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Abstract: Datalog is a deductive language tailored for easy database access. We introduce an algebraic

modeling language in Datalog for mixed-integer linear optimization models. By using this language, data

can be easily queried from a database by means of Datalog and combined with models to produce problem

instances readily available to solvers, providing an advantage over conventional optimization modeling lan-

guages that rely on reading data via plug-in tools or importing data from external sources via standard files.

The declarative nature of Datalog permits the underlying syntax to be kept intuitive and simple. In this

paper, we present the algebraic and syntactic ideas behind our proposed platform. Two specific case studies,

a production-transportation and traveling salesman model, are presented. A comparison analysis between

GAMS, a commercially available algebraic modeling system, and Datalog’s algebraic modeling embedded

system is also conducted. Datalog’s main advantages are clearly exposed when solving real-life decision

making problems embedding flexible business rules.
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1. Introduction
Many real world applications require to be formulated as mathematical programming problems.

Such problems are usually tackled by first building a model, and then converting the model

and the corresponding data into a low level instance. As a result, the instance can then be

solved by a solver that returns a solution for further analysis.

An Algebraic Modeling Language (AML) is a language, sometimes part of a bigger system,

for the development of such mathematical programming applications. It aims at expressing a

mathematical programming problem in much the same way that a modeler does. It allows the

user to describe mathematical models in a readable and symbolic form, resembling the well-

known algebraic notation used to define sets, parameters, variables, objectives, and constraints.

Nowadays, a wide range of AMLs are available. Among the most widely used are AIMMS [8]

(Advanced Integrated Multidimensional Modeling Software), GAMS [10, 25] (General Alge-

braic Modeling System), AMPL [28] (A Modeling Language for Mathematical Programming),

FLOPC++ [31] (Formulation of Linear Optimization Problems in C++), ILOG Concert and

OPL Technologies [39], and optimization platforms from MSF [43] (Microsoft Solver Founda-

tion). These modeling languages are complex systems that require a certain learning curve in

order to build large, complex models in a controlled fashion. Interested readers in similarities

and contrasts among these AMLs are referred to [9].
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A good modeling system makes virtually invisible to users most of the underlying complex

data handling, instance generation, and computation. In the past, pure modeling systems with

proprietary languages have dominated. Examples of these specialized modeling systems are

illustrated in the top-left quadrant of the technology matrix in Fig. 1.

Figure 1 Algebraic Modeling Technology Matrix

One of the biggest challenges throughout the entire modeling and solution process is dealing

with a large amount of data. One might even argue that mathematical modeling is mainly

about data [31] and should therefore be driven by data. Indeed, a mathematical programming

modeling language would not be of much practical use and could not gain acceptance unless it

is closely integrated with corporate data, the sheer majority of which is stored within relational

database systems or more modern key-value based database systems. While several special-

ized AML systems provide plug-ins for database access, such solutions do not easily provide

flexibility in capturing the ever-changing business rules. This is specially pronounced for prob-

lems requiring changes to the modeling objects (e.g., add or remove nodes in a network) and

introducing new rules on such objects. We provide a few such examples in Section 4.

We distinguish two disjoint research initiatives attempting to overcome these problems. The

first group includes work based on the possibilities of adapting the common query language

SQL to algebraic modeling (see, e.g., [5], [12], and [40]). However, while the data management

part has been made easier and transparent, the extension of SQL to the algebraic modeling

side always requires substantial development effort and the implementation is not easy to

comprehend. Examples of the modeling systems that leverage existing data languages are listed

in the bottom-left quadrant of the technology matrix in Fig. 1. This set of data languages

include SQLMP [52], ARMOS (SQL) [5], and OSmL (XQuery) [47]. Analogously, the second

group tries to adapt an existing general language that is close enough to an AML with fairly

strong declarative and procedural capabilities, but comes short on the data side (see, e.g., [7],

[31], [46, 47]). Examples of the modeling systems that leverage existing general languages are

listed in the top-right quadrant of the technology matrix in Fig. 1. The list includes Concert

Technologies [39], Flops++ [31], Pyomo [51], Poams [48], and PLAM [7]. A comprehensive list

of AMLs and optimization tools can be found in [20].

As a conclusion, there is definitely a need for a solution with built-in language constructs

that not only facilitates natural algebraic modeling but also provides integrated capabilities
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with relational database handling. In this paper, we show that the basic functionalities and

requirements of AMLs can be realized in any Datalog-like logic programming language.

Datalog is primarily a database query language. It is a rule-based logic programming lan-

guage that based on the work present herein allows the application of the basic features of

AMLs almost for free. Except for some syntactic sugar, no development effort is required to

take advantage of Datalog-like language features and to meet the requirements from both the

modeling and data management sides. As a result, we have a full programming language and a

set of relational database tools that come with a Datalog system at our disposal, which can be

used in all those cases where the built-in constructs of traditional modeling languages may not

be sufficient. Our innovative use of Datalog fills the vacancy of the bottom right quadrant in

the technology matrix in Fig. 1. A commercially available Datalog-based system has adopted

and incorporated the ideas illustrated in this paper with hardly any extra development effort

on the front end language and its supporting compiler.

Recent applications and extended languages based on Datalog can be found in [1, 4, 23, 30,

53], whereas Datalog-based industrial systems include ERBlox [6], MetaLogiQL [27], Google’s

Yedalog [11], Datomic [22], and the nascent EVE project 2 [24]. Interested readers in details of

Datalog applications and extended languages are referred to [3, 19] and the references therein.

The main contributions of this work are twofold. We design a Datalog-based modeling lan-

guage for solving mixed-integer linear optimization models. It essentially combines a highly

effective Datalog-based database management system that allows to execute complex queries

with simplistic logic clauses, and a set of intuitive and purely modeling tools to permit a

straightforward inclusion of the advantages of AMLs. Note that our algebraic and syntactic

modeling ideas are used in a commercially available platform, LogicBlox, also referred to as

DatalogLB in this work.

Since the main characteristic shared among AMLs is their capability of providing a straight-

forward way to use explicit canonical forms that can be portable among different operating

systems, as a second contribution of the present work, we conduct a comparison analysis

between a commercially available algebraic modeling system, GAMS, and DatalogLB’s embed-

ded system. We opted for making comparisons and exemplifications with GAMS due to its

maturity since it is considered the first and arguably the most commonly used AML within

the engineering and science community. We also take advantage of GAMS regarding its syn-

tactical similarities with other listed AMLs, which may help the reader define and understand

the mathematical notations described in this work. Hence, we make use of two well-known

optimization problems, namely a production-transportation and traveling salesman model, to

explicitly exhibit drawbacks of AMLs when it comes to flexibility of business rules and data

handling, and how DatalogLB circumvents this.

The organization of this paper is as follows. In Section 2, we give a short introduction to

Datalog. In Section 3, we present the fundamentals of our implemented modeling interface,

DatalogLB, for solving mathematical programming problems. In Section 4, we provide a com-

parison analysis between DatalogLB and GAMS [25], in terms of both the modeling support

and effective computation. Finally, concluding remarks and future work are given in Section 5.

2. Datalog

Datalog is a rule based Prolog-like query language for deductive database queries. Basically, a

rule specifies what the computation should be rather than how to compute it. The specifics of
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how the rule logic is executed correspond to the inner implementation of integrated computa-

tion engines.

Datalog is a subset of Prolog (originally invented in 1972 to provide a foundation for math-

ematics, see [14, 34]). It is based on the first-order logic targeted at providing a declarative

language for expressing data structures, sophisticated calculations, analyses, integrity con-

straints, and transactional processing. Its major advantage stems from the fact that it preserves

the SQL property of guaranteed termination, while expressing a significantly larger set of

queries, including the recursive ones. This makes it of great interest and value in both the logic

programming and database areas. Furthermore, the declarative nature of Datalog has a clear

correspondence with mathematical logic, making it an apparent candidate as an AML.

Each rule in Datalog is a function-free Horn clause or predicate of the form

q(x)← p1(x1), p2(x2), · · · , pn(xn).

The term q(x) is called the head (or conclusion) and it represents the relation containing

the result of the rule query. The remaining terms relation containing the result of the rule

query. The remaining terms pi(xi), i= 1, · · · , n, are called sub-goals (or premises) and represent

database relations. Functions pi(xi) all evaluate to boolean values.

In Datalog programs, variables that appear in the head of the rule, must also appear in

the body of the rule. In other words, variables in the head (conclusion) of the rule cannot be

existentially quantified to prevent the system from having to make a choice for their value

and then ensuring the consistency of that choice across the entire logical interpretation of the

Datalog program. In terms of language expressiveness, this means that a number of algorithms

(e.g., ones with non-polinomial running times) cannot be expressed. In terms of implementa-

tion, this means that no backtracking is necessary in the Datalog evaluation engine making

the implementation potentially much more efficient.

This is a design choice: unlike a number of other logic programming languages, from the

perspective of its original purpose, Datalog is primarily a database query language designed

for the retrieval and management of data in relational database management systems.

In practice, any collection of Datalog rules that allows recursion can either be effectively

rewritten to SQL and relational operators [2, 36, 37], or directly executed by a suitable Datalog

evaluation engine. This is due to all modern database querying technologies using the concept

of relational algebra, which in turn is based on the theory of the first-order logic. Main relational

algebra operations include selection (σ), projection (Π), and Cartesian product (also called

join, ./). Since Datalog and its variants are implementations and extensions of the first-order

logic, they naturally serve the querying purpose well.

A conditional selection operation σc(fi)(t[f1, · · · , fi, · · · , fn]) to select from table t all its n

fields f1, · · · , fn with a condition c on field fi can be expressed in Datalog as

selection(f1,··· ,fi,fn)← t(f1, · · · , fi, · · · , fn), c(fi).

A projection operation Π(fi)(σ(t[f1, · · · , fi, · · · , fn])) to select from table t particular field fi
can be expressed in Datalog as

selectionprojection(fi)← t(f1, · · · , fi, · · · , fn).

A join operation σf :fi=gj (t1[f1, · · · , fi, · · · , fn]) ./ σg:gj=fi(t2[g1, · · · , gi, · · · , gm]) to select all

fields from table t1 with n fields f1, · · · , fn and table t2 with m fields g1, · · · , gm joined on fi
and gj can be expressed in Datalog as

selectionjoin(f1,··· ,fi,··· ,fn,g1,··· ,gi,··· ,gm)← t1(f1, · · · , fi, · · · , fn), t2(g1, · · · , gi, · · · , gm), fi = gj .
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Note that by using these three operations, every transaction and application always termi-

nates. Every predicate that follows can be derived from these three basic operations.

3. Mathematical Programming with Datalog

In this section, we describe some background and introductory concepts of our Datalog-based

platform with support for mathematical programming. The Datalog modeling platform facil-

itates solving linear, mixed-integer programming problems by means of a set of syntactic

constructs that allow specifying mathematical problems, and it provides an interface to several

external optimization solvers.

A full mathematical programming model contains elements such as sets, indices, parame-

ters, decision variables, objectives, constraints, and advanced algebraic expressions. A typical

example is a linear program,

min
x
{cx|Ax= b, x≥ 0},

where x is a column vector of n variables, c is a row vector of n objective coefficients, A is an

m×n matrix of constraint coefficients, and b is a column vector of m constraint right-hand side

coefficients (with m constraints). The expression cx is the objective function and the equations

Ax= b are the constraints.

Similar syntax between AMLs and the mathematical notations of optimization problems

facilitates a clear and concise representation of the problems. Given the declarative nature

and various advantages of Datalog-like languages described above, we show how the essential

requirements and basic functionalities of AMLs can be fulfilled naturally in Datalog. Familiar

algebraic notation can be very easily incorporated by suitable Datalog predicates. The Datalog

system then automatically generates the corresponding input for a mathematical programming

solver.

3.1. Fundamentals of Datalog Modeling Platform

The ideas presented in this paper are implemented in a Datalog-based platform, LogicBlox [40].

The platform is designed to build enterprise-scale applications featuring analyses that require

aggregation across very large data sets possibly combined with simulation, predictive analytics,

and modeling techniques.

The LogicBlox platform is, first and foremost, a database management system in which a

LogicBlox server manages one or more workspaces. A workspace is a database instance consist-

ing of several components. Among the most common components in a workspace, we can find

(a) predicates, which are analogous to tables containing data in relational database manage-

ment systems, (b) active programs, which comprise collections of the logical rules contained in

a workspace, and (c) constraints whose logical integrity is always maintained by the LogicBlox

platform (analogous to database views in traditional relational databases).

The user’s interaction with the workspace is managed through DatalogLB’s modularity con-

structs, called blocks. A block is basically a piece of DatalogLB code which is submitted to the

platform and integrated into the active program and schema of a workspace. Note that a label

is given to each block so that they can be added to, or removed from the workspace. After

type-checking and compilation, the rules and constraints defined over predicates contained in

a block are incorporated into the active program.

With the use of blocks, the user can define tasks to be executed and compiled within

DatalogLB’s logic engine. Among the extensive set of possible tasks, the user can create new
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predicates (data storage) and execute computations or retractions. Computations are a must

to maintain the logical integrity of the database. Retractions are also fundamental tasks that

allow the user to remove blocks from the workspace. Note that, when a block is removed, any

rule for calculated predicates contained in it may in consequence be also removed from the

active program along with any data derived from such rule. Blocks are considered inactive

until the user incorporates them into the workspace at any given point in time, thus referring

them to as active blocks.

A DatalogLBprogram consists of a number of logical statements called clauses. A clause

is composed of a head and a body (optional) followed by a period. Clauses may appear in

the program in any order. The interaction between the LogicBlox workspace and the user

proceeds over time through a series of commands (most of which are executed in transactions).

Commands include operations such as:

• installing a block: adding a set of clauses in a DatalogLB block to an active program

permanently maintained by the database.

• executing a block: evaluating a set of clauses in a DatalogLB block one time (without

permanently incorporating its rules into the active program) for the purpose of updating the

data stored in the workspace, or returning the results of the block as a query.

• removing a block: removing a set of clauses in a DatalogLB block from the active program

and deleting any data that may have been derived from it, and updating the state of the

database to be logically consistent with the remaining active program.

• querying the contents of a predicate.

Most of these commands are executed transactionally: the user initiates a transaction, sub-

mitting one or more commands, and then commits. Each transaction provides the standard

database ACID properties (Atomicity, Consistency, Isolation, Durability): all commands exe-

cuted in a transaction are guaranteed an atomic, and consistent view of the database, isolated

from any other commands initiated by other concurrent users. At the end of the transaction,

the active program is evaluated and, if logically consistent, any chances made by it are durably

stored in the database (transaction commits). Should the commands cause inconsistency (for

example, by violating database constraints), the transaction is aborted and the workspace

reverts to the (consistent) state before the transaction had been initiated.

3.1.1. DatalogLB by Example All information in a LogicBlox workspace is organized

into predicates, which denote key-value relations between finite entities (user-defined types)

or built-in data types (such as strings, integers, dates, and so on). An entity represents a user-

defined finite set of abstract elements. In DatalogLB, we declare entities by using the right-hand

arrow (constraint) (->) operator.

From a purely logical perspective, the right-arrow in DatalogLBcontext can be understood

as a conditional or logical implication (if-then). From a more practical perspective, a right-

arrow declaration can be used to declare the types of the arguments of a defined predicate.

For example, we declare a new entity called ‘NBAteam’ by adding the following constraint to

the workspace’s active program:

NBAteam(x) ->.
This declaration asserts the existence of a unary predicate representing a set of objects

x with the property ‘being a NBAteam.’ (In this case, e.g., the NBAteam predicate defines

a finite set of National Basketball Association (NBA) teams.) Note that all statements in

DatalogLBmust terminate with a period.
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Data types in DatalogLBcan be divided into two categories, namely 1) user-defined types,

and 2) built-in types. The former are specially declared unary entities that correspond to

concrete objects (just like the NBAteam predicate defined above). The latter are the standard

native types of modern programming languages: int[n](x), uint[n](x), float[n](x),

string(x), and datetime(x), where n represents a bit-width that can be 8, 16, 32, or 64.

A predicate may have a finite set of attributes of different types to account for the rela-

tionships between objects. One of a particular interest is the reference mode predicate, i.e., a

predicate with a unique attribute that specifies a one-to-one relationship. In the NBA model,

for example, we may need to uniquely identify each NBA team by its name, i.e., every instance

of NBAteam must have a name, and no other NBAteam is allowed to have the same name. We

can accomplished this by declaring a reference mode predicate in DatalogLBas follows:

NBAteam(x), NBAteam:name[x]=s -> string(s), inv[NBAteam:name][s]=x.

where NBAteam(x) is a unary predicate, NBAteam:name[x] is a functional predicate,

string is the reserved word encoding the standard string type, and inv is a meta-function

to denote the inverse of a functional predicate, i.e., a binary predicate taking a variable as a

function, which can be generalized as: q[x] = y, inv[q][y]=x. Note also that the key

operators (x) and [x] used to define the predicates differ from each other in their function-

ality. For example, the former is used to declare special unary predicates that correspond to

concrete objects (in this case for example, an NBAteam entity), whereas the latter is used in

functional predicate to map entities (NBAteam) to specific-type-valued data (string names).

With the above statement, we indicate to DatalogLB’s compiler that the predicate

NBAteam:name[x] = s is a one-to-one mapping between objects x of NBAteam type and

objects s of string type. More precisely, our one-to-one mapping imposes that each NBA

team appearing in NBAteam:name has exactly one name, and that each name appearing in

NBAteam:name has exactly one NBAteam
In addition to reference modes, we express an ordinary attribute of an entity by declaring a

predicate that relates that entity to a primitive value, or to another entity type. For example,

a ‘coach’ attribute on the NBAteam predicate is declared as follows:

NBAteam:Coach[x] = c -> NBAteam(x), string(c).
The logical implication of the right-arrow indicates that whenever a tuple (x, c) occurs in the

predicate NBAteam:Coach, x is an NBAteam and c is a string type. In addition, the func-

tional dependency from x to c is denoted by using the functional syntax NBAteam:Coach[x]
= c, rather than the pure predicate notation NBAteam:Coach(x, c). By doing so, we

declare that each NBA team can have no more than one coach. The arguments in the angle

braces [x] are called keys, whereas c is the value of the function. From an object-oriented

perspective, the entity NBAteam and each of its elements may be thought of as a class and

members of the class, respectively. From a relational database perspective, NBAteam:Coach
represents a many-to-one relationship from NBAteam(x) to string(c), i.e., every NBA team

is associated with at most one string. (We assume that a coach can manage several teams.)

The case in which an entity has a set of values for one attribute represents a one-to-many

relationship. For example, an NBA team might have a ‘Players’ attribute containing a set of

NBA players. In DatalogLB, we use a functional dependency in reverse—the entity is in the

value argument, and the attribute is in the key argument—to represent this situation. We first

declare a new entity called ‘Players’ as:
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Players(p) ->.
Next, we declare the ‘Players’ attribute of the NBAteam as follows:

NBAteam:Players[p] = x -> NBAteam(x), Players(p).
This allows each NBA team x to have many players p, but each player still only belongs to

one NBA team.

Entities may also have associations between them, thus representing a many-to-many rela-

tionship. For example, one player might be a friend of another player. Defining relationships

between entities in DatalogLBis straightforward. For example, the friend predicate can be

declared as follows:

friend(x, y) -> Players(x), Players(y).
A predicate with an arity of 2 is also called a binary predicate. Note that ternary (3-place) or

even more complex associations can be declared by simply specifying more arguments to the

predicate.

Note that DatalogLBalso supports negation by means of the ! operator. Examples and

discussions on negation declarations are provided below.

Regarding data storage and handling in DatalogLB, we describe a database consisting of

defined series of entities and their corresponding relationships expressed as predicates. In a

DatalogLBdatabase, each predicate is treated separately and populated with new elements or

combinations of elements called facts.

Facts can be inserted, updated or removed to/from entities by means of simple constructs

called deltas, which simply asserts the existence of an element with some particular properties.

Deltas can be executed only on extensional predicates (EDB), i.e., predicates that are populated

directly by user’s transactions. (They have to be first declared by ->.)

To support update rules, we enhance the definition of an EDB by making use of the +, ˆ and

- operators in DatalogLBto indicate, respectively, the creation (insertion of a completely new

key), update (change in the value of an existing key) and deletion (retraction of an existing

key) of a fact. For example, executing the following delta against the workspace adds a new

NBA team called ‘Chicago Bulls’:

+NBAteam(x), +NBAteam:name[x] = "Chicago Bulls".
Rules operating on deltas of predicates, rather than on entire predicates themselves can allso

be installed and added to the active program. An example when this comes in handy is as

follows. Assume we have the following two (EDB) predicates to define the salary and status of

an NBA player:

Players:salary[p] = salary -> Players(p), float[64](salary).
Players:status[p] = status -> Players(p), string(status).

Then, the following rule fires whenever an NBA player’s status is changed to ‘laid-off’ and sets

the NBA player’s salary to zero:

ˆPlayers:salary[p] = 0.0 <- ˆPlayers:status[p] = "laid-off".
The rule states that whenever (in the current transaction) an NBA player’s status has a

new value of ‘laid-off’, then the NBA player’s salary has a new value of zero. 1 It may be

more intuitive to think of the ˆPlayers:status atom as the triggering event and the

1 More pedantically, it states that whenever a change to the value of the Player:status predicate for a given
person p occurs, then a change must be made to the value of Players:salary such that the Players:salary of
p is equal to zero. The change to Player:status may occur through some other executed rules, by loading data
through a user interface, or in some other way.
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ˆPlayers:salary atom as the action. This causes DatalogLB’s logic engine to evaluate all

changes when the transaction commits, and only then are the changes accumulated into the

corresponding predicates.

One of the most powerful features of DatalogLBis the ability to define calculated predicates,

also referred to as intensional predicates (IDB). In contrast to EDB, IDBs are derived by the

rules already installed in the workspace and their data cannot be provided directly by the user,

i.e., there are applications defining the IDBs’ data in terms of the data in other predicates.

IDB rules as usually added to the workspace’s active program, as opposed to being executed

as a command by EDBs. An example of a rule is shown in the following block:

person(x), person:name[x] = n->string(n), inv[person:name][n]=x.
parent(x,y) -> person(x), person(y).
male(x) -> person(x).
female(x) -> person(x).
father(x,y) <- parent(x,y), male(x).
mother(x,y) <- parent(x,y), female(x).

The first three lines declare, respectively, a set of people identified by names (the

person:name[x] predicate), a parental relationship among people (the parent(x,y) pred-

icate), and the specification that some people are males (the male(x) predicate). The last

line is the rule, as indicated by the left-arrow, and it reads: whenever x and y belong to the

parent relation, and x belongs to the set male, then x is the father of y. A rule consists of

two formulas: the head (father(x,y) ), and rule body parent(x,y), male(x). Atomic

formulas (e.g., father(x,y)) may be combined with comma expressing conjunction in which

both conjuncts must be true (father(x,y) and male(x)), or with disjunction (in which

only one of the disjuncts must be true. For example, in the rule below, x is y’s grandmother,

if x is the mother of some z, and z is either the mother of y, or the father of y:

grandmother(x,y) <- mother(x,z), (father(z,y) | mother(z,y)).
The left-arrow in the above rule represents a logical implication, i.e., whenever the right-

hand-side (i.e., the body) of the rule is true, then the left-hand-side (called the head of the rule)

is also true. The order of predicates in the head or body makes no difference to the results.

Note that the data for the calculated predicate is not directly editable by an application, thus

guaranteeing that the rule remains true. In addition, any change made to the data in person,

parent, or male etc. will result in an immediate (and usually incremental) recalculation of

father according to the rule.

In addition to rules, DatalogLBallows the users to state constraints. A constraint (usually

written with implication from left to right (->) is a statement about what must be true in a

given database. For example:

parent(x,y) -> !parent(y,x).
The above clause can be seen as a constraint imposed on the predicate parent stating that if

x is the parent of y, then y cannot be parent of x. Note that the statement uses the ! operator

supported by DatalogLBto represent negation (not) inside the constraint. Logically speaking,

translations are equivalent to rules whose head is the logical falsity, and whose body is the

negation of the meaning of the constraint. Applying some standard logical equivalences, we

would rewrite the above as:

FALSE <- parent(x,y), parent(y,x)
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(i.e., whenever x is a parent of y, and y is a parent of x, then false ). Since the LogicBlox

system must ensure that all clauses (rules) in the active program are consistent (i.e., that

falsity can never be derived), the rule above states situations in which the active program

cannot be evaluated to produce a consistent database. Practical implications of this are as

follows: Suppose that parent is an EDB relation, whose data is supplied by the user, and not

defined by rules, and the above constraint has been added to the active program. Then, any

transaction that tries to insert data that violates the constraint above will be aborted by the

LogicBlox platform, and unrolled to the (previously consistent) state before the start of the

transaction.

DatalogLBalso supports disjunctions inside a constraint:

person(x), (male(x) | female(x)).
In the above statement the disjunction is represented by the vertical bar (’|’) as to indicate

that a person is either a male or female.

As may be clear from the above, a subset of possible constraints in DatalogLBare type

constraints, such as: parent(x,y) -> person(x), person(y). DatalogLBis strongly

typed [54]: rules and constraints that would lead to type errors at runtime are statically rejected

by the system at compile time. While some constraints (as the ones discussed immediately

above) are checked at runtime, typing constraints are verified statically and incur no runtime

cost.

In addition to regular Datalog rules, expressed as the first-order logic, DatalogLB’s logic

engine understands and evaluates predicate to predicate mappings (P2Ps), which specify rela-

tionships among predicates not easily expressed in first-order logic. This effectively overrides

the semantics of the standard logical implication (←) with a custom-defined implementation

(provided by the implementers of the LogicBlox platform).

The most common P2Ps represent aggregations (agg<< >>). Consider the rule

NBAteam:Salary[x] = T <- agg<<T = total(s)>> Players:salary[p] = s,

NBAteam:Players[p] = x.
The P2P agg evaluates the variables on the right-hand side of the rule, for each value of

x (indexed over NBAteam) and p (indexed over Players), then performs the operation of

addition on all possible bindings of variable s, which concurrently binds variable T as the

result of total (a built-in function in Datalog) and thus becoming the value of predicate

NBAteam:Salary. Recall that operators agg and total are not part of standard Datalog,

but their functionality can be implemented in “raw” Datalog.

The interaction between DatalogLB’s logic engine and the workspace occurs during a trans-

action initiated by a Datalog query or other command. As depicted in Fig. 2, DatalogLB’s

logic engine updates the IDBs according to the installed rules in the blocks comprising the

active program. In the figure, constraints are declared in the Datalog ‘Source Program’, stored

in ‘Installed Blocks’ of P2P, and executed in ‘Optimization Constraints’ when a transaction

occurs. User query transactions are specified by means of the Datalog ‘Source Program’ that

has a designated answer predicate for querying the workspace state.

Next, we illustrate all of these features by means of a production-transportation model.

3.2. Algebraic modeling of a production-transportation model in DatalogLB

The production-transportation model is to find the least cost production-shipping plan that

meets demand requirements at markets and supplies at factories. There are costs given for
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Figure 2 DatalogLB’s logic engine for P2P mappings

producing and transporting. Details on production-transportation models can be found in,

e.g., [10], [15], and [49].

The production-transportation model can be described as follows. Suppose that steel prod-

ucts are made at several mills, from which they are shipped to customers at various factories.

For each mill, the decision variable captures the amount of each product to make. For each

product on each arc with a mill as the origin and a factory as the destination, we need to

obtain the amount of product to be shipped.

We start the algebraic model by defining the sets of products (PROD), origins (ORIG), and

destinations (DEST). As parameters we are given rate as the tons produced per hour at the

origins, avail as the hours available at origins, demand as amounts required at destinations,

makeCost as manufacturing costs per ton of a product produced at an origin, and transCost
as shipment costs per ton of a particular product shipped from an origin to a destination.

We declare two types of decision variables: Make as tons to be produced of each product at

an origin, and Trans as tons to be shipped of each product from an origin to a destination.

The mathematical model can then be formulated as follows:

min
∑

i∈ORIG,

p∈ PROD

makeCosti,p ∗Makei,p +
∑

i∈ORIG,j ∈DEST ,

p∈ PROD

transCosti,j,p ∗Transi,j,p (1)

s.t.: ∑
p∈PROD

1

ratei,p
∗Makei,p ≤ availi, i∈ORIG, (2)∑

j∈DEST

Transi,j,p =Makei,p, i∈ORIG,p∈ PROD, (3)∑
i∈ORIG

Transi,j,p = demandj,p, j ∈DEST, p∈ PROD. (4)

Eq. (1) represents the objective function to be minimized as the sum of total costs of man-

ufacturing and shipping, subject to time constraints (2) imposed by the number of hours
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available at each origin, supply constraints (3) imposed by capacity restrictions, and demand

constraints (4) imposed by the amount of each product required at each destination.

In AMLs, the data of a specific instance of a mathematical programming model consists

of index sets and parameters. An index relates to a data item, which typically is either a

coefficient or a variable. In the production-transportation model, the PROD set can consist of

three types of items: bands, coils, and plate. In the Datalog context, we declare a unary

relation PROD with members identified by names:

PROD(p), PROD:name(p:n) -> string(n).
The above statement uses the PROD predicate to define the concept of a “set” in algebraic

modeling. Note that DatalogLBcharacterizes a predicate symbol either as an identifier or a

string. In PROD:name(p:n), for example, we use the member field operator ‘:’ both as an

identifier and as a string. As an identifier, when enclosed in parentheses, ‘:’ indicates that

each member of the PROD set has a name of type string. As a string or reference mode (as it

is called in object-relation modeling terminology), ‘:’ is considered to be part of the ordinary

characters that compose the contextual name of the predicate ‘PROD:name’.

We then specify the PROD data (facts), as follows:

+PROD(p), +PROD:name(p:"bands").
+PROD(p), +PROD:name(p:"coils").
+PROD(p), +PROD:name(p:"plate").

Similarly, we can declare the other two sets ORIG and DEST as follows:

ORIG(o), ORIG:name(o:n) -> string(n).
DEST(d), DEST:name(d:n) -> string(n).

Note that Datalog specifications are not unique and their syntax may vary based on the

language implementation. In our model, the avail parameter is indexed over ORIG and we

declare the avail unary predicate as

avail[o] = av -> ORIG(o), float[64](av).
to indicate that if o satisfies the ORIG predicate, it can be used to index avail, which

evaluates to a 64 bit float typed value.

Moreover, since the rate parameter is indexed over more than one set (ORIG and PROD), we

apply the conjunction rule (multiple set indexes) while separating by commas its declaration:

rate[o,p] = rv -> ORIG(o), PROD(p), float[64](rv).
Analogously, we declare the remaining parameters of the model as follows:

demand[d,p] = dm -> DEST(d), PROD(p), float[64](dm).
makeCost[o,p] = mc -> ORIG(o), PROD(p), float[64](mc).

transCost[o,d,p] = tc -> ORIG(o), DEST(d), PROD(p), float[64](tc).

Variables can be seen as special types of parameters with no syntactic differences. In the

model we have two types of variables, one related to production and the other one related to

transportation. We complete the declaration part of the model by establishing the decision

variables in Datalog as

Make[o,p] = mk -> ORIG(o), PROD(p), float[64](mk), mk >= 0.
Trans[o,d,p] = tr -> ORIG(o), DEST(d), PROD(p), float[64](tr),tr>=0.

Reserved keywords are used to annotate that these predicates are variables:

lang:solver:variable(‘Make).
lang:solver:variable(‘Trans).
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Regarding the syntactical specifications of the objective function and constraints, we empha-

size that the relational aspect of logic programming is sufficient. Hence, we declare constraints

(2) similarly as we did above with parameters:

sumTime[o] = st -> ORIG(o), float[64](st).
The constraints are all float-valued and indexed over the ORIG set. Type ‘float’ specifies the

type of the left-hand side. In addition to this declaration statement (with the -> operator),

we follow with a computation or rule deduction statement (with the <- operator):

sumTime[o] = st <- agg<<st=total(v)>> v=(1/rate[o,p])*Make[o,p].
sumTime[o] = t1, avail[o] = t2 -> t1 <= t2.

The first line above computes the left-hand side summation of the constraints. Keyword

agg is a built-in aggregated method, which leverages on the built-in total function. They

are used to model the summation in (2) and since the constraints are indexed over the ORIG
set, the aggregated method operator will only sum over the PROD set, which is indexed by p
in both the rate parameter and the Make variable.

The second line establishes the constraint relationship between the left- and right-hand side.

The left-hand side is evaluated by both the sumTime predicate to t1 and the avail predicate

to t2, and the right-hand side indicates that t1 cannot be larger than t2.

Similarly to (2), the supply constraints can be modeled as

sumSupply[o,p] = v -> ORIG(o), PROD(p), float[64](v).
sumSupply[o,p] = ss <- agg<<ss=total(m)>> m = Trans[o,_,p].
ORIG(o), PROD(p), sumSupply[o,p] = v1, Make[o,p]= v2 -> v1 = v2.

and the demand constraints can be modeled as follows:

sumDemand[d,p] = v -> DEST(d), PROD(p), float[64](v).
sumDemand[d,p] = sd <- agg<<sd=total(m)>> m = Trans[_,d,p].
DEST(d), PROD(p), sumDemand[d,p] = v1, demand[d,p]= v2 -> v1=v2.

Note that in DatalogLBwe can make use of the ‘_’ operator to collect all occurrences of a

predicate in rule heads into a single definition, see sumSupply[o,p] for example. This ‘_’

operator comes in handy when we need to iterate over an unknown yet controlled index.

The objective function can be seen as a special constraint. Our objective is to minimize

the total cost consisting of both production and transportation costs. The production cost is

computed as

TotalMakeCost[] = tmc -> float[64](tmc).
TotalMakeCost[] = tmc <- agg<<tmc=total(v)>>

v = makeCost[o,p]*Make[o,p].
and the transportation cost is computed as

TotalTransCost[] = ttc -> float[64](ttc).
TotalTransCost[] = ttc <- agg<<ttc=total(v)>>

v = transCost[o,d,p]*Trans[o,d,p].
The total cost is thus computed as the sum of the two:

TotalCost[] = tc -> float[64](tc).
TotalCost[] = TotalMakeCost[] + TotalTransCost[].

Reserved keywords are used to indicate to DatalogLB’s compiler that the predicate is mini-

mized:

lang:solver:minimal(‘TotalCost).
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The above clauses form the entire program block comprising the full model of the

transportation-production problem in DatalogLB. The entire implementation is provided in

Appendix A.

3.3. Optimization in DatalogLB

After the addition of a program into a dedicated workspace, DatalogLB’s compiler transforms

the problem specifications into the form readable by the selected solver. The selection of a

solver in DatalogLB is accomplished by using reserved keywords as follows:

optimization:solverName[] = "cbc".

where the [] notation is just syntactic sugar for the reserved keyword ’solverName’ with

no arguments required, and ‘cbc’ refers to the open-source MIP solver COIN-OR Branch and

Cut [13] (CBC) in DatalogLB.

Solutions obtained by the solver can easily be accessed by means of simple queries. Note

that by the inclusion of the mathematical model into the workspace, any transaction executed

in DatalogLB, including database updates and model extensions, automatically entails a call to

the solver to update the current solution of the working instance. Note that model extensions

correspond to the addition or adjustments of business rules of the existing optimization model

currently stored in the dedicated workspace. These extensions can be introduced in form of,

e.g., new constraints or variables to the Datalog source program.

DatalogLB’s modeling platform incorporates the Optimization Services instance Language

(OSiL) [41] to provide solvers with a standard way of accessing instance data and thus using

various solvers as plug-ins. The OSiL standard is basically an XML schema that encodes

instances of linear and mixed-integer programs. The DatalogLB interface supplies the instance

to the solver for the required computation, and then returns the results into Datalog pred-

icates. The result recovering process is accomplished by means of the Optimization Services

result Language (OSrL) that passes the results back to the application. This XML schema

encodes solutions [41]. In addition to OSiL and OSrL standards, the complete framework also

incorporates the Optimization Services option Language (OSoL) for communicating the algo-

rithmic settings to solvers. This is also an XML schema. Fig. 3 shows the framework of the

DatalogLB’s modeling platform, including the interrelationships between the Datalog-based

application programming interface and external processes and tools.

The mathematical programming capabilities of DatalogLB are implemented as P2P, which

relates the parameters of the optimization problem, EDBs and IDBs, to the variables of the

optimization problem. In LogicBlox parlance, the parameters of the optimization problem

comprise the body of the P2P and the variables comprise the head of the P2P.

By appearing in the head of the P2P, the variables of an optimization problem are automat-

ically considered IDBs, even though they never appear in the head of a derivation rule in the

original program. Thus, whenever any of the problem parameters change during a transaction—

which may be caused directly by the addition of EDBs to the workspace, or by a rule deriving

a change from related IDBs—the logic engine triggers the solver, which recomputes the values

of the variables to solve the problem as it is specified by the P2P for the new values of the

parameters. It is a restriction of DatalogLB’s implementation that P2Ps cannot be involved in

recursion, which enables the logic engine to trigger the solver only once per transaction for
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Figure 3 Framework of DatalogLB’s modeling platform

a given problem. Relaxing this condition without losing DatalogLB’s termination guarantee is

one of the topics of future research.

To avoid repeated evaluations of optimization constraints—once as run-time constraints, and

once as a part of the optimization problem specification—DatalogLB’s compiler removes these

constraints from the original program as one of the transformation steps. An important feature

of this implementation is the ability to recognize subproblems of the entire mathematical

program, which plays a key role on performance when the solver is called. This is accomplished

by handling index sets separately from the model constraints, thus allowing DatalogLB’s logic

engine to evaluate the P2Ps incrementally, i.e, to only recompute the subproblems for which

the parameters have changed.

4. Comparison Analysis: DatalogLB vs GAMS

In this section, we present a comparison analysis between DatalogLB and the General Algebraic

Modeling System, GAMS [10, 25]. In particular, we analyze the capabilities of modeling and

data handling on both platforms when solving an optimization problem, namely the Traveling

Salesman Problem (TSP [17]).

4.1. The TSP Test Case

The TSP is one of the most intensively studied combinatorial optimization problems in com-

putational mathematics specifically because it is so easy to describe and so difficult to solve.

Given a set of n cities and distances between them, the TSP is to find the least cost tour

visiting each city exactly once.

MIP formulations aimed to solve the TSP are, among others, due to Dantzig, Fulkerson

and Johnson [16] (DFJ model) and Miller, Tucker and Zemlin [44] (MTZ model). The DFJ
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model is an extension of a simple assignment model with the addition of subtours elimination

constraints. The DFJ model requires a row generation procedure that basically generates one

row after another with one design variable column only, thus providing in advance associated

dual variables for each linking constraints (row).

Since the DFJ model requires 2n subtour breaking constraints in the worst case, we imple-

mented the MTZ model in DatalogLB, which basically aims at breaking subtours with fewer

constraints by making use of an extra variable ui for each node i. By implementing the MTZ

model, we also avoid the application of branch-and-bound techniques for possible fractional

solutions to the DFJ model.

The mathematical model for the TSP, as well as its corresponding program in DatalogLB

and GAMS are given in Appendix B.

In this work, we solve the TSP by means of the compact MIP formulation solely for modeling

illustration purposes in DatalogLB. Large-scale TSP’s instances are solved by other means

(see [29] for a complete historical development of the TSP).

We solved the test instance proposed by Dantzig, Fulkerson and Johnson [16] consisting of

a set of 49 cities, one in each continental state of the USA and the District of Columbia. The

list of cities is given in Appendix B.2. The corresponding triangular distance matrix among

the cities is given in [16]. Note, however, that in [16], the triangular distance matrix for the

49-city problem is incomplete. We estimate our own distance values for cities A through G.

The 49-city problem is solved by the open-source MIP solver COIN-OR Branch and Cut [13]

(CBC) in DatalogLB. Fig. 7 in Appendix B.2 shows the optimal tour with an objective of 694

units after roughly 24 CPU hours.

4.2. Assessments

Two sets of experiments were conducted. The first set consists of evaluating the computational

effort into uploading data and building the mathematical model on both platforms for test

instances of various sizes. The second set aims at assessing modeling efforts through select

cases when tackling the TSP on both platforms. Such modeling endeavors refer to the ease to

handle possible mathematical model extensions or data test case readjustments. This feature

certainly represents one of the major challenges when selecting the proper modeling platform

in solving real-life decision making problems. Typical examples concern adding and adjusting

business rules. We show by an example that such efforts can be minimized with DatalogLB.

All experiments were conducted on a 2.4 GHz Intel(R) Core(TM) i3 CPU processor with

4.0 GByte RAM under 64-bit MS-Windows operating system.

4.2.1. Data handling To achieve the goals of the first set of experiments, a set of TSP

test instances were created by means of a Java-based generator. Values for the TSP triangular

matrices correspond to positive uniformly distributed integer values over the range [1,105]. The

test instances are given in Table 1, where the number of cities, the number of non-zero elements

in the distance matrix file, and the storage file size are shown in Columns 1–3, respectively.

Columns 4–5 show the CPU times spent on uploading data and creating the mathematical

model for each test instance with DatalogLB and GAMS, respectively. The last column provides

the real-physical disk space required for the dedicated workspace in DatalogLB for each test

instance.

From the results shown in Table 1 we observe that GAMS’ performance is underpar com-

pared to DatalogLB when uploading the data and building the mathematical model for the
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Table 1 Uploading data and creating the mathematical model for TSP instances

TSP test instance 1 DatalogLB GAMS LB workspace(∗∗)

# of cities Distance matrix(∗) File size CPU (sec) CPU (sec) storage
1,000 1.50 · 106 6.5 MB 7 15 32.0 MB
5,000 3.75 · 107 184.0 MB 231 725 700.0 MB

10,000 1.50 · 108 747.0 MB 3,243 4,623 3,834.0 MB
15,000 3.37 · 108 1,734.5 MB 21,886 35,653 6,207.5 MB
20,000 6.00 · 108 3,122.5 MB 63,844 98,221 10,845.0 MB

(∗) Number of non-zero elements in the distance matrix.
(∗∗) 4.02 MB system predicates added to workspace in DatalogLB.

very first time. However, in contrast to DatalogLB, GAMS does not have a dedicated database

storage. Instead, it requires that all data sets are either imported from external files by means

of generators or scripts, or included manually in the file every time the mathematical model

is to be created.

Assuming the simplest task of updating the value of only one entry of the TSP distance

matrix, contrary to GAMS or any other AML with no dedicated workspace, DatalogLB would

simply update the value and automatically rerun the mathematical model without the need

to upload the data again.

According to the CPU times shown in Table 1, working without a dedicated workspace

may entail that a simple change represents a very time consuming process, whereas it may

become a fruitless task when dealing with large-scale instances. In this regard, DatalogLB easily

outperforms AMLs with no dedicated workspace, such as GAMS, since an automatic update

is executed exclusively on those predicates already stored in the dedicated workspace and

which are involved with the current transaction. In other words, the incremental characteristic

exposed by DatalogLB’s logic engine basically allows the compiler to re-compute only those

specific blocks (or predicates) involved with a change to the database due to a transaction

(deletion, insertion or updated).

As a conclusion, while GAMS may require potentially the same amount of CPU time for any

change made to the test instance, DatalogLB updates both the database and model in such a

way that no extra time is required for the task. Since a database may change constantly over

time, a conspicuous advantage of using DatalogLB over AMLs clearly arises when dealing with

database intensive problems.

4.2.2. Modeling robustness and flexibility Our second set of experiments focused on

modeling robustness and flexibility. We present three network modeling examples based on the

TSP optimization model. We make use of the following predicate to formalize the examples:

Aij[i,j] = d -> city(i), city(j), int[64](d).
This predicate stores the original data of the triangular matrix for the TSP.

The first modeling task consists of removing a specific set of edges from the original TSP

network. Consider a subnetwork composed of 5 nodes and 10 edges (as shown on the left side in

Fig. 4 with the goal of removing two edges). Then, the modeling task can be easily accomplished

within Datalog’s context by simply adding the following predicate to the workspace:

NoLinks[i] = j -> city(i), city(j).
+NoLinks[’A’] = ’E’.
+NoLinks[’E’] = ’A’.
+NoLinks[’B’] = ’D’.
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+NoLinks[’D’] = ’B’.
The NoLinks predicate stores the list of edges that are to be removed from the original

network. Here we also see the use of an EDB rule prefixed by ‘+’.

Next, we update the network by executing only one transaction in DatalogLB:

-Aij[i,j] = <- NoLinks[i] = j.

Figure 4 Example 1: Removing edges in DatalogLB

In GAMS we may do this by manually fixing the decision variables defined for these arcs as

follows. Let i / A, B, C, D, E /, alias (i,j) and table c(i,j) (included from

an input file) be the subset of cities, the arc identifier and cost matrix in the GAMS model,

respectively. Let X(i, j) be the binary decision variable of arcs in the TSP network of the

GAMS model. We then exclude the arcs by issuing the following:

x.fx(’A’,’E’) = 0;
x.fx(’E’,’A’) = 0;
x.fx(’B’,’D’) = 0;
x.fx(’D’,’B’) = 0;

For a relatively large test instance, fixing manually all arcs that are no longer part of the

network may become an exhausting task. The appeal of the DatalogLB approach is that the

modification is done directly on the network and not at the modeling level by fixing the

variables. DatalogLB removes the variables through the concept of propagation of predicates.

In our second modeling case, we establish a specific set of nodes that are to be removed from

the original network along with all of their incident edges. In DatalogLB we do this by adding

the following predicate to the workspace:

NoNodes(i) -> int[64](i).
+NoNodes(’C’).

The NoNodes predicate contains the nodes that are to be removed from the original network.

We then add the following IDBs along with its rules to get all related edges corresponding to

the NoNodes predicate (Fig. 5 illustrates this operation):

NoNodes:Edges[i,j] = d -> city(i), city(j), int[64](d).
NoNodes:Edges[i,j] = d <- Aij[i,j] = d, j>=i, NoNodes(i).
NoNodes:Edges[j,i] = d <- Aij[j,i] = d, j<i, NoNodes(i).

Analogously to our previous case, we update the network by executing the following trans-

action:

-Aij[i,j] = d <- NoNodes:Edges[i,j] = d.
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Similarly to the previous case, we can update the TSP network in GAMS by manually

managing the data in the GAMS model. However, unlike the previous example, fixing only

the decision variables of arcs corresponding to the specific nodes that are to be removed from

the original network is not enough. By doing so, GAMS would exclude the arcs but still keep

the nodes as a part of the network model. The GAMS script might not require substantial

effort for an experienced GAMS user, but it indeed requires a continual effort to maintain the

network model.

Figure 5 Example 2: Removing nodes and all related edges in DatalogLB

In our final case we show how to handle a more complex network change with simple rules

in DatalogLB.

This time, given a base node, the modeling task consists of removing any node and all of the

corresponding edges satisfying the following two conditions: (A) the node is within two edges

from the base node, and (B) its degree, i.e., the number of edges incident to it, is less than or

equal to δ.

Assume we have a subnetwork as shown on the left side in Fig. 6 with δ = 5, and there is

only one base node (node O) stored in the BaseNode predicate (shown as a black circle in

Fig. 6):

+BaseNode(’O’).
In DatalogLB we update this network in two steps. First, we find all paths starting at base

node O that satisfy condition (A) and whose nodes (with exception of the base node) have

degree less than or equal to five (condition (B)). In DatalogLB we do this by adding the

following intensional predicates to the workspace:

Degree[i] = v <- agg<<v=count()>> A[i, ]= , city(i).
Find:Range2Paths[i,k,j] = dj <- A[i,k]= , A[k,j]= , Degree[j]=dj,

Degree[k]=dk, BaseNode(i), (dj<=5, dk<=5).
The Degree predicate evaluates the degree of each node (city(i)) in the network by apply-

ing the count() built-in function to the A predicate, which contains all arcs in the network.

The FindRange2Paths predicate then uses the results stored in the Degree predicate to

remove all paths accordingly.

The rule set for the FindRange2Paths predicate expresses that there exists a path in the

form {(i, k), (k, j)} with nodes k and j having degree ≤ δ = 5.
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Next, we remove all but base node O and the corresponding related edges that are found on

the paths. This is accomplished by the following predicates:

NodesToBeRemoved(n) <- (FindRange2Paths[ ,n, ] = ;
FindRange2Paths[ , ,n] = ),!BaseNode(n).

EdgesToBeRemoved[i,j] = d <- Aij[i,j] = d, i=ii, j>=ii,
NodesToBeRemoved(ii).

EdgesToBeRemoved[j,i] = d <- Aij[j,i] = d, i=ii, j<ii,
NodesToBeRemoved(ii).

The network is then updated by executing the following transaction in DatalogLB:

-Aij[i,j] = d <- EdgesToBeRemoved[i,j] = d.
-city(i) <- NodesToBeRemoved(i).

Figure 6 Example 3: A more complex example of network handling in DatalogLB

For this particular network design problem, a GAMS user, on the other hand, is required to

put a substantial effort to develop the necessary implementation using GAMS system’s current

tools. An implementation in GAMS is provided in Appendix C, and it requires using ‘for’

loops.

In all the previous examples, once the network related data (e.g., arcs, nodes and weights) are

included in the GAMS model, any modification to the current network requires the following

tasks: 1) either to make use of external tools to update the data accordingly or to make

substantial changes to the GAMS input files whenever possible, and 2) construct again the

mathematical model with the updated data.

Unlike GAMS, DatalogLB has a highly effective modeling flexibility (as shown with the

inclusion of specific rules to make the updates efficiently) that makes the tasks of data handling

and model extensions very simple.
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5. Conclusions and Future Work

In this paper, we presented the basic functionality needed for algebraic modeling of optimiza-

tion problems built on top of a database system, yet special identifiers, operators and syntactic

sugar are still in a developing phase to allow the current platform to mimic standard algebraic

modeling systems with minor effort. Compared to existing algebraic modeling languages, the

robustness of DatalogLB as a complete programming language with a pure declarative nature

and native database support, offers great flexibility and extensibility in practical modeling.

The current implementation is limited to linear and mixed-integer programming, but it is

intended to be enhanced with support for additional types of optimization problems and a

wider range of solvers, from quadratic programming to meta-heuristics methods, all the way

to Satisfiability (SAT) and Satisfiability Modulo Theories (SMT) solvers. (Details on these

solvers can be found in, e.g., [26] and [32].)
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Appendix

A. The Transportation-Production Model

The following block declares the index sets and parameters for the transportation-

production model in DatalogLB as described in Section 3.2. Note that the block is contained

between <doc> .. </doc> with a block name (TransProdModelDeclaration)

appended to it. The block’s name can basically be used by the user to active it or remove it

from the dedicated workspace by executing specific transactions. In the examples below, the

transaction is initiated by the user with the keyword transaction, and then, the block

is officially activated once the transaction is committed by using the keyword commit.

transaction
addBlock --blockName TransProdModelDeclaration <doc>

// INDEX SETS:
ORIG(p), ORIG:name(p:n) -> string(n). // Set of origins
PROD(p), PROD:name(p:n) -> string(n). // Set of products
DEST(p), DEST:name(p:n) -> string(n). // Set of destinations

// PARAMETERS:
// avail = hours available at origins (indexed over ORIG)
// We declare the avail unary predicate as:
avail[o] = av -> ORIG(o), int[64](av).

// rate = tons produced per hour at the origins (indexed over ORIG and PROD)
// We declare the rate predicate as:
rate[o,p] = rv -> ORIG(o), PROD(p), float[64](rv).

// demand = amount of each product required at destinations (indexed over DEST and PROD)
// We declare the demand unary predicate as:
demand[d, p] = dp -> DEST(d), PROD(p), float[64](dp).

// makeCost = manufacturing costs per ton of a product produced at an origin
// (indexed over ORIG and PROD)
// We declare the makeCost predicate as:
makeCost[o,p] = mC -> ORIG(o), PROD(p), float[64](mC).

// transCost = shipment costs per ton of a particular product shipped from an origin to
// a destination (indexed over ORIG, DEST and PROD)
// We declare the transCost predicate as:
transCost[o,d,p] = sC -> ORIG(o), DEST(d), PROD(p), float[64](sC).

</doc>
commit

The following active block adds the transportation-production model to the workspace

in DatalogLB.

transaction
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addBlock --blockName TransProdModel <doc>

// VARIABLES DECLARATION:
// (Note: Variables are defined using predicates, which are parametrized by index entities
// with integer reference modes.)

//We declare two types of decision variables:
//(1) Make = tons to be produced of each product at an origin (indexed over ORIG and PROD)
Make[o,p]= mk -> ORIG(o), PROD(p), float[64](mk), mk>=0.
ORIG(o), PROD(p) -> Make[o,p] = _.
lang:solver:variable(‘Make).

//(2) Trans = tons to be shipped of each product from an origin to a destination
// (indexed over ORIG and DEST)
Trans[o,d,p] = tr -> ORIG(o), DEST(d), PROD(p), float[64](tr), tr >=0.
ORIG(o), DEST(d), PROD(p) -> Trans[o,d,p] = _.
lang:solver:variable(‘Trans).

// CONSTRAINTS DEFINITION:
// <<Time constraints>> imposed by the number of hours available at each origin
// (indexed over ORIG) while making use of avail[o]
sumTime[o] = st -> ORIG(o), float[64](st).

// (Note: After the syntactical specification of the constraint, we follow with the computation
// or rule deduction statement with the ’<-’ operator.)
sumTime[o] = st <- agg<<st=total(v)>> v=(1/rate[o,p])*Make[o,p].
sumTime[o] = t1, avail[o] = t2 -> t1 <= t2.

// (Note: The first line above computes the left-hand side summation of the time constraints.
// The ’agg’ is a built-in aggregated method, which leverages on the built-in ’total’
// function. They are used to model the summation in the constraint. Since the constraint
// is indexed over the ORIG set, the aggregated method operator will only sum over the
// PROD set, which is indexed by p in both the rate parameter and the Make variable.)

// (Note: The second line establishes the constraint relationship between the lhs and the rhs.
// The lhs is evaluated by both the ’sumTime’ predicate to t1 and the ’avail’ predicate
// to t2, and the rhs indicates that t1 cannot be larger than t2.)

// <<Supply constraints>> imposed by capacity restrictions
sumSupply[o,p] = v -> ORIG(o), PROD(p), float[64](v).
sumSupply[o,p] = ss <- agg<<ss=total(m)>> m = Trans[o,_,p].
ORIG(o), PROD(p), sumSupply[o,p] = v1, Make[o,p]= v2 -> v1 = v2.

// <<Demand constraints>> imposed by the amount of each product required at each destination
sumDemand[d,p] = v -> DEST(d), PROD(p), float[64](v).
sumDemand[d,p] = sd <- agg<<sd=total(m)>> m = Trans[_,d,p].
DEST(d), PROD(p), sumDemand[d,p] = v1, demand[d,p]= v2 -> v1 = v2.

// OBJECTIVE FUNCTION:
// (Note: It can be seen as a special constraint with specific identifiers --external
// configuration parameters-- to indicate whether the objective in the model is
// minimization or maximization. Our objective is to minimize the total cost
// consisting of production and transportation costs.)

//The production cost is computed as
TotalMakeCost[] = tmc -> float[64](tmc).
TotalMakeCost[] = tmc <- agg <<tmc=total(v)>> v=makeCost[o,p]* Make[o,p].

//and the transportation cost is computed as
TotalTransCost[] = ttc -> float[64](ttc).
TotalTransCost[] = ttc <-agg<<ttc=total(v)>> v=transCost[o,d,p]*Trans[o,d,p].

//The total cost is thus computed as the sum of the two:
TotalCost[] = tc -> float[64](tc).
TotalCost[] = TotalMakeCost[] + TotalTransCost[].
lang:solver:minimal(‘TotalCost). // Defining the sense of the objective function
optimization:solverName[]="cbc". // Setting the solver’s name

</doc>
commit
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The following block executes the data loading procedures of sets and parameters for

solving the transportation-production model in DatalogLB.

// Importing data model for TransProdModel in Datalog LB
transaction
exec <doc>

// Read in product info (columns 1-5): id, name, orig, dest, and avail
// declare indexes and load csv file
_inTransProd(id, prod, orig, dest, avail) -> int[64](id), string(name),
string(orig), string(dest), int[64](av).
lang:physical:storageModel[‘_inTransProd] = "DelimitedFile".
lang:physical:filePath[‘_inTransProd] = "TransProd_sets.csv".
lang:physical:hasColumnNames[‘_inTransProd] = false.

// define corresponding deltas to load
+PROD(_) {
+PROD:name[]=name,
+ORIG:name[]=orig,
+DEST:name[]=dest,
+avail[]=av } <- _inTransProd(_, name, orig, dest, av).

// Read in TransProd (TP)’s parameters from a csv file
// declare indexes and load csv file
_inTPparams(idxO, idxD, idxP, rv, dp, mC) -> int[64](idxO), int[64](idxD), int[64](idxP),
float[64](rv), float[64](dp), float[64](mC).
lang:physical:storageModel[‘_inTPparams] = "DelimitedFile".
lang:physical:filePath[‘_inTPparams] = "TransProd_params.csv".
lang:physical:hasColumnNames[‘_inTPparams] = false.

// define corresponding deltas to load
+rate[o,p] = rv, +demand[d,p] = dp, +makeCost[o,p] = mC
<- _inTPparams(idxO, idxD, idxP, rv, dp, mC).

/ Read in TransProd (TP)’s cost matrix from a csv file
// declare indexes and load csv file
_inTPmatrix(idxO, idxD, idxP, sC) -> int[64](idxO), int[64](idxD), int[64](idxP), float[64](sC).
lang:physical:storageModel[‘_inTPmatrix] = "DelimitedFile".
lang:physical:filePath[‘_inTPmatrix] = "TransProd_CostMatrix.csv".
lang:physical:hasColumnNames[‘_inTPmatrix] = false.

// define corresponding deltas to load
+transCost[o,d,p] = sC <- _inTPmatrix(idxO, idxD, idxP, sC).

</doc>
commit

B. The Traveling Salesman Problem

Given an arc-weighted complete graph G= (V,A,w), where V is the set of nodes (cities),

A is the set of arcs linking a pair of cities u, v ∈ V , and w :A 7−→R+ is the cost function

assigning each (u, v) ∈A weight wuv, the problem is to find a minimum weight tour in G.

The following variables are required for the MTZ model:

xij =

 1 1 if arc from node i to node j is selected,

0 otherwise,

ui = the position of node i in the tour.
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The MTZ formulation reads:

min
∑

i

∑
j cijxij (5)

s.t.:
∑

i xij = 1, j, (6)∑
j xij = 1, i, (7)

ui + 1≤ uj +n(1−xij), i= 2, · · · , n, i 6= j, j = 2, · · · , n, (8)

ui ≤ n− 1− (n− 2)x1i, i≥ 2, (9)

ui ≥ 1 + (n− 2)xi1, i≥ 2, (10)

x∈ {0,1}, u≥ 0. (11)

The formulation assumes that the tour starts at node 1. Eq. (5) is the objective function

of the TSP model aimed at minimizing the total cost of the tour. Constraints (6) and (7) are

the assignment constraints, for entering and leaving each node exactly once, respectively.

Constraints (8)–(10) are the subtour elimination constraints.

B.1. The MTZ Model for TSP in DatalogLB

The following block declares the index sets and distance (cost) table for the symmetric TSP

model in DatalogLB. Note that the block is enclosed between <doc> .. </doc> with a

block name (TSPModelDeclaration) appended to it. The user can then use the block’s

name to active it or remove it from the dedicated workspace. In the example below, this

is accomplished by initiating a transaction with the keyword transaction, and then,

activating the block with the keyword commit, which basically indicates to DatalogLB’s

logic engine that the transaction is committed.

transaction
addBlock --blockName TSPModelDeclaration <doc>

//Total number of cities, ’intensional’ predicate:
Nc[] = n -> int[64](n).
Nc[] = n <- agg<<n=count()>> city(_).

//Set of cities:
city(c)->.
city:id[c] = n -> city(c), int[64](n).
city:name[c] = n -> city(c), string(n).

//Arcs
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Aij[i,j] = d -> int[64](i), int[64](j), int[64](d).
A[i,j] = d -> city(i), city(j), int[64](d).
A[i,j] = d <- city:id[i] = ii, city:id[j] = jj, Aij[ii,jj] = d.

</doc>
commit

The following block adds the MTZ model to the workspace for solving the TSP in

DatalogLB.

transaction
addBlock --blockName MTZModelforTSP <doc>

// VARIABLE DECLARATION:
// (Note: Variables are defined using predicates, which are
// parametrized by index entities with integer refmods.)

//Decision variables:
//(1) Xij = 1 if arc from node i to node j is selected, Xij=0 otherwise.
Xij[i,j] = x -> city(i), city(j), int[64](x), x<=1, x>=0.
city(i), city(j) -> Xij[i,j] = _.
lang:solver:variable(‘Xij).

//(2) Ui = the position of node i in the tour
Ui[i] = v -> city(i), int[64](v), v>=0.
city(i) -> Ui[i] = _.
lang:solver:variable(‘Ui).

// CONSTRAINTS:
// Eq.(6): Enter each node once: sum_i Xij = 1
sumLHS[j] = v -> city(j), int[64](v).
sumLHS[j] = v <- agg<<v=total(r)>> r=Xij[i,j], city(i), i!=j.
city(j), sumLHS[j] = v -> v = 1.

// Eq.(7): Leave each node once: sum_j Xij = 1
sumLHS2[i] = v -> city(i), int[64](v).
sumLHS2[i] = v <- agg<<v=total(r)>> r=Xij[i,j], city(j), i!=j.
city(i), sumLHS2[i] = v -> v = 1.

// Subtour elimination constraints:
// Eq.(8): u_i + 1 <= u_j + n(1-Xij), for all i=2,...,n, i!=j, j=2,...,n,
city(i), city(j), v1 = Ui[i] - Ui[j] + Nc[]*Xij[i,j], v2= Nc[]-1, i!=j, i>=2, j>=2 -> v1 <= v2.
// Eq.(9): u_i <= n - 1 - (n-2)*X1i, for all i >= 2
city(i), v1 = Ui[i], v2 = Nc[] - 1 - (Nc[]-2)*Xij[1,i], i>=2 -> v1 <= v2.
// Eq.(10): u_i >=1 + (n-2)*Xi1, for all i >= 2
city(i), v1 = Ui[i], v2 = 1 + (Nc[]-2)*Xij[i,1], i>=2 -> v1 >= v2.

// OBJECTIVE FUNCTION:
// TSP model aims at minimizing total cost of the tour

TourLength[] = tc -> int[64](tc).
TourLength[] = tc <- agg<<tc=total(v)>> v=A[i,j]*Xij[i,j], i!=j.
lang:solver:minimal(‘TourLength).
optimization:solverName[]="cbc".

</doc>
commit

The following block executes the data loading procedures for solving the symmetric TSP

model in DatalogLB: loading a 10×10 TSP instance.

// Importing data model for TSP in Datalog LB: TSPReader10x10.lb
transaction
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exec <doc>

// Read in cities’ id (column 1) and name (column 2) from a csv file
// declare indexes and load csv file
_inCities(id, name) -> int[64](id), string(name).
lang:physical:storageModel[‘_inCities] = "DelimitedFile".
lang:physical:filePath[‘_inCities] = "TSP_10x10cities.csv".
lang:physical:hasColumnNames[‘_inCities] = false.

// define corresponding deltas to load
+city(_) {
+city:id[] = id,
+city:name[] = name } <- _inCities(id, name).

// Read in distance matrix from a csv file
// declare indexes and load csv file
_inD(indexi, indexj, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) -> int[64](indexi), int[64](indexj),
int[64](a1), int[64](a2), int[64](a3), int[64](a4), int[64](a5), int[64](a6), int[64](a7),
int[64](a8), int[64](a9), int[64](a10).
lang:physical:storageModel[‘_inD] = "DelimitedFile".
lang:physical:filePath[‘_inD] = "TSP_10x10distanceMatrix.csv".
lang:physical:hasColumnNames[‘_inD] = false.

// define corresponding deltas to load
+Aij[i,0] = a0, +Aij[i,1] = a1, +Aij[i,2] = a2, +Aij[i,3] = a3, +Aij[i,4] = a4,
+Aij[i,5] = a5, +Aij[i,6] = a6, +Aij[i,7] = a7, +Aij[i,8] = a8, +Aij[i,9] = a9
<- _inD(i, _, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9).

</doc>
commit

B.2. A TSP test instance in DatalogLB

We solve the test instance proposed by Dantzig, Fulkerson and Johnson [16]. Table 2 shows

the list of the cities.

Table 2 List of names of selected cities, a 49-city TSP instance

1. Manchester, NH 14. Seattle, WA 27. Topeka, KS 40. Washington, DC
2. Montpelier, VT 15. Portland, OR 28. Oklahoma City, OK 41. Boston, MA
3. Detroit, MI 16. Boise, ID 29. Dallas, TX 42. Portland, ME
4. Cleveland, OH 17. Salt Lake City, UT 30. Little Rock, AR A. Baltimore, MD
5. Charleston, WV 18. Carson City, NV 31. Memphis, TN B. Wilmington, DE
6. Louisville, KY 19. Los Angeles, CA 32. Jackson, MS C. Philadelphia, PA
7. Indianapolis, IN 20. Phoenix, AZ 33. New Orleans, LA D. Newark, NJ
8. Chicago, IL 21. Santa Fe, NM 34. Birmingham, AL E. New York, NY
9. Milwaukee, WI 22. Denver, CO 35. Atlanta, GA F. Hartford, CT

10. Minneapolis, Mn 23. Cheyenne, WY 36. Jacksonville, FL G. Providence, RI
11. Pierre, SD 24. Omaha, NE 37. Columbia, SC
12. Bismarck, ND 25. Des Moines, IA 38. Raleigh, NC
13. Helena, MT 26. Kansas City, MO 39. Richmond, VA

The MTZ model for this TSP test instance comprises 1,723 rows, 1,762 variables and

8,284 non-zero elements in the constraint matrix. The model takes the form of an integer,

linear programming (ILP) model. The ILP lower bound provided by CBC [13], an open-
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source MIP solver, was 600.167 in less than 1 CPU second. The optimal tour obtained in

24 CPU hours with an objective of 694 units is shown in Fig. 7.

Figure 7 Optimal TSP tour of the 49-city instance

C. Network modification in GAMS

Given a TSP network, set N of original nodes, and a given base node, the task consists of

removing any node and all of its corresponding arcs satisfying the following two conditions:

(A) the node is within two arcs from the given base node, and (B) its degree, i.e., the

number of edges incident to it, is less than or equal to δ. An example with δ= 5 is provided

on the left side in Fig. 6.

The following implementation solves the problem in GAMS.

$title Traveling Salesman Problem

set i cities / A, B, C, D, E, F, G, H, I, J, K, L, M, N,
O, P, Q, R, S, T, U, V, W, X, Y, Z/;

$include ’TSPDataAndArcSets.inc’

* New sets, parameters & tables
set BaseNode(i) /O/;
alias (i,k,j), (i,ii);

parameter Degree(i) indicator function of incoming and outgoing arcs to node i,
count;

* STEP 1: Get node degree values:
loop(i,

count=0;
loop(j$(i ne j),

count$(c(i,j) gt 0)=count+1;
);
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Degree(i)=count;
);

* Counterpart Datalog’s code:

* Degree[i] = v <- agg<<v=count()>> A[i,_]=_, city(i).

* STEP 2: Find nodes at most 2 arcs away from node base i of

* degree less than or equal to ’delta’:

set SubCity(i) subset of city nodes to be removed;

parameter alpha upper bound on nodes’ degree / 5 /,
FindRange2Paths(i,k,j) paths of range 2 from base nodes;

loop(i$BaseNode(i),
loop(k$(k ne i),

if( ( (c(i,k) ge 0) and (Degree(k) le delta) ),
loop(j$(j ne i and j ne k),

if( ( (c(k,j) ge 0) and (Degree(j) le delta) ),
FindRange2Paths(i,k,j) = c(i,k) + c(k,j);

);
);

);
);

);

* Counterpart Datalog’s code:

* Find:Range2Paths[i,k,j]=dij <- A[i,k]=dik, A[k,j]=djk, Degree[k]=dk, Degree[j]=dj,
BaseNode(i), (dj<=alpha, dk<=alpha), dij=dj+dk.

* Next, we recover and remove all but the base node and the corresponding related arcs

* that are found on the paths.

* We accomplish this by making use of Dynamic Sets, i.e., subsets of underlying index sets.

set NewCity(ii) subset of allowed cities,
R1(ii,jj) temporary subset of arcs in the network,
R(ii,jj) final subset of allowed arcs in the network;

alias (ii,jj);

NewCity(ii) = city(ii).

* Make the arc set R1 complete; all arcs belong to the subset.
R1(ii,jj) = yes.

* Make a dynamic replica of the original TSP arc set ’TSParcs(i,j)’

* i.e., make R be the intersection of subsets TSParc and R1
R(ii,jj) = TSParcs(ii,jj)*R1(ii,jj);

* Then remove the required arcs and nodes from R and NewCity, respectively, and use them

* to construct the mathematical model.

loop((i,k,j)$(k ne i and j ne i and j ne k),
if(FindRange2Paths(i,k,j) gt 0,

NewCity(k) = no;
NewCity(j) = no;
R(k,j) = no;
R(j,k) = no;

);
);

*Build compact TSP model
$include ’TSPModel.inc’

model MTZ /all/;

option optcr=0, reslim=30;
solve MTZ min z using mip;


