

1

1Algorithms for Source-to-all Maximum Cost to Time Ratio Problem in
Acyclic Networks

 Alexandra Makri (makri@uiuc.edu)
 Diego Klabjan (klabjan@uiuc.edu)

Department of Mechanical and Industrial Engineering
University of Illinois at Urbana-Champaign

Urbana, IL
Abstract
The source-to-all maximum cost to time ratio problem is the problem of finding the
maximum cost to time ratio path from a source node to every other node. The motivation
comes from an application in large-scale linear programming. We present three
algorithms for solving the problem. We give proofs of correctness and we analyze the
running times. One of the algorithms is polynomial and the remaining two are pseudo-
polynomial. We present extensive computational results on several networks.
Subject classifications: Networks/graphs/flow algorithms.
1. Introduction
We present three algorithms to solve the source-to-all maximum cost to time ratio (MCT)
problem. Consider a directed network D=(N, A) with || Nn = nodes and || Am = arcs and
let s be a given node. Every arc e∈A has a cost ae∈Z and a time be∈Z, where be>0 for
every e∈A. We define the cost and the time of a path in D in the usual way as the sum of
the costs or the times of the arcs in the path, respectively. The source-to-all maximum
cost to time ratio problem is to find *

iτ for every i∈N \{s}, where

path}. -an is |{maxτ* isP
b

a

Pe
e

Pe
e

i
∑

∑

∈

∈=

Note that the integrality of a and b is without loss of generality since we can always scale
them. We also assume that for every node i∈N \{s} there is at least one s-i path in D.

The application of MCT is in large-scale linear programming (LP), where every
column i corresponds to a path, denoted by P(i), in an acyclic network and every row
corresponds to a node in the network. Such LPs are typically solved by column
generation, Barnhart et. al. (1998), i.e. in each iteration a smaller LP, called the
subproblem, is solved and next columns are added to the subproblem and the procedure is
repeated. For simplicity of discussion, we assume that the cost of a column is the sum of
the positive costs b along the corresponding path P(i) in the network, and in addition, we
assume that each entry of the constraint matrix is either 0 or 1. Makri and Klabjan (2002)
define a score of a column i as ∑∑

∈∈)()(iPj
j

iPj
j by , where y is a dual optimal vector to the

subproblem. Traditionally in the column generation algorithms columns with large

1 Partially supported by a grant from the University of Illinois at Urbana-Champaign Campus

Research Board.

2

∑∑
∈∈

−
)()(iPj

j
iPj

j by are added to the subproblem, however it turns out that columns with high

scores lead to faster objective value improvements of the subproblem and hence to fewer
iterations in column generation. Therefore the goal is to obtain paths with high scores. If
paths are generated by a depth-first search procedure, then a source-to-all maximum cost
to time ratio algorithm can be used to efficiently prune the generation by providing upper
bounds on the scores. For details see Makri and Klabjan (2002).

It is easy to see that given a node i, the decision version of computing *
iτ is NP-

complete on general networks. This can easily be shown by a transformation from the
Hamiltonian path problem. To circumvent this obstacle and since the application of the
problem is based on acyclic graphs, we assume that D is acyclic. We show in this paper
that MCT is polynomial on acyclic graphs.

A related problem is the problem of finding the minimum cost to time ratio cycle,
Ahuja et. al. (1993), which differs from MCT in the following. First, MCT does not deal
with cycles but it considers paths, and second, we want to find a cost to time ratio path
from a given node to any other node. Dasdan, Irani and Gupta (1998, 1999) and Dasdan
(2001) list several algorithms for identifying a minimum cost to time ratio cycle in a
network and they report computation results. In Section 2 we show how to use an
algorithm for the minimum cost to time ratio cycle problem in solving MCT. We present
three new algorithms that are based on algorithms for the minimum cost to time ratio
cycle problem, namely Karp and Orlin (1981), Lawler (1976) and Cochet-Terasson et. al.
(1998). For each algorithm, we give proof of correctness and a running time analysis.
Dasdan, Irani and Gupta (1998) analyze the Howard’s algorithm, called the primal-dual
algorithm in this paper, from Cochet-Terasson et. al. (1998). They give a running time
bound by using a cycle counting argument. In this paper we carry out a completely
different analysis since acyclic networks do not have cycles.

Section 2 presents the algorithms. In Section 2.1 we present the primal-dual
algorithm, in Section 2.2 we give a bisection algorithm, and in Section 2.3 we present a
parametric longest path algorithm. Section 3 describes the computational experiments
and results.
2. Algorithms
In the following, a tree is a subgraph of D with exactly one arc directed into each vertex
of N\{s}. Thus a tree is really an arborescence rooted at s. For every i∈N we denote by
PT(i) the unique s-i path in tree T and the predecessor of i in T is the tail of the unique arc
directed into i in T.

Let τ be a rational number and T a tree. For each e∈A we define eee τbac −= and
let ∑∑∑

∈∈∈

−==
)()()(

)(
iPe

e
iPe

e
iPe

e
TTT

bτacid . It is well known that T is a longest path tree for

weights c if and only if the longest path optimality condition)()(jdcid e ≤+ for every
arc e=(i,j)∈A holds. The following easy observation, called the ratio path optimality
condition, is the basis of all our algorithms. If T is a longest path tree for weights c, then

*
iτ =τ for all i∈N such that d(i) = 0.

3

Note that on acyclic networks the shortest path problem can easily be solved by
first topologically ordering the nodes and then scanning the nodes based on the obtained
order, Ahuja et. al. (1993). (In our computational experiments the network is beforehand
topologically sorted.) However, for generality, whenever we employ a shortest path
algorithm we assume the Dijkstra’s algorithm.

Given an algorithm for the minimum cost to time ratio cycle, we can use it as
follows to solve MCT. Consider a node i∈N \{s} and let us add to the network an arc
e=(i,s) with 0== ee ba . It is easy to see that the minimum cost to time ratio cycle in this
modified network yields *

iτ . If we perform this reduction n-1 times, i.e. for every node
i∈N \{s}, we solve MCT. We are thankful to a reviewer for proposing this algorithm.
Note that this simple reduction gives a polynomial algorithm for MCT if we use a
polynomial algorithm for the minimum cost to time ratio cycle problem (see Dasdan,
Irani and Gupta (1998, 1999) for a list of such algorithms). This algorithm allows using
existing algorithms for the minimum cost to time ratio cycle problem but it has the
drawback that it neglects the computed paths from previous nodes. The three algorithms
presented next use the information from previously computed paths.
2.1 The Primal-Dual Algorithm
This algorithm has roots in the primal-dual simplex algorithm and it is also based on
Howard’s algorithm for the minimum cost to time ratio cycle problem, Cochet-Terasson
et. al. (1998). At every iteration a tree T is maintained and first for every node the cost to
time ratio path based on the path in T is computed. The largest ratio is denoted by τ. Next,
the longest path distances d based on T and weights eee τbac −= for all e∈A are
computed. These distances correspond to dual values of the dual problem to the longest
path problem. If the longest path optimality criterion is met, then T is the longest path tree
with respect to weights c and we use the ratio path optimality condition to fix some *

iτ . If
there are arcs violating the longest path optimality condition, then T is improved. The
procedure is then repeated.

The algorithm is described in Figure 1. Given a tree T we denote by predi the
predecessor of i in T and in every iteration S is the set of all nodes i for which *

iτ has not
yet been computed. It is easy to see that τ computed in step 2 is an upper bound
on

{ }
}{max *

\ isNi
τ

∈
. The initial tree T is the longest path tree with respect to weights ce=ae–τbe

for every arc e∈A. In steps 6 and 7 we compute the new τ. Step 8 computes the new
longest path distances in T and steps 10-16 improve the tree. If an arc e=(i,j) violates the
longest path optimality condition, the arc is added to the tree by updating the predecessor
of j and d(j) is improved. These steps correspond to a single pass of the FIFO label-
correcting algorithm for the longest path problem, Ahuja et. al. (1993). Note that if the
tree is not modified in these steps, than T is the longest path tree with respect to weights c
and in steps 18-21 we apply the ratio path optimality condition.

The algorithm is very simple to implement and each iteration requires at most
O (m) steps. Next we provide the proof of correctness and the running time analysis.

4

Proof of correctness
Unfortunately we are not able to analyze the primal-dual algorithm presented in Figure 1
but in what follows we consider a slight diversion of steps 9-16 shown in Figure 2. This
modification has already been proposed in Dasdan, Irani and Gupta (1999). It is easy to
see that after step 16a of the modified algorithm for every node j we
have }),(:)(max{)`(),(Ajicidjd ji ∈+= . However, the computed distances d~ after step

16 of the original primal-dual algorithm from Figure 1 have the property ≥)(~ jd
}),(:)(max{),(Ajicid ji ∈+ .

Input: An acyclic network D = (N, A)
Output: τi* for all i∈N \{s}
1: For all i∈N compute)(id ,)(id corresponding to the longest, shortest s-i path with

respect to weights ae, be, respectively.

2:
)(
)(max

id
idτ

Ni∈
=

3: Let ce=ae–τbe for all e∈A and use Dijkstra to obtain the longest path tree T with
respect to weights c.

4: S = N \{s}
5: while ≠S ∅ do
6: For all i∈ S compute ∑∑

∈∈

=
)()(iPe
e

iPe
ei

TT

bax .

7: }{maxτ i
Si

x
∈

=

8: Let ce=ae –τbe for all e∈A and compute ∑
∈

=
)(

)(
iPe

e
T

cid for all i∈N.

9: b = true
10: for all e=(i,j)∈ A do
11: if d(i)+ce > d(j) then
12: predj = i
13: d(j)= d(i)+ce
14: b = false
15: end if
16: end for
17: if b = true then
18: for all i∈ S with d(i)=0 do
19: S = S \{i}
20: τ*i =τ
21: end for
22: end if
23: end while

Figure 1. The primal-dual algorithm

5

We first show that the two variants are identical if arcs are scanned based on the
reverse topological order.
Proposition 1. If in step 10 the arcs are scanned in the reverse topological order, then
for every node i we have)`()(~ idid = and therefore the variant given in Figure 2 is not
needed.
Proof. Consider a node j. Due to the scanning order of the arcs, when we scan this node
in step 10, all of the current distances)(~ id of nodes i with (i,j)∈A are equal to d(i). If
steps 12-14 are never executed, then),(),()()(~)(~

jiji cidcidjd +=+≤ and therefore by

definition in step 8 it follows that }),(:)(max{)(~
),(Ajicidjd ji ∈+= . If the condition in

step 11 is true for at least one arc, then it is easy to see that
}),(:)(max{}),(:)(~max{)(~

),(),(AjicidAjicidjd jiji ∈+=∈+= , which shows the
statement.

To analyze the algorithm we consider two types of iterations. In a type I iteration
b=true in step 17 and in a type II iteration b=false. During an iteration of type II the tree
is updated, i.e. there is at least one node for which the predecessor has been changed. We
first show by studying steps 9a-16a that τ decreases after a type I iteration and it increases
in every other iteration.

9a: d`=d, b=true
10a: for each e=(i,j)∈ A do
11a: if d(i)+ce > d`(j) then
12a: predj = i
13a: d` (j)= d(i)+ce
14a: b=false
15a: end if
16a: end for

Figure 2. Modified steps 10-16 of the primal-dual algorithm

We say that a tree T~ is obtained from T by a 1-opt exchange if }{\}{~ efTT ∪= ,
where e∈T, f∉T and e,f have the common head, see Figure 3. Since D is an acyclic
network, it is easy to see that if T is a tree, then T~ is a tree as well. These tree updates are
already considered by Karp and Orlin (1981). We denote by TT

fe

~
),(

→ the 1-opt exchange

pictured in Figure 3.

6

ss

e

f

T T
~

Figure 3: A 1-opt exchange

We can view steps 10a-16a as a sequence of 1-opt exchanges. We can write the
tree T ′ produces by steps 10a-16a as '...

),(3),(2),(1
332211

TTTTTT gfefefe
=→→→→= , where we

denote by T the tree before step 10a. We call such a sequence a 1-opt representation of
T ′ from T. Note that the 1-opt representation is not uniquely defined since there can be
many 1-opt exchanges involving the same node. If |{e1,…,eg-1,f1,…,fg-1}|=2(g-1), i.e. all
the arcs in the representation are different, then we call such a representation a minimal 1-
opt representation of T ′ .
Lemma 1. If T ′ can be obtained from T by a sequence of 1-opt exchanges, then there
exists a minimal 1-opt representation of T ′ . Any permutation of 1-opt exchanges in a
minimal 1-opt representation is again a minimal 1-opt representation of T ′ .
Proof. We denote by Ф the 1-opt representation of T ′ from T. Let T

ipred be the
predecessor of node i in T and let `T

ipred be the predecessor of node i in T ′ . Let k1,...,kl
be all the nodes with the property `T

k
T
k ii

predpred ≠ for i=1,...,l. Then

'... 13
)),(),,((

2
)),(),,((

1
2

`
2221

`
111

TTTTTT l
kpredkpredkpredkpred T

k
T
k

T
k

T
k

=→→→→= +

is a 1-opt representation of T ′ that is clearly minimal. This 1-opt representation is
obtained from the original 1-opt representation Ф by considering for every node only the
first and the last 1-opt exchange involving the node and therefore it yields T ′ .

It remains to be shown that any order of 1-opt exchanges in a minimal 1-opt
representation yields again T ′ . It suffices to show that T3= 3T , where 3),(2),(1

2211

TTT
fefe

→→

and 3
),(

2
),(1

1122

TTT
fefe

→→ are 2 sequences of 2 arbitrary 1-opt exchanges. The general case

then follows by induction. Since the two 2-opt exchanges are part of a minimal 1-opt
representation, it follows by definition that e1 ≠ f2 and e2 ≠ f1. Then

}{\}{ 1112 efTT ∪= , }{\}{ 2212 efTT ∪=

}{\}{ 2223 efTT ∪= , }{\}{ 1123 efTT ∪= .

7

Using elementary calculus it is easy to see that T3 = 3T .

For an arbitrary tree T~ , general weights c on arcs, and for any node i∈N we
denote ∑

∈

=
)(

~

~
)(

iPe
e

T
c

T

cid . To show the finiteness of the algorithm we need the following

two claims.
Claim 1. Let T be the tree before step 10a and let 'T be the tree after step 16a. Then for
all i∈N we have ∑

∈

+=
TiPvu

TT
a

T
a

T

vu∆idid
\)(),(
1

'

'

),()()(, where),(1)()(),(vu
T
a

T
a

T avdudvu∆ +−= .

In linear programming terminology, this claim states that the new dual prices of
node i can be obtained from old dual prices by adding the sum of the reduced cost of all
the arcs along the path from s to i in the new tree 'T that are not present in the original
tree T. The statement is very intuitive if the arcs are added to T in the order based on the
path from s to i in 'T . However this might not be the case in the algorithm.
Proof. Let '...

),(3),(2),(1
332211

TTTTTT gfefefe
=→→→→= be a minimal 1-opt representation,

which exists by Lemma 1. We prove the claim by induction on g. Given v∈N and a tree
T~ , let)(~ vT denote the subtree of T~ rooted at v. Thus)(~~ sTT = . It is easy to see that if

TT
lrlk

ˆ~
)),(),,((

→ , then

∈+

∉
=

 (2) .~),()(

(1) ~)(
)(~

1

~

~

ˆ

(l)Tilr∆id

(l)Tiid
id

ΤT
a

T
aT

a

Using this property the claim for g=2 follows.
Suppose now that the claim holds for all trees obtained from T by a sequence of 1-

opt exchanges having a minimal 1-opt representation with at most g-1 1-opt exchanges,
and for any i∈N. Assume that glrlkg TT

)),(),,((1 →− for (k,l)∈E, (r,l)∈E, and let i be an arbitrary

node. If ∉i)(~ lT then

∑
∈

+== −

TiPvu

TT
a

T
a

T
a

T

gg vu∆ididid
\)(),(

1
'

1),()()()(,

where the first equality holds by (1) and the second by induction since)()(1 iPiP gg TT −= .

Let now ∈i)(~ lT . Consider the arc TiPqp gT \)(),(∈ , which is the closest arc to i
in)(iP gT with this property, see Figure 4. Thus TqPiP gg TT ⊆−)()(. If),(),(lrqp ≠ ,

i

in P T g (i) \T

in T

s p q

Figure 4. The definition of (p,q)

8

then by Lemma 1 we can change the order of the 1-opt exchanges to meet this
requirement. Therefore we can assume that),(),(lrqp = . Now we have

,),()(),()(

(5))(),()()(

)()()(

(4)),()()(),()(

(3))()()(),()()()(

\)(),(
1

\)(),(
1

),(
\)(),(

1

),(

),(
\)(),(

1
\)(),(

1

),(1
'

'
1

11

1

1
1

111

111

1
1

111

1
1

11

11111

∑∑

∑

∑∑

∈∈

∈

∈∈

∆+=∆+=

+−∆++=

+−+=

+∆−−+∆+=

+−+=∆+==

−

−

−

−

−

−−−−−

TiPvu

TT
a

TiPvu

TT
a

lr
T
a

TrPvu

TT
a

T
a

lr
T
a

T
a

T
a

lr
TiPvu

TT
a

T
a

TiPvu

TT
a

lr
T
a

T
a

T
a

TT
a

T
a

T
a

TgT

gT

g

gT

g

gT

gggggg

vuidvuid

aldvurdid

aldrdid

avuldrdvuid

aldrdidlrididid

where (3) holds from (2), and (4) and (5) follow by induction and from
{ } 1111 \)(\)(,),()\)((\)(111 TlPTiPlrTrPTiP gggg TTTT −−− =∪= .

Given (u,v)∈A and arbitrary weights c, let),()()(),(vu
T
c

T
c

T
c cvdudvu +−=∆ , and for

simplicity of notation we denote),(),(2 vuvu T
b

T ∆=∆ . In addition we denote by τj the τ
computed in step 7 of iteration j.
Claim 2. Let i be a type I iteration and let l be the next type I iteration. Then

1) τi+1≤ τ,i
2) τj-1≤ τj for all j= i+2, …, l,

3) if τj-1< τj for a j∈{i+2, …, l}, then τj- τj-1≥ 22

1
Bn

, where }{max eAe
bB

∈
= , and

4) if τj= τj+1=…= τk, where i<j< k<l, then k-j ≤ n.
Proof. For any iteration q let Tq be the tree in steps 6-9.

Statement 1 holds since at the end of iteration i the tree is optimal and steps 19
and 20 are evaluated at least for the node where the maximum is attained in step 7.
Therefore in iteration i+1 the tree stays the same and the maximum in step 7 is over a
smaller subset.

To prove statement 2 of the claim we assume that xk = }{max i
Si

x
∈

 in iteration j-1.

Then

∑

∑

∑

∑

−

−−

−

−−

∈

∈

∈

∈

+

+

==≥

1

11

1

11

\)(),(
2

\)(),(
1

)(

)(j

),()(

),()(

)(
)(

j
jT

jj

j
jT

jj

j

j

jT

jT

TiPvu

TT
b

TiPvu

TT
a

T
b

T
a

kPe
e

kPe
e

vu∆kd

vu∆kd

kd
kd

b

a
τ , (6)

where the second equality holds by Claim 1. By induction it is easy to see that from step
11a it follows `d (p)≥d(p) for every p∈N. Also, for every p∈N after step 16a we have

}),(:)(max{)`(),(Apqcqdpd pq ∈+= . Combining these two observations we obtain that
if (u,v)∈Tj\Tj-1, then `d (v)=d(u)+c(u,v)>d(v) and therefore from step 8, for all arcs
(u,v)∈Tj\Tj-1 we have)()(11

),(vdcud jj T
cvu

T
c

−− >+ , which in turn implies by definition of c

9

that >−+− −−
),(

1-j
),(

1-j)()(11
vuvu

T
b

T
a baudud jj ττ)()(11 1-j vdvd jj T

b
T
a

−− −τ . This inequality can
be rewritten as

),(),(11
2

1-j
1 vuvu jj TT −− ∆>∆ τ . (7)

Using (6) and (7), and)()(111 kdkd jj T
b

T
a

j −−=−τ , we get

1

\)(),(
2

\)(),(
2

1

\)(),(
2

\)(),(
1

1

11

1

11

1

11

1

11

),()(

),()(

),()(

),()(
−

∈

∈

−

∈

∈ =
∆+

∆+

≥
∆+

∆+

≥
∑

∑

∑

∑

−

−−

−

−−

−

−−

−

−−

j

TiPvu

TT
b

TiPvu

TjT
a

TiPvu

TT
b

TiPvu

TT
a

j

j
jT

jj

j
jT

jj

j
jT

jj

j
jT

jj

vukd

vukd

vukd

vukd

τ

τ

τ ,

which yields statement 2 of the claim.
Now we show statement 3 of the claim by using an argument from Lawler (1976).

Suppose τ increases in iteration j. Then

0

)(

)(

)(

)(1

1

1

>−=−
∑

∑

∑

∑

−

−

∈

∈

∈

∈−

lPe
e

lPe
e

kPe
e

kPe
e

jj

jT

jT

jT

jT

b

a

b

a
ττ ,

 where k and l are the nodes where }{max i
Si

x
∈

is attained in iterations j and j-1 respectively.

We have

0

)()(

)()()()(

)(

)(

)(

)(

1

11

1

1

≠
−

=−
∑∑

∑∑∑∑

∑

∑

∑

∑

−

−−

−

−

∈∈

∈∈∈∈

∈

∈

∈

∈

lPe
e

kPe
e

kPe
e

lPe
e

lPe
e

kPe
e

lPe
e

lPe
e

kPe
e

kPe
e

jTjT

jTjTjTjT

jT

jT

jT

jT

bb

baba

b

a

b

a

and therefore

22

)()(

)()()()(1

1

11

Bnbb

baba

lPe
e

kPe
e

kPe
e

lPe
e

lPe
e

kPe
e

jTjT

jTjTjTjT

≥
−

∑∑

∑∑∑∑

−

−−

∈∈

∈∈∈∈ ,

since the numerator is integral and nonzero.
Now we show the last statement. If τj= τj+1=…= τk, then in all these iterations the

weights c do not change. Let p, j ≤ p ≤ k-1 be an iteration and let `d be computed after
step 16a at iteration p.

We first show that)`()(1 idid pT
c ≥+ for any node i. Let i be a node. We have

already argued that)()`(idid pT
c≥ . Assume first that)()`(idid pT

c= . Then

),`()(

)),(),(()(),()()(
\)(),(

21
\)(),(11

1

idid

vuvuidvuidid

p

p
pT

ppp

p
pT

ppp

T
c

TiPvu

TpTT
c

TiPvu

T
c

T
c

T
c

=≥

∆−∆+=∆+= ∑∑
++

+

∈∈

τ

10

where we have used Claim 1 and (7). Let now)()`(idid pT
c> . In this case

),()()`(ij
T

c cjdid p += for an arc (j,i)∈A. Clearly (j,i)∈ p
T TiP p \)(1+ and therefore again by

Claim 1 and (7) we obtain

.)`()(),()(),()()(),(
\)(),(1

1 idcjdijidvuidid ij
T
c

T
c

T
c

TiPvu

T
c

T
c

T
c

ppp

p
pT

ppp =+=∆+≥∆+= ∑
+

+

∈

For any j∈N, let rk(j) be the value of the longest s-j path with exactly k arcs and
with respect to c. Clearly by dynamic programming we have

}),(:)(max{)(),(
1 Ajicirjr ji

kk ∈+=+ . By induction and by combining this dynamic

programming equation with }),(:)(max{)`(),(Ajicidjd ji
T
c

p ∈+= , we get that if

)()(jrjd kT
c

p ≥ for an integer k, then)()`(1 jrjd k +≥ . Since `d (j)≤ 1+pT
cd (j), it follows

that)()(11 jrjd kT
c

p +≥+ . Since k ≤ n, either we find an optimal longest path tree in at most
n iterations or τ changes. This proves the last statement in the claim.

Using Claim 2 it is easy to prove the correctness and finiteness of the algorithm.
After an iteration of type I, τ decreases. In all consecutive iterations of type II τ either
increases or it remains the same for at most n iterations. After at most n iterations either τ
increases or the longest path tree is found and therefore | S | decreases. Now it is clear that
the algorithm terminates in a finite number of steps.

Note that only in proving the fourth statement of Claim 2 we needed the variant
given in Figure 2. Thus Claim 1 holds for the more general case and the variant is
required only in the degenerate case when τ does not change from iteration to iteration.
Running time
Let }{max eEe

aA
∈

= , }{min eEe
aA

∈
= , }{min eEe

bB
∈

= , and }{max~
eEe

aA
∈

= . Consider two

consecutive type I iterations i and l, i<l and let }{max i
Si

j xx
∈

= in iteration i+1. Then we

have

{ }
{ }

{ }
.

~2,max2
max

)(

)(

\

*1

1

1

B
An

B
AAn

Bn
A

B
An

b

a

jPe
e

jPe
e

sNi
i

il

iT

iT

=≤−≤−≤−
∑

∑

+

+

∈

∈

∈

+ τττ (8)

At every type II iteration between iterations i and l, either τ increases by at least
)/(1

22 Bn or it remains the same for at most n iterations. Therefore there are at most

BAnBnn /~2
22 ⋅⋅ consecutive type II iterations. Since there are at most n type I iterations

and the time per iteration is O (m), the overall running time is O (BABmn /~25). Therefore
the primal-dual algorithm is pseudo-polynomial.
2.2 The Bisection Algorithm
The main idea of the bisection algorithm is taken from the mean cost to time cycle
algorithm by Lawler (1976). In the bisection algorithm, each *

iτ has a lower and an upper
bound and we use bisection to find the optimal *

iτ . At every iteration, the gap between the

11

lower and the upper bound of the selected node is decreased by at least a half, but in
addition, the gap of other nodes might decrease as well.

The bisection algorithm is described in Figure 5. In the initialization stage of the
algorithm the upper and lower bounds τ and τ are computed as follows. For all i∈N we
compute)(id and)(id as in step 1 in Figure 1. Denote by T1 the longest path tree
induced by d and by T2 the shortest path tree induced by d . For every i∈N we set

)(
)(

id
idτ i = and }

)(
)(

,
)(
)(

max{
2

2

1

1

id
id

id
id

τ T
b

T

T
b

T

i
aa= , which is clearly an upper and a lower bound on

*
iτ .

Input: An acyclic network D = (N, A)
Output: τi* for all i∈N \{s}
1: Initialize lower bounds τ and upper bounds τ .
2: S = N\{s}
3: while S ≠ ∅ do
4: Select a node j∈ S .

5:
2

jj ττ
τ

+
=

6: Let ce=ae–τbe for all e∈E and use Dijkstra to obtain the longest path distances d
and the corresponding longest path tree T with respect to weights c.

7: for all i∈ S do
8: if d(i) = 0 then
9: S = S \{i}
10: τi*=τ
11: else if d(i) < 0 then
12: iτ =min{ τ, iτ }
13: else

14: iτ = max{
∑

∑

∈

∈

)(

)(

iPe
e

iPe
e

T

T

b

a
, iτ }

15: end if
16: end for
17: end while

Figure 5. The bisection algorithm

In step 4 we first select a node from S , and in steps 5 and 6 we perform bisection.
In step 6 we run Dijkstra with respect to weights ce=ae–τbe for every arc e∈A, and we
obtain the longest path values d(i) for all i∈N and the corresponding longest path tree T.
Let Si ∈ . If d(i)=0, then by the ratio path optimality condition we have τi*= τ and we
remove the node from S . This corresponds to steps 9 and 10. If d(i)<0, then for any s-i

12

path P in the network we have 0)(τ <≤− ∑∑
∈∈

idba
Pe

e
Pe

e and therefore τ is an upper bound

on τi*. If τ is a better upper bound, then in step 12 we update the upper bound. Finally, if
d(i)>0, then τba

iPe
e

iPe
e

TT

>∑∑
∈∈)()(

. Clearly ∑∑
∈∈)()(iPe

e
iPe

e
TT

ba provides a lower bound on τi*

and we update the lower bound in step 14.
Proof of Correctness and the Running Time Analysis
Let us denote iii ττt −= . To prove the correctness observe that for the selected node j in
step 4, the gap between the upper and the lower bound decreases by at least a half if
d(j)≠0. Therefore in every iteration, either the gap of the selected node decreases by at
least a half, or the node is removed from S . By statement 3 of Claim 2, if)(1

22 Bnt j ≤ ,

then there is a unique s-j path P with],[jj
Pe

e
Pe

e ττba ∈∑∑
∈∈

, which is clearly optimal. The

initial tj can be upper-bounded as in (8) by BAn /~2 and we obtain *
jτ if)(1

22 Bnt j ≤ .
Since every time j is selected in step 4, tj decreases by at least a half, overall j can be

selected at most)
~2log()

)(1

~2log(
23

22 B
BAn

Bn
BAn = times. Since there are n nodes and O (m)

steps per iteration (assuming we solve the shortest path problem in Step 6 by

topologically sorting the nodes), the running time of the algorithm is O nm()
~

log(
B

BAn).

This algorithm is polynomial.
Implementation
In step 4 of the algorithm we do not specify which node to select among all the nodes in
S . We have performed computational experiments with the following node selection
strategies.

1) Select a random node from S , which yields a randomized algorithm.
2) Select always the first node in S . Using this strategy, the execution flow

depends on the initial order of nodes.
3) Select the node j with the smallest tj. The intuition here is that for the selected

j we are close to optimality.
4) Select the node j with the largest tj. By selecting such a node we hope that

significantly changing τ would substantially improve the bounds for other
nodes as well.

5) Select the node j with the smallest tj and keep selecting j until it is removed
from S . This strategy is a mixture of strategies 2 and 3.

6) Select the node j with the largest tj and keep selecting j until it is removed
from S . This strategy combines strategies 2 and 4.

Computational results have shown that strategy 4 outperforms the others and
therefore it is the default node selection strategy.

13

Another implementation issue, which arises by using any of the strategies 3-6, is
how to efficiently find the node with the largest or the smallest tj among all the nodes in
S . We have implemented the bucket approach first proposed by Dial (1976) in the
context of the Dijkstra’s shortest path algorithm. The nodes are stored into C buckets
depending on tj for j∈ S . Bucket i contains nodes j with tj∈[)litilt)1(, +++ , where t is
a lower bound on initial ti for all i∈N, t is an upper bound on initial ti for all i∈N, and

C
ttl −= . To find the node with the maximum tj, we only need to scan the buckets,

starting from the last visited bucket, until the first nonempty bucket is found. After
finding the first nonempty bucket, we scan all the nodes in this bucket to obtain the
maximum ti. Every time a bound of a node is updated, the node is removed from the
bucket and is placed in the bucket corresponding to its new tj. The bucket approach
speeds up considerably the algorithm even though this implementation is no longer
polynomial. In our implementation we use 200 buckets, i.e. C=200.
2.3 The Parametric Longest Path Algorithm
The parametric longest path algorithm is based on Karp and Orlin (1981). The following
proposition is key to the understanding of the algorithm.

Proposition 2. Let T be the longest path tree with respect to weights eee bac τ−= for all
e∈A. Then T is the longest path tree with respect to weights eee bac τ−= , e∈A for any τ
such that

ττ ≤≤
+−
+−

>+−
∈=

}
)()(
)()({max

0)()(
),(

e
T
b

T
b

e
T
a

T
a

bvdud
Evue bvdud

avdud

e
T
b

T
b

.

Proof. Let τ be such that ττ
bvdud
avdudτ

e
T
b

T
b

e
T
a

T
a ≤≤

+−
+−

= }
)()(
)()(

max{ˆ . We need to show that T

is the longest path tree with respect to weights eee bac τ−= for all e∈A. By the longest

path optimality conditions it suffices to show that)()(vdbaud T
cee

T
c ≤−+ τ for any

e=(u,v)∈A. This inequality is equivalent to
).)()(()()(e

T
b

T
be

T
a

T
a bvdudτavdud +−≤+− (9)

If ττ = , then (9) holds by assumption.
Next we show that (9) holds for all τ, τττ ≤≤ˆ . Let e=(u,v)∈A be an arc.

Suppose first that 0)()(≤+− e
T
b

T
b bvdud . Then since ττ ≤ and since (9) holds for τ , we

have

))()(())()(()()(e
T
b

T
be

T
b

T
be

T
a

T
a bvdudτbvdudτavdud +−≤+−≤+− .

If 0)()(>+− e
T
b

T
b bvdud , then (9) holds by definition of τ̂ and since ττ ≤ˆ .

The parametric longest path algorithm computes *
iτ in a decreasing order of the

values. First *
iτ is computed for node i with the largest *

iτ . In the next step the second
largest *

iτ is computed and so forth. The algorithm produces a sequence of trees Tj and

14

jτ , where j is the iteration index. In every iteration j the tree Tj is the longest path tree for
any weights eee bac τ−= , e∈A with jj τττ ≤≤+1 . Suppose we have jτ and the
corresponding tree Tj. By Proposition 2, Tj is an optimal longest path tree for all τ such

that }
)()(
)()(max{

e
T
b

T
b

e
T
a

T
a

bvdud
avdud

jj

jj

+−
+−≥τ and therefore

 }.
)()(
)()({max

0)()(
),(

1

e
T
b

T
b

e
T
a

T
a

bvdud
Evue

j

bvdud
avdud

jj

jj

eb
jT

b
jT +−

+−=
>+−

∈=

+τ (10)

If this maximum is attained for e=(u,v)∈A, then clearly)},{(\)},{(1 vpredvuTT vjj ∪=+ .

The algorithm is given in Figure 6. At every iteration and for each i∈N we
maintain numbers ∑

∈

=
)(

)(
iPe

ea
T

aid and ∑
∈

=
)(

)(
iPe

eb
T

bid , where T is the current tree. PQ is a

priority queue (see e.g. Cormen, Leiserson and Rivest (1989)), where each element of PQ

encodes an arc e=(u,v) and the corresponding key of the element is
ebb

eaa

bvdud
avdud

+−
+−

)()(
)()(

.

An element of PQ is denoted by <key,e>, where e is an arc and key is the corresponding
key. The initial tree T is obtained as in step 3 of the primal-dual algorithm. Next in steps
5-10 we initialize PQ. In step 13 we find the arc with the largest key. In steps 14-19 we
use Proposition 2 and the ratio path optimality condition to obtain some *

iτ . If

∑∑
∈∈

=
)()(

~
iPe

e
iPe

e
TT

baτ for a node i∈ S is between τ and τ, then T is the longest path tree for

weights eee bac τ~−= , e∈A. But then the distance in T of node i is 0 and therefore we can
use the ratio path optimality condition. In steps 21-42 we update the keys of PQ. First in
steps 22-25 we update ad and bd based on (2). Let e=(i,j) ∈A be an arbitrary arc. If

)(vTi ∉ and)(vTj ∉ , then by (1) the key does not change. If)(vTi ∈ and)(vTj ∈ ,
then by (2) the key does not change. Steps 27-42 update the keys if either

)(vTi ∈ ,)(vTj ∉ or)(vTi ∉ ,)(vTj ∈ .
Since D is acyclic, in every iteration T is a tree and by above discussion, it is clear

that the algorithm is correct and it terminates in a finite number of steps.

Input: An acyclic network D = (N, A)
Output: τi* for all i ∈ N\{s}
1. For all i∈N compute)(id ,)(id corresponding to the longest, shortest s-i path with

respect to weights ae, be, respectively.

2.
)(
)(max

id
idτ

Ni∈
=

3. Let ce=ae –τbe for all e∈A and use Dijkstra to obtain the longest path tree T with
respect to weights c.

4. For all i∈N compute)(ida ,)(idb .
5. for all e=(i, j)∈A do

15

6. if 0)()(>+− ebb bjdid then

7. key =
ebb

eaa

bjdid
ajdid

+−
+−

)()(
)()(

8. Insert <key, e> in PQ.
9. end if
10. end for
11. S = N\{s}
12. while S ≠ ∅ do
13. Find the pair with the maximum key in PQ. Let < τ ,e> be such a pair, where

e=(u,v).
14. for all i∈ S do

15. if ττ ≤≤
)(
)(

id
id

b

a then

16. =*
iτ)(

)(
id
id

b

a

17. }{\ iSS =
18. end if
19. end for
20. ττ =
21. Let T(v) be the subtree of T rooted at v.
22. for all i∈T(v) do
23.),()()(

1
vu∆idid T

aa +=

24.),()()(
2

vu∆idid T
bb +=

25. end for
26. predv=u
27. for all i∈T(v) do
28. for all e=(i, j)∈A and j∉T(v) do
29. Remove <τ ,e> from PQ.
30. if 0)()(>+− ebb bjdid then

31. key =
ebb

eaa

bjdid
ajdid

+−
+−

)()(
)()(

32. Insert <key,e> in PQ.
33. end if
34. end for
35. for all e=(j, i)∈A and j∉T(v) do
36. Remove <τ ,e> from PQ.
37. if 0)()(>+− ebb bidjd then

38. key =
ebb

eaa

bidjd
aidjd

+−
+−

)()(
)()(

39. Insert <key,e> in PQ.
40. end if

16

41. end for
42. end for
43. end while

Figure 6. The parametric longest path algorithm

Running Time
Here we assume that PQ is either a binary heap or a red-black tree. Since by assumption
the cost a and the time b are integral, all the denominators in the keys of PQ are greater
or equal to 1. Therefore in step 24 at every iteration 1),(2 ≥∆ vuT . Clearly Bnidb ≤)(for

all i∈N. We conclude that the key of an arc is updated at most Bn2 times. The factor 2 is
present since an arc has two endpoints and the value Bn is included since)(idb can

change at most Bn times for any i∈N. Every operation on PQ requires at most
O(log(m))=O(log(n)) time. Therefore the running time of the algorithm is O(mn B log(n)).
The parametric longest path algorithm is a pseudo-polynomial algorithm.
3. Computational Experiments
The computational experiments were conducted on an SGI Origin200 workstation with a
RISC 12000 processor running at the clock speed of 270 MHz. The operating system is
IRIX, version 6.5, and the workstation is equipped with 512 MB of main memory. The
algorithms are implemented in C++ by using the MIPSpro, version 7.3, development
environment.

The algorithms were tested on several random acyclic networks and on instances
resulting from large-scale linear programming, Makri and Klabjan (2002). We define the

density d of a network as)
2

)1((−= nnmd , where the denominator is the maximum

number of arcs on n nodes. For a given density we generate random networks as follows.
Let k=d(n-1)/2 represent the average out degree of every node. For every node we first
generate a random number s from the uniform discrete distribution from [k-t,k+t], where t
is selected in such a way that the variance is a given number (50 in our case). The
neighbors of the node correspond to a random subset of cardinality s from {i+1,…,n}.
The cost of each arc is a random number in the range]~,~[AA− and the time is a random
number from []BB, . We selected a symmetric interval for the cost since the running time
analysis suggest that the running time should depend only on the magnitude of the cost.
The computational experiments were carried out with various interval ranges.

 We choose s=1, i.e. the source is the node with label 1. Note that based on our
generation method some nodes i might not have an s-i path. For all such nodes i we add
arcs to random nodes k,k<i that are connected to s. Experiments have shown that on
average less than 10% of the nodes are not connected to s.

In Section 2.1 we presented two variants of the primal-dual algorithm.
Computation experiments have revealed that the version with steps 9a-16a is more
efficient. This has already been observed in Dasdan, Irani and Gupta (1998). We came to
the conclusion that changing the tree too much in these steps is not beneficial. Therefore
we have designed a third variant of the primal-dual algorithm, which is the same as the

17

algorithm in Figure 1 except that step 13 is not carried out. It means that in steps 9-16 we
do not update the distances but only the tree. It turns out that this version of the primal-
dual algorithm is the most efficient one and therefore in what follows the primal-dual
algorithm corresponds to this variant.

Our network generation method yields networks that are already topologically
sorted. Therefore arc scanning in the primal-dual algorithm is based on this order and
step 6 of the bisection algorithm requires a single scan of the arcs. To study the impact of
different node orders, we ran the primal-dual algorithm with random topological orders.
The running times increased. Note that the parametric longest path algorithm is
indifferent to the node order.

In the parametric longest path algorithm we use the binary heap as the priority
queue PQ. For efficiency, in the implementation an element of the heap stores also
references to the arcs (in addition to storing arcs and keys).

In the remaining part of this section we first compare the running times of the
three algorithms and then we give a more detailed analysis of the primal-dual and the
parametric longest path algorithms. For each experiment with a fixed density, number of
nodes, and BBA ,,~ we have performed 20 runs and we took the average of the observed
values. All the computational times are in seconds.
3.1 Algorithm Comparisons

We show later in Section 3.2 and Section 3.3 that the primal-dual and the
parametric longest path algorithms are strongly polynomial on random networks and
therefore its running time depends only on n and d. The results shown in this section were
obtained by using .1000~,500,1 === ABB

Young, Tarjan, Orlin (1991) propose an efficient implementation of the
parametric shortest path algorithm. Their implementation stores in the priority queue only
one element for each node. This element corresponds to the incident arc with the largest
key. This modification can easily be embedded in our algorithm and it leads to an
implementation that requires O(n) space instead of O(m). We denote the resulting
algorithm as PLP and the algorithm presented in Figure 6 as PLP_A. In Figure 7 we
compare the running time in seconds of the two implementations. We see that PLP is
substantially faster than the original algorithm and therefore from this point on we
consider only PLP.

Next we show the running time comparison of the primal-dual algorithm (denoted
by PD in the figures that follow) and the parametric longest path algorithm. The running
times are plotted in Figure 8. We see that the parametric shortest path algorithm
outperforms the primal-dual algorithm for all the densities. The number of the iterations
of the primal-dual algorithm is lower than the number of the iterations of the parametric
shortest path algorithm (this is shown later), however, the time per iteration is much
lower in the latter algorithm. This is due to the fact that in the primal-dual algorithm we
have to scan all the edges at every iteration but on the other side only few heap updates in
the parametric shortest path algorithm are required per iteration.

18

0

10

20

30

40

50

60

70

80

500 700 900 1100 1300 1500 1700 1900

n

tim
e

d=25%,PLP d=25%,PLP_A d=50%,PLP
d=50%,PLP_A d=75%,PLP d=75%,PLP_A

Figure 7. The comparison of the Young-Tarjan-Orlin implemention of the parametric longest path

algorithm (PLP) and the original presentation (PLP_A)

0

20

40

60

80

100

120

140

160

180

200

500 750 1000 1250 1500 1750 2000

n

tim
e

d=10%,PD d=10%,PLP d=25%,PD d=25%,PLP
d=50%,PD d=50%,PLP

Figure 8. Time comparison of the primal-dual algorithm (PD) and the parametric longest path

algorithm (PLP)

Figure 9 shows the computational time comparison of the bisection algorithm and
the primal-dual algorithm. Regardless of the density, the bisection algorithm is inferior
and therefore it is the least efficient algorithm among the three. On sparse networks its
running time is slower by a factor of 4 and for denser networks the factor is 8. The
drawback of the bisection algorithm is a large number of iterations. Note that the time per
iteration is comparable to the time per iteration of the primal-dual algorithm since it
essentially requires scanning all of the arcs. Based on the empirical evidence of the

19

bisection algorithm, we believe the algorithm that reduces the problem to the minimum
cost to time cycle problem (see introduction to Section 2) is not efficient.

Table 1 shows the computational times on networks that are typical in large-scale
linear programs solved in Makri and Klabjan (2002). The cost and the time in these
instances are as well taken from these linear programs. We can see that these networks
tend to have a high number of nodes but are extremely sparse. The parametric longest
path algorithm is the winner. Due to the large execution times, we did not test the
bisection algorithm for the largest 2 instances. During the execution of the linear
programming solver designed in Makri and Klabjan (2002), MCT has to be performed
several times and therefore low execution times are needed. The running times of the
parametric longest path algorithm are within the acceptable limits. Since these networks
are sparse, we have performed additional experiments on random networks with d=2.5%,
which are given in Figure 10. In all of the cases the parametric longest path algorithm
outperforms the primal-dual algorithm.

0

500

1000

1500

2000

2500

500 750 1000 1250 1500 1750 2000

n

tim
e

d=10%,PD d=10%,B d=50%,PD d=50%,B d=100%,PD d=100%,B

Figure 9. Time comparison of the primal-dual algorithm and the bisection algorithm (B)

(n, m, d)
primal-dual
algorithm

Bisection
algorithm

parametric longest
Path algorithm

(2358, 75487, 2.7%) 51 173 22
(2397, 74757, 2.6%) 38 134 19

(3058, 109422, 2.3%) 97 327 55
(6496, 302949, 1.4%) 428 1475 20

(8120, 281280, 0.9%) 504 - 21

(11844, 661164, 0.9%) 1308 - 58

Table 1. Running times on instances from large-scale linear programming

20

0

1000

2000

3000

4000

5000

6000

7000

5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000

n

tim
e

PD PLP

Figure 10. The comparison of PD and PLP on networks with d=2.5%

Since the bisection algorithm has poor performance, we did not carry out
additional experiments with this algorithm. In the remaining two sections we give more
insight into the parametric longest path algorithm and the primal-dual algorithm.
3.2 Computational Analysis of the Primal-Dual Algorithm

We first show that the running time of the primal-dual algorithm does not depend
on the range of the input data a and b. In Figure 11 we first plot the running time versus
the largest absolute value of the cost. In these experiments we have selected various
values of B and B and the density of either 25% or 50%. The running time analysis from
Section 2.1 suggests that the running time depends also on the ratio BB / and therefore
we show in Figure 12 the dependency of the running time and this ratio. We show the
dependency for various numbers of nodes and the density of either 25% or 50%. As we
can observe from these two figures, the running times do not depend on these two
quantities. For each observation in Figure 12 we have made several runs with equal ratio
but different B and B . In addition to these experiments, we have measured the running
times by varying independently B and B . These data, which are not shown here, comply
with the above findings that the running times do not depend on these two values. All of
these experiments suggest that on random networks the primal-dual algorithm is strongly
polynomial.

21

Figure 11. Dependency of the cost range
and running time for PD

Figure 13 shows the number of iterations of the primal-dual algorithm with
respect to the density of the network. The number of iterations depends only on the
number of nodes and not on the number of arcs. By using linear regression we have fitted
the number of iterations as the function cnkml. We obtained that the number of iterations
is 1.607n0.96m-0.13. The ratio of the actual number of iterations over these estimated values
is shown in Figure 14. As we can observe, the error is always less than 3%. The
computational experiments show that the number of iterations on random networks is
O(n) and therefore it seems that the complexity of the algorithm is O(nm) on random
networks.

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60 70 80 90 100

density

no
. i

te
ra

tio
ns

n=500 n=1000 n=1500 n=2000

0.997

0.998

0.999

1

1.001

1.002

1.003

1.004

500 750 1000 1250 1500 1750 2000

n

ra
tio

Figure 13. The number of iterations
of the primal-dual algorithm

We conclude this section by showing the growth of the actual running time with

respect to the number of nodes and the density of the network. Figure 15 shows the
execution times for a wide range of densities. We can observe a linear growth in terms of
the number of arcs and a slightly super linear growth in the number of nodes, which is a
consequence of a linear growth of the number of iterations and time per iteration with
respect to the number of nodes.

0

50

100

150

200

250

300

0 20000 40000 60000 80000 100000

tim
e

n=1000 n=1500 n=2000 n=2500 n=3000

n=3500 n=4000

A~

Figure 12. Dependency of the time
range and the running time for PD

0

50

100

150

200

250

300

0 200 400 600 800 1000

tim
e

n=1000 n=1500 n=2000 n=2500
n=3000 n=3500 n=4000

BB /

Figure 14. The ratio number of
iterations over estimated number of
iterations in PD

22

0

50

100

150

200

250

300

350

500 750 1000 1250 1500 1750 2000

n

tim
e

d=10% d=25% d=50% d=75% d=100%

Figure 15. Running times of the primal-dual algorithm

3.3 Computational Analysis of the Parametric Longest Path Algorithm
The running time analysis of the parametric longest path algorithm suggests that

the execution time does not depend on A~ . In Figure16 we show that the running time of
the parametric longest path algorithm does not depend on A~ . In this figure, due to the
high running times, we have plotted the logarithms of the running times.

1

10

100

1000

0 20000 40000 60000 80000 100000

tim
e

n=1000,d=25% n=2000,d=25% n=750,d=50%
n=1250,d=50% n=500,d=75% n=1000,d=75%

Figure 16. Running time of the parametric longest path algorithm with respect to the range of the

cost

The dependency of the running times with respect to B is shown in Figure 17 and
Figure 18 for d=2.5% and d=50%, respectively. We chose to study a sparse family since

23

the networks in linear programs are sparse. Similar to the primal-dual algorithm, we see
that the times do not depend on B .

0

50

100

150

200

250

5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000

n

tim
e

B=1 B=500 B=2500 B=5000

50

100

150

200

250

300

350

3000 3500 4000 4500 5000 5500 6000
n

tim
e

B=1 B=500 B=2500 B=5000

Figure 17. Execution time of PLP
with d=2.5%

Figure 19 and Figure 20 show the number of iterations of the algorithm and the

number of heap updates for d=2.5% and d=50%, respectively. The number of iterations is
scaled by 10. On average the number of heap updates per iteration is 14 for d=2.5% and
23 for d=50%. Note that this is substantially less than the overall number of arcs and this
is the primal reason of success of the parametric longest path algorithm over the primal-
dual algorithm. By applying linear regression similar to the one we carried out in the
primal-dual algorithm analysis we conclude that the number of heap updates equals to
1.9n1.2 m0.1. If we compare this relation multiplied by log(n), which is the worst time of a
heap operation, with 1.607n0.96m0.87 obtained by the primal-dual algorithm and multiplied
by m (the time per iteration of the primal-dual algorithm), we see that the exponent of m
of the parametric longest path algorithm is lower than that of the primal-dual algorithm.
This argument gives us an additional explanation about the dominance of the parametric
longest path algorithm.

0

20000

40000

60000

80000

100000

120000

140000

160000

5000 7500 10000 12500 15000
n

no. iterations no. heap updates

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

2000 2500 3000 3500 4000 4500 5000 5500 6000
n

no iterations no heap updates

Figure 19. The number of iterations and
heap updates for d=2.5%

In Figure 21 and Figure 22 we show the ratio of the time spent in updating the

heap over the overall execution time. For the sparse family less than 50% of the time is

Figure 18. Execution time of PLP
with d=50%

Figure 20. The number of iterations
and heap updates for d=50%

24

spent on these updates but this ratio grows as n increases. This is understandable since the
size of the heap depends on n. On the other hand, for the denser network heap updates
dominate and form on average 80% of the time.

0

10

20

30

40

50

60

70

80

90

100

5000 7500 10000 12500 15000
n

0

10

20

30

40

50

60

70

80

90

100

2000 2500 3000 3500 4000 4500 5000 5500 6000
n

Figure 21. The percentage of heap
updates for d=2.5%

4. Conclusions
We presented three algorithms for solving MCT: a primal-dual algorithm, a

bisection algorithm, and a parametric longest path algorithm. For each one of them we
show the correctness and we carry out a running time analysis. The first and the third
algorithms are pseudo polynomial whereas the bisection algorithm is polynomial.

We performed extensive computational experiments. The bisection algorithm is
by far the least efficient one and the parametric longest path algorithm outperforms the
primal-dual algorithm. On random networks the computational experiments showed that
the algorithms are polynomial.
Acknowledgment

We are grateful to two anonymous referees whose comments have substantially
improved the paper, particularly the computational part.
References
AHUJA, R., MAGNANTI, T. and ORLIN, J. Network flows. Prentice Hall (1993).
BARNHART, C., JOHNSON, E., NEMHAUSER, G., SAVELSBERGH, M. and

VANCE, P. Branch-and-Price: Column generation for solving huge integer
programs. Operations Research 46, 316-329 (1998).

COCHET-TERRASSON, J., COHEN, G., GAUBERT, S., McGETTRICK, M., and
QUADRAT, J. Numerical computation of spectral elements in max-plus algebra.
In Proceedings of IFAC Conference on System Structure and Control (1998).

CORMEN, T. , LEISERSON, C., and RIVEST, R. Introduction to Algorithms. McGraw-
Hill (1989).

DASDAN. A. Experimental analysis of the fastest optimum cycle ratio and mean
algorithms. Synopsys Technical Report 2001-10-22-01, Synopsys Inc. (2001).

DASDAN, A., IRANI, S. and GUPTA, R. Efficient algorithms for optimum mean and
optimum cost to time ratio problems. Proceedings of the 1999 36th Annual
Design Automation Conference, 37-42 (1999).

Figure 22. The percentage of heap
updates for d=50%

25

DASDAN, A., IRANI, S. and GUPTA, R. An experimental study of minimum mean
cycle algorithms. Technical Report #98-32, University of California, Irvine
(1998).

DIAL, R. Algorithm 360: Shortest path forest with topological ordering. Communications
of ACM 12, 632-633 (1969).

KARP, R. and ORLIN, J. Parametric shortest path algorithms with an application to
cyclic staffing. Discrete Applied Mathematics 3, 37-45 (1981).

LAWLER, E. Combinatorial optimization: Networks and matroids. Holt, Reinhart, and
Winston (1976).

MAKRI, A. and KLABJAN, D. A new pricing scheme for airline crew scheduling. To
appear in INFORMS Journal on Computing (2002). Available from
http://www.staff.uiuc.edu/~klabjan/professional.html.

YOUNG, N., TARJAN, R and ORLIN, J. Faster parametric shortest path and minimum-
balance algorithms. Networks 21, 205-221 (1991).

