
Solving Large Airline Crew Scheduling Problems: Random

Pairing Generation and Strong Branching

Diego Klabjan ∗

Ellis L. Johnson
George L. Nemhauser

School of Industrial and Systems Engineering
Georgia Institute of Technology

Atlanta, GA 30332-0205

Eric Gelman
Srini Ramaswamy

Research and Development
Information Services Division

United Airlines

April 10, 2000

Abstract

The airline crew scheduling problem is the problem of assigning crew itineraries
to flights. We develop a new approach for solving the problem that is based on
enumerating hundreds of millions random pairings. The linear programming re-
laxation is solved first and then millions of columns with best reduced cost are
selected for the integer program. The number of columns is further reduced by a
linear programming based heuristic. Finally an integer solution is obtained with
a commercial integer programming solver. The branching rule of the solver is en-
hanced with a combination of strong branching and a specialized branching rule.
The algorithm produces solutions that are significantly better than ones found by
current practice.

Keywords: transportation, branch-and-bound, airline crew scheduling

∗Current address: Department of Mechanical and Industrial Engineering, University of Illinois at
Urbana-Champaign, Urbana, IL, 61801

1

1 Introduction

The airline crew scheduling problem concerns assigning crew itineraries to flights with
the objective of minimizing the crew cost. A crew itinerary is called a pairing. The
crew scheduling problem can be formulated as a set partitioning problem where flights
correspond to ground set elements and pairings to subsets. The problem is difficult due
to the large number of possible pairings, their complex structure, and nonlinear cost.

In this paper we present a new methodology for solving airline crew scheduling
problems. First the LP relaxation of the set partitioning problem is solved to ‘quasi’
optimality. We solve it by repeatedly generating random pairings and reoptimizing.
Overall we generate approximately half a billion pairings. For the integer programming
phase, we select about 10 million pairings with low reduced cost. An integer solution is
then found by a branch-and-bound heuristic algorithm. We enhance the solver with a
new branching strategy. The overall crew scheduling algorithm yields better solutions
than those produced by an algorithm currently used in practice. For some instances
we were able to obtain solutions that are 3 times better. The algorithm was applied on
a cluster of machines in parallel.

We summarize the contributions of the paper and how it is organized as follows. In
Section 2 we present the new algorithm for airline crew scheduling. In Section 3 we give
a detailed description of the random pairing generation routine. Connections are chosen
randomly based on the connection times. A new branching rule, called the timeline
branching rule, for airline crew scheduling is presented in Section 4. In Section 5 we
show how to combine timeline branching with strong branching to enhance the branch-
and-bound solver. We also experiment with a combination of follow-on and strong
branching. The last section presents computational results including a comparison of
different branching rules.

The Airline Crew Scheduling Problem

The input for an airline crew scheduling problem is a fleet together with its schedule
and aircraft routing. Major US airlines operate based on a hub and spoke network.
Airports where the activity is high are called hubs and the low activity airports, called
spokes, are mostly served from hubs. This work focuses on domestic fleets of US airlines
with a hub and spoke flight network.

A flight leg or segment is a nonstop flight. A duty is a working day of a crew
consisting of a sequence of flights. A duty is subject to FAA and company rules.
Among other rules, there is a minimum and maximum connection time between two
consecutive flights in a duty, denoted by minSit and maxSit. A connection within a
duty is called a sit connection. The minimum sit connection time requirement can be
violated only if the crew follows the plane turn, i.e. they do not change planes.

2

The cost of a duty is usually the maximum of three quantities: the flying time, a
fraction of the elapsed time, and the duty minimum guaranteed pay. All three quantities
are measured in minutes. We denote by dcd the cost of a duty d.

Crew bases are designated stations where crews are based. A pairing is a sequence
of duties, starting and ending at a crew base. A connection between two duties is
called an overnight connection or layover. We refer to the time of a layover as the rest.
Like sit connection times, there is a lower and an upper bound on the rest, denoted by
minRest and maxRest. If the rest period is longer than approximately 24 hours, we
call it a double overnight.

The cost of a pairing is also the maximum of three quantities: the sum of the duty
costs in the pairing, a fraction of the time away from base and a minimum guaranteed
pay times the number of duties. The excess cost or pay-and-credit of a pairing is defined
as the cost minus the flying time of the pairing. Note that the excess cost is always
nonnegative. The flight time credit (FTC) of a pairing is the excess cost times 100
divided by the flying time.

A pairing is also subject to many FAA rules. A detailed discussion of legality rules
and the cost structure can be found in Barnhart et al. [6]. For our input data the
maximum number of segments in a duty is 10 and the maximum number of duties in
a pairing is 4. Crews can also fly as passengers to be repositioned for the next flight,
which is known as deadheading.

The airline crew scheduling problem is to find the minimum cost pairings that par-
tition all the segments. Flight schedules generally repeat weekly. In the weekly airline
crew scheduling problem we must find pairings that partition all the flight legs in the
weekly schedule. Usually deadheads have to be considered. The daily airline crew
scheduling problem is the crew scheduling problem with the assumption that each leg
is flown every day of the week. In practice, some legs are not operated during week-
ends. Since the number of such irregular legs is small, the daily problem forms a good
approximation to the weekly problem. The methodologies developed in this paper can
be applied to both daily and weekly problems.

Traditionally a crew scheduling problem is modeled as the set partitioning problem

min{cx : Ax = 1, x binary}, (1)

where each variable corresponds to a pairing, aij = 1 if leg i is in pairing j and 0
otherwise, and cj is the pay-and-credit of pairing j. The number of pairings varies
from 200,000 for small fleets, to about a billion for medium size fleets and to billions
for large fleets.

Since crew cost is second only to fuel cost, the crew scheduling problem has drawn a
lot of attention. In recent years, due to novel algorithmic methodologies and advances
in computer hardware and software, the excess pay for large fleets has been considerably
reduced. A recent survey is given by Barnhart et al. [6].

3

Modern airline crew scheduling branch-and-bound algorithms differ primarily on
column selection since it is not possible to deal with all of the columns simultaneously.
There are two main issues. One concerns when columns should be generated, with the
two extremes being
• only at the root node
• at every node of the tree.
The other issue is how columns should be generated, with the two extremes being
• an optimization procedure that guarantees finding a column with lowest reduced cost
• random.
There are, of course, an infinite number of possibilities that can be thought of as convex
combinations of these extreme alternatives.

When columns are generated throughout the tree, although not necessarily at every
node, and an optimization approach, although not necessarily exact, is used to select
columns, the algorithm is called branch-and-price. Theoretically branch-and-price offers
the best hope of finding a solution that is close to optimum, but the column generation
requires the solution of a constrained shortest path problem and can be both memory
and time consuming. Moreover, its application requires significant customization of
the IP solver and best reduced cost columns may improve the LP value but not the
IP value. Barnhart et al. [5] give a survey of branch-and-price approaches. The
first application of branch-and-price to airline crew scheduling appears to have been
described in Desrosiers et al. [13]. Descriptions of column generation, branching, and
search strategies for branch-and-price algorithms for crew scheduling are given by Vance
et al. [24] and Anbil, Forrest and Pulleyblank [1].

It is very unlikely that pure random generation of columns could provide a reason-
able set for the ensuing optimization. However, by mixing randomness with column
selection based on tight connections, it could be possible to generate a very large num-
ber of columns very fast and then let the LP optimization at the root node select a
subset of these columns for the IP. The IP selection would be based on reduced cost,
feasibility and again, randomness. The IP would then be solved using a commercial
IP solver. An approach along these lines, without randomness, was proposed by Chu,
Gelman and Johnson [11]. We enhance this work by including randomness in column
selection, new specialized branching and a new parallel LP solver. Earlier related work
is given in Anbil, Johnson and Tanga [3] and Bixby et al. [10].

The tradeoff between branch-and-price and the type of approach we have just de-
scribed is the cost of repeated generation of very judiciously selected columns versus
a less exact but much faster per column up-front generation of a very large number of
columns. There is unlikely to be a definitive answer on which approach is better since
conclusions are likely to be problem and implementation dependent.

4

2 The New Algorithm for Airline Crew Scheduling

The algorithm has two main phases. The first phase solves the LP relaxation to ‘quasi’
optimality. Solving the LP relaxation to optimality may be unnecessary since the ulti-
mate goal is to find a good integer solution. The second phase consists of heuristically
finding an integer solution based on the dual information of the LP relaxation. The
algorithm flow is given in Figure 1. Each step is described in the remaining part of this
section.

branch-and-bound

column reduction

column selection

removing duplicate columns

primal-dual simplex

column selection

primal-dual simplex

pairing generation Solving the LP
relaxation

Finding an
integer solution

Figure 1: Algorithm flow

2.1 Solving the LP Relaxation

The LP relaxation is solved by repeatedly generating random pairings and then solving
the resulting large-scale LP by a parallel primal-dual simplex algorithm. The motiva-
tion for the random pairing generation is that it is very fast and gives a good ‘diversity’
of pairings. The parallel primal-dual simplex is the fastest method we are aware of
for solving these LPs with a small number of rows and many millions of columns. We
explain the solution methodology for daily problems. The necessary modifications for
weekly problems are given in Klabjan [17].

Let B be a primal feasible basis that is initially empty. At the end, B yields the
best found primal feasible solution to the LP relaxation. We iterate the following steps
(the loop in Figure 1).

5

Pairing generation: We generate between 50 and 75 million random pairings. The
random aspect of the generation is described in Section 3. The pairings are then
uniformly at random redistributed among all processors.

Primal-dual simplex: The LP with columns corresponding to generated pairings and
columns that are in the basis B is solved by the parallel primal-dual algorithm of
Klabjan, Johnson and Nemhauser [18].

Column selection: Next we select a set of pairings that are candidates for the IP. We
store some low reduced cost pairings, approximately 2 million, and one million
random pairings. After the low reduced cost pairings have been selected, the
random pairings are chosen from the remaining ones with probability exp(−τ ·rc2),
where rc stands for the reduced cost of the pairing and τ controls the number of
selected pairings. The basis B becomes the optimal basis from the LP.

Since we keep the basis, the objective value cannot increase at any iteration. We
break the loop when the decrease in the objective value falls below a given threshold.

For medium and large size fleets the number of iterations ranges from 10 to 15.
Typically, initial decreases in the objective value are around 500 minutes and gradually
they drop down to 20. When a decrease falls below 20 minutes, we stop. Note that
in pairing generation we do not use any dual information. However, the process might
be speeded up by pruning the depth-first search if the reduced cost of a partial pairing
becomes ‘too big’.

With k loops in this phase, we have selected approximately 3k million pairings.
Next we first remove all duplicate columns by using the parallel algorithm described
in Klabjan [17]. Then we solve the LP over the selected pairings (second ‘primal-dual
simplex’ step in Figure 1). Note that we may improve the solution obtained in the
previous phase.

2.2 Finding an Integer Solution

A common procedure for obtaining an IP is to select a set of columns with low reduced
cost with respect to the dual vector of the LP relaxation. An integer solution is then
found by a branch-and-bound algorithm using the selected columns, see Chu, Gelman
and Johnson [11] and Anbil, Johnson and Tanga [3]. The number of selected columns
in their work is between 10,000 and 15,000. Our experiments have shown that this is a
good strategy for small fleets or whenever the reduced costs of columns are relatively
high, e.g. weekly problems. Due to the high number of low reduced cost pairings in
our instances, we select several million pairings with low reduced cost.

Based on the computed dual vector in the LP programming phase we select pairings
with reduced cost below a given threshold (second ‘column selection’ step in Figure 1).

6

For our instances the threshold used was 50 or 100. Typically around 10 million pairings
are chosen.

Next we use a heuristic to reduce further the number of columns to 100,000. The
heuristic is based on the follow-on branching rule, Desrosiers et al. [13] and Anbil,
Johnson and Tanga [3], that is motived by the Ryan-Foster branching rule, Ryan and
Foster [23]. Consider two flight legs r and s. On one branch, called the follow-on branch,
we force the two legs to appear consecutively in a pairing. On the other branch, called
the non follow-on branch, the two legs can not appear consecutively. Denote by Pr the
set of all pairings covering leg r and by Prs the set of all pairings that contain both
legs r and s with leg s immediately following leg r. It has been shown in Vance et
al. [24] that follow-on branching is a valid branching rule. Namely, if x∗ is an optimal
fractional basic solution to the LP relaxation of (1), then there exist two flights r and
s such that

0 <
X
i∈Prs

x∗i < 1 .

We can then form the two branches as follows. We fix the follow-on by setting all the
variables corresponding to pairings in (Pr∪Ps)−Prs to 0. In the non follow-on branch,
all the variables corresponding to pairings in Prs are set to 0.

The following procedure, called the column reduction heuristic, is iterated as long
as the number of pairings stays above 100,000. Suppose that x∗ is the current LP value.
We fix all follow-ons (r, s) with

P
p∈Prs x

∗
p = 1 and also the follow-on (r̃, s̃) with the

biggest value of
P
p∈Pr̃s̃ x

∗
p, but still less than 1. Note that the (r̃, s̃) follow-on cuts

off the current fractional LP solution. Finally the resulting new LP is solved with a
primal-dual algorithm and the procedure is repeated. Each fixed follow-on reduces the
number of rows in the set partitioning problem by 1.

We apply the column reduction heuristic only if there are many low reduced cost
pairings. However, if the number of such pairings is small, then we take 100,000 columns
with the smallest reduced cost. Finally, we find an integer solution by using a commer-
cial mixed integer programming solver that is enhanced with a strong branching rule
described in Section 5.

3 Pairing Generation

The current practice of generating only a subset of pairings is either by generating
pairings that cover specified subsets of legs, Gershkoff [16], Anbil et al. [2], or by prior
knowledge of ‘good’ connections, Andersson et al. [4]. The former methodology of
generating pairings is used in TRIP algorithms. The latter approach is a greedy one,
i.e. only a given number of short connections are chosen.

7

Our new approach combines the greedy estimates based on connection times with
randomization. Such an approach is called the greedy randomized adaptive search pro-
cedure (GRASP), see e.g. Feo and Resende [15].

There are two networks used for pairing generation, Barnhart et al. [6]. The segment
timeline network has two distinct nodes for each flight, one for the arrival and the other
for the departure. For each flight there is an arc connecting the two nodes. Additionally
the network has an arc between the arrival node of a flight and the departure node of
a flight if the connection time between the two flights is shorter than maxSit and the
arrival station of the first flight is the same as the departure station of the second flight.
The duty timeline network on a given set of duties is defined in a similar way except
that connection times are required to be within [minRest,maxRest].

Each duty is a path in the segment timeline network and each pairing is a path in
the duty timeline network. However due to pairing and duty feasibility rules a path is
not necessarily a pairing or a duty. Our pairing generation is based on a duty time-
line network. First duties are generated from the segment timeline network and then
pairings are obtained from the duty timeline network. Throughout the computation
we work only with a small subset of duties so memory requirements are not a problem,
which is usually the difficulty with duty networks. For daily problems we employ the
following strategy. Suppose that the maximum number of allowed duties in a pairing
is d. We assume that we are not going to consider any pairing that has two double
overnights due to the high cost. Hence any considered pairing cannot exceed d+1 days.
Based on this assumption we add 2(d + 1) nodes for each leg to the segment timeline
network, each one corresponding to a different consecutive day of the week. Random
duties are then constructed from such a network. Using this approach we generate
different duties on different days of the week and hence we get a larger sample of duties
than by generating them on a single day and making copies for other days of the week.

Duties and pairings are generated by using a depth-first search enumeration on
the segment and duty timeline networks respectively. We attempt to extend a partial
duty/pairing with a segment/duty if there is a corresponding connection arc in the
network.

As already indicated above we first generate random duties and then random pair-
ings. The two parts differ due to the number of possible connections even though the
basic idea is the same. A segment typically has no more than 30 connections whereas
a duty can have hundreds of connections.

3.1 Random Duty Generation

To generate random duties we choose random connections in the depth-first search
procedure. Let tij be the connection time between flights i and j in the segment
timeline network. Let pij = f(tij) be the probability of choosing the connection. The

8

depth-first search procedure attempts to extend the current duty with the connection
arc (i, j), i.e. with the flight leg j, with probability pij. Note that first the connection
is chosen and then the feasibility of the new duty is checked.

The main issue in the above procedure is the computation of probabilities. At
spokes the connections are sparse and hence we set pij = 1 if the arrival station of leg
i is a spoke. We use a parameter denoted by E for the expected number of selected
connections at each node of the network. The parameter controls the number of random
duties that are generated. The bigger the value, the more duties we generate. If a node
has fewer than E connections, then all the connections are considered. Connections
corresponding to plane turns that have connection time shorter than the minimum sit
connection time are always selected.

For the remaining nodes we have to choose an appropriate function f . The function
is nonincreasing since shorter connections are preferable, and it is convenient for it to
be continuous. By using the exponential function

pij = e−ζi(tij−minSit)
2
,

where ζi is a parameter depending only on leg i, we assign considerable weight to the
connection time. We have to compute the value ζi that satisfies the expected number
of connections requirement, namely

g(ζ) =
X
j

e−ζi(tij−minSit)
2

= E . (2)

By introducing ξi = exp(−ζi), the solution to the equation (2) is a root of a polyno-
mial. To solve it, we use Newton’s method with a starting point at 1 (see e.g. Bertsekas
[8]). Since the number of considered connections is low, the method is fast. In our im-
plementation we first compute ζi satisfying (2) for each node in the segment timeline
network and then we carry out the depth-first search enumeration of duties.

3.2 Random Pairing Generation

Once random duties have been generated as described above, we generate random
pairings. Typically we generate from 30,000 to 60,000 duties. Since too many pairings
can be constructed from them, we generate only a subset of pairings.

The basic idea of generating pairings is similar to the duty generation; we want to
expand a partial pairing with a duty by choosing connections with a certain probability.
As above, a desired property of the probability is that longer connections should have
a lower probability. However the straightforward adaption of the duty approach would
be intractable due to a different order of magnitude in the number of nodes of the
segment timeline network and the duty timeline network. For example, for each duty

9

to compute the value of ξ would involve finding a root of a polynomial of degree equal
to the maximum rest time and with up to 500 (the number of possible connections of
a duty) nonzero coefficients.

Let Sj be the set (cluster) of all duties that start with leg j. Denote by aj the
common departure time of all such duties. Assume that we want to extend a partial
pairing that ends with a duty d. The duties we consider are all the duties that depart
at the same station as the arrival station of the duty d and that satisfy the minimum
and maximum rest time restrictions.

To circumvent the problem of computing the value of ζ for each duty, we first choose
a random step size in time and then random duties from the first cluster of duties with
the departure time after the randomly generated time. More precisely, if at the previous
step we have been generating duties from the cluster Sj , we sample a random number
of minutes denoted by n and in the next step we choose duties at random from the
first duty cluster Sk whose departure time is greater than aj +n, see Figure 2. We call
the random variable n a step size. We use the normal distribution for the step size,
namely n ∼ N(µ, σ2). The variance σ is fixed throughout the computation but the
mean value µ varies based on the connection time. Suppose that tj is the connection
time between a duty in Sj and the duty d. Then µ = f(tj), where f is an increasing,
continuous function. We use a linear function for f . Once the next cluster of duties Sk
is chosen, we need to generate random duties from the cluster. Given a fixed number
τ , the probability of choosing a duty from Sk is p = exp(−τ(tk −minRest)2).

−

n∼N(µ,σ2)

current
cluster

next
cluster

d

Sj Sk

choose duties with
probability p

Figure 2: Selecting the next duty cluster

We now consider generating random duties from a cluster. Note that the probability
p of choosing a duty depends only on the cluster and not on a single duty within the
cluster. We use a parameter pMethod where if p > pMethod, then we loop through all
the duties in the cluster and we select a duty with probability p (binomial sampling).
If p ≤ pMethod, then we use geometric distribution sampling as follows. We select a

10

number u from the uniform distribution on [0, 1] and we compute ũ = blnu/ ln(1− p)c
which is geometrically distributed with parameter p (see Law and Kelton [20]). We skip
the next ũ− 1 duties and we select the duty that follows, see Figure 3. The procedure
is repeated until all the duties in the cluster are scanned. Additional implementation
details can be found in Klabjan [17].

Sk

skip
u-1
duties

select,
sample
u

skip u-1
duties

select,
sample
u

skip
u-1

duties
˜

˜

˜

˜

˜

Figure 3: Selecting duties from a cluster: p ≤ pMethod

As in the duty generation, if the number of all possible overnight connections is less
than a given number, we do not apply the random scheme. For example, at a spoke
the number of connections is small so we consider all of them for a possible extention
of the partial pairing.

The random pairing generation routine was embedded into the parallel generation
algorithm developed in Klabjan and Schwan [19]. The amount of additional work of a
random pairing generation step is negligible if the pseudo-random number generator is
fast. We report computational results in Section 6.3.

3.3 Generating Low FTC Pairings

Since it is unlikely that a good solution has pairings with really large FTC, we only
generate pairings that have FTC below a given number K. In the depth-first search
procedure we prune all partial pairings that would in the best possible scenario yield
a pairing with an FTC bigger than K. The following proposition gives a lower bound
on the FTC of a pairing.

Proposition 1. Denote the maximum number of allowed duties in a pairing bymaxDuties,
the maximum allowed flying time in a duty by maxFly, and the flying time of a duty

11

d by fld. Let a partial pairing have duties d1, . . . , dk, where k ≤ maxDuties. IfPk
i=1 dcdi + (maxDuties− k) ·maxFlyPk
i=1 fldi + (maxDuties− k) ·maxFly ≥ K + 1 ,

where 0 < K < 1 is a real number, then the FTC of any pairing resulting from the
partial pairing is greater than K.

Proof. Assume that the partial pairing is completed to a pairing by appending the
duties dk+1, . . . , dk0 . Then a lower bound on the cost of the pairing is

Pk0
i=1 dcdi ≥Pk

i=1 dcdi +
Pk0
i=k+1 fldi since the cost of a pairing is bigger than the sum of the duty

costs and dcdi ≥ fldi . Hence a lower bound on the ratio of the cost of the pairing and
the flying time isPk

i=1 dcdi +
Pk0
i=k+1 fldiPk0

i=1 fldi
≥
Pk
i=1 dcdi + (maxDuties− k) ·maxF lyPk
i=1 fldi + (maxDuties− k) ·maxFly ,

since fldi ≤ maxFly and k0 ≤ maxDuties. The bound can be checked by multiplying
the fractions to eliminate denominators and expanding the products. The claim now
easily follows.

For daily problems we set the cutoff value K = 0.25. This additional pruning
reduces the pairing generation time by a third.

4 Timeline Branching

The choice of an effective branching rule can be crucial to the solving of large-scale
integer programs. Here we present a new branching rule called timeline branching for
solving the set partitioning problem (1) by an LP based branch-and-bound algorithm.
The idea of timeline branching comes from SOS branching, Beale and Tomlin [7]. Let
P̃r = ∪sPrs. The pairings in P̃r can be ordered based on the connection time with flight
leg r. For each pairing p ∈ Prs, we define the connection time, denoted by tp, to be the
departure time of the leg s minus the arrival time of the leg r. The timeline branching
rule first identifies a leg r and a time t. The pairings in P̃r are then split based on the
connection time and the time t. The first branch, called the 0 timeline branch, sets
all the pairings p ∈ P̃r with connection time tp ≤ t to 0; the second branch, called the
1 timeline branch, sets all the pairings p ∈ P̃r with connection time tp > t and the
pairings that end with r to 0. Thus the 0 timeline branch can be expressed asX

p∈P̃r ,tp≤t
xp = 0 ,

12

and the 1 timeline branch as X
p∈P̃r ,tp≤t

xp = 1 .

If there are no flights departing at the same time from the same station, then
timeline branching is a valid branching rule.

Proposition 2. Suppose that any two flights departing from the same station have
different departure times. If x∗ is a basic fractional solution to the LP relaxation of
(1), then we can identify a leg r and a time t such that

0 <
X

p∈P̃r ,tp≤t
xp < 1 .

Proof. It is proved in Vance et al. [24] that under the conditions stated in the propo-
sition, there are flights r and s such that 0 <

P
p∈Prs x

∗
p < 1. The identified leg for the

timeline branching rule is r. If
P
p∈P̃r x

∗
p < 1, then we can choose the time t to be the

maximum rest time.
Now suppose that

P
p∈P̃r x

∗
p = 1. Then there is a leg q, q 6= s, such that 0 <P

p∈Prq x
∗
p < 1. By the assumption the departure times of legs s and q are different.

We can then identify pairings p1 ∈ Prs and p2 ∈ Prq such that 0 < x∗p1 < 1 and
0 < x∗p2 < 1. Then we can set t = (tp1 + tp2)/2, which is different from tp1 and tp2 .

If there are legs with equal departure time and departure station, we can slightly
perturb the departure and arrival times. For our input data, 15% of the legs needed
perturbation on average.

With an appropriate choice of the pair (r, t), the two branches can produce balanced
branch-and-bound trees, even more balanced than those obtained with the follow-on
branching rule. As with the follow-on branching rule, care has to be taken in choosing
a good branching pair.

5 Strong Branching

Given a branching rule such as the conventional variable dichotomy rule, follow-on or
timeline, the next decision is to choose a specific branching that meets the rule. Strong
branching is a method for choosing a specific branching that achieves the objectives of
either increasing the lower bounds on the child nodes as much as possible or finding a
good integral solution quickly, or both. Assume that we use variable dichotomy as a
branching strategy and we have a subset S of fractional variables that are candidates
for branching. For each variable i ∈ S the two branches are formed and a given number
k of dual simplex iterations are performed on each branch. For i ∈ S let f0i , f

1
i be the

13

resulting objective values. These values are used to choose a branching variable. If the
two values for a variable i are relatively large, then i is a good candidate to branch on
since there are significant increases in the LP value for both branches. There are three
decisions in the strong branching rule that need to be specified: the choice of the set
S, the number of dual iterations k, and how to combine the values f0, f1 to obtain a
branching variable.

Strong branching first appeared in the commercial mixed integer programming
solver CPLEX, CPLEX Optimization [12]. No details are known about the imple-
mentation. Bixby et al. [9] choose the subset S as the set of 10 least integral variables.
The integrality of a variable i with the value x∗i in an LP solution of the current node
is defined as |x∗i − 0.5|. The number of dual simplex iterations is 50. A variable max-
imizing 10 max{f0i , f1i } + min{f0i , f1i } is selected as the branching variable. A slightly
different approach is presented in Linderoth and Savelsbergh [21]. The set S is chosen
as the set of variables having the LP value between a given lower and upper bound. The
number of dual iterations used is 25 and the branching variable is a variable maximizing
f0i + f1i .

We generalize the strong branching ideas to capture our branching rules. The values
f1 in the follow-on branching strategy correspond to the objective values of the follow-
on branches after carrying out a given number of dual simplex iterations. The f1 values
for timeline branching correspond to the 1 timeline branches. The f0 values correspond
to the other branches in both branching rules.

We first focus on strong branching with the follow-on rule, called strong follow-
on branching. The subset S is chosen as a set of 180 least integral follow-ons. The
integrality of a follow-on (r, s) is defined as

|
X
p∈Prs

x∗p − 0.5| .

Since there are typically fewer fractional variables in variable dichotomy than there
are fractional follow-ons, a larger size set S is reasonable. For each follow-on in S, we
perform 20 dual simplex iterations. We choose the branching follow-on by maxi∈S{f0i +
αf1i }, where α is a parameter. Since the follow-on branch is a branch revealing more
information and more likely to yield an integer solution soon, we would like to have a
large lower bound improvement in the non follow-on branch and a small lower bound
improvement in the follow-on branch. Note that a large lower bound improvement
means that it is likely to prune the branch and a small improvement translates into
high chance of finding a good integral solution. Therefore it makes sense to require
α ≤ 1. We experimented with the settings α = 0.8, 0.5,−1 and found out that the
value −1 outperforms the other two for all tested instances. Hence the branching

14

follow-on is the one attaining the maximum in

max
i∈S

{f0i − f1i } .

Strong branching with the timeline rule needed a little bit more experimenting and
a slight divergence from standard strong branching. The integrality of a branching pair
(r, t) is defined as

|
X

p∈P̃r ,tp≤t
x∗p − 0.5| .

Since a ‘high’ level branching decision should be made at the top of the tree, we
choose to make decisions of the connection type, i.e. sit connection or overnight con-
nection, first. Hence the only timeline branching pairs considered are of the form
(r,maxSit). We call this sit/layover branching. Note that fractional solutions can-
not always be excluded by sit/layover branching since there may not exist a time t
that divides the timeline as in sit/layover and satisfies the conditions of Proposition
2. Therefore when sit/layover cannot be executed, it must be replaced by a generally
applicable branching rule such as variable dichotomy.

We perform strong branching in conjunction with sit/layover branching if there is
at least one pair (r,maxSit) with integrality less than 0.1. The candidate set S is
the set of 20 least integral timeline branching pairs and 20 dual simplex iterations are
performed. Since in timeline branching neither branch is clearly better than the other,
the branching pair in strong branching is one that satisfies

max
i∈S

{f0i + f1i } .

When there is no pair with integrality less than 0.1, we switch to variable dichotomy
branching, specifically branching on the most fractional pairing. We call this rule the
strong sit/layover branching rule. An alternative is to combine sit/layover branching
with either strong variable dichotomy branching or strong follow-on branching. How-
ever, since after making sit/layover decisions on the top of the branch-and-bound tree,
the number of still active pairings is small, we decided to combine sit/layover with
conventional variable dichotomy as indicated above.

6 Computational Results

6.1 Parallel Computing Environment

All computational experiments are performed on clusters of machines. Two clusters are
used, the first consisting of 16 200MHz Quad Pentium Pros and the second comprised of
48 300MHz Dual Pentium IIs, resulting in 160 processors available for parallel program

15

execution. All machines are linked via 100 MB point-to-point Fast Ethernet switched
via a Cisco 5500 network switch. Each machine with a Quad Pentium has 256MBytes
of main memory whereas the remaining 48 nodes have 512MBytes of main memory per
machine.

In summary, the cluster machine we use is representative of typical machines of this
type. It has a relatively slow internode communication but has a good cost/performance
ratio in comparison with specialized parallel machines like the CM-5, the Intel Paragon,
or the IBM SP-2 machines. The Intel cluster machine also shares characteristics with
modern parallel machines like the IBM SP-3, in its use of multiprocessor nodes, with 8
processors/node used in the IBM SP-3 vs. the 4 processors used in our Intel cluster.

The parallel implementation uses the MPI message passing interface (see e.g. Mes-
sage Passing Interface Forum [22]), MPICH implementation version 1.0, developed at
Argonne National Labs. The MPI message passing standard is widely used in the par-
allel computing community. It offers facilities for creating parallel programs to run
across cluster machines and for exchanging information between different processors
using message passing procedures like broadcast, send, receive and others.

The mixed integer programming solver used was CPLEX, CPLEX Optimization
[12], version 5.0.

6.2 Computational Results with Branching

All computational experiments in this section were performed on the cluster consisting
of 16 200MHz Quad Pentium Pros. We embedded the branching rules within the mixed
integer programming solver CPLEX. In all experiments a steepest edge dual simplex
algorithm was used for solving the LP relaxations. We tested our branching rules
against the solver’s default setting. We tried to tune some parameters of the solver but
the default setting produced the best results.

We first performed computational experiments with various node selection options
and without the use of strong branching, i.e. only standard follow-on or timeline
branching was used. The solver’s default branching rule constantly outperformed both
follow-on and timeline branching rules. This is a clear indication that strong branching
is needed. For the remaining experiments we fixed the node selection strategy to the
best bound node and all other features of the solver were left unchanged.

A comparison of the CPU time of the solver with an implementation of the strong
branching rule and with the default branching rule is hard due to the following two
facts. The current implementation of the solver first carries out the default branching
rule and then the user defined branching function is called. Hence there is an additional
overhead of performing the default branching rule. The second argument relies on the
fact that the internal data structures of the solver are not available in a user-defined
branching function. For example, the same tableau has to be computed for each child

16

node before performing the dual iterations in strong branching.
The strong sit/layover branching rule is not much more computationally intensive

than the default branching rule because strong branching decisions are performed only
at a few nodes at the top of the branch-and-bound tree. Therefore the limits on the
number of evaluated nodes for the strong sit/layover branching rule and the solver’s
default branching rule were the same (about 12 hours). However, the node limit for the
strong follow-on branching rule, which is much more computationally intensive than
the default, was determined in such a way that the execution times were roughly the
same as for the default.

Note that the strong branching rules are supposed to work well on big mixed integer
instances where solving LP relaxations is relatively time intensive. We found out that
it pays to use strong branching for problems with more than 150 rows assuming that
the number of columns is larger than 50,000.

To reduce the overall computational time, the strong branching rule is performed in
parallel. Each processor has a copy of the preprocessed formulation. At the beginning
of a branching procedure, the upper bounds at the current node are broadcasted to
each processor. In addition the basis and the dual norms associated with the node are
broadcasted to all processors. A dedicated processor computes the follow-ons that form
the set S and then distributes them evenly to all other processors. The processors then
in parallel perform the dual simplex iterations on both child nodes and for all assigned
follow-ons. At the end the best follow-on from all processors is chosen.

The computational results are presented in Table 1. The number of columns and
rows reported is the number after the preprocessing step has been carried out by the
solver. All the instances are daily problems. The “Num. nodes” column reports
the total number of evaluated nodes. In runs denoted by * an optimal solution was
found. We see that strong branching rules outperform the default solver. The strong
sit/layover branching rule found the overall best solution in the first 2 instances, but
the CPU times for finding the best integer solution were longer than the corresponding
times for strong follow-on branching.

We performed additional experiments with strong follow-on branching on two weekly
instances. The computational results are shown in Table 2. Strong follow-on branch-
ing clearly outperforms the default solver’s branching rule. In these runs, we did not
consider strong sit/layover branching since the results in Table 1 indicate that it takes
more time to find a good integer solution.

6.3 Computational Results with the Crew Scheduling Methodology

Here we discuss solution quality. The instances and the FTC results are summarized
in Table 3. The problems fl2 and fl3 were used in Vance et al. [24]. The feasibility
rules and the cost function used are identical to those in [24].

17

Num. Num. Branching Solution Num. Node index
rows cols rule value nodes best solution

179 99150 default 1,380 10,000 200
strong follow-on 1,215 600 53
strong sit/layover 1,052 10,000 9,716

207 95605 default 344 10,000 559
strong follow-on 209 700 104
strong sit/layover 166 10,000 3,005

211 70422 default 436 10,000 9,829
strong follow-on * 420 2,651 520
strong sit/layover * 420 10,000 7,213

178 195647 default ∞ 3,000 -
strong follow-on * 55 589 404
strong sit/layover * 55 1,970 1,806

244 98179 default ∞ 6,800 -
strong follow-on 631 500 381
strong sit/layover ∞ 6,800 -

Table 1: Comparison of different branching strategies for daily problems

Num. Num. Branching Solution Num. Node index of
rows cols rule value nodes the best solution

653 171836 default 7805 3300 532
strong follow-on 7769 600 57

653 80472 default ∞ 5000 -
strong follow-on 8120 800 61

Table 2: Comparison of different branching strategies for weekly problems

18

Fleet Problem Number of Follow-on Timeline Previous
name type legs FTC FTC best FTC

fl1 daily 342 2.86% 2.47% 3.43%
fl2 daily 449 0.31% 0.24% 0.93%
fl3 weekly 654 6.60% 6.60% 10.0%

Table 3: FTC results

Fleet LP LP heuristic IP # major LP # fixed Exe.
name value value value iterations follow-ons time (hrs)

fl1 637 767 1215 11 161 8
fl2 40 57 209 14 230 10
fl3 6349 6349 7805 12 0 15

Table 4: LP, IP values and computational times

The column “Follow-on FTC” refers to the FTC we obtained by using the strong
follow-on branching rule in the last phase of the algorithm whereas the “Timeline FTC”
column reports the FTC by using the strong sit/layover branching rule. The column
“Previous best FTC” reports solutions obtained with a branch-and-price algorithm,
Vance et al. [24]. Clearly our solutions substantially improve upon the existing solu-
tions. For the fl2 instance our solution is 3 times better.

Table 4 reports the gaps and execution times for the algorithm based on strong
follow-on branching. The column “LP heuristic value” reports the LP objective value
after the column reduction heuristic was applied. For the fl3 problem the final integer
program is obtained by taking columns with the best reduced cost (no column reduction
step). In “# major LP iterations” we list the number of iterations in the LP phase.
The column “# fixed follow-ons” lists the number of follow-ons that have been fixed in
the column reduction heuristic. As we can see, the gaps are large; for the fl2 instance,
the (IP-LP)/LP gap is more than 500%. We do not know whether the true gaps are
smaller. Solutions can possibly be improved by using a parallel branch-and-bound
solver in the final phase, however we believe that the gap would remain big.

Table 5 reports a breakdown of execution times averaged over 3 instances for the
algorithm based on strong follow-on branching. The pairing generation routine is scal-
able as demonstrated in Klabjan and Schwan [19]. The parallel primal-dual simplex
algorithm achieves good speedups on a moderate number of processors, Klabjan, John-
son and Nemhauser [18]. The last phase still has room for improvements as only the
strong branching routine is carried out in parallel. The node processing is performed

19

Phase
Execution Number of

time processors

pairing generation 34% 96
LP solving 15% 12
column reduction 11% 12
IP solving 40% 36

Table 5: The breakdown of execution times

sequentially. Nevertheless, the overall computational time is reasonably low on a par-
allel architecture that has good cost/performance ratio. Also note that a substantial
number of processors is used only in the pairing generation phase.

We have tried to consider a smaller number of pairings for the last stage but with
no success. Either the resulting problem was infeasible or the solution produced was
inferior. After taking 15,000 columns as suggested in Chu, Gelman and Johnson [11]
and Anbil, Johnson and Tanga [3], the problems were infeasible after evaluating a
substantial number of nodes. We believe that the difference is in the quality of the
LP solution. In their problems the gap is below 2%. Such a gap for our problems
would imply solutions that are on average 15 times better than those from [24] which
is unlikely. For larger daily fleets we have tried either taking 100,000 low reduced
cost pairings or applying the column reduction heuristic. The latter produced a better
result, justifying the heuristic.

7 Concluding Remarks

Our random column selection ideas can be incorporated into a branch-and-price ap-
proach to crew scheduling. In this framework pricing is slow and randomly selecting
connections might yield improvements.

We also believe that the overall methodology can be applied to other set partitioning
problems like vehicle routing and cutting stock problems. The only step that has
to be completely adapted is the random generation of columns. For cutting stock
problems, Markov chain sampling techniques can be used to generate columns, Dyer
et al. [14]. The strong follow-on branching rule can be generalized to a ‘strong Ryan-
Foster branching rule’.

20

8 Acknowledgments

This work was supported by NSF grant DMI-9700285 and United Airlines. Intel Cor-
poration funded the parallel computing environment and ILOG provided the linear
programming solver used in the computational experiments.

References

[1] Anbil, R., Forrest, J. and Pulleyblank, W. 1998. Column Generation and
the Airline Crew Pairing Problem, Extra Volume Proceedings ICM. Available from
http://www.math.uiuc.edu/documenta/xvol-icm/17/17.html.

[2] Anbil, R., Gelman, E., Patty, B. and Tanga, R. 1991. Recent Advances in
Crew Pairing Optimization at American Airlines. Interfaces , 21, 62—74.

[3] Anbil, R., Johnson, E. and Tanga, R. 1992. A Global Approach to Crew
Pairing Optimization. IBM Systems Journal , 31, 71—78.

[4] Andersson, E., Housos, E., Kohl, N. and Wedelin, D. 1998. Crew Pairing
Optimization. In Operations Research in the Airline Industry. G. Yu (editor).
Kluwer Academic Publishers, 228—258.

[5] Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M. and Vance,
P. 1998. Branch-and-Price: Column Generation for Solving Huge Integer Pro-
grams. Operations Research , 46, 316—329.

[6] Barnhart, C., Johnson, E., Nemhauser, G. and Vance, P. 1999. Crew
Scheduling. In Handbook of Transportation Science. R. W. Hall (editor). Kluwer
Scientific Publishers, 493—521.

[7] Beale, E. and Tomlin, J. 1970. Special Facilities in a General Mathematical
Programming System for Non-Convex Problems Using Ordered Sets of Variables,
Proceedings of the 5th International Conference on Operations Research.

[8] Bertsekas, D. 1995. Nonlinear Programming, Athena Scientific, 79—90.

[9] Bixby, R., Cook, W., Cox, A. and Lee, E. 1995. Parallel Mixed Integer
Programming, Technical Report CRPC-TR95554, Rice University. Available from
ftp://softlib.rice.edu/pub/CRPC-TRs/reports.

[10] Bixby, R., Gregory, J., Lustig, I., Marsten, R. and Shanno, D. 1992.
Very Large-scale Linear Programming: A Case Study in Combining Interior Point
and Simplex Methods. Operations Research, 40, 885—897.

21

[11] Chu, H., Gelman, E. and Johnson, E. 1997. Solving Large Scale Crew
Scheduling Problems. European Journal of Operational Research, 97, 260—268.

[12] CPLEX Optimization 1997. Using the CPLEX Callable Library, 5.0 edn, ILOG
Inc.

[13] Desrosiers, J., Dumas, Y., Desrochers, M., Soumis, F., Sanso, B. and
Trudeau, P. 1991. A Breakthrough in Airline Crew Scheduling, Technical Report
G-91-11, Cahiers du GERAD.

[14] Dyer, M., Frieze, A., Kapoor, A., Kannan, R., Perkovic, L. and Vazi-
rani, U. 1994. A Mildly Exponential Time Algorithm for Approximating the
Number of Solutions to a Multidimensional Knapsack Problem. Unpublished.

[15] Feo, T. and Resende, M. 1989. A Probabilistic Heuristic for a Computationally
Difficult Set Covering Problem. Operations Research Letters , 8, 67—71.

[16] Gershkoff, I. 1989. Optimizing Flight Crew Schedules. Interfaces, 19, 29—43.

[17] Klabjan, D. 1999. Topics in Airline Crew Scheduling and Large Scale Optimiza-
tion. Ph.D. Dissertation, Georgia Institute of Technology.

[18] Klabjan, D., Johnson, E. and Nemhauser, G. 1999. A Parallel Primal-Dual
Algorithm, Technical Report TLI/LEC-99-10, Georgia Institute of Technology. To
appear in Operations Research Letters.

[19] Klabjan, D. and Schwan, K. 1999. Airline Crew Pairing Generation in Parallel,
Technical Report TLI/LEC-99-02, Georgia Institute of Technology.

[20] Law, A. and Kelton, W. 1991. Simulation, Modeling and Analysis. McGraw-
Hill.

[21] Linderoth, J. and Savelsbergh, M. 1999. A Computational Study of Search
Strategies for Mixed Integer Programming. Informs Journal on Computing ,
11, 173—187.

[22] Message Passing Interface Forum 1995. The MPI Message Passing Standard.
Available from http://www.mpi-forum.org.

[23] Ryan, D. and Foster, B. 1981. An Integer Programming Approach to Schedul-
ing. In Computer Scheduling of Public Transport Urban Passenger Vehicle and
Crew Scheduling. A. Wren (editor). North-Holland, 269—280.

22

[24] Vance, P., Atamtürk, A., Barnhart, C., Gelman, E., Johnson, E., Kr-
ishna, A., Mahidhara, D., Nemhauser, G. and Rebello, R. 1997. A Heuris-
tic Branch-and-Price Approach for the Airline Crew Pairing Problem, Technical
Report LEC-97-06, Georgia Institute of Technology.

23

