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Abstract 
The source-to-all maximum cost to time ratio problem is the problem of finding the 
maximum cost to time ratio path from a source node to every other node. The motivation 
comes from an application in large-scale linear programming. We present three 
algorithms for solving the problem. We give proofs of correctness and we analyze the 
running times. One of the algorithms is polynomial and the remaining two are pseudo- 
polynomial. We present extensive computational results on several networks.  
Subject classifications: Networks/graphs/flow algorithms. 
1. Introduction 
We present three algorithms to solve the source-to-all maximum cost to time ratio (MCT) 
problem. Consider a directed network D=(N, A) with || Nn =  nodes and || Am = arcs and 
let s be a given node. Every arc e∈A has a cost ae∈Z and a time be∈Z, where be>0 for 
every e∈A. We define the cost and the time of a path in D in the usual way as the sum of 
the costs or the times of the arcs in the path, respectively. The source-to-all maximum 
cost to time ratio problem is to find *

iτ  for every i∈N \{s}, where  

path}. -an  is |{maxτ* isP
b

a

Pe
e
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e
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Note that the integrality of a and b is without loss of generality since we can always scale 
them. We also assume that for every node i∈N \{s} there is at least one s-i path in D. 

The application of MCT is in large-scale linear programming (LP), where every 
column i corresponds to a path, denoted by P(i), in an acyclic network and every row 
corresponds to a node in the network. Such LPs are typically solved by column 
generation, Barnhart et. al. (1998), i.e. in each iteration a smaller LP, called the 
subproblem, is solved and next columns are added to the subproblem and the procedure is 
repeated. For simplicity of discussion, we assume that the cost of a column is the sum of 
the positive costs b along the corresponding path P(i) in the network, and in addition, we 
assume that each entry of the constraint matrix is either 0 or 1. Makri and Klabjan (2002) 
define a score of a column i as ∑∑

∈∈ )()( iPj
j

iPj
j by , where y is a dual optimal vector to the 

subproblem. Traditionally in the column generation algorithms columns with large 
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)()( iPj
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iPj

j by are added to the subproblem, however it turns out that columns with high 

scores lead to faster objective value improvements of the subproblem and hence to fewer 
iterations in column generation. Therefore the goal is to obtain paths with high scores. If 
paths are generated by a depth-first search procedure, then a source-to-all maximum cost 
to time ratio algorithm can be used to efficiently prune the generation by providing upper 
bounds on the scores. For details see Makri and Klabjan (2002).  

It is easy to see that given a node i, the decision version of computing *
iτ  is NP-

complete on general networks. This can easily be shown by a transformation from the 
Hamiltonian path problem. To circumvent this obstacle and since the application of the 
problem is based on acyclic graphs, we assume that D is acyclic. We show in this paper 
that MCT is polynomial on acyclic graphs.  

A related problem is the problem of finding the minimum cost to time ratio cycle, 
Ahuja et. al. (1993), which differs from MCT in the following. First, MCT does not deal 
with cycles but it considers paths, and second, we want to find a cost to time ratio path 
from a given node to any other node. Dasdan, Irani and Gupta (1998, 1999) and Dasdan 
(2001) list several algorithms for identifying a minimum cost to time ratio cycle in a 
network and they report computation results. In Section 2 we show how to use an 
algorithm for the minimum cost to time ratio cycle problem in solving MCT. We present 
three new algorithms that are based on algorithms for the minimum cost to time ratio 
cycle problem, namely Karp and Orlin (1981), Lawler (1976) and Cochet-Terasson et. al. 
(1998). For each algorithm, we give proof of correctness and a running time analysis. 
Dasdan, Irani and Gupta (1998) analyze the Howard’s algorithm, called the primal-dual 
algorithm in this paper, from Cochet-Terasson et. al. (1998). They give a running time 
bound by using a cycle counting argument. In this paper we carry out a completely 
different analysis since acyclic networks do not have cycles.    

Section 2 presents the algorithms. In Section 2.1 we present the primal-dual 
algorithm, in Section 2.2 we give a bisection algorithm, and in Section 2.3 we present a 
parametric longest path algorithm. Section 3 describes the computational experiments 
and results. 
2. Algorithms 
In the following, a tree is a subgraph of D with exactly one arc directed into each vertex 
of N\{s}. Thus a tree is really an arborescence rooted at s. For every i∈N we denote by 
PT(i) the unique s-i path in tree T and the predecessor of i in T is the tail of the unique arc 
directed into i in T.  

Let τ be a rational number and T a tree. For each e∈A we define eee τbac −=  and 
let ∑∑∑

∈∈∈

−==
)()()(

)(
iPe

e
iPe

e
iPe

e
TTT

bτacid . It is well known that T is a longest path tree for 

weights c if and only if the longest path optimality condition )()( jdcid e ≤+  for every 
arc e=(i,j)∈A holds. The following easy observation, called the ratio path optimality 
condition, is the basis of all our algorithms. If T is a longest path tree for weights c, then 

*
iτ =τ for all i∈N such that d(i) = 0.  
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Note that on acyclic networks the shortest path problem can easily be solved by 
first topologically ordering the nodes and then scanning the nodes based on the obtained 
order, Ahuja et. al. (1993). (In our computational experiments the network is beforehand 
topologically sorted.) However, for generality, whenever we employ a shortest path 
algorithm we assume the Dijkstra’s algorithm.  

Given an algorithm for the minimum cost to time ratio cycle, we can use it as 
follows to solve MCT. Consider a node i∈N \{s} and let us add to the network an arc 
e=(i,s) with 0== ee ba . It is easy to see that the minimum cost to time ratio cycle in this 
modified network yields *

iτ . If we perform this reduction n-1 times, i.e. for every node 
i∈N \{s}, we solve MCT. We are thankful to a reviewer for proposing this algorithm. 
Note that this simple reduction gives a polynomial algorithm for MCT if we use a 
polynomial algorithm for the minimum cost to time ratio cycle problem (see Dasdan, 
Irani and Gupta (1998, 1999) for a list of such algorithms). This algorithm allows using 
existing algorithms for the minimum cost to time ratio cycle problem but it has the 
drawback that it neglects the computed paths from previous nodes. The three algorithms 
presented next use the information from previously computed paths.    
2.1 The Primal-Dual Algorithm 
This algorithm has roots in the primal-dual simplex algorithm and it is also based on 
Howard’s algorithm for the minimum cost to time ratio cycle problem, Cochet-Terasson 
et. al. (1998). At every iteration a tree T is maintained and first for every node the cost to 
time ratio path based on the path in T is computed. The largest ratio is denoted by τ. Next, 
the longest path distances d based on T and weights eee τbac −=  for all e∈A are 
computed. These distances correspond to dual values of the dual problem to the longest 
path problem. If the longest path optimality criterion is met, then T is the longest path tree 
with respect to weights c and we use the ratio path optimality condition to fix some *

iτ . If 
there are arcs violating the longest path optimality condition, then T is improved. The 
procedure is then repeated.   

The algorithm is described in Figure 1. Given a tree T we denote by predi the 
predecessor of i in T and in every iteration S  is the set of all nodes i for which *

iτ  has not 
yet been computed. It is easy to see that τ computed in step 2 is an upper bound 
on

{ }
}{max *

\ isNi
τ

∈
. The initial tree T is the longest path tree with respect to weights ce=ae–τbe 

for every arc e∈A. In steps 6 and 7 we compute the new τ. Step 8 computes the new 
longest path distances in T and steps 10-16 improve the tree. If an arc e=(i,j) violates the 
longest path optimality condition, the arc is added to the tree by updating the predecessor 
of j and d(j) is improved. These steps correspond to a single pass of the FIFO label-
correcting algorithm for the longest path problem, Ahuja et. al. (1993). Note that if the 
tree is not modified in these steps, than T is the longest path tree with respect to weights c 
and in steps 18-21 we apply the ratio path optimality condition.     

The algorithm is very simple to implement and each iteration requires at most 
O (m) steps. Next we provide the proof of correctness and the running time analysis.   
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Proof of correctness 
Unfortunately we are not able to analyze the primal-dual algorithm presented in Figure 1 
but in what follows we consider a slight diversion of steps 9-16 shown in Figure 2.  This 
modification has already been proposed in Dasdan, Irani and Gupta (1999). It is easy to 
see that after step 16a of the modified algorithm for every node j we 
have }),(:)(max{)`( ),( Ajicidjd ji ∈+= . However, the computed distances d~  after step 

16 of the original primal-dual algorithm from Figure 1 have the property ≥)(~ jd  
}),(:)(max{ ),( Ajicid ji ∈+ .  

 
Input: An acyclic network D = (N, A) 
Output: τi* for all i∈N \{s} 
1: For all i∈N compute )(id , )(id  corresponding to the longest, shortest s-i path with 

respect to weights ae, be, respectively. 

2: 
)(
)(max

id
idτ

Ni∈
=  

3: Let ce=ae–τbe for all e∈A and use Dijkstra to obtain the longest path tree T with 
respect to weights c. 

4: S = N \{s} 
5: while ≠S ∅ do 
6: For all i∈ S compute ∑∑

∈∈

=
)()( iPe
e

iPe
ei

TT

bax .  

7: }{maxτ i
Si

x
∈

=  

8: Let ce=ae –τbe for all e∈A and compute ∑
∈

=
)(

)(
iPe

e
T

cid  for all i∈N. 

9: b = true 
10: for all e=(i,j)∈ A do  
11: if d(i)+ce > d(j) then  
12: predj = i 
13: d(j)= d(i)+ce 
14: b = false 
15: end if 
16: end for  
17: if b = true then  
18: for all i∈ S with d(i)=0 do  
19: S = S \{i} 
20: τ*i =τ  
21: end for 
22: end if 
23: end while  

 
Figure 1. The primal-dual algorithm 
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We first show that the two variants are identical if arcs are scanned based on the 
reverse topological order.  
Proposition 1. If in step 10 the arcs are scanned in the reverse topological order, then 
for every node i we have )`()(~ idid =  and therefore the variant given in Figure 2 is not 
needed. 
Proof. Consider a node j. Due to the scanning order of the arcs, when we scan this node 
in step 10, all of the current distances )(~ id  of nodes i with (i,j)∈A are equal to d(i). If 
steps 12-14 are never executed, then ),(),( )()(~)(~

jiji cidcidjd +=+≤  and therefore by 

definition in step 8 it follows that }),(:)(max{)(~
),( Ajicidjd ji ∈+= . If the condition in 

step 11 is true for at least one arc, then it is easy to see that 
}),(:)(max{}),(:)(~max{)(~

),(),( AjicidAjicidjd jiji ∈+=∈+= , which shows the 
statement.                     

To analyze the algorithm we consider two types of iterations. In a type I iteration 
b=true in step 17 and in a type II iteration b=false. During an iteration of type II the tree 
is updated, i.e. there is at least one node for which the predecessor has been changed. We 
first show by studying steps 9a-16a that τ decreases after a type I iteration and it increases 
in every other iteration.  

 
9a: d`=d, b=true 
10a: for each e=(i,j)∈ A do 
11a: if d(i)+ce > d`(j) then 
12a: predj = i 
13a: d` (j)= d(i)+ce 
14a: b=false 
15a: end if 
16a: end for 

 
Figure 2. Modified steps 10-16 of the primal-dual algorithm 

We say that a tree T~  is obtained from T by a 1-opt exchange if }{\}{~ efTT ∪= , 
where e∈T, f∉T and e,f  have the common head, see Figure 3. Since D is an acyclic 
network, it is easy to see that if T is a tree, then T~ is a tree as well. These tree updates are 
already considered by Karp and Orlin (1981). We denote by TT

fe

~
),(

→  the 1-opt exchange 

pictured in Figure 3. 
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Figure 3: A 1-opt exchange 

We can view steps 10a-16a as a sequence of 1-opt exchanges. We can write the 
tree T ′  produces by steps 10a-16a as '...

),(3),(2),(1
332211

TTTTTT gfefefe
=→→→→= , where we 

denote by T the tree before step 10a. We call such a sequence a 1-opt representation of 
T ′  from T. Note that the 1-opt representation is not uniquely defined since there can be 
many 1-opt exchanges involving the same node. If |{e1,…,eg-1,f1,…,fg-1}|=2(g-1), i.e. all 
the arcs in the representation are different, then we call such a representation a minimal 1-
opt representation of T ′ . 
Lemma 1. If T ′  can be obtained from T by a sequence of 1-opt exchanges, then there 
exists a minimal 1-opt representation of T ′ . Any permutation of 1-opt exchanges in a 
minimal 1-opt representation is again a minimal 1-opt representation of T ′ . 
Proof. We denote by Ф the 1-opt representation of T ′  from T. Let T

ipred be the 
predecessor of node i in T and let `T

ipred be the predecessor of node i in T ′ . Let k1,...,kl 
be all the nodes with the property `T

k
T
k ii

predpred ≠ for i=1,...,l. Then  

'... 13
)),(),,((

2
)),(),,((

1
2

`
2221

`
111

TTTTTT l
kpredkpredkpredkpred T

k
T
k

T
k

T
k

=→→→→= +  

is a 1-opt representation of T ′  that is clearly minimal. This 1-opt representation is 
obtained from the original 1-opt representation Ф by considering for every node only the 
first and the last 1-opt exchange involving the node and therefore it yields T ′ . 

It remains to be shown that any order of 1-opt exchanges in a minimal 1-opt 
representation yields again T ′ . It suffices to show that T3= 3T , where 3),(2),(1

2211

TTT
fefe

→→   

and   3
),(

2
),(1

1122

TTT
fefe

→→  are 2 sequences of 2 arbitrary 1-opt exchanges. The general case 

then follows by induction. Since the two 2-opt exchanges are part of a minimal 1-opt 
representation, it follows by definition that  e1 ≠ f2 and e2 ≠ f1. Then 

}{\}{ 1112 efTT ∪= , }{\}{ 2212 efTT ∪=                                                  

}{\}{ 2223 efTT ∪= , }{\}{ 1123 efTT ∪= . 
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Using elementary calculus it is easy to see that T3 = 3T .  

For an arbitrary tree T~ , general weights c on arcs, and for any node i∈N we 
denote ∑

∈

=
)(

~

~
)(

iPe
e

T
c

T

cid . To show the finiteness of the algorithm we need the following 

two claims. 
Claim 1. Let T be the tree before step 10a and let 'T be the tree after step 16a. Then for 
all i∈N we have ∑

∈

+=
TiPvu

TT
a

T
a

T

vu∆idid
\)(),(
1

'

'

),()()( , where ),(1 )()(),( vu
T
a

T
a

T avdudvu∆ +−= .  

In linear programming terminology, this claim states that the new dual prices of 
node i can be obtained from old dual prices by adding the sum of the reduced cost of all 
the arcs along the path from s to i in the new tree 'T  that are not present in the original 
tree T. The statement is very intuitive if the arcs are added to T in the order based on the 
path from s to i in 'T . However this might not be the case in the algorithm.  
Proof. Let '...

),(3),(2),(1
332211

TTTTTT gfefefe
=→→→→=  be a minimal 1-opt representation, 

which exists by Lemma 1. We prove the claim by induction on g. Given v∈N and a tree 
T~ , let )(~ vT  denote the subtree of T~  rooted at v. Thus )(~~ sTT = . It is easy to see that if 

TT
lrlk

ˆ~
)),(),,((

→ , then 







∈+

∉
=

 (2)                                               .~         ),()(

(1)                                                ~                         )(
)( ~

1

~

~

ˆ

(l)Tilr∆id

(l)Tiid
id

ΤT
a

T
aT

a  

Using this property the claim for g=2 follows. 
Suppose now that the claim holds for all trees obtained from T by a sequence of 1-

opt exchanges having a minimal 1-opt representation with at most g-1 1-opt exchanges, 
and for any i∈N. Assume that glrlkg TT

)),(),,((1 →−  for (k,l)∈E, (r,l)∈E, and let i be an arbitrary 

node.  If ∉i )(~ lT  then  

∑
∈

+== −

TiPvu

TT
a

T
a

T
a

T

gg vu∆ididid
\)(),(

1
'

1 ),()()()( , 

where the first equality holds by (1) and the second by induction since )()( 1 iPiP gg TT −= .  

Let now ∈i )(~ lT . Consider the arc TiPqp gT \)(),( ∈ , which is the closest arc to i 
in )(iP gT  with this property, see Figure 4. Thus TqPiP gg TT ⊆− )()( . If ),(),( lrqp ≠ , 

i

in  P T g ( i) \T

in  T

s p q

 
Figure 4. The definition of (p,q) 
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then by Lemma 1 we can change the order of the 1-opt exchanges to meet this 
requirement. Therefore we can assume that ),(),( lrqp = . Now we have 

,),()(),()(

(5)                                        )(),()()(

)()()(         

(4)          ),()()(),()(         

(3)              )()()(),()()()(

\)(),(
1

\)(),(
1

),(
\)(),(

1

),(

),(
\)(),(

1
\)(),(

1

),(1
'

'
1

11

1

1
1

111

111

1
1

111

1
1

11

11111

∑∑

∑

∑∑

∈∈

∈

∈∈

∆+=∆+=

+−∆++=

+−+=

+∆−−+∆+=

+−+=∆+==

−

−

−

−

−

−−−−−

TiPvu

TT
a

TiPvu

TT
a

lr
T
a

TrPvu

TT
a

T
a

lr
T
a

T
a

T
a

lr
TiPvu

TT
a

T
a

TiPvu

TT
a

lr
T
a

T
a

T
a

TT
a

T
a

T
a

TgT

gT

g

gT

g

gT

gggggg

vuidvuid

aldvurdid

aldrdid

avuldrdvuid

aldrdidlrididid

where (3) holds from (2), and (4) and (5) follow by induction and from 
{ } 1111 \)(\)(,),()\)((\)( 111 TlPTiPlrTrPTiP gggg TTTT −−− =∪= .  

Given (u,v)∈A and arbitrary weights c, let ),()()(),( vu
T
c

T
c

T
c cvdudvu +−=∆ , and for 

simplicity of notation we denote ),(),(2 vuvu T
b

T ∆=∆ . In addition we denote by τj the τ 
computed in step 7 of iteration j. 
Claim 2. Let i be a type I iteration and let l be the next type I iteration. Then  

1) τi+1≤ τ,i 
2) τj-1≤ τj for all j= i+2, …, l, 

3) if τj-1< τj for a  j∈{i+2, …, l}, then τj- τj-1≥  22

1
Bn

, where }{max eAe
bB

∈
= , and 

4) if τj= τj+1=…= τk, where i<j< k<l, then k-j ≤ n. 
Proof. For any iteration q let Tq  be the tree in steps 6-9. 

Statement 1 holds since at the end of iteration i the tree is optimal and steps 19 
and 20 are evaluated at least for the node where the maximum is attained in step 7. 
Therefore in iteration i+1 the tree stays the same and the maximum in step 7 is over a 
smaller subset.  

To prove statement 2 of the claim we assume that xk  = }{max i
Si

x
∈

 in iteration j-1. 

Then 

 
∑

∑

∑

∑

−

−−

−

−−

∈

∈

∈

∈

+

+

==≥

1

11

1

11

\)(),(
2

\)(),(
1

)(

)(j

),()(

),()(

)(
)(

j
jT

jj

j
jT

jj

j

j

jT

jT

TiPvu

TT
b

TiPvu

TT
a

T
b

T
a

kPe
e

kPe
e

vu∆kd

vu∆kd

kd
kd

b

a
τ , (6) 

where the second equality holds by Claim 1. By induction it is easy to see that from step 
11a it follows `d (p)≥d(p) for every p∈N. Also, for every p∈N after step 16a we have 

}),(:)(max{)`( ),( Apqcqdpd pq ∈+= . Combining these two observations we obtain that 
if (u,v)∈Tj\Tj-1, then `d (v)=d(u)+c(u,v)>d(v) and therefore from step 8, for all arcs 
(u,v)∈Tj\Tj-1 we have )()( 11

),( vdcud jj T
cvu

T
c

−− >+ , which in turn implies by definition of c 
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that >−+− −−
),(

1-j
),(

1-j )()( 11
vuvu

T
b

T
a baudud jj ττ  )()( 11 1-j vdvd jj T

b
T
a

−− −τ . This inequality can 
be rewritten as  

 ),(),( 11
2

1-j
1 vuvu jj TT −− ∆>∆ τ . (7)  

Using (6) and (7), and )()( 111 kdkd jj T
b

T
a

j −−=−τ , we get 

1

\)(),(
2

\)(),(
2

1

\)(),(
2

\)(),(
1

1

11

1

11

1

11

1

11

),()(

),()(

),()(

),()(
−

∈

∈

−

∈

∈ =
∆+

∆+

≥
∆+

∆+

≥
∑

∑

∑

∑

−

−−

−

−−

−

−−

−

−−

j

TiPvu

TT
b

TiPvu

TjT
a

TiPvu

TT
b

TiPvu

TT
a

j

j
jT

jj

j
jT

jj

j
jT

jj

j
jT

jj

vukd

vukd

vukd

vukd

τ

τ

τ , 

which yields statement 2 of the claim.  
Now we show statement 3 of the claim by using an argument from Lawler (1976). 

Suppose τ increases in iteration j. Then 

0

)(

)(

)(

)(1

1

1

>−=−
∑

∑

∑

∑

−

−

∈

∈

∈

∈−

lPe
e

lPe
e

kPe
e

kPe
e

jj

jT

jT

jT

jT

b

a

b

a
ττ , 

 where k and l are the nodes where }{max i
Si

x
∈

is attained in  iterations j and j-1 respectively. 

We have 

0

)()(

)()()()(

)(

)(

)(

)(

1

11

1

1

≠
−

=−
∑∑

∑∑∑∑

∑

∑

∑

∑

−

−−

−

−

∈∈

∈∈∈∈

∈

∈

∈

∈

lPe
e

kPe
e

kPe
e

lPe
e

lPe
e

kPe
e

lPe
e

lPe
e

kPe
e

kPe
e

jTjT

jTjTjTjT

jT

jT

jT

jT

bb

baba

b

a

b

a
 

and therefore 

22

)()(

)()()()( 1

1

11

Bnbb

baba

lPe
e

kPe
e

kPe
e

lPe
e

lPe
e

kPe
e

jTjT

jTjTjTjT

≥
−

∑∑

∑∑∑∑

−

−−

∈∈

∈∈∈∈ , 

since the numerator is integral and nonzero.  
Now we show the last statement. If τj= τj+1=…= τk, then in all these iterations the 

weights c do not change. Let p, j ≤ p ≤ k-1 be an iteration and let `d be computed after 
step 16a at iteration p. 

We first show that )`()(1 idid pT
c ≥+  for any node i. Let i be a node. We have 

already argued that )()`( idid pT
c≥ . Assume first that )()`( idid pT

c= . Then  

),`()(

)),(),(()(),()()(
\)(),(

21
\)(),( 11

1

idid

vuvuidvuidid

p

p
pT

ppp

p
pT

ppp

T
c

TiPvu

TpTT
c

TiPvu

T
c

T
c

T
c

=≥

∆−∆+=∆+= ∑∑
++

+

∈∈

τ
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where we have used Claim 1 and (7). Let now )()`( idid pT
c> . In this case 

),()()`( ij
T

c cjdid p +=  for an arc (j,i)∈A. Clearly (j,i)∈ p
T TiP p \)(1+  and therefore again by 

Claim 1 and (7) we obtain 

.)`()(),()(),()()( ),(
\)(),( 1

1 idcjdijidvuidid ij
T
c

T
c

T
c

TiPvu

T
c

T
c

T
c

ppp

p
pT

ppp =+=∆+≥∆+= ∑
+

+

∈

 

For any j∈N, let rk(j) be the value of the longest s-j path with exactly k arcs and 
with respect to c. Clearly by dynamic programming we have 

}),(:)(max{)( ),(
1 Ajicirjr ji

kk ∈+=+ . By induction and by combining this dynamic 

programming equation with }),(:)(max{)`( ),( Ajicidjd ji
T
c

p ∈+= , we get that if 

)()( jrjd kT
c

p ≥  for an integer k, then )()`( 1 jrjd k +≥ . Since `d (j)≤ 1+pT
cd (j), it follows 

that )()( 11 jrjd kT
c

p +≥+ . Since k ≤ n, either we find an optimal longest path tree in at most 
n iterations or τ  changes. This proves the last statement in the claim.  

Using Claim 2 it is easy to prove the correctness and finiteness of the algorithm. 
After an iteration of type I, τ decreases. In all consecutive iterations of type II τ either 
increases or it remains the same for at most n iterations. After at most n iterations either τ 
increases or the longest path tree is found and therefore | S | decreases. Now it is clear that 
the algorithm terminates in a finite number of steps.  

Note that only in proving the fourth statement of Claim 2 we needed the variant 
given in Figure 2. Thus Claim 1 holds for the more general case and the variant is 
required only in the degenerate case when τ does not change from iteration to iteration. 
Running time 
Let }{max eEe

aA
∈

= , }{min eEe
aA

∈
= , }{min eEe

bB
∈

= , and }{max~
eEe

aA
∈

= . Consider two 

consecutive type I iterations i and l, i<l and let }{max i
Si

j xx
∈

=  in iteration i+1. Then we 

have 

{ }
{ }

{ }
.

~2,max2
max

)(

)(

\

*1

1

1

B
An

B
AAn

Bn
A

B
An

b

a

jPe
e

jPe
e

sNi
i

il

iT

iT

=≤−≤−≤−
∑

∑

+

+

∈

∈

∈

+ τττ    (8) 

At every type II iteration between iterations i and l, either τ increases by at least 
)/(1

22 Bn  or it remains the same for at most n iterations. Therefore there are at most 

BAnBnn /~2
22 ⋅⋅  consecutive type II iterations. Since there are at most n type I iterations 

and the time per iteration is O (m), the overall running time is O ( BABmn /~25 ). Therefore 
the primal-dual algorithm is pseudo-polynomial.  
2.2 The Bisection Algorithm 
The main idea of the bisection algorithm is taken from the mean cost to time cycle 
algorithm by Lawler (1976). In the bisection algorithm, each *

iτ  has a lower and an upper 
bound and we use bisection to find the optimal *

iτ . At every iteration, the gap between the 
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lower and the upper bound of the selected node is decreased by at least a half, but in 
addition, the gap of other nodes might decrease as well.  

The bisection algorithm is described in Figure 5. In the initialization stage of the 
algorithm the upper and lower bounds τ  and τ  are computed as follows. For all i∈N we 
compute )(id and )(id  as in step 1 in Figure 1. Denote by T1 the longest path tree 
induced by d  and by T2 the shortest path tree induced by d . For every i∈N we set 

)(
)(

id
idτ i =  and }

)(
)(

,
)(
)(

max{
2

2

1

1

id
id

id
id

τ T
b

T

T
b

T

i
aa= , which is clearly an upper and a lower bound on 

*
iτ .  

 
Input: An acyclic network D = (N, A) 
Output: τi* for all i∈N \{s} 
1: Initialize lower bounds τ  and upper bounds τ . 
2: S = N\{s} 
3: while S ≠ ∅ do 
4: Select a node j∈ S . 

5: 
2

jj ττ
τ

+
=  

6: Let ce=ae–τbe for all e∈E and use Dijkstra to obtain the longest path distances d 
and the corresponding longest path tree T with respect to weights c. 

7: for all i∈ S  do 
8: if d(i) = 0 then 
9: S = S \{i} 
10: τi*=τ   
11: else if  d(i) < 0 then  
12: iτ =min{ τ, iτ } 
13: else  

14: iτ  = max{
∑

∑

∈

∈

)(

)(

iPe
e

iPe
e

T

T

b

a
, iτ } 

15: end if 
16: end for 
17: end while 

  
Figure 5. The bisection algorithm 

In step 4 we first select a node from S , and in steps 5 and 6 we perform bisection. 
In step 6 we run Dijkstra with respect to weights ce=ae–τbe for every arc e∈A, and we 
obtain the longest path values d(i) for all i∈N and the corresponding longest path tree T. 
Let Si ∈ . If d(i)=0, then by the ratio path optimality condition we have τi*= τ and we 
remove the node from S . This corresponds to steps 9 and 10. If d(i)<0, then for any s-i 
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path P in the network we have 0)(τ <≤− ∑∑
∈∈

idba
Pe

e
Pe

e  and therefore τ is an upper bound 

on τi*. If τ is a better upper bound, then in step 12 we update the upper bound. Finally, if 
d(i)>0, then τba

iPe
e

iPe
e

TT

>∑∑
∈∈ )()(

.  Clearly ∑∑
∈∈ )()( iPe

e
iPe

e
TT

ba  provides a lower bound on τi* 

and we update the lower bound in step 14. 
Proof of Correctness and the Running Time Analysis 
Let us denote iii ττt −= . To prove the correctness observe that for the selected node j in 
step 4, the gap between the upper and the lower bound decreases by at least a half if 
d(j)≠0. Therefore in every iteration, either the gap of the selected node decreases by at 
least a half, or the node is removed from S .  By statement 3 of Claim 2, if )(1

22 Bnt j ≤ , 

then there is a unique s-j path P with ],[ jj
Pe

e
Pe

e ττba ∈∑∑
∈∈

, which is clearly optimal. The 

initial tj can be upper-bounded as in (8) by BAn /~2  and we obtain *
jτ  if )(1

22 Bnt j ≤ . 
Since every time j is selected in step 4, tj decreases by at least a half, overall j can be 

selected at most )
~2log()

)(1

~2log(
23

22 B
BAn

Bn
BAn =  times. Since there are n nodes and O (m) 

steps per iteration (assuming we solve the shortest path problem in Step 6 by 

topologically sorting the nodes), the running time of the algorithm is O nm( )
~

log(
B

BAn ). 

This algorithm is polynomial. 
Implementation 
In step 4 of the algorithm we do not specify which node to select among all the nodes in 
S . We have performed computational experiments with the following node selection 
strategies.  

1) Select a random node from S , which yields a randomized algorithm. 
2) Select always the first node in S . Using this strategy, the execution flow 

depends on the initial order of nodes.   
3) Select the node j with the smallest tj. The intuition here is that for the selected 

j we are close to optimality. 
4) Select the node j with the largest tj. By selecting such a node we hope that 

significantly changing τ would substantially improve the bounds for other 
nodes as well.  

5) Select the node j with the smallest tj and keep selecting j until it is removed 
from S . This strategy is a mixture of strategies 2 and 3.  

6) Select the node j with the largest tj and keep selecting j until it is removed 
from S . This strategy combines strategies 2 and 4. 

Computational results have shown that strategy 4 outperforms the others and 
therefore it is the default node selection strategy.  
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Another implementation issue, which arises by using any of the strategies 3-6, is 
how to efficiently find the node with the largest or the smallest tj among all the nodes in 
S . We have implemented the bucket approach first proposed by Dial (1976) in the 
context of the Dijkstra’s shortest path algorithm. The nodes are stored into C buckets 
depending on tj for j∈ S . Bucket i contains nodes j with tj∈[ )litilt )1(, +++ , where t  is 
a lower bound on initial ti for all i∈N, t  is an upper bound on initial ti for all i∈N, and 

C
ttl −= . To find the node with the maximum tj, we only need to scan the buckets, 

starting from the last visited bucket, until the first nonempty bucket is found. After 
finding the first nonempty bucket, we scan all the nodes in this bucket to obtain the 
maximum ti. Every time a bound of a node is updated, the node is removed from the 
bucket and is placed in the bucket corresponding to its new tj. The bucket approach 
speeds up considerably the algorithm even though this implementation is no longer 
polynomial. In our implementation we use 200 buckets, i.e. C=200. 
2.3 The Parametric Longest Path Algorithm 
The parametric longest path algorithm is based on Karp and Orlin (1981). The following 
proposition is key to the understanding of the algorithm. 

Proposition 2. Let T be the longest path tree with respect to weights eee bac τ−=  for all 
e∈A. Then T is the longest path tree with respect to weights eee bac τ−= , e∈A  for any τ 
such that 

ττ ≤≤
+−
+−

>+−
∈=

}
)()(
)()({max

0)()(
),(

e
T
b

T
b

e
T
a

T
a

bvdud
Evue bvdud

avdud

e
T
b

T
b

. 

Proof. Let τ  be such that ττ
bvdud
avdudτ

e
T
b

T
b

e
T
a

T
a ≤≤

+−
+−

= }
)()(
)()(

max{ˆ . We need to show that T 

is the longest path tree with respect to weights eee bac τ−=  for all e∈A. By the longest 

path optimality conditions it suffices to show that )()( vdbaud T
cee

T
c ≤−+ τ  for any 

e=(u,v)∈A. This inequality is equivalent to 
 ).)()(()()( e

T
b

T
be

T
a

T
a bvdudτavdud +−≤+−   (9) 

If ττ = , then (9) holds by assumption. 
Next we show that (9) holds for all τ, τττ ≤≤ˆ . Let e=(u,v)∈A be an arc. 

Suppose first that 0)()( ≤+− e
T
b

T
b bvdud . Then since ττ ≤  and since (9) holds for τ , we 

have 

))()(())()(()()( e
T
b

T
be

T
b

T
be

T
a

T
a bvdudτbvdudτavdud +−≤+−≤+− . 

If 0)()( >+− e
T
b

T
b bvdud , then (9) holds by definition of τ̂  and since ττ ≤ˆ .  

The parametric longest path algorithm computes *
iτ  in a decreasing order of the 

values. First *
iτ  is computed for node i with the largest *

iτ . In the next step the second 
largest *

iτ  is computed and so forth. The algorithm produces a sequence of trees Tj and 
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jτ , where j is the iteration index. In every iteration j the tree Tj is the longest path tree for 
any weights eee bac τ−= , e∈A with jj τττ ≤≤+1 . Suppose we have jτ  and the 
corresponding tree Tj. By Proposition 2, Tj is an optimal longest path tree for all τ such 

that }
)()(
)()(max{

e
T
b

T
b

e
T
a

T
a

bvdud
avdud

jj

jj

+−
+−≥τ  and therefore  

 }.
)()(
)()({max

0)()(
),(

1

e
T
b

T
b

e
T
a

T
a

bvdud
Evue

j

bvdud
avdud

jj

jj

eb
jT

b
jT +−

+−=
>+−

∈=

+τ  (10)  

If this maximum is attained for e=(u,v)∈A, then clearly )},{(\)},{(1 vpredvuTT vjj ∪=+ .  

The algorithm is given in Figure 6. At every iteration and for each i∈N we 
maintain numbers ∑

∈

=
)(

)(
iPe

ea
T

aid  and ∑
∈

=
)(

)(
iPe

eb
T

bid , where T is the current tree. PQ is a 

priority queue (see e.g. Cormen, Leiserson and Rivest (1989)), where each element of PQ 

encodes an arc e=(u,v) and the corresponding key of the element is 
ebb

eaa

bvdud
avdud

+−
+−

)()(
)()(

. 

An element of PQ is denoted by <key,e>, where e is an arc and key is the corresponding 
key. The initial tree T is obtained as in step 3 of the primal-dual algorithm. Next in steps 
5-10 we initialize PQ. In step 13 we find the arc with the largest key. In steps 14-19 we 
use Proposition 2 and the ratio path optimality condition to obtain some *

iτ . If 

∑∑
∈∈

=
)()(

~
iPe

e
iPe

e
TT

baτ  for a node i∈ S  is between τ  and τ, then T is the longest path tree for 

weights eee bac τ~−= , e∈A. But then the distance in T of node i is 0 and therefore we can 
use the ratio path optimality condition. In steps 21-42 we update the keys of PQ. First in 
steps 22-25 we update ad  and bd  based on (2). Let e=(i,j) ∈A be an arbitrary arc. If 

)(vTi ∉  and )(vTj ∉ , then by (1) the key does not change. If )(vTi ∈  and )(vTj ∈ , 
then by (2) the key does not change.  Steps 27-42 update the keys if either 

)(vTi ∈ , )(vTj ∉  or )(vTi ∉ , )(vTj ∈ .  
Since D is acyclic, in every iteration T is a tree and by above discussion, it is clear 

that the algorithm is correct and it terminates in a finite number of steps.  
 
Input: An acyclic network D = (N, A) 
Output: τi* for all i ∈ N\{s} 
1. For all i∈N compute )(id , )(id  corresponding to the longest, shortest s-i path with 

respect to weights ae, be, respectively. 

2. 
)(
)(max

id
idτ

Ni∈
=  

3. Let  ce=ae –τbe for all e∈A and use Dijkstra to obtain the longest path tree T with 
respect to weights c. 

4. For all i∈N compute )(ida , )(idb .  
5. for all e=(i, j)∈A do  
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6. if  0)()( >+− ebb bjdid  then   

7. key = 
ebb

eaa

bjdid
ajdid

+−
+−

)()(
)()(  

8. Insert <key, e> in PQ. 
9. end if 
10. end for 
11. S  = N\{s} 
12. while S ≠ ∅ do  
13. Find the pair with the maximum key in PQ. Let < τ ,e> be such a pair, where 

e=(u,v). 
14. for all i∈ S do  

15. if ττ ≤≤
)(
)(

id
id

b

a  then 

16. =*
iτ )(

)(
id
id

b

a  

17. }{\ iSS =  
18. end if 
19. end for 
20. ττ =   
21. Let T(v) be the subtree of T rooted at v. 
22. for all i∈T(v) do 
23. ),()()(

1
vu∆idid T

aa +=  

24. ),()()(
2

vu∆idid T
bb +=  

25. end for  
26. predv=u 
27. for all i∈T(v) do  
28. for all e=(i, j)∈A and j∉T(v) do 
29. Remove <τ ,e> from PQ. 
30. if 0)()( >+− ebb bjdid  then     

31. key = 
ebb

eaa

bjdid
ajdid

+−
+−

)()(
)()(  

32. Insert <key,e> in PQ. 
33. end if 
34. end for 
35. for all e=(j, i)∈A and j∉T(v) do  
36. Remove <τ ,e> from PQ. 
37. if 0)()( >+− ebb bidjd  then  

38. key = 
ebb

eaa

bidjd
aidjd

+−
+−

)()(
)()(  

39. Insert <key,e> in PQ. 
40. end if 
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41. end for 
42. end for 
43. end while 
 

Figure 6. The parametric longest path algorithm 

Running Time  
Here we assume that PQ is either a binary heap or a red-black tree. Since by assumption 
the cost a and the time b are integral, all the denominators in the keys of PQ are greater 
or equal to 1. Therefore in step 24 at every iteration 1),(2 ≥∆ vuT . Clearly Bnidb ≤)(  for 

all i∈N. We conclude that the key of an arc is updated at most Bn2  times. The factor 2 is 
present since an arc has two endpoints and the value Bn  is included since )(idb  can 

change at most Bn  times for any i∈N. Every operation on PQ requires at most 
O(log(m))=O(log(n)) time. Therefore the running time of the algorithm is O(mn B log(n)). 
The parametric longest path algorithm is a pseudo-polynomial algorithm. 
3. Computational Experiments 
The computational experiments were conducted on an SGI Origin200 workstation with a 
RISC 12000 processor running at the clock speed of 270 MHz. The operating system is 
IRIX, version 6.5, and the workstation is equipped with 512 MB of main memory. The 
algorithms are implemented in C++ by using the MIPSpro, version 7.3, development 
environment. 

The algorithms were tested on several random acyclic networks and on instances 
resulting from large-scale linear programming, Makri and Klabjan (2002). We define the 

density d of a network as )
2

)1(( −= nnmd , where the denominator is the maximum 

number of arcs on n nodes. For a given density we generate random networks as follows. 
Let k=d(n-1)/2 represent the average out degree of every node. For every node we first 
generate a random number s from the uniform discrete distribution from [k-t,k+t], where t 
is selected in such a way that the variance is a given number (50 in our case). The 
neighbors of the node correspond to a random subset of cardinality s from {i+1,…,n}. 
The cost of each arc is a random number in the range ]~,~[ AA−   and the time is a random 
number from [ ]BB, . We selected a symmetric interval for the cost since the running time 
analysis suggest that the running time should depend only on the magnitude of the cost. 
The computational experiments were carried out with various interval ranges.  

 We choose s=1, i.e. the source is the node with label 1. Note that based on our 
generation method some nodes i might not have an s-i path. For all such nodes i we add 
arcs to random nodes k,k<i that are connected to s. Experiments have shown that on 
average less than 10% of the nodes are not connected to s.  

In Section 2.1 we presented two variants of the primal-dual algorithm. 
Computation experiments have revealed that the version with steps 9a-16a is more 
efficient. This has already been observed in Dasdan, Irani and Gupta (1998). We came to 
the conclusion that changing the tree too much in these steps is not beneficial. Therefore 
we have designed a third variant of the primal-dual algorithm, which is the same as the 
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algorithm in Figure 1 except that step 13 is not carried out. It means that in steps 9-16 we 
do not update the distances but only the tree. It turns out that this version of the primal-
dual algorithm is the most efficient one and therefore in what follows the primal-dual 
algorithm corresponds to this variant.  

Our network generation method yields networks that are already topologically 
sorted. Therefore arc scanning in the primal-dual algorithm is based on this order and 
step 6 of the bisection algorithm requires a single scan of the arcs. To study the impact of 
different node orders, we ran the primal-dual algorithm with random topological orders. 
The running times increased. Note that the parametric longest path algorithm is 
indifferent to the node order. 

In the parametric longest path algorithm we use the binary heap as the priority 
queue PQ. For efficiency, in the implementation an element of the heap stores also 
references to the arcs (in addition to storing arcs and keys).  

In the remaining part of this section we first compare the running times of the 
three algorithms and then we give a more detailed analysis of the primal-dual and the 
parametric longest path algorithms. For each experiment with a fixed density, number of 
nodes, and BBA ,,~ we have performed 20 runs and we took the average of the observed 
values. All the computational times are in seconds. 
3.1 Algorithm Comparisons 

We show later in Section 3.2 and Section 3.3 that the primal-dual and the 
parametric longest path algorithms are strongly polynomial on random networks and 
therefore its running time depends only on n and d. The results shown in this section were 
obtained by using .1000~,500,1 === ABB  

Young, Tarjan, Orlin (1991) propose an efficient implementation of the 
parametric shortest path algorithm. Their implementation stores in the priority queue only 
one element for each node. This element corresponds to the incident arc with the largest 
key. This modification can easily be embedded in our algorithm and it leads to an 
implementation that requires O(n) space instead of O(m). We denote the resulting 
algorithm as PLP and the algorithm presented in Figure 6 as PLP_A. In Figure 7 we 
compare the running time in seconds of the two implementations. We see that PLP is 
substantially faster than the original algorithm and therefore from this point on we 
consider only PLP.  

Next we show the running time comparison of the primal-dual algorithm (denoted 
by PD in the figures that follow) and the parametric longest path algorithm. The running 
times are plotted in Figure 8. We see that the parametric shortest path algorithm 
outperforms the primal-dual algorithm for all the densities. The number of the iterations 
of the primal-dual algorithm is lower than the number of the iterations of the parametric 
shortest path algorithm (this is shown later), however, the time per iteration is much 
lower in the latter algorithm. This is due to the fact that in the primal-dual algorithm we 
have to scan all the edges at every iteration but on the other side only few heap updates in 
the parametric shortest path algorithm are required per iteration. 
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Figure 7. The comparison of the Young-Tarjan-Orlin implemention of the parametric longest path 

algorithm (PLP) and the original presentation (PLP_A) 
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Figure 8.  Time comparison of the primal-dual algorithm (PD) and the parametric longest path 

algorithm (PLP) 

Figure 9 shows the computational time comparison of the bisection algorithm and 
the primal-dual algorithm. Regardless of the density, the bisection algorithm is inferior 
and therefore it is the least efficient algorithm among the three. On sparse networks its 
running time is slower by a factor of 4 and for denser networks the factor is 8. The 
drawback of the bisection algorithm is a large number of iterations. Note that the time per 
iteration is comparable to the time per iteration of the primal-dual algorithm since it 
essentially requires scanning all of the arcs. Based on the empirical evidence of the 
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bisection algorithm, we believe the algorithm that reduces the problem to the minimum 
cost to time cycle problem (see introduction to Section 2) is not efficient. 

Table 1 shows the computational times on networks that are typical in large-scale 
linear programs solved in Makri and Klabjan (2002). The cost and the time in these 
instances are as well taken from these linear programs. We can see that these networks 
tend to have a high number of nodes but are extremely sparse. The parametric longest 
path algorithm is the winner. Due to the large execution times, we did not test the 
bisection algorithm for the largest 2 instances. During the execution of the linear 
programming solver designed in Makri and Klabjan (2002), MCT has to be performed 
several times and therefore low execution times are needed. The running times of the 
parametric longest path algorithm are within the acceptable limits. Since these networks 
are sparse, we have performed additional experiments on random networks with d=2.5%, 
which are given in Figure 10. In all of the cases the parametric longest path algorithm 
outperforms the primal-dual algorithm. 
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Figure 9. Time comparison of the primal-dual algorithm and the bisection algorithm (B) 

 
 

(n, m, d) 
primal-dual 
algorithm 

Bisection 
algorithm 

parametric longest  
Path algorithm 

(2358, 75487, 2.7%)  51   173   22  
(2397, 74757, 2.6%)  38   134   19  

(3058, 109422, 2.3%)  97   327   55  
(6496, 302949, 1.4%)  428   1475   20  

(8120, 281280, 0.9%)  504   -   21  

(11844, 661164, 0.9%)  1308   -   58  

Table 1. Running times on instances from large-scale linear programming 
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Figure 10. The comparison of PD and PLP on networks with d=2.5% 

Since the bisection algorithm has poor performance, we did not carry out 
additional experiments with this algorithm. In the remaining two sections we give more 
insight into the parametric longest path algorithm and the primal-dual algorithm. 
3.2 Computational Analysis of the Primal-Dual Algorithm 

We first show that the running time of the primal-dual algorithm does not depend 
on the range of the input data a and b. In Figure 11 we first plot the running time versus 
the largest absolute value of the cost. In these experiments we have selected various 
values of B  and B and the density of either 25% or 50%. The running time analysis from 
Section 2.1 suggests that the running time depends also on the ratio BB /  and therefore 
we show in Figure 12 the dependency of the running time and this ratio. We show the 
dependency for various numbers of nodes and the density of either 25% or 50%. As we 
can observe from these two figures, the running times do not depend on these two 
quantities. For each observation in Figure 12 we have made several runs with equal ratio 
but different B  and B . In addition to these experiments, we have measured the running 
times by varying independently B  and B . These data, which are not shown here, comply 
with the above findings that the running times do not depend on these two values. All of 
these experiments suggest that on random networks the primal-dual algorithm is strongly 
polynomial. 
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Figure 11. Dependency of the cost range 
and running time for PD 

Figure 13 shows the number of iterations of the primal-dual algorithm with 
respect to the density of the network. The number of iterations depends only on the 
number of nodes and not on the number of arcs. By using linear regression we have fitted 
the number of iterations as the function cnkml. We obtained that the number of iterations 
is 1.607n0.96m-0.13. The ratio of the actual number of iterations over these estimated values 
is shown in Figure 14. As we can observe, the error is always less than 3%. The 
computational experiments show that the number of iterations on random networks is 
O(n) and therefore it seems that the complexity of the algorithm is O(nm) on random 
networks. 
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Figure 13.  The number of iterations  
of the primal-dual algorithm 

 
We conclude this section by showing the growth of the actual running time with 

respect to the number of nodes and the density of the network. Figure 15 shows the 
execution times for a wide range of densities. We can observe a linear growth in terms of 
the number of arcs and a slightly super linear growth in the number of nodes, which is a 
consequence of a linear growth of the number of iterations and time per iteration with 
respect to the number of nodes. 
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Figure 12. Dependency of the time 
range and the running time for PD 
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Figure 15. Running times of the primal-dual algorithm 

3.3 Computational Analysis of the Parametric Longest Path Algorithm 
The running time analysis of the parametric longest path algorithm suggests that 

the execution time does not depend on A~ . In Figure16 we show that the running time of 
the parametric longest path algorithm does not depend on A~ . In this figure, due to the 
high running times, we have plotted the logarithms of the running times. 
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Figure 16. Running time of the parametric longest path algorithm with respect to the range of the 

cost 

The dependency of the running times with respect to B  is shown in Figure 17 and 
Figure 18 for d=2.5% and d=50%, respectively. We chose to study a sparse family since 
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the networks in linear programs are sparse. Similar to the primal-dual algorithm, we see 
that the times do not depend on B .  
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Figure 17. Execution time of PLP  
with d=2.5% 

  
Figure 19 and Figure 20 show the number of iterations of the algorithm and the 

number of heap updates for d=2.5% and d=50%, respectively. The number of iterations is 
scaled by 10. On average the number of heap updates per iteration is 14 for d=2.5% and 
23 for d=50%. Note that this is substantially less than the overall number of arcs and this 
is the primal reason of success of the parametric longest path algorithm over the primal-
dual algorithm.  By applying linear regression similar to the one we carried out in the 
primal-dual algorithm analysis we conclude that the number of heap updates equals to 
1.9n1.2 m0.1. If we compare this relation multiplied by log(n), which is the worst time of a 
heap operation, with 1.607n0.96m0.87 obtained by the primal-dual algorithm and multiplied 
by m (the time per iteration of the primal-dual algorithm), we see that the exponent of m 
of the parametric longest path algorithm is lower than that of the primal-dual algorithm. 
This argument gives us an additional explanation about the dominance of the parametric 
longest path algorithm. 
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Figure 19. The number of iterations and  
heap updates for d=2.5% 
 
In Figure 21 and Figure 22 we show the ratio of the time spent in updating the 

heap over the overall execution time. For the sparse family less than 50% of the time is 

 
Figure 18. Execution time of PLP  
with d=50% 

Figure 20. The number of iterations  
and heap updates for d=50% 
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spent on these updates but this ratio grows as n increases. This is understandable since the 
size of the heap depends on n. On the other hand, for the denser network heap updates 
dominate and form on average 80% of the time.  
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Figure 21. The percentage of heap 
updates for d=2.5% 

4. Conclusions 
We presented three algorithms for solving MCT: a primal-dual algorithm, a 

bisection algorithm, and a parametric longest path algorithm. For each one of them we 
show the correctness and we carry out a running time analysis. The first and the third 
algorithms are pseudo polynomial whereas the bisection algorithm is polynomial. 

We performed extensive computational experiments. The bisection algorithm is 
by far the least efficient one and the parametric longest path algorithm outperforms the 
primal-dual algorithm. On random networks the computational experiments showed that 
the algorithms are polynomial.  
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