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Abstract

For better classification generative models are used to initialize the model and1

model features before training a classifier. Typically it is needed to solve separate2

unsupervised and supervised learning problems. Generative restricted Boltzmann3

machines and deep belief networks are widely used for unsupervised learning. We4

developed several supervised models based on DBN in order to improve this two-5

phase strategy. Modifying the loss function to account for expectation with respect6

to the underlying generative model, introducing weight bounds, and multi-level7

programming are applied in model development. The proposed models capture8

both unsupervised and supervised objectives effectively. The computational study9

verifies that our models perform better than the two-phase training approach.10

1 Introduction11

Restricted Boltzmann machine (RBM), an energy-based model to define an input distribution, is12

widely used to extract latent features before classification. Such an approach combines unsupervised13

learning for feature modeling and supervised learning for classification. Two training steps are needed.14

The first step, called pre-training, is to model features used for classification. This can be done by15

training RBM that captures the distribution of input. The second step, called fine-tuning, is to train a16

separate classifier based on the features from the first step [12]. This two-phase training approach17

for classification is also used for deep networks. Hinton et al. (2006) proposed deep belief networks18

(DBN) that are built with stacked RBMs, and trained in a layer-wise manner [9]. Two-phase training19

based on a deep network consists of DBN and a classifier on top of it.20

The two-phase training strategy has three possible problems. 1) It requires two training processes; one21

for training RBMs and one for training a classifier. 2) It is not guaranteed that the modeled features22

in the first step are useful in the classification phase since they are obtained independently of the23

classification task. 3) It is an effort to decide which classifier is the best for each problem. Therefore,24

there is a need for a method that can conduct feature modeling and classification concurrently [12].25

To resolve these problems, recent papers suggest to transform RBM to a model that can deal with both26

unsupervised and supervised learning. Since RBM calculate the joint and conditional probabilities,27

the suggested prior models combine a generative and discriminative RBM. Consequently, this hybrid28

discriminative RBM is trained concurrently for both objectives by summing the two contributions29

[11, 12]. In a similar way a self-contained RBM for classification is developed by applying the30

free-energy function based approximation to RBM, which was used for a supervised learning method,31

reinforcement learning [5]. However, these approaches are limited to transforming RBM that is a32

shallow network.33

In this study, we developed alternative models to solve a classification problem based on DBN.34

Viewing the two-phase training as two separate optimization problems, we applied optimization35

modeling techniques in developing our models. Our first approach is to design new objective functions.36
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We design an expected loss function based on p(h|x) built by DBN and the loss function of the37

classifier. Second, we introduce constraints that bound the DBN weights in the feed-forward phase.38

The constraints keep a good representation of input as well as regularize the weights during updates.39

Third, we applied bi-level programming to the two-phase training method. The bi-level model has a40

loss function of the classifier in its objective function but it constrains the DBN values to the optimal41

to phase-1. This model searches possible optimal solutions for the classification objective only where42

DBN objective solutions are optimal.43

Our main contributions are several classification models combining DBN and a loss function in a44

coherent way. In the computational study we verify that the suggested models perform better than the45

two-phase method.46

2 Literature Review47

The two-phase training strategy has been applied to many classification tasks on different types of data.48

Two-phase training with RBM and support vector machine (SVM) has been explored in classification49

tasks on images, documents, and network intrusion data by Xing et al. (2005), Norouzi et al. (2009),50

Salama et al. (2011), and Dahl et al. (2012) [18, 14, 15, 4]. Logistic regression replacing SVM has51

been explored in Mccallum et al. (2006) and Cho et al. (2011) [13, 3]. Gehler et al. (2006) used the52

1-nearest neighborhood classifier with RBM to solve a document classification task [7]. Hinton et al.53

(2006) suggested DBN consisting of stacked RBMs that is trained in a layer-wise manner. Two-phase54

method using DBN and deep neural network has been studied to solve various classification problems55

such as image and text recognition in Hinton et al. (2006), Bengio et al. (2007), and Sarikaya et al.56

(2014) [9, 16, 2]. All these papers rely on two distinct phases, while our models assume a holistic57

view of both aspects.58

Many studies have been conducted to improve the problems of two-phase training. Most of the59

research has been focused on transforming RBM so that the modified model can achieve generative60

and discriminative objectives at the same time. Schmah et al. (2009) proposed a discriminative61

RBM method, and subsequently classification is done in the manner of a Bayes classifier [17].62

However, this method cannot capture the relationship between the classes since the RBM of each63

class is trained separately. Larochelle et al. (2008, 2012) proposed a self-contained discriminative64

RBM framework where the objective function consists of the generative learning objective p(x, y),65

and the discriminative learning objective, p(y|x), [11, 12]. Both distributions are derived from66

RBM. Similarly, Elfwing et al. (2015) proposed a self-contained discriminative RBM method for67

classification. The free-energy function based approximation is applied in the development of this68

method, which is initially suggested for reinforcement learning [5]. This prior paper relying on RBM69

conditional probability while we handle general loss functions. Our models also hinge on completely70

different principles.71

3 Background72

Restricted Boltzmann Machines RBM is an energy-based probabilistic model, which is a re-73

stricted version of Boltzmann machines (BM) that is a log-linear Markov Random Field. It has74

visible nodes x corresponding to input and hidden nodes h matching the latent features. The joint75

distribution of the visible nodes x ∈ RJ and hidden variable h ∈ RI is defined as76

p(x, h) =
1

Z
e−E(x,h), E(x, h) = −hWx− ch− bx

where W ∈ RI×J , b ∈ RJ , and c ∈ RIare the model parameters, and Z is the partition function.77

Since units in a layer are independent in RBM, we have the following form of conditional distributions:78

p(h|x) =
I∏
i=1

p(hi|x), p(x|h) =
J∏
j=1

p(xj |h).

For binary units where x ∈ {0, 1}J and h ∈ {0, 1}I , we can write79

p(hi = 1|h) = σ(ci +Wix), p(xj = 1|h) = σ(bj +Wjx)

where σ() is the sigmoid function. In this manner RBM with binary units is an unsupervised80

neural network with a sigmoid activation function. The model calibration of RBM can be done81
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by minimizing negative log-likelihood through gradient descent. RBM takes advantage of having82

the above conditional probabilities which enable to obtain model samples easier through a Gibbs83

sampling method. Contrastive divergence (CD) makes Gibbs sampling even simpler: 1) start a84

Markov chain with training samples, and 2) stop to obtain samples after k steps. It is shown that CD85

with a few steps performs effectively [1, 8].86

Deep Belief Networks DBN is a generative graphical model consisting of stacked RBMs. Based87

on its deep structure DBN can capture a hierarchical representation of input data. Hinton et al. (2006)88

introduced DBN with a training algorithm that greedily trains one layer at a time. Given visible unit89

x and ` hidden layers the joint distribution is defined as [1, 10]90

p(x, h1, · · · , h`) = p(h`−1, h`)

(
`−2∏
k=1

p(hk|hk+1)

)
p(x|h1).

Since each layer of DBN is constructed as RBM, training each layer of DBN is the same as training a91

RBM.92

Classification is conducted by initializing a network through DBN training [2, 10]. A two-phase93

training can be done sequentially by: 1) pre-training, unsupervised learning of stacked RBM in a94

layer-wise manner, and 2) fine-tuning, supervised learning with a classifier. Each phase requires95

solving an optimization problem. Given training dataset D = {(x(1), y(1)), . . . , (x(|D|), y(|D|))}96

with input x and label y, the pre-training phase solves the following optimization problem at each97

layer k98

min
θk

1

|D|

|D|∑
i=1

[
−log p(x(i)k ; θk)

]
where θk = (Wk, bk, ck) is the RBM model parameter that denotes weights, visible bias, and hidden99

bias in the energy function, and x(i)k is visible input to layer k corresponding to input x(i). Note that100

in layer-wise updating manner we need to solve ` of the problems from the bottom to the top hidden101

layer. For the fine-tuning phase we solve the following optimization problem102

min
φ

1

|D|

|D|∑
i=1

[
L(φ; y(i), h(x(i)))

]
(1)

where L() is a loss function, h denotes the final hidden features at layer `, and φ denotes the103

parameters of the classifier. Here for simplicity we write h(x(i)) = h(x
(i)
` ). When combining DBN104

and a feed-forward neural networks (FFN) with sigmoid activation, all the weights and hidden bias105

parameters among input and hidden layers are shared for both training phases. Therefore, in this case106

we initialize FFN by training DBN.107

4 Proposed models108

We model an expected loss function for classification. Considering classification of two phase109

method is conducted on hidden space, the probability distribution of the hidden variables obtained by110

DBN is used in the proposed models. The two-phase method provides information about modeling111

parameters after each phase is trained. Constraints based on the information are suggested to prevent112

the model parameters from deviating far from good representation of input. Optimal solution set for113

unsupervised objective of the two-phase method is good candidate solutions for the second phase.114

Bi-level model has the set to find optimal solutions for the phase-2 objective so that it conducts the115

two-phase training at one-shot.116

DBN fitting plus loss model We start with a naive model of summing pre-trainning and fine-tuning117

objectives. This model conducts the two-phase training strategy simultaneously; however, we need to118

add one more hyperparameter ρ to balance the impact of both objectives. The model (DBN+loss) is119

defined as120

min
θLoss,θDBN

Ey,x[L(θLoss; y, h(x))] + ρ Ex[− log p(x; θDBN )]
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and empirically based on training samples D,121

min
θLoss,θDBN

1

|D|

|D|∑
i=1

[
L(θLoss; y(i), h(x(i)))− ρ log p(x(i); θDBN )

]
(2)

where θLoss, θDBN are the underlying parameters. Note that θLoss = φ from (1) and θDBN =122

(θk)k=1. This model has already been proposed by Larochelle et al. (2008, 2012) if the classification123

loss function is based on the RBM conditional distribution [11, 12].124

Expected loss model with DBN boxing We first design an expected loss model based on condi-125

tional distribution p(h|x) obtained by DBN. This model conducts classification on the hidden space.126

Since it minimizes the expected loss, it should be more robust and thus it should yield better accuracy127

on data not observed. The mathematical model that minimizes the expected loss function is defined128

as129

min
θLoss,θDBN

Ey,h|x[L(θLoss; y, h(θDBN ; x))]

and empirically based on training samples D,130

min
θLoss,θDBN

1

|D|

|D|∑
i=1

[∑
h

p(h|x(i))L(θLoss; y(i), h(θDBN ;x(i)))

]
.

With notation h(θDBN ;x(i)) = h(x(i)) we explicitly show the dependency of h on θDBN . We modify131

the expected loss model by introducing a constraint that sets bounds on DBN related parameters132

with respect to their optimal values. This model has two benefits. First, the model keeps a good133

representation of input by constraining parameters fitted in the unsupervised manner. Also, the134

constraint regularizes the model parameters by preventing them from blowing up while being updated.135

Given training samples D the mathematical form of the model (EL-DBN) reads136

min
θLoss,θDBN

1

|D|

|D|∑
i=1

[∑
h

p(h|x(i))L(θLoss; y(i), h(θDBN ;x(i)))

]
s.t. |θDBN − θ∗DBN | ≤ δ

where θ∗DBN are the optimal DBN parameters and δ is a hyperparameter. This model needs a137

pre-training phase to obtain the DBN fitted parameters.138

Expected loss model with DBN classification boxing Similar to the DBN boxing model, this139

expected loss model has a constraint that the DBN parameters are bounded by their optimal values140

at the end of both phases. This model regularizes parameters with those that are fitted in both the141

unsupervised and supervised manner. Therefore, it can achieve better accuracy even though we need142

an additional training to the two-phase trainings. Given training samples D the model (EL-DBNOPT)143

reads144

min
θLoss,θDBN

1

|D|

|D|∑
i=1

[∑
h

p(h|x(i))L(θLoss; y(i), h(θDBN ;x(i)))

]
s.t. |θDBN − θ∗DBN−OPT | ≤ δ

(3)

where θ∗DBN−OPT are the optimal values of DBN parameters after two-phase training and δ is a145

hyperparameter.146

Feed-forward network with DBN boxing We also propose a model based on boxing constraints147

where FFN is constrained by DBN output. The mathematical model (FFN-DBN) based on training148

samples D is149

min
θLoss,θDBN

1

|D|

|D|∑
i=1

[
L(θLoss; y(i), h(θDBN ;x(i)))

]
s.t. |θDBN − θ∗DBN | ≤ δ.

(4)
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Feed-forward network with DBN classification boxing Given training samples D this model150

(FFN-DBNOPT), which is a mixture of (3) and (4), reads151

min
θLoss,θDBN

1

|D|

|D|∑
i=1

[
L(θLoss; y(i), h(θDBN ;x(i)))

]
s.t. |θDBN − θ∗DBN−OPT | ≤ δ.

Bi-level model We also apply bi-level programming to the two-phase training method. This model152

searches optimal solutions to minimize the loss function of the classifier only where DBN objective153

solutions are optimal. Possible candidates for optimal solutions of the first level objective function154

are optimal solutions of the second level objective function. This model (BL) reads155

min
θLoss,θ

∗
DBN

Ey,x[L(θLoss; y, h(θ∗DBN ; x))]

s.t. θ∗DBN = argmin
θDBN

Ex[−log p(x; θDBN )]

and empirically based on training samples,156

min
θLoss,θ

∗
DBN

1

|D|

|D|∑
i=1

[
L(θLoss; y(i), h(θ∗DBN ;x(i)))

]

s.t. θ∗DBN = argmin
θDBN

1

|D|

|D|∑
i=1

[
−log p(x(i); θDBN )

]
.

One of the solution approaches to bi-level programming is to apply KKT conditions to the lower157

level problem. After applying KKT to the lower level, we obtain158

min
θLoss,θ

∗
DBN

Ey,x[L(θLoss; y, h(θ∗DBN ; x))]

s.t. ∇θDBN
Ex[−log p(x; θDBN )|θ∗DBN

] = 0.

Furthermore, we transform this constrained problem to an unconstrained problem with a quadratic159

penalty function:160

min
(θLoss,θ

∗
DBN )

Ey,x[L(θLoss; y, h(θ∗DBN ; x))] +
µ

2
||∇θDBN

Ex[−log p(x; θDBN )]|θ∗DBN
||2 (5)

where µ is a hyperparameter. The gradient of the objective function is derived in the appendix.161

5 Computational study162

To evaluate the proposed models classification tasks on three datasets were conducted: the MNIST163

hand-written images 1, the KDD’99 network intrusion dataset (NI)2, and the isolated letter speech164

recognition dataset (ISOLET) 3. The experimental results of the proposed models on these datasets165

were compared to those of the two-phase method.166

In FFN, the sigmoid functions in the hidden layers and the softmax function in the output layer were167

chosen with negative log-likelihood as a loss function of the classifiers. The size and the number168

of the hidden layers was selected differently depending on the datasets (optimally for each case).169

We first implemented the two-phase method to obtain the best configuration of the hidden units and170

layers, and then applied this configuration to the proposed models.171

Implementations were done in Theano. The mini-batch gradient descent algorithm was used to solve172

the optimization problems of each model. To calculate the gradients of each objective function of173

the models Theano’s built-in functions, ’theano.tensor.grad’, was used. We denote by DBN-FFN the174

two-phase approach.175

1http://yann.lecun.com/exdb/mnist/
2http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
3https://archive.ics.uci.edu/ml/datasets/ISOLET

5

http://yann.lecun.com/exdb/mnist/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://archive.ics.uci.edu/ml/datasets/ISOLET


Table 1: Results on MNIST

Test error (%)

Model Shallow network Deep network

DBN-FFN 1.17 % 1.14 %
DBN+loss 1.61 % 1.64 %
EL-DBN 1.35 % 1.30 %
EL-DBNOPT 1.17 % 1.13 %
FFN-DBN 1.17 % 1.29 %
FFN-DBNOPT 1.16 % 1.09 %
BL 1.61 % 1.72 %

Table 2: Results on NI

Test error rate

Model 20 % training 30 % training 40 % training

DBN-FFN 7.41 % 7.19 % 7.31 %
DBN+loss 7.29 % 7.30 % 7.35 %
EL-DBN 8.35 % 7.69 % 7.69 %
EL-DBNOPT 7.34 % 7.18 % 7.31 %
FFN-DBN 7.53 % 7.45 % 7.56 %
FFN-DBNOPT 7.32 % 7.14 % 7.31 %
BL 7.19 % 7.21 % 7.08 %

5.1 MNIST176

The task on the MNIST is to classify ten digits from 0 to 9 given by 28 × 28 pixel hand-written177

images. The dataset is divided in 60,000 samples for training and validation, and 10,000 samples for178

testing. The hyperparameters are set as: 1) hidden units at each layer are 500 or 1000, 2) training179

epochs for pre-training and fine-tuning range from 100 to 900, 3) learning rates for pre-training180

are 0.01 or 0.05, and these for fine-tuning range from 0.1 to 2, 4) batch size is 50, and 5) ρ of the181

DBN+loss and µ of the BL model are diminishing during iterations.182

DBN-FFN with four-hidden layers of size, 784-1000-1000-1000-1000-10, was the best, and sub-183

sequently we compared it to the proposed models with the same size of the network. In Table 1,184

the best test error rate was achieved by FFN-DBNOPT, 1.09%. Furthermore, the models with the185

DBN classification constraints, EL-DBNOPT and FFN-DBNOPT, perform better than the two-phase186

method. This shows that DBN classification boxing constraints regularize the model parameters by187

keeping a good representation of input.188

5.2 Network Intrusion189

The classification task on NI is to distinguish between normal and bad connections given the related190

network connection information. The preprocessed dataset consists of 41 input features and 5191

classes, and 4,898,431 examples for training and 311,029 examples for testing. The experiments192

were conducted on 20%, 30%, and 40% subsets of the whole training set, which were obtained by193

stratified random sampling. Hyperparameters are set as: 1) hidden units at each layer are 13, 15, or194

20, 2) training epochs for pre-training and fine-tuning range from 100 to 900, 3) learning rates for195

pre-training are 0.01 or 0.05, and these for fine-tuning are from 0.1 to 2, 4) batch size is 1000, and 5)196

ρ of the DBN+loss and µ of the BL are diminishing during iterations.197

On NI the best structure of DBN-FFN was 41-15-15-5 for the 20% and the 30% training set, and 41-198

15-15-15-5 for the 40 % training set. Table 2 shows the experimental results of the proposed models199

with the same network as the best DBN-FFN. BL produces the best test error, 7.08%. This showed200

that the model being trained concurrently for unsupervised and supervised purpose can achieve better201

accuracy than the two-phase method. Furthermore, both EL-DBNOPT and FFN-DBNOPT yield202

similar to, or lower error rates than DBN-FFN in all of the three subsets.203
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Table 3: Results on ISOLET

Model Test error rate

DBN-FFN 3.12 %
DBN+loss 4.09 %
EL-DBN 3.38 %
EL-DBNOPT 3.44 %
FFN-DBN 3.12 %
FFN-DBNOPT 3.12 %
BL 3.96 %

5.3 ISOLET204

The classification on ISOLET is to predict which letter-name was spoken among the 26 English205

alphabets given 617 input features of the related signal processing information. The dataset consists of206

5,600 for training, 638 for validation, and 1,559 examples for testing. Hyperparameters are set as: 1)207

hidden units at each layer are 400, 500, or 800, 2) training epochs for pre-training and fine-tuning are208

from 100 to 900, 3) learning rates for pre-training are from 0.001 to 0.05, and these for fine-tuning are209

from 0.05 to 1, 4) batch size is 20, and 5) ρ of the DBN+loss and µ of the BL model are diminishing210

during iterations.211

In this experiment the deep network performed worse than the shallow network. One possible reason212

for this is its small size of training samples. The one hidden layer with 500 units was the best for213

DBN-FFN. Table 3 shows the experimental results of the proposed models with the same hidden214

layer setting. DBN-FFN and DBN classification boxing models achieve the same accuracy.215

6 Conclusions216

DBN+loss showed worse accuracy than two-phase training in all of the experiments. Aggregating217

two unsupervised and supervised objectives without a specific treatment is not effective. Second,218

the models with DBN optimal boxing, EL-DBN and FFN-DBN, performed worse than DBN-FFN.219

Regularizing the model parameters with unsupervised learning is not so effective in solving a220

supervised learning problem. Third, the models with DBN classification boxing, EL-DBNOPT and221

FFN-DBNOPT, performed no worse than DBN-FFN in all of the experiments. This shows that222

classification accuracy can be improved by regularizing the model parameters with the values trained223

for unsupervised and supervised purpose. One drawback of this approach is that one more training224

phase to the two-phase approach is necessary. Last, BL showed that one-step training can achieve a225

better performance than two-phase training. Even though it worked in one instance, improvements to226

current BL can be made such as applying different solution search algorithms, supervised learning227

regularization techniques, or different initialization strategies.228
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7 Appendix271

7.1 Approximation of DBN probability in the proposed models272

DBN defines the joint distribution of the visible unit x and the ` hidden layers, h1, h2, · · · , h` as273

p(x, h1, · · · , h`) = p(h`−1, h`)

(
`−2∏
k=0

p(hk|hk+1)

)
with h0 = x.

DBN plus loss model From Eq. (2), p(x) in the second term of the objective function is approximated as274

p(x; θDBN ) =
∑

h1,h2,··· ,h`

p(x, h1, · · · , h`) ≈
∑
h1

p(x, h1).

Expected loss models p(h|x) in the objective function is approximated as275

p(h`|x) ≈ p(h`|x, h1, · · · , h`)

=
p(h`, h`−1, · · · , h1, x)

p(h`−1, h`−2, · · · , h1, x)

=
p(h`−1, h`)

(∏`−2
k=0 p(h

k|hk+1)
)

p(h`−2, h`−1)
(∏`−3

k=0 p(h
k|hk+1)

)
=
p(h`−1, h`)p(h`−2|h`−1)

p(h`−2, h`−1)

=
p(h`−1, h`)p(h`−2, h`−1)

p(h`−2, h`−1)p(h`−1)

= p(h`|h`−1).

Bi-level model From Eq. (5),∇θDBN log p(x) in the objective function is approximated for i = 0, 1, · · · , `276

as277

[∇θDBN log p(x)]i =
∂ log p(x)

∂ θiDBN

=
∂ log

(∑
h1,h2,··· ,h` p(x, h

1, h2, · · · , h`)
)

∂ θiDBN

≈
∂ log (

∑
hi+1 p(h

i, hi+1))

∂ θiDBN

(6)

where θDBN = (θ0DBN , θ
2
DBN , · · · , θiDBN , · · · θ`DBN ). The gradient of this approximated quantity is then the278

Hessian matrix of the underlying RBM.279

7.2 Derivation of the gradient of the bi-level model280

We write the approximated ||∇θDBN − log p(x)||
2 at the layer i as281

||[∇θDBN − log p(x)]i||
2 ≈ ||

∂ − log (
∑
hi+1 p(h

i, hi+1))

∂ θiDBN
||2

=

[(
∂ − log p(hi)

∂θi11

)2

+

(
∂ − log p(hi)

∂θi12

)2

+ · · ·+
(
∂ − log p(hi)

∂θinm

)2
]

where m and n denote dimensions of hi and hi+1 and θipq denotes the pth and qth component of the θiDBN .282

The gradient of the approximated ||∇θDBN − log p(x)||
2 at the layer i is283

∂

θipq

(∑
p,q

(
∂ − log p(hi)

∂θipq

)2
)

= 2
[(∂ − log p(hi)

∂θi11

)(
∂2 − log p(hi)

∂θi11θ
i
pq

)
+

(
∂ − log p(hi)

∂θi12

)(
∂2 − log p(hi)
∂θi12∂θ

i
pq

)
+

+

(
∂ − log p(hi)

∂θipq

)(
∂2 − log p(hi)
∂θipq∂θipq

)
· · ·+

(
∂ − log p(hi)

∂θinm

)(
∂2 − log p(hi)
∂θinmθipq

)]
for p = 1, ...n, q = 1, ...m
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This shows that the gradient of the approximated ||∇θDBN − log p(x)||
2 in (5) is then the Hessian matrix times284

the gradient of the underlying RBM. The stochastic gradient of −log p(x) of RBM with binary input x and285

hidden unit h with respect to θDBNwpq is286

∂RBM

∂wpq
= p(hp = 1|x)xq −

∑
x

p(x)p(hp = 1|x)xq

where RBM denotes −log p(x) [6]. We derive the Hessian matrix with respect to wpq as287

∂2RBM

∂w2
pq

=
∂

wpq
[p(hp = 1|x)xq)]−

∑
x

∂

wpq
[p(x)p(hp = 1|x)xq)]

= σ(ñetp)(1− σ(ñetp))x2q −
∑
x

[
∂p(x)

∂wpq
p(hp = 1|x)xq + p(x)σ(ñetp)(1− σ(ñetp))x2q],

∂2RBM

∂wpk∂wpq
=

∂

wpk
[p(hp = 1|x)xq)]−

∂

wpk
[
∑
x

p(x)p(hp = 1|x)xq)]

= σ(ñetp)(1− σ(ñetp))xqxk −
∑
x

[
∂p(x)

∂wpk
p(hp = 1|x)xq + p(x)σ(ñetp)(1− σ(ñetp))xqxk],

∂2RBM

∂wkq∂wpq
=

∂

wkq
[p(hp = 1|x)xq)]−

∂

wkq
[
∑
x

p(x)p(hp = 1|x)xq]

= −
∑
x

[
∂p(x)

∂wkq
p(hp = 1|x)xq + p(x)

∂

∂wkq
[p(hp = 1|x)xq]],

∂2RBM

∂wkp∂wpq
= −

∑
x

[
∂p(x)

∂wkp
p(hp = 1|x)xq + p(x)]

where σ() is the sigmoid function, ñetp is
∑
q wpqxq + cp, and cp is the hidden bias. Based on what we derive288

above we can calculate the gradient of approximated ||[∇θDBN − log p(x)]i||
2.289
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