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Abstract

Airline planning consists of several problems that are currently solved separately. We address a
partial integration of schedule planning, aircraft routing and crew scheduling. In particular, we
provide more flexibility for crew scheduling while maintaining the feasibility of aircraft routing
by adding plane count constraints to the crew scheduling problem. In addition we assume that
the departure times of flights have not yet been fixed and we are allowed to move the departure
time of a flight as long as it is within a given time window. We demonstrate that such a model
yields solutions to the crew scheduling problem with significantly lower costs than those obtained
from the traditional model.
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Major US airlines operate up to 2,500 domestic flights per day. Due to the large number of
flights, planning is complex and therefore is divided into several stages. Schedule development, i.e.
where and when to fly, comes first. Next is fleet assignment (FAM), where an assignment of fleets
(equipment types) to flights is made in order to maximize potential revenue. After FAM has been
solved, the problems that follow decompose by fleet. In aircraft routing, an aircraft is assigned to
each flight. Given a fleet and the corresponding plane routes, the next step is crew scheduling, which
consists of finding crew itineraries or pairings. The last step, called rostering, is the assignment of
crews to crew itineraries. Some recent literature that presents the individual models is Hane et al.
(1995) for fleet assignment, Clarke et al. (1997) for aircraft routing, Barnhart et al. (1999) for crew
scheduling, and Gamache and Soumis (1998) for crew rostering. Yu (1998) contains a collection of
articles on airline planning and operations.

The five problems, schedule development, FAM, aircraft routing, crew scheduling and rostering,
are solved separately. Ideally all five problems should be solved as a single problem, but this is not
feasible computationally. Here we take some steps toward an integrated approach. Our goal is to
solve the crew scheduling problem, but we assume that crew scheduling is solved before aircraft
routing and, in addition, that the flight departure times are not fixed. In order to solve crew
scheduling before aircraft routing we add additional constraints to the crew scheduling model,
which provide necessary conditions for the aircraft routing problem to be feasible. Each flight has a
time window and the final departure time must be within that time window. By assuming that crew
scheduling is solved before aircraft routing, we are able to obtain solutions to the modified crew
scheduling problem that are significantly better than solutions obtained by using the traditional
crew scheduling model. The retimed flights should not have a big impact on the quality of the
schedule and the FAM solution since the time windows considered are small.

The rest of the paper is organized as follows. In Section 1 we explain the constraints that have
to be added to the crew scheduling problem in order to meet plane count constraints. The time
window aspect of pairings is described in Section 2. Section 3 describes the solution methodology.
The resulting problem is a set partitioning problem with side constraints and we show the extra
steps required to account for the side constraints. Computational results are presented in Section 4.
We conclude the introduction with brief descriptions of the fleet assignment, the aircraft routing
and the crew scheduling problems.

Major US airlines domestic operations are based on a hub and spoke network. High activity
airports are called hubs and low activity airports are called spokes. After the schedule has been
built, FAM is solved. FAM has two fundamental sets of constraints: flow conservation and plane
count. Flow conservation is represented by a time space network in which there are arcs for each
flight leg or segment, i.e. a nonstop flight. Therefore an arc specifies two events, a departure and an
arrival. The constraints that a FAM solution cannot use more aircraft than there exist in a fleet
are modeled by introducing ground arcs and the associated variables. A ground arc represents a
connection between two consecutive events with no flight activity in between. Each fleet has its own
set of ground arc variables. The nonnegative ground arc variable counts the number of planes in
the fleet on the ground in the time interval defined by the arc. We call the value of such a variable
the ground arc value. For each fleet the flow conservation constraints state that the number of
planes on the ground plus the number of planes arriving must be equal to the number of planes
on the ground in the next time interval plus the number of planes departing. The total number of
planes in a fleet is the sum of all the ground arc values of those arcs at a specified point in time,
e.g. midnight, plus those aircraft that are in the air.
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An aircraft route is a sequence of flights that are flown by the same aircraft and a rotation or
a routing is a set of aircraft routes that partition all the flights in the schedule. Given a fleet, the
aircraft routing problem is to find a routing that satisfies the plane count constraints and other
constraints mainly related to maintenance, see e.g. Gu et al. (1994) and Clarke et al. (1997). We
say that a routing is plane count feasible if it satisfies the plane count constraints.

A plane turn time is the time needed for a plane to be ready for the next flight after arriving
at a gate. We denote by minTurn the minimum plane turn time, which can depend on various
factors such as the station and local time, but for simplicity we assume it is a constant. We use a
default value minTurn = 30 minutes. In the sequel, all times are given in minutes.

A duty is a working day of a crew which consists of a sequence of flights and is subject to
FAA and company rules. Among other rules, there is a minimum and maximum connection time
between two consecutive flights in the duty. A connection within a duty is called a sit connection.
We denote by minSit the minimum sit connection time. The default value is minSit = 45. The
minimum sit connection time requirement can be violated only if the crew follows the plane turn,
i.e. they do not change planes. The cost of a duty (measured in minutes) is the maximum of three
quantities: the flying time, a fraction of the elapsed time, and the duty minimum guaranteed pay.

Crew bases are designated stations where crews must start their first duty and end their last
duty. A pairing is a sequence of duties, starting and ending at a crew base and with the elapsed
time no more than a week. A connection between two duties is called an overnight connection or
layover. We refer to the time of a layover as the rest. Similar to sit connection times, there is a
lower and an upper bound on the rest. We denote by minRest the minimum allowed rest time
(minRest = 620 for our data).

The cost of a pairing is also the maximum of three quantities: the sum of the duty costs in the
pairing, a fraction of the time away from base and a minimum guaranteed pay times the number
of duties. The excess cost of a pairing is defined as the cost minus the flying time of the pairing.
Note that the excess cost is always nonnegative. The flight time credit (FTC) of a pairing is the
excess cost times 100 divided by the flying time, i.e. the excess time measured as a percentage of
flying time. A pairing is also subject to many FAA rules.

The airline crew scheduling problem is to find a set of pairings that partition all of the segments
and minimize excess cost. The daily airline crew scheduling problem is the crew scheduling problem
with the assumption that each leg is flown every day of the week. Since in practice, a small number
of legs are not operated during weekends, a daily solution needs to be modified somewhat to
obtain a weekly solution. The paper deals exclusively with the daily problem. Traditionally a crew
scheduling problem is modeled as the set partitioning problem

min{cx : Ax = 1, x binary}, (1)

where each variable corresponds to a pairing, aij = 1 if leg i is in pairing j and 0 otherwise, and cj
is the excess cost of pairing j. Note that for the daily problem, a pairing cannot cover a leg more
than once since pairings are repeated in the time horizon.

The problem is difficult since the number of pairings, i.e. columns, can be extremely large. The
number of pairings varies from about 200,000 for small fleets, to about a billion for medium size
fleets and to billions for large fleets. Furthermore since the cost function of a pairing is nonlinear
and the legality rules are complex, it is challenging to perform delayed column generation, i.e.
generating columns only as they are needed in the optimization algorithm.

There have not been many attempts to integrate planning stages. Barnhart, Lu and Shenoi
(1998) present a model that integrates, to some extent, FAM and crew scheduling. The model has
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a very large number of constraints and therefore is hard to solve. Rexing (1998) presents a FAM
model with time windows. His approach significantly differs from ours in the way the columns
are generated. He discretizes the time window intervals whereas we generate columns on the fly
without discretizing time windows. Another integration of the FAM model and time windows is
presented in Desaulniers et al. (1997). They use a set partitioning model with side constraints and
solve problems with up to 400 flights. Barnhart et al. (1998) discuss the integration of FAM and
aircraft routing by considering strings of flights.

Recently Cordeau et al. (2000) proposed a model that fully integrates crew scheduling and air-
craft routing since it produces a feasible crew schedule and a feasible aircraft routing. Their model
is solved with branch-and-price, where at each node of the tree the master problem is optimized
with Benders decomposition. They report computational results with fleets containing up to 500
flights and a spoke-to-spoke flight network, but it is not clear if the approach is computationally
tractable on hub-and-spoke flight networks with many crew bases.

There are also approaches that integrate crew and vehicle scheduling in urban mass transit
systems. Haase, Desaulniers and Desrosiers (1998) present a model that minimizes the crew cost
and the number of vehicles. Their model is the set partitioning model with side constraints and
it is solved with a branch-and-cut-and-price algorithm. Our model is similar except that in our
application the number of resources, i.e. aircraft, at any given time in the time horizon is given
by FAM. Freling, Huisman and Wagelmans (2000) propose a model that links the crew scheduling
formulation with the vehicle scheduling formulation. The model preserves the flow of the vehicles
but it does not try to minimize the number of vehicles. Their model resembles the model in
Cordeau et al. (2000). Other references on urban mass transit systems can be found in these two
papers.

1 Plane Count Constraints

Even though the difference between minSit (45 minutes) and minTurn (30 minutes) is relatively
small, judiciously choosing the plane turns can significantly affect the quality of crew scheduling.
We performed an experiment on a small fleet consisting of 123 legs. Table 1 shows the effect
of the minimum sit connection time on the excess cost. The last column refers to the problem

minSit 30 35 40 45 turns
FTC 8.4 8.5 10 12.5 11

Table 1: The impact of the minimum sit time on FTC

with minSit = 45 and a given aircraft routing, i.e. the approach used in current methodology.
The remaining columns show the objective value if the minimum sit connection time is set to a
given number and aircraft routing is neglected. Clearly, it is advantageous to have a minimum
sit connection time of 30 minutes. The experiment also indicated that a different routing can
significantly reduce the FTC.

The current methodology finds a routing first and then solves the crew scheduling problem. A
model that considers crew scheduling as well as aircraft routing would require variables for strings
as well as pairings, resulting in a larger formulation. However, since our primary objective is to
solve the crew scheduling problem, we will develop a formulation that incorporates the necessary
aircraft constraints without using string variables.
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Therefore, instead of completely combining the two problems, we solve them sequentially but
reverse the order in which they are solved. The advantage of this approach is that the crew
cost is high and the impact of a routing on the crew cost can be substantial. Furthermore, the
routing problem is primarily a feasibility problem and generally has many feasible solutions. In
the remainder of the paper we assume that a routing is not given. Since we do not know the plane
turns, any pairing having sit connections shorter than minSit can be a feasible pairing assuming
that the plane turns are implied by the pairing.

Suppose that the minimum sit connection time equals minTurn and we solve the crew schedul-
ing problem under this assumption. Then the pairings in the solution imply some plane turns,
namely each connection in a pairing that is shorter than minSit forces a plane turn. We call such
potential plane turns forced turns. Forced turns become part of the input to the routing problem
that must be included in feasible routes. Because of the hub and spoke network structure, as long
as the number of forced turns is low, it should not be difficult to meet the maintenance require-
ments. The other remaining significant constraints are the plane count constraints. We show in
this section how they are captured in the crew scheduling model.

Example 1. Consider the following scenario shown in Figure 1. Assume that this is the only

Figure 1: Plane count example

activity at the station and let minTurn = 30,minSit = 45. If pairings containing the leg pairs
1-4, 2-5, and 3-6 are in a crew scheduling solution, then they imply 3 forced turns and hence 3
planes on the ground at 8:31. Hence there would have to be one aircraft on the ground at 7:59,
and therefore this routing would use more planes than the minimum number.

1.1 Constraints

The following proposition gives a necessary and sufficient condition for forced turns to be included
in a plane count feasible routing.

Proposition 1. A set of forced turns can be included in a plane count feasible routing if and only
if at any point in time the number of planes on the ground imposed by the forced turns is less than
or equal to the corresponding ground arc value from the FAM solution.

Proof. Consider the set of forced turns satisfying the condition in the proposition. Suppose we
merge each pair of flights that form a forced turn into a single flight and then adjust the ground arc
values accordingly. The new ground arcs and flights still satisfy the flow conservation constraints
and the ground arc values are nonnegative. The remaining plane turns can be chosen by a first in
first out heuristic. It is easy to see that such a routing is plane count feasible.
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Conversely, it can be shown as in Example 1, that if the number of forced turns exceeds the
ground arc values, the proposed routing will violate the plane count constraints.

A FAM solution specifies the number of planes bg on the ground, for each ground arc g ∈ G and
for each fleet. These ground arcs are defined based on ‘ready’ times, that is each arrival time is
modified by adding the minimum plane turn time to it. For our purposes, it is desirable to define
ground arcs based on the original schedule, instead of on the ‘ready’ times. Given the ground arc
values from a FAM solution, it is easy to compute ground arc values based on our definition.

In a daily FAM model where each flight leg is flown every day, the ground arcs G correspond
to time intervals within a given 24 hour period. For a ground arc g ∈ G we use the notation g + d
to represent that the ground arc g is shifted by d days in a weekly horizon. We say that a pairing
includes a ground arc if there is a forced turn within the pairing that contains the time interval
represented by the ground arc. Let P be the set of pairings that can be generated from legs in
the schedule based on the minimum sit connection time of minTurn minutes. For each g ∈ G, let
Pg ⊂ P be the set of all pairings having a forced turn that includes one of g, g+1, . . . , g+6. Since
a ground arc with length greater than or equal to minSit has Pg = ∅, we only need to consider the
subset G′ ⊆ G whose elements have length less than minSit. Note that a pairing including g and
g+ d contributes 2 forced turns since it is repeated in the weekly horizon. For each g ∈ G′ and for
each p ∈ Pg define apg to be the number of times the pairing p includes one of g, g + 1, . . . , g + 6.
The plane count constraints can be written as

∑
p∈Pg

apgxp ≤ bg.

Figure 2: A pairing including a ground arc g and g + 1

Example 2. The 2 duty pairing p shown in Figure 2 and consisting of legs 1,2,3,4, includes ground
arc g on Monday and ground arc g + 1 on Tuesday, therefore apg = 2.
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The new model, which we call the crew scheduling model with plane count constraints (CSPC)
can be formulated as

min
∑
p∈P

cpxp

∑
p∈P i

xp = 1 for each leg i (2)

∑
p∈Pg

apgxp ≤ bg for each g ∈ G′ (3)

x binary,

where P i is the set of all pairings covering the leg i and xp = 1 if pairing p is selected.
The constraints (2) are the usual set partitioning constraints. We call the constraints (3) the

plane count constraints. Note that if bg = 0, we can remove all the pairings in Pg from P and the
inequality becomes redundant. A solution to this problem provides a crew schedule. The forced
turns implied by the solution need to be included in a feasible routing if that is possible. Experience
indicates that the forced turns implied by the crew scheduling solution generally do not eliminate
all feasible routings.

Example 3. Consider the scenario from Example 1. The resulting plane count constraint derived
from the ground arc [8:30,8:35] is∑

p∈P 1

p∈P 4∪P 5∪P 6

xp +
∑

p∈P 2

p∈P 4∪P 5∪P 6

xp +
∑

p∈P 3

p∈P 4∪P 5∪P 6

xp ≤ 2 ,

assuming that each of the pairings does not include any other ‘copy’ of the ground arc.

It can be shown that in FAM the only ground arc variables needed are those that correspond
to an outgoing flight followed by an incoming flight, see Hane et al. (1995). For example, ground
arc variables corresponding to two incoming flights can be aggregated. Next we state the same
result for the plane count constraints (3). A ground arc g ∈ G′ is essential if it corresponds to an
outgoing flight followed by an incoming flight. Let (ati, dti) be the (arrival, departure) time of leg
i.

Theorem 1. The plane count constraints corresponding to non-essential ground arcs are redundant
in the linear programming relaxation of CSPC.

Proof. Let x be a vector satisfying constraints (2), and (3) for essential ground arcs. We show that
x satisfies (3) for all ground arcs in G′. Consider a constraint

∑
p∈Pg

apgxp ≤ bg corresponding to
a ground arc g ∈ G′ that is not essential. Let s be the station of g. Let l̄1 and l̄2 be the two legs
defining g and assume that the activity (arrival or departure) of l̄1 is earlier than the activity of l̄2.
We need to distinguish two cases depending on the status of ground arc g.

Case 1.) The arrival station of leg l̄1 is s.

Let l1, . . . , lr be all the legs whose arrival station is s, whose arrival time is earlier than the
arrival time of l̄1, and are covered by pairings in Pg. Assume without loss of generality that
atl1 ≤ atl2 ≤ . . . ≤ atlr . We have

∑
p∈P li xp = 1 for i = 1, . . . , r since x satisfies (2).
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If r ≤ bg, then ∑
p∈Pg

apgxp ≤
r∑

i=1

∑
p∈P li

xp ≤ r ≤ bg

since each p ∈ Pg is in exactly apg pairings from ∪r
i=1P

li . Note that a pairing cannot cover the
same leg twice.

Now suppose that r > bg. In addition assume that in the time interval
[
atl1, atl̄1

]
there are no

legs departing from s. Let u be the ground arc value of the ground arc g1 immediately preceeding
the leg l1, see Figure 3. If k legs arrive at s in the interval

[
atl1, atl̄1

]
, then r ≤ k and u+ k = bg.

Then u = bg − k ≤ bg − r < 0, which is a contradiction since ground arc values are nonnegative.

Figure 3: Timeline for the proof of Theorem 1

Hence there is a leg l̄ departing from s and dtl̄ is in the interval
[
atl1 , atl̄1

]
. Among all such legs

we select the leg l̄ that has the latest departure time, i.e. there are no legs departing from s in the
interval

[
dtl̄, atl̄1

]
. If dtl̄ = atl̄1 and the departure station of l̄2 is s, then we can apply case 2 below

by taking l̄ and l̄2 as the legs that define g. If dtl̄ = atl̄1 and the arrival station of l̄2 is s, then g is
essential, which is a contradiction. Hence we can assume that dtl̄ < atl̄1. Let ḡ be the ground arc
immediately following l̄. Then ḡ is essential and hence x satisfies the constraint∑

p∈Pḡ

apḡxp ≤ bḡ . (4)

Let j, 1 ≤ j ≤ r be such that atlj−1
≤ dtl̄ < atlj and let Pg = P̄g∪ ¯̄P g, where P̄g is the set of pairings

covering at least one leg whose arrival time is before dtl̄ and
¯̄P g is the set of pairings covering legs

only in {lj , . . . , lr}. If such a j does not exist, then the set ¯̄P g is empty. Then it is clear that
P̄g ⊆ Pḡ. Let c be the total number of legs with arrival time in

[
dtl̄, atl̄1

]
. Then bḡ + c = bg and

r − j + 1 ≤ c.

Let p ∈ P̄g and apg = ãpg + ˜̃apg, where ãpg is the number of times the pairing p includes either
one of g, g + 1, . . . , g + 6 and the sit connection involves a leg from {l1, . . . , lj−1}. Then ãpg ≤ apḡ.
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It follows that∑
p∈Pg

apgxp =
∑
p∈P̄g

ãpgxp +
∑
p∈P̄g

˜̃apgxp +
∑

p∈ ¯̄P g

apgxp

≤
∑
p∈Pḡ

apḡxp +
∑
p∈P̄g

˜̃apgxp +
∑

p∈ ¯̄P g

apgxp

≤ bḡ +
r∑

i=j

∑
p∈P li

xp ≤ bḡ + r − j + 1 = bg − c+ r − j + 1 ≤ bg .

The first inequality follows from P̄g ⊆ Pḡ and ãpg ≤ apḡ for all pairings p ∈ P̄g. The second
inequality holds since a pairing p ∈ P̄g is in ˜̃aap pairings from ∪r

i=jP
lj , a pairing p ∈ ¯̄P g is in apg

pairings from ∪r
i=jP

lj , and from (4).

Case 2.) The departure station of l̄1 and l̄2 is s.

Let l1, . . . , lr be all the legs whose departure station is s, whose departure time is later than
the departure time of l̄2, and are covered by pairings in Pg. Assume without loss of generality that
dtlr ≥ dtlr−1 ≥ . . . ≥ dtl1 .

Let l̄ be the first leg arriving at the station s and atl̄ ≥ dtl̄2 . Let ḡ be the ground arc immediately
preceeding l̄. Now we can apply similar arguments as those in the first case to complete the
proof.

As a result of Theorem 1, the number of necessary plane count constraints can be significantly
reduced to only those that correspond to essential ground arcs. So their addition to the standard
crew scheduling model should not cause significant computational difficulties.

2 Time Windows

Here we assume that the schedule is not yet fixed, in the sense that we are allowed to make very
small changes in the departure time of each leg. For obvious reasons it would not make sense to
consider ‘big’ changes in departure times. For the remainder of the paper let 2w be the size of the
time window in minutes. Namely, the revised departure time of a leg i must be in the time interval
[dti − w, dti + w]. The offset of leg i is the revised departure time minus the original departure
time dti. A typical value for w is 5 or 10 minutes. We assume a default value w = 5. For simplicity
we assume that the window size does not depend on the leg index but the approach can be easily
generalized to handle such a dependency.

The output of the crew scheduling problem with time windows is a set of departure offsets and a
set of pairings that partition the legs and are feasible based on the retimed schedule. The flexibility
in departure times should allow pairings that are infeasible based on the original schedule to become
feasible. For example, if two legs are separated by 20 minutes, they can be part of a pairing if
the departure time of each one of them is adjusted by 5 minutes in the final retimed schedule.
Therefore, we expect better objective values to be mostly due to the increased number of feasible
pairings rather than to the change in the cost of a pairing if its legs are perturbed. In addition
to capturing more short sit connections, shorter layover times can increase the number of possible
pairings as well. Many pairings that are disregarded because they violate the 8-in-24 rule might
become feasible if we retime the legs. Additional pairings also can be captured by extending the
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maximum sit connection time by 2w, but we do not address this possibility here since such a duty
would have a high cost and hence it is unlikely that it would be part of a good solution. However,
the techniques presented can be easily extended to allow this extension.

We define a duty as a sequence of flights that satisfy all the FAA and company rules based on
the original schedule and the modified pairing feasibility parameters minSit = minSit − 2w and
the maximum duty elapsed time is increased by 2w.

A feasible pairing with respect to a given feasibility rule is a sequence of duties, starting and
ending at a crew base, together with offsets of the legs such that the given feasibility rule is satisfied
with respect to the departure times defined by the offsets. In what follows a pairing is a feasible
pairing with respect to all of the feasibility rules, specifically the minimum and the maximum sit
and rest connection times, the maximum duty elapsed time, and the 8-in-24 rule, and a single
set of offsets for all of the feasibility rules. Assume we modify the following pairing feasibility
parameters: minSit = minSit− 2w, minRest = minRest− 2w, the maximum duty elapsed time
is increased by 2w, and the minimum allowed compensatory rest is reduced by 2w (see Section 2.2
for the definition of the compensatory rest). A potential pairing is a sequence of duties, starting
and ending at a crew base, such that all of the feasibility rules are satisfied based on the original
schedule and the modified pairing feasibility parameters. Note that every pairing is also a potential
pairing, but the converse is not true. A duty consisting of two consecutive connections of 20 and 25
minutes cannot be part of a pairing since there is no way to retime the 3 involved legs to meet the
minimum sit connection requirement of 30 minutes, however it can be part of a potential pairing.
On the other hand, a duty with two consecutive 20 and 30 minute connections can be part of a
pairing since we can retime the three legs to have the sit connection times longer than 30 minutes.

We generate potential pairings and during the generation we compute new departure times of
legs in a potential pairing such that at the end we produce a pairing. If a partial potential pairing
cannot be extended, it is pruned. With the parameters given above, every pairing can be generated.
Because of the hub-and-spoke flight network structure and several crew bases for large fleets, all of
the pairings cannot be generated in a reasonable amount of time. Instead, we generate subsets of
random pairings as proposed in Klabjan et al. (1999).

There are two possible approaches to pairing generation: one generates pairings directly from
legs and the other generates duties first and then pairings are constructed from duties. For a more
comprehensive discussion of pairing generation see Klabjan (1999). Here we generate pairings from
duties by depth-first search.

2.1 Generating Feasible Pairings

We first show how to generate feasible pairings with respect to connection times and duty elapsed
times. For the time being we ignore the 8-in-24 rule.

For a potential pairing having l legs, let ci be the connection time between the ith and the
(i + 1)th leg in the original schedule, i = 1, . . . , l − 1. Note that ci ≥ minTurn − 2w or ci ≥
minRest− 2w depending on the type of connection. Define mi, i = 1, . . . , l − 1 to be minTurn if
the connection i is a sit connection and minRest otherwise.

Example 4. Consider the potential pairing in Figure 4 depicted in bold. The connection times
are listed next to the connections. Legs (3,4,5) can be retimed to make feasible connections and the
same is true for legs (2,3,4), however we can not retime legs (2,3,4,5) to form feasible connections.
To see this, we can attempt to ‘stretch’ the connections starting with leg 2. We can move it 5
minutes earlier (dashed flight legs in the figure) and then try to make the next connection as short
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as possible. We proceed in this manner until we reach leg 5, which would have to be moved by 6
minutes, thus violating the time window. A formal reason for not being able to retime legs (2,3,4,5)

Figure 4: An example of a potential pairing that cannot be retimed

is that the connection time deficit
∑4

i=2(ci − mi) = −11 cannot be compensated for by moving
the departure time of the second leg 5 minutes earlier and the departure time of the fifth leg 5
minutes later. No matter how large the connection times are between the legs 1,2 and 5,6, we can
not retime the whole potential pairing. The potential pairing in the figure is not a pairing.

We start with a proposition that addresses the connection times issue. The proposition is
presented in a more general setting, namely window sizes depend on the leg index, which will be
needed later.

Proposition 2. Let the sequence of legs in a pairing be given by (1, 2, . . . , l) and assume that each
leg i has a window size wi and that ci ≥ mi − wi − wi+1 for each index i. The potential pairing is
a feasible pairing with respect to connection times if and only if

i∑
j=s

(cj −mj) + ws + wi+1 ≥ 0 (5)

for all 1 ≤ s ≤ i ≤ l − 1.
Proof. We first prove the necessity of (5). Assume that each leg has an offset xj such that the
feasible pairing satisfies connection time requirements based on the offsets, i.e. the departure time
of the leg j is dtj +xj , −wj ≤ xj ≤ wj. Then mj ≤ cj +xj+1−xj for each 1 ≤ j ≤ l−1. Note that
the right hand side of the inequality is the connection time of the pairing and hence by definition
is larger than mj. Summing the inequalities from s to i and using the time window bounds, we get
the claim.

The sufficiency is proved algorithmically by constructing leg offsets such that the new departure
times are as early as possible and they yield a feasible pairing with respect to connection times.

Algorithm 1 computes a set of offsets x. We claim that the given offsets satisfy the time window
restrictions and the minimum connection time requirements.

It is easy to see that the computed connection time is always greater than or equal to mi−1. We
still need to show that xi is within the time window using the assumption given in the proposition.
Clearly, xi ≥ −wi. By induction it follows that either xi = −wi or there is an index s, 1 ≤ s ≤ i−1
such that xi =

∑i−1
j=s(mj − cj)−ws. In the first case, xi ≤ wi. In the second case, the claim follows

directly from the assumption in the proposition.
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Algorithm 1: Feasible Connection Time Pairing
1: Let x1 = −w1.
2: for i = 2 to k do
3: if ci−1 − xi−1 ≥ mi−1 + wi then
4: xi = −wi

5: else
6: xi = mi−1 + xi−1 − ci−1

7: end if
8: end for

Note that the proof of the proposition also establishes a linear time algorithm for computing the
offsets or detecting infeasibility. An infeasibility occurs whenever a computed offset is not within
the time window.

We have already indicated that the duties are generated first. Consider a duty d having k legs
and a potential pairing containing the duty. No matter what the offsets of the first and the last
legs of the duty in the pairing are, the inequalities

∑i
j=s(cj −minTurn) + 2w ≥ 0 must hold for

all 2 ≤ s ≤ i ≤ k − 2. So all the duties violating one of these inequalities must be removed.
Algorithm 1 is a fast procedure for generating feasible pairings with respect to the connection

time requirements, however such pairings do not necessarily satisfy the maximum duty elapsed time
bounds (or the 8-in-24 rule). If duty elapsed time bound was violated, new offsets would have to be
computed, adding to the already computational intensive pairing generation. Instead we compute
the offsets of a duty that we are attempting to append to a partial pairing in such a way that the
maximum duty elapsed time is not violated (if possible). The key idea is to push the departure
times of the new duty as early as possible but still be within the time window.

We first derive the explicit formula for the offset of the last leg in a duty given an offset of the
first leg of the duty and assuming Algorithm 1 is applied. With each duty having k legs we define
the following quantities:

ᾱd = min
j=1,... ,k−2

j∑
i=1

(ci −minTurn) + w

β̄d = min
j=2,... ,k−1

k−1∑
i=j

(ci −minTurn) +w

γd =
k−1∑
i=1

(ci −minTurn) .

Observe that if the offset of the first leg of the duty is x and the offset of the last leg is y, then

x ≤ ᾱd, y ≥ −β̄d, x− y ≤ γd . (6)

These conditions follow from Proposition 2 if we assume that w0 = 0, wk = 0, the departure time
of the first leg l1 in the duty is dtl1 + x, and that the departure time of the last leg lk in the duty
is dtlk + y. Since any feasible offset must satisfy x ≤ w and y ≥ −w, we define αd = min(ᾱd, w)
and βd = max(−β̄d,−w).
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Proposition 3. If the offset of the first leg of the duty is x, then the offset of the last leg in the
duty is

y = max(βd, x− γd) , (7)

if Algorithm 1 is used.

Proof. It is easy to see that

y =



−w or∑k−1

i=j (ci −minTurn) + w for an index j, 2 ≤ j ≤ k − 1, or
x− γd .

From (6) we know that y ≥ max(βd, x− γd). Combining the two observations yields the claim.

Now we are ready to describe the generation of feasible pairings with respect to connection
times and duty elapsed times. We assume that the maximum duty elapsed time is a constant
maxElapse, for a more general maximum duty elapsed time function see Klabjan (1999).

The pairing generation routine only keeps track of the offsets of the first and the last leg in
a duty. Assume that we have a partial pairing consisting of duties d1, . . . , dj−1 and we want to
append a duty d. Let (x1, y1), . . . , (xj−1, yj−1) be the computed offsets. We want to derive the
offsets (xj, yj) such that the partial pairing extended with the duty d satisfies the minimum and
the maximum sit and rest connection times, and the maximum duty elapsed time based on the
computed offsets.

We would like to avoid backtracking when recomputing the new offsets of the already appended
duties. In order to achieve this, we generate the utmost left pairing. A pairing is the utmost left
pairing if it is a pairing based on offsets x1, . . . , xj , and for any time t and index i, i ≤ j, the pairing
with offsets x1, . . . , xi−1, xi − t, xi+1, . . . , xj violates either the maximum duty elapsed time bound
or a minimum connection time limit. Hence as soon as we move a departure time one time unit
earlier, the pairing violates one of the two feasibility rules.

In addition to computing the new offsets (xj , yj) in such a way that the new partial pairing
satisfies the feasibility rules we need to preserve the utmost left property. We assume that the
current partial pairing is the utmost left one. Let mj−1 be either the minimum rest time or the
minimum compensatory rest depending on the 8-in-24 violation flag in the previous step (see the
next section for the discussion of the compensatory rest). Define

δj =

{
−w if cj−1 − yj−1 ≥ mj−1 + w

mj−1 + yj−1 − cj−1 otherwise.

Note that δj is determined by performing one step of Algorithm 1. Combining the above definition
and the inequalities (6), the new offsets have to satisfy the inequalities

δj ≤ xj ≤ αd (8)
βd ≤ yj ≤ w (9)
xj − yj ≤ γd . (10)

The above inequalities guarantee that the new partial pairing based on the offsets will have
connection times that are bigger than the required minimum. We still need to take care of the
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maximum duty elapsed time and the utmost left property. Assume that ed is the elapsed time of
the duty d based on the original schedule and let ẽd be the elapsed time of the retimed duty.

Then it is clear that ẽd = ed − xj + yj. The elapsed time ẽd has to be smaller than or equal to
maxElapse. Hence we get an additional inequality

êd ≤ xj − yj , (11)

where êd = ed − maxElapse. The new offsets have to satisfy the system of inequalities (8)-(11),
denoted by Q.

We claim that if the system Q is infeasible, then we cannot append the duty d. Suppose there
were a set of offsets (x̃1, ỹ1), . . . , (x̃j , ỹj) such that the partial pairing {d1, . . . , dj−1, d} satisfies the
feasibility rules. Then the offsets x̃j and ỹj have to satisfy (9), (10), and (11). Since x̃j ≤ αd it
must be the case that x̃j < δj . Due to the definition of δj it follows that ỹj−1 < yj−1. But this
contradicts the utmost left property of the partial pairing and the computed offsets.

Assume now that the system Q is feasible. We can explicitly compute a solution to the system
that minimizes xj using Fourier-Motzkin elimination (see e.g. Schrijver (1986)) given by

xj = max (δj , βd + êd) (12)
yj = max (βd, x− γd) . (13)

This solution has the smallest xj and the corresponding yj is the one listed in Proposition 3. If
we start with the offset xj and apply Algorithm 1, then the resulting yj is given by (13). Clearly
the algorithm produces the utmost left sequence of offsets. Hence the values given by (12) and (13)
maintain the property of being the utmost left.

To summarize, we compute the values xj and yj from the formulas (12) and (13) and then check
inequalities (8)-(11). If at least one is violated, then the duty d is discarded. Else we append the
duty d and impose the corresponding offsets (xj , yj).

In the US, the FAA requires that pairings satisfy the 8-in-24 rule, which says that if in a 24
hour time window there is more than 8 hours of flying, then the next rest, called a compensatory
rest, must be longer than a given limit. Different flight departure times can cause a violation of
the rule and therefore care has to be taken when time windows are present. The treatment of the
8-in-24 rule and time windows can be done efficiently as described in Klabjan (1999).

2.2 8-in-24 Rule and Time Windows

The 8-in-24 rule is imposed by the FAA. Consider two consecutive duties d1 and d2 in a pairing.
If the flying time in d1 and d2 in any 24 hour period is more than 8 hours, there is an 8-in-24
violation. The rule says that if there is an 8-in-24 violation, then the layover following the duty d2,
called a compensatory rest, must be longer than a given limit, typically around 850 minutes. The
airlines usually make the rule more stringent so that they have more flexibility in operations.

Our goal is to capture all pairings that are feasible based on the original schedule. Suppose in
the time windows model, we stretch the 24 hour window into a 24 · 60 + 2w minutes time window.
A pairing satisfying the 8-in-24 rule based on such a window in the original schedule, is 8-in-24
rule feasible for all retimings of legs. Similarly, if there is a violation based on the 24 · 60 − 2w
time window, then there is a violation for any retiming of legs. These two cases determine the
connection time requirement for the next layover.

For the remaining case, where there is a violation based on the 24 · 60 + 2w time window and
there is no violation based on the 24 · 60− 2w time window, some retimings may have a violation
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while others may not. Since we do not want to prune any pairing, we treat this case as if there is
no violation, but a special flag is set. If the flag has not been set during the generation, then such
a pairing is 8-in-24 feasible for any retiming.

If the layover connection time based on the computed offsets (using the algorithm from the
previous section) is longer than the minimum required compensatory rest, then we can reset the
flag to the default value. In this case, regardless of the 8-in-24 violation status in the previous
generation step, the current overnight connection time is long enough.

On average the flag is set for about 20% of the pairings. Given a flagged pairing we first check
if it is feasible based on the offsets computed during the generation. In most cases it is feasible.
If the computed offsets are not feasible, then we first try to stretch the overnight rest following a
violation. If it cannot be made longer than the minimum compensatory rest, then we try to get
rid of the 8-in-24 violation.

Suppose that duties d1 and d2 have offsets (x1, y1) and (x2, y2), respectively, and there is an
8-in-24 violation based on these offsets. At this point we have to compute new offsets that remove
the violation. If such offsets do not exist, then the pairing is discarded. In order to reduce the
flying time in a 24 hour time window, we have to either push the departure time of the first leg
in the window earlier or the arrival time of the last leg in the window later. Since the first leg in
the window is always in the duty d1 and the pairing is utmost left feasible, we cannot move its
departure time earlier. Hence, we have to change the departure time of the last leg in the window,
which is always in d2. It is easy to see that when checking the 8-in-24 violation it suffices to consider
only 24 hour time windows that start at departure times of legs in the duty d1.

The idea is to compute new lower bounds for the leg offsets in the duty d2 and then to recompute
the offsets using the algorithm from the previous section. For computing new time windows consider
Figure 5. The departure time of each leg in the figure is assumed to be already retimed with respect
to the offsets computed by the algorithm from the previous section. Let f be the flying time in the
24 hour time window depicted in the figure and let τ = f − 8 · 60. Since there is a 8-in-24 violation
in the time window, τ > 0.

Scenario 1: The end of the 24 hour time window is during a flight l in the duty d2, see Figure 5.
If τ > hj , the pairing is discarded. Otherwise the departure time of the leg l has to be moved
later by at least τ .

Scenario 2: The end of the 24 hour time window is during the sit connection following a leg l, see
Figure 5. The departure time of the leg l has to be moved later by at least τ + gj .

We compute the new time windows by iterating the procedure for all legs j in the duty d1.
Based on these new time windows for legs in the duty d2, we apply the algorithm from the previous
section. If the new offsets do not exist, the pairing is discarded.

Note that to compute τ , h and g it suffices to scan the legs in the duty just once by starting
with the first leg. Since Algorithm 1 scans the legs of a duty in the same order, all computations
for finding new offsets can be performed in a single pass through all the legs in the duties d1 and
d2.

For small fleets the exact handling of the 8-in-24 rule described in this section is necessary.
However, for bigger fleets, we discard the pairing if it is not 8-in-24 feasible based on the computed
offsets by applying the algorithm from the previous section.

Some airlines still use an old 8-in-24 rule which additionally requires that the rest between
two duties having an 8-in-24 violation (included rest) has to be at least a given limit. Such a
modification can be easily incorporated into the algorithm.
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Figure 5: 8-in-24 rule and time windows

3 Solution Methodology

We outline the overall methodology of integrating the plane count constraints and time windows
into the crew scheduling model.

1. We generate potential pairings based on the original schedule but with some pairing feasibility
parameters modified. Namely, the minimum sit and layover time is decreased by 2w, the maximum
duty elapsed time is increased by 2w, and the minimum compensatory rest is reduced by 2w. Since
we include the plane count constraints, the minimum sit connection time is the minimum plane turn
time. We use the algorithms from Section 2 within the generation routine for obtaining pairings.

With each generated pairing, we get a sequence of leg offsets such that the pairing is feasible
on the retimed legs. Even though a pairing may have more than one retiming we consider only
one, namely the one given by the generation routine. We do not try to find a retiming of legs that
produces the lowest cost pairing since this is a time consuming operation and it would not bring
substantial additional savings.

2. Next we solve the crew scheduling model with plane count constraints by considering only the
generated pairings. Each pairing in the solution implies a set of departure time offsets.

Because the leg offsets can change the set of ground arcs, capturing all the plane count con-
straints exactly is hard. The approach described below approximates the plane count constraints
since it may not find all of the pairings contained in a ground arc of length less than 2w. We use the
set of ground arcs from the FAM solution and there is a plane count constraint for each essential
ground arc of length less than minSit+2w. We need to redefine when a pairing includes a ground
arc. Consider a pairing implying the offsets x of the legs in the pairing. The pairing includes a
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ground arc g defined by legs l̂1 and l̂2 if there is a sit connection in the pairing, defined by legs l̃1
and l̃2, such that dtl̃2 + xl̃2

− atl̃1 − xl̃1
< minSit and atl̃1 + xl̃1

≤ dtl̂1 + w, dtl̃2 + xl̃2
≥ atl̂2 − w,

see Figure 6. The first condition states that the sit connection implies a forced turn and the last
two say that the pairing includes the ground arc even if the legs l̂1, l̂2 defining g are moved as
close together as possible. With this definition, we capture exactly the plane count constraints for

Figure 6: The new definition of inclusion

ground arcs of length greater than 2w. However if the length is less than 2w, then some pairings
might be left out of Pg.

3. The plane count given by the pairing solution can be increased due to the approximate handling
of some of the plane count constraints. The increased plane count can only occur if in the solution
a leg defining an essential ground arc is swapped in time with an incoming flight. If the solution
implies a bigger plane count, then we attempt to retime the schedule again, this time only using
pairings from the solution.

Suppose that the arrival time of leg i is before the departure time of leg j in the original schedule
and that in the retimed schedule the order of the two times is reversed and it yields a higher plane
count. We have to push the arrival time of leg i earlier or the departure time of leg j later. The
former is not possible due to the utmost left property of pairings. Hence the departure time of leg
j, or some other leg k, has to be pushed forward, past the new arrival time of leg i. Note that leg
j does not need to be the first leg following leg i. For example, if ati < dtj < dtk and retiming of
leg j fails, we can try to retime leg k.

Experiments have shown that there are not many stations with an increased plane count. Even
when there was an increased plane count, the above procedure was able to retime the legs. The
smaller window size w = 5 never yielded an increased plane count.

4. If the plane count cannot be adjusted with local changes in the departure times, then we would
add a constraint forbidding the two involved pairings to be selected simultaneously. The problem
is then reoptimized. In our experiments this was never observed.

The LP based branch-and-bound methodology for solving the crew scheduling problem with
time windows and plane count constraints, namely steps 1 and 2 above, closely follows the algorithm
presented in Klabjan et al. (1999). It is not discussed here.

17



4 Proof of Concept

All computational experiments were performed on 4 fleets, 2 small ones with 100-200 legs and 2
larger ones with 300-450 legs. Cases 1,2,3,4 refer to the 4 fleets with case 1 corresponding to the
smallest fleet and case 4 to the largest. The number of crew bases varies from 3 to 5. The number
of pairings, i.e. variables, for the first two problems is approximately half a million. However, due
to the hub-and-spoke flight network and several crew bases, this number is several billion for the
last two problems. We used the same feasibility rules and cost function as the airline. The only
approximation to the real data is the minimum plane turn times, where we used a constant value
of 30 minutes since the real values (depending on the time and station) were not available.

Table 2 summarizes the solution qualities represented by FTC (percentage of excess cost above
flying) and the number of forced turns. FTC generally decreases with larger fleet size in a hub-
and-spoke network since larger fleets yield many more connection opportunities. The “CS” column
refers to the traditional crew scheduling model. All the time windows variants have plane count
constraints. The column “w = 0” stands for the crew scheduling problem with plane count con-
straints but without time windows. For the biggest fleet we did not perform the time window
variants since the solution with w = 0 has FTC of almost zero. The flexibility with respect to
forced turns improves the FTC substantially, typically by a factor of two. Time windows improve
the solution by an additional 25%.

The solutions with plane count constraints generally have more forced turns. A larger number
of forced turns and the freedom to select them explain the improved FTC. Increased window size
also gives more potential forced turns and therefore solutions with larger time windows use more
forced turns. Note also that for robustness reasons a larger number of forced turns is desirable.
If a crew does not follow the plane turn, then a disruption of a flight can occur either because of
a ’late’ plane or crew. Some airlines even give an artificial bonus to pairings with plane turns by
reducing their cost.

Cases
FTC # forced turns

CS w = 0 w = 5 w = 10 CS w = 0 w = 5 w = 10
1 3.94 2.21 1.71 1.35 2 9 10 10
2 3.12 1.85 1.54 1.06 11 11 12 17
3 2.86 1.40 0.88 0.88 17 59 70 70
4 0.31 0.08 - - 66 142 - -

Table 2: Solution qualities

The relative values of the IP/LP gaps defined by 100(IP obj−LP obj)
LP obj are listed in Table 3. The

gaps are larger than for traditional airline crew scheduling problems since the additional plane count
constraints typically yield a larger number of fractional variables in the LP relaxations, which makes
it harder to find good integer solutions.

The number of plane count constraints is shown in Table 4. We considered only constraints
corresponding to essential ground arcs with a positive right hand side. There is no need to use
row generation since there are not many constraints. Further in the integer programming phase of
the algorithm, in which only a subset of the pairings is considered, almost all of the plane count
constraints are redundant.

All computational experiments were performed on a cluster of PCs by using the parallel algo-

18



Cases CS w = 0 w = 5 w = 10
1 11 4 13 3
2 16 14 10 61
3 91 203 234 513
4 422 686 - -

Table 3: 100(IP obj−LP obj)
LP obj

Cases
# plane count cons. # plane count cons. for IP

w = 0 w = 5 w = 10 w = 0 w = 5 w = 10
1 16 17 18 0 1 1
2 18 19 20 0 2 3
3 75 84 88 0 1 9
4 59 - - 0 - -

Table 4: Number of plane count constraints

rithm from Klabjan et al. (1999). The cluster consists of 48 300MHz Dual Pentium IIs linked via
100 MB point-to-point Fast Ethernet. Table 5 gives the computational times. The first two fleets
are computationally easy; the execution times are less than an hour. However, the remaining two
fleets require 10 to 15 hours. We estimate that an hour is due to extra computation to account for
time windows in the pairing generation routine. If a problem is being solved for different values
of w, computational time could be reduced by using a warm start since a feasible solution with a
time window w is also feasible with a time window ŵ ≥ w.

The results clearly demonstrate that by solving crew scheduling with the addition of plane count
constraints before solving aircraft routing, and by considering small time windows for modifying
fleet scheduling, it is possible to reduce crew cost substantially. For hub-and-spoke network systems,
this may be a good compromise between current practice and a fully integrated model.

Cases
LP IP

CS w = 0 w = 5 w = 10 CS w = 0 w = 5 w = 10
1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2
2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6
3 7 7.7 8.4 9 4.1 4.1 4.2 6
4.1 9 9.5 - - 5.2 5.2 - -

Table 5: CPU times in hours
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