (for PAM-based model, genes or pathways), whether the topic sets are created using
the Cartesian or level method (See Section 3.3 for definitions), the value of γ used (hyper-
parameter in CRP for the independent trees model, a uniform Dirichlet prior was used in
PAM), the topics per level τ (for the PAM-based model), the number of hierarchical levels,
the mean validation log-likelihood (over the 10-fold CV, computed using the method de-
scribed in Section G.7), the standard deviation of the log-likelihood (over the 10-fold CV),
the number of gene and pathway topics (or mean number of topics across the CV folds in
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the case of the independent trees model), and the total number of topics (the product of
the number of gene and pathway topics). This data is presented in Section G.7.

33



Conditional Hierarchical Bayesian Tucker Decomposition for Genetic Data Analysis

Table 4: Cancer Log-Likelihood
Topic Dominant Gene Pathway Total
Model Mode Topic Set γ τ Levels Mean StDev Topics Topics Topics
Trees Cartesian 0.5 2 -20,892.77 2,090.08 22.4 22.2 500.1
Trees Cartesian 1 2 -20,891.20 2,091.51 26.6 25.6 683.7
Trees Cartesian 2 2 -20,888.75 2,093.63 34.6 36.9 1,273.3
Trees Cartesian 0.5 3 -20,896.20 2,088.46 77.7 77.5 6,021.0
Trees Cartesian 1 3 -20,904.76 2,093.13 104.5 103.4 10,820.0
Trees Cartesian 2 3 -20,904.62 2,093.29 159.2 151.1 24,055.1
Trees Cartesian 0.5 4 -20,897.73 2,089.66 157.4 151.0 23,729.0
Trees Cartesian 1 4 -20,895.72 2,094.83 225.8 229.0 51,709.1
Trees Cartesian 2 4 -20,898.37 2,088.85 322.6 327.3 105,598.5
Trees Cartesian 0.5 5 -20,901.75 2,093.03 256.7 233.5 59,938.1
Trees Cartesian 1 5 -20,900.24 2,092.58 376.9 391.0 147,520.1
Trees Cartesian 2 5 -20,906.93 2,091.26 551.1 563.1 309,852.2
PAM Genes Cartesian 10 2 -20,865.87 2,085.96 11 20 220
PAM Genes Cartesian 25 2 -20,868.94 2,093.25 26 50 1300
PAM Genes Cartesian 50 2 -20,877.08 2,089.14 51 100 5100
PAM Genes Cartesian 10 3 -20,887.15 2,094.10 21 30 630
PAM Genes Cartesian 25 3 -20,890.11 2,091.12 51 75 3825
PAM Genes Cartesian 50 3 -20,887.59 2,090.89 101 150 15150
PAM Genes Cartesian 10 4 -20,887.17 2,092.55 31 40 1240
PAM Genes Cartesian 25 4 -20,898.44 2,094.26 76 100 7600
PAM Genes Cartesian 50 4 -20,897.85 2,092.47 151 200 30200
PAM Genes Cartesian 10 5 -20,885.52 2,084.77 41 50 2050
PAM Genes Cartesian 25 5 -20,900.43 2,090.06 101 125 12625
PAM Genes Cartesian 50 5 -20,899.17 2,086.49 201 250 50250
PAM Genes Level 10 2 -20,850.34 2,090.04 11 20 220
PAM Genes Level 25 2 -20,853.48 2,100.40 26 50 1300
PAM Genes Level 50 2 -20,861.15 2,087.41 51 100 5100
PAM Genes Level 10 3 -20,905.25 2,091.74 21 30 630
PAM Genes Level 25 3 -20,907.18 2,091.60 51 75 3825
PAM Genes Level 50 3 -20,899.90 2,092.68 101 150 15150
PAM Genes Level 10 4 -20,898.41 2,097.51 31 40 1240
PAM Genes Level 25 4 -20,910.99 2,093.91 76 100 7600
PAM Genes Level 50 4 -20,908.62 2,086.51 151 200 30200
PAM Genes Level 10 5 -20,898.22 2,083.74 41 50 2050
PAM Genes Level 25 5 -20,909.32 2,100.66 101 125 12625
PAM Genes Level 50 5 -20,907.57 2,093.01 201 250 50250
PAM Pathways Cartesian 10 2 -20,868.18 2,089.82 20 11 220
PAM Pathways Cartesian 25 2 -20,874.56 2,091.57 50 26 1300
PAM Pathways Cartesian 50 2 -20,878.93 2,088.94 100 51 5100
PAM Pathways Cartesian 10 3 -20,873.40 2,093.43 30 21 630
PAM Pathways Cartesian 25 3 -20,884.98 2,091.50 75 51 3825
PAM Pathways Cartesian 50 3 -20,894.30 2,093.27 150 101 15150
PAM Pathways Cartesian 10 4 -20,869.99 2,091.49 40 31 1240
PAM Pathways Cartesian 25 4 -20,885.04 2,092.28 100 76 7600
PAM Pathways Cartesian 50 4 -20,899.85 2,095.19 200 151 30200
PAM Pathways Cartesian 10 5 -20,868.56 2,087.76 50 41 2050
PAM Pathways Cartesian 25 5 -20,897.56 2,089.86 125 101 12625
PAM Pathways Cartesian 50 5 -20,901.05 2,091.75 250 201 50250
PAM Pathways Level 10 2 -20,903.71 2,092.12 20 11 220
PAM Pathways Level 25 2 -20,850.25 2,088.73 50 26 1300
PAM Pathways Level 50 2 -20,862.70 2,092.73 100 51 5100
PAM Pathways Level 10 3 -20,886.34 2,090.20 30 21 630
PAM Pathways Level 25 3 -20,897.45 2,093.63 75 51 3825
PAM Pathways Level 50 3 -20,867.97 2,094.37 150 101 15150
PAM Pathways Level 10 4 -20,872.88 2,097.50 40 31 1240
PAM Pathways Level 25 4 -20,893.24 2,090.46 100 76 7600
PAM Pathways Level 50 4 -20,893.45 2,089.18 200 151 30200
PAM Pathways Level 10 5 -20,863.37 2,095.64 50 41 2050
PAM Pathways Level 25 5 -20,910.03 2,091.86 125 101 12625
PAM Pathways Level 50 5 -20,906.67 2,089.15 250 201 50250
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