
Temporal Topic Analysis with Endogenous and Exogenous Processes

Abstract

We consider the problem of modeling temporal textual
data taking endogenous and exogenous processes
into account. Such text documents arise in real world
applications, including job advertisements and eco-
nomic news articles, which are influenced by the
fluctuations of the general economy. We propose a
hierarchical Bayesian topic model which imposes
a ”group-correlated” hierarchical structure on the
evolution of topics over time incorporating both
processes, and show that this model can be estimated
from Markov chain Monte Carlo sampling methods.
We further demonstrate that this model captures the
intrinsic relationships between the topic distribution
and the time-dependent factors, and compare its
performance with latent Dirichlet allocation (LDA)
and the structural topic model (STM). The model is
applied to two collections of documents to illustrate its
empirical performance: online job advertisements from
DirectEmployers Association and journalists’ postings
on BusinessInsider.com.
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temporal models ID: 1308

1 Introduction

Many organizations nowadays provide portals for job post-
ing and job search, such as glassdoor.com from Glassdoor,
indeed.com from Recruit, and my.jobs from DirectEmploy-
ers Association. Our work is inspired by data collected from
the portal my.jobs, a website where job seekers can apply to
the posted job openings through a provided link. The data
collected from the website includes user clickstreams (users
create accounts on the site) and attributes of job advertise-
ments, such as their description, location, company name,
and posted date.

In this paper, we investigate the relationship between eco-
nomic fluctuations and the related changes in job advertise-
ments, which can reveal the economic conditions of different
time periods. More generally, this question is about the influ-
ence of any exogenous process on textual data with tempo-
ral dimensions. We adopt the perspective that the documents
are organized into a certain number of topics, and study the
impact of the exogenous process on the topic distribution,
i.e. the relative topic proportions. Given a corpus of text
documents with time stamps and a related exogenous pro-
cess, the problem is to find a relationship between the topics
discussed and the exogenous process. This setting is natural
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in an economic context; for instance, changes in macroeco-
nomic indicators have an impact on government reports and
Wall Street Journal news articles. Meanwhile, we also no-
tice that for most temporal documents, the topic proportions
change over time, which indicates an endogenous process of
topic evolution.

With the goal of establishing topic dependency on the en-
dogenous and exogenous processes, LDA-type topic mod-
els are especially suitable. The latent Dirichlet allocation
(LDA) (Blei, Ng, and Jordan 2003) is the original model.
Since then, a large number of variants have been proposed,
many of which can be found in Blei (2011).

Meanwhile, there has been relatively limited discussion
on modeling time-dependent documents when there are
relevant simultaneous exogenous processes. Many time-
dependent topic models without the exogenous component
have been proposed, such as the Topics over Time (ToT)
model (Wang and McCallum 2006) and the dynamic topic
model (DTM) (Blei and Lafferty 2006), to name a few. How-
ever, to the best of our knowledge, none of these papers in-
corporate the effect of exogenous processes. On the other
hand, the structural topic model (STM) (Roberts, Stewart,
and Airoldi 2015) considers the effect of metadata, i.e. the
attributes specified for each document, on the topic distribu-
tion. While STM can be applied for mining time-dependent
textual data with exogenous covariates, it does not explicitly
consider the time factor or the endogenous topic evolution
processes of time-stamped documents.

Our approach to this problem is to incorporate both en-
dogenous and exogenous processes into a topic model. For
the endogenous part of our paper, we impose a Marko-
vian structure on the topic distribution over time, similar
to Blei and Lafferty (2006) and Dubey et al. (2014). For
the exogenous process, we incorporate it into the topic dis-
tribution in each period, adjusting the endogenous topic
evolution process. In this way, our model is essentially a
stick-breaking truncation of a ”group-correlated” hierarchi-
cal Dirichlet process. Our model has the following contribu-
tions: (i) it addresses the question of measuring the influence
of exogenous processes on the topics in related documents,
(ii) it incorporates both endogenous and exogenous aspects,
and (iii) it demonstrates that text mining can also have use-
ful implications in the realm of economics, which, from the
authors’ perspective, is a relatively new finding.

Section 2 offers a brief review on the topic modeling tech-
niques related to our model. Section 3 develops our hierar-
chical Bayesian model and describes how to make poste-
rior inferences with a variant of the Markov chain Monte
Carlo (MCMC) technique. Section 4 studies the online job
advertisements from DirectEmployers Association and jour-
nalists’ postings in finance on BusinessInsider.com with our



proposed method, providing a comparison of performance
with the standard LDA and STM. Section 5 suggests possi-
ble directions for the future and concludes the paper.

2 Review of Time-Dependent Topic Modeling

We first introduce the standard model of LDA (Blei, Ng, and
Jordan 2003). Suppose that there is a collection of docu-
ments di, i = 1, . . . , N and words {xi,j}Jij=1 within each
document di indexed by a common dictionary containing V
words, where N is the number of documents, and Ji is the
number of words in di. The LDA model is as follows,{

θi
iid∼ Dir(α), φk

iid∼ Dir(β),

zi,j |θi
iid∼ Cat(θi), xi,j |zi,j ∼ Cat(φzi,j ).

(1)

Here i = 1, . . . , N , j = 1, . . . , Ji, k = 1, . . . ,K; θi is
the length-K per-document topic distribution for di, φk is
the length-V per-topic word distribution for the k-th topic,
zji is the topic for the j-th word in di, and K is the num-
ber of topics. Dir(·) denotes the Dirichlet distribution and
Cat(·) denotes the categorical distribution, a special case of
the multinomial distribution when nobs = 1.

The Dirichlet process is a class of randomized probabil-
ity measures and can be applied for non-parametric model-
ing of mixture models. Denoting the concentration param-
eter by α and the mean probability measure by H , a re-
alization G from the Dirichlet process can be written as
G ∼ DP (γ,H). With the stick-breaking notation (Sethu-
raman 1994), we have

G =

∞∑
k=1

bkδϕk
, (2)

where δϕk
is a “delta” probability measure with all the prob-

ability mass placed at ϕk, ϕk
iid∼ H , bk = b′k

∏k−1
i=1 (1 −

b′i), b′k
iid∼ Beta(1, γ), k = 1, 2, · · · . We write b =

(b1, b2, . . .) ∼ Stick(γ). More properties of the Dirichlet
process can be found in Ferguson (1973).

A hierarchical Dirichlet process (HDP) was proposed in
the context of text modeling by Teh et al. (2005). The fol-
lowing hierarchical structure is assumed,

G0|γ ∼ DP (γ,H),

G1, . . . , GN |(α,G)
iid∼ DP (α,G),

φi,j |Gi
iid∼ Gi, xi,j ∼ Cat(φi,j).

(3)

Here i = 1, . . . , N , j = 1, . . . , Ji. The V -dimensional ran-
dom vectors G0, G1, . . . , GN are “random word distribu-
tions,” each of which is a draw from a Dirichlet process in
(3). Moreover, each draw from a random word distribution is
a V -dimensional fixed vector φi,j ; it is the word distribution
for xi,j . The posterior inference can be achieved by different
strategies of Gibbs sampling.

There are mainly two approaches in the literature of mea-
suring endogenous topic evolution processes. One approach
is to impose a finite mixture structure on the topic distribu-
tion: a dynamic hierarchical Dirichlet process (dHDP) (Ren,

Dunson, and Carin 2008) was proposed by adding a tempo-
ral dimension, and its variation was further applied on topic
modeling with a stick-breaking truncation of Dirichlet pro-
cesses (Pruteanu-Malinici et al. 2010). The other approach
imposes a Markovian structure. For instance, the dynamic
topic model (DTM) (Blei and Lafferty 2006) is as follows,

φt,k|φt−1,k ∼ N(φt−1,k, σ
2I),

αt|αt−1 ∼ N(αt−1, δ
2I),

θt,i|αt
iid∼ N(αt, a

2I),

zt,i,j |θt,i
iid∼ Cat(exp(θt,i)),

xt,i,j |zt,i,j ∼ Cat(exp(φt,zt,i,j )).

(4)

Here t = 1, . . . , T , i = 1, . . . , Nt, j = 1, . . . , Jt,i, k =
1, . . . ,K (t ≥ 2 for the first two equations); T is the num-
ber of time periods, Nt is the number of documents in the
t-th period, and Jt,i is the number of words in the i-th doc-
ument in the t-th period; the rest are similarly defined as
in LDA. One major difference between DTM and LDA is
that the topic distributions θt,i and word distributions φt,k
are in log-scale in DTM. A variational Kalman filtering was
proposed for the posterior inference. As this Markovian ap-
proach is simpler for both interpretation and posterior infer-
ence, we apply a more generalized version of it to specify
the endogenous process in our model.

The structural topic model (STM) (Roberts, Stewart, and
Airoldi 2015) measures the effect of metadata of each doc-
ument with the logistic normal distribution. Their model for
each document di is as follows,

θi|(Xiγ,Σ) ∼ LogisticNormal(Xiγ,Σ),

p(φi,k) ∝ exp(m+ κk + κgi + κkgi),

zi,j |θi
iid∼ Cat(θi), xi,j |zi,j ∼ Cat(φi,zi,j ),

(5)

where i = 1, . . . , N , j = 1, . . . , Ji; Xi is the metadata ma-
trix, γ is a coefficient vector, Σ is the covariance matrix,φi,k
is the word distribution for di and the k-th topic,m is a base-
line log-word distribution, κk, and κgi and κkgi are the topic,
group, and interaction effects; the rest are defined similarly
to LDA. This model explicitly considers exogenous factors,
and can be applied to find the relationship between topic
distributions and exogenous processes. Below we adopt a
slightly more general approach, incorporating both endoge-
nous and exogenous factors.

3 Model and Algorithm

3.1 Motivation: A Group-Correlated Hierarchical
Dirichlet Process

We formulate our problem as in DTM: we are given time
periods t = 1, . . . , T , documents from each period dt,i,
i = 1, . . . , Nt, t = 1, . . . , T , and the indices of words
{xt,i,j}

Jt,i
j=1 within each document dt,i from the first word

to the last. The words are indexed by a dictionary contain-
ing V words in total. We begin with a hierarchical Dirichlet
process in time 1: let G1|γ ∼ DP (γ,H), G1i|(α1, G1) ∼



DP (α1, G1), where G1 is a baseline random word distri-
bution for time 1, and G1i is the random word distribution
for document d1i. For G2, . . . GT , we have the following
Markovian structure,

p(Gt)|Gt−1 ∝ exp[−d(Gt, Gt−1)], t = 2, . . . , T. (6)

Here d(·, ·) is some distance between two probability mea-
sures. This completes our endogenous process. To take an
exogenous process {yt}Tt=1 into account, we assume the fol-
lowing

G̃t =M(Gt,yt), t = 1, . . . , T, (7)
whereM maps the endogenous baseline random word dis-
tribution Gt to the realized baseline random word distribu-
tion G̃t for time t, considering the influence of {yt}Tt=1.
Therefore, we further assume that each per-document ran-
dom word distribution Gt,i is sampled with mean G̃t rather
than Gt. The final model is as follows,

G1|γ ∼ DP (γ,H),

p(Gt)|Gt−1 ∝ exp[−d(Gt, Gt−1)],

G̃t =M(Gt,yt),

Gt,i|(αt, G̃t)
iid∼ DP (αt, Gt),

φt,i,j |Gt,i
iid∼ Gt,i, xt,i,j ∼ Cat(φt,i,j).

(8)

Here t = 1, . . . , T , i = 1, . . . , Nt, j = 1, . . . , Jt,i (t ≥ 2 for
the first line). Throughout this paper, our model is fully con-
ditional on {yt}Tt=1, i.e. we assume {yt}Tt=1 to be fixed; this
has an intuitive explanation, as our temporal documents rep-
resent a very small portion of the underlying environment,
i.e. the exogenous process, so their influence on {yt}Tt=1 is
almost negligible.

3.2 A Group-Correlated Temporal Topic Model:
Some Simplifications

Below we consider a stick-breaking truncation of the model
above, since posterior inference of the exact model can be
intricate. With the stick-breaking expression of G1 in (8),
we have 

φ1,φ2, . . . ,
iid∼ H,

π1 = (π11, π12, . . .) ∼ Stick(γ),

G1 =
∑∞
k=1 π1kδφk

.

(9)

Here we set d(·, ·) = +∞ if the two probability mea-
sures have different supports; this necessitates that all pe-
riods share the same topics. Our intent is that the top-
ics should remain the same to investigate their relation-
ships with endogenous and exogenous processes; otherwise,
changes in topics can blur the relationships and possibly
result in overfitting. We apply the total variation distance
d(p, q) = λ ·

∫
|p− q|dµ with λ > 0, although many others

can also be applied and lead to, for instance, a log-normal
model in DTM, or a normal model (Dubey et al. 2014;
Zhang, Kim, and Xing 2015). We have the following,

Gt =
∑∞
k=1 πtkδφk

,

πtk = πt−1 k + Lap(λ),

πt = (πt1, πt2, . . .).

(10)

Here t = 2, . . . , T , k = 1, 2, . . ., and Lap(λ) denotes
a Laplacian distribution with scale parameter λ. For the
exogenous part, we consider specifying the relationship
between πt and π̃t = (π̃t1, π̃t2, . . .) such that G̃t =∑∞
k=1 π̃tkδφk

. We let

π̃t = πt + η · yt, t = 1, . . . , T, 1′ · η = 0. (11)
Here η is a K × p matrix which indicates the relation-
ship between the topic distribution π̃t and the length-p vec-
tor yt. However, we notice that π̃t and πt are of infi-
nite length, which creates difficulty in our inference. There-
fore we adopt a stick-breaking truncation approach, i.e.
we only consider {φk}Kk=1 in our model; the probability
weights for {φk}∞k=K+1 in πt will be added into πtK . We
note that a number of papers in topic modeling have put
this approach into practice (Pruteanu-Malinici et al. 2010;
Wang, Paisley, and Blei 2011).

It has been shown (Pruteanu-Malinici et al. 2010) that
when the truncation levelK is large, we may as well replace
the distribution of π1 with π1 ∼ Dir(γπ0), where γ = 1,
π0 = (1/K, . . . , 1/K). We also let H = Dir(β, . . . , β) as
in the paper by Teh et al. (2005). We summarize our model
as

φ1, . . . ,φK
iid∼ Dir(β, . . . , β),

π1 ∼ Dir(γπ0), πtk = πt−1 k + Lap(λ),

π̃t = πt + η · yt,
θt,i|(αt, π̃t)

iid∼ Dir(αtπ̃t),

zt,i,j |θt,i
iid∼ Cat(θt,i), xt,i,j ∼ Cat(φzt,i,j ).

(12)

Here t = 1, . . . , T , i = 1, . . . , Nt, j = 1, . . . , Jt,i (t ≥ 2 for
the second line). The last two lines above are derived as in
Teh et al. (2005). We note that here φk is the per-topic word
distribution, θt,i is the per-document topic distribution, and
zt,i,j is the actual topic for each word; they have the same
meaning as in LDA.

We also note that πtk and π̃tk may be negative from our
model construction. This is not really an issue in terms of
computation, since we always set the overall likelihood to 0
if there exists πt,k /∈ R+ or π̃t,k /∈ R+.

We name our model a “group-correlated temporal topic
model” (GCLDA). Here a “group” stands for all the docu-
ments within the same time period. We use the term ”corre-
lated” because the baseline topic distributions {πt}Tt=1 for
each period, controlling for {yt}Tt=1, are endogenously cor-
related; meanwhile, the realized baseline topic distributions
{π̃t}Tt=1 for each period are also correlated with the given
exogenous process {yt}Tt=1.

3.3 Sampling the posterior: An MCMC Approach
Direct estimation of the Bayesian posterior is often in-
tractable since the closed-form expression, if it exists, can be
difficult to integrate and thus, many approaches to approxi-
mate the posterior have been proposed. Monte Carlo meth-
ods, which draw a large number of samples from the poste-
rior as its approximation, are particularly helpful. In this pa-
per, we adopt the Markov chain Monte Carlo (MCMC) ap-
proach which constructs samples from a Markov chain and



is asymptotically exact. Below we provide the Metropolis-
within-Gibbs sampling approach tailored to our situation,
which is a variant of the general MCMC approach. It only re-
quires specifying the full conditionals of the unknown vari-
ables, which is covered below.

We consider sampling the following variables Z =

{zt,i,j}
Jt,i
j=1

Nt
i=1

T
t=1, {αt}Tt=1, {π̃t}Tt=1, η, λ. We integrate

out {θt,i}Nt
i=1

T
t=1 and {φk}Kk=1 to speed up calculation, us-

ing a collapsed Gibbs approach. Following Griffiths and
Steyvers (2004), conditioning on all other variables listed
for sampling,

p(zt,i,j = k|rest) ∝ (C
(−1)
t,i,k +αtπ̃tk) ·

C
(−1)
xt,i,k,k

+ β

C
(−1)
k + V β

. (13)

Here C(−1)
t,i,k is the count of elements inZ\{zt,i,j} which be-

long to dt,i and has values equal to k; C(−1)
xt,i,k,k

is the count
of elements in Z\{zt,i,j} whose values are k and corre-
sponding words are xt,i,j ; C

(−1)
k is the count of elements

in Z\{zt,i,j} whose values are k. Also following Griffiths
and Steyvers (2004), we have for αt and π̃t

p(αt, π̃t|rest) ∝ p(Z|αt, π̃t) · p(π1,...,T |γ,π0) · p(αt)

∝

[
Γ(αt)∏K

k=1 Γ(αtπ̃tk)

]Nt

·
Nt∏
i=1

∏K
k=1 Γ(Ct,i,k + αtπ̃tk)

Γ(Jt,i + αt)

·
K∏
k=1

π
γπ0k−1

1k · exp

[
−λ

(
1t>1 ·

k∑
k=1

|πt+1 k − πtk|

+ 1t<T ·
k∑
k=1

|πtk − πt−1 k|

)]
· p(αt). (14)

Here the difference between Ct,i,k and C(−1)
t,i,k is to replace

Z\{zt,i,j} with Z. We also view πt, πtk, etc. as functions
of the other parameters; specifically, πtk = π̃tk − ηkyt,
where ηk is the k-th row of η. This involves a transforma-
tion of variables; however, the related Jacobian determinant
det(J) = 1, so (14) is still valid. For parameter η, we have

p(η|rest) ∝
T∏
t=2

p(πt|πt−1, λ) · p(η)

∝ exp

(
−λ ·

T∑
t=2

K∑
k=1

|πtk − πt−1 k|

)
· p(η). (15)

Finally, for parameter λ, we have

p(λ|rest) ∝
T∏
t=2

p(πt|πt−1, λ) · p(λ)

∝ λ(T−1)K exp

(
−λ ·

T∑
t=2

K∑
k=1

|πtk − πt−1 k|

)
· p(λ).

(16)

We note that (13) and (16) are full conditionals, and we can
easily derive the full conditionals of αt, πtk, and ηk from

(14) and (15). Since each zt,i,j |rest has a categorical distri-
bution, and λ|rest has a Gamma distribution with a conju-
gate prior, they can be updated with Gibbs updates. For αt,
πtk, and ηk, we replace a Gibbs update with a Metropolis
update. Specifically, suppose we know p(par|rest) up to a
multiplicative constant, where par is any length-1 parame-
ter. We also assume par = par(r) at the r-th iteration. Then
at the (r + 1)-th iteration,

parnew ∼ q(·|par(r)), δ(r)i =

{
par(r+1) with prob. P,
parnew with prob. 1− P,

(17)
where P = min{p(parnew|rest)/p(par(r)|rest), 1}, and
q(·|·) is a known conditional probability distribution such
that q(x|y) = q(y|x).

This completes our sampling and posterior inference. For
the theoretical convergence properties of Metropolis-within-
Gibbs samplers, the reader can refer to Robert and Casella
(2004) and Roberts and Rosenthal (2006).

4 Case Studies

The proposed model, “GCLDA,” is demonstrated on two
data sets: (1) online job advertisements from my.jobs from
February to September in 2014, and (2) journalists’ postings
in 2014 in the “Finance” section in BusinessInsider.com,
an American business and technology news website. Our
algorithm has been implemented in Java, and we compare
GCLDA with LDA and STM.

4.1 Experiment Settings
We initialize the hyperparameters of LDA as follows: α =
(50/K, . . . , 50/K), β = (0.01, . . . , 0.01), according to a
rule of thumb; this has been carried out in Berry and Kogan
(2010) and Sridhar (2015). For GCLDA, we let γ = 1, π0 =

(1/K, . . . , 1/K), αt
iid∼ Γ(1, 1), p(η) ∝ e−0.01

∑
|ηk|,

λ ∼ Γ(1, 1), β = 0.01. We carry out the Metropolis-within-
Gibbs algorithm as described in Section 3.3, and run 5,000
iterations of the Markov chain with 1,000 burn-in samples
for GCLDA and LDA; for LDA, we apply the collapsed
Gibbs sampling as in Griffiths and Steyvers (2004). The
number of topics is set to K = 50 for both data sets. For
STM, we apply the “Spectral” initialization (Roberts, Stew-
art, and Tingley 2015) together with other default settings in
the R package stm. We perform data cleaning, remove the
stopwords, stem the documents, and keep most frequent V
words in each study. For the job advertisements, V = 2,000
and covers 96.2% of all words with repetition, which means
that the choice of words in job advertisements is quite nar-
row; for the journalists’ postings, V = 3,000 and covers
93.9% of all words with repetition.

We use perplexity to compare the difference of the pre-
diction power between LDA and GCLDA. The perplexity
for Ntest held-out documents given the training data D is
defined as

perp = exp

{
−
∑Ntest

i=1 log p(dtest,i|D)∑Ntest

i=1 ntest,i

}
(18)



where dtest,i represents the i-th held-out document, and
ntest,i is the number of words in dtest,i. We expect the per-
plexity to be small when a model performs well, since this
means that under the estimated model, the probability of a
word in the testing documents being written a priori is large.
We apply the “Left-to-right” algorithm (Wallach et al. 2009)
and apply point estimates for “Φ” and “αm” using the train-
ing data, as suggested in Section 3 in the same paper.

4.2 My.jobs: Online Job Advertisements

The number of online job advertisements on my.jobs from
February to September in 2014 amounts to 17,147,357 in
total, and the number of advertisements each day varies
greatly. Therefore, we gather a stratified sample of 44,660
advertisements with a roughly equal number of samples for
each day, so that we have sampled 0.26% of all the docu-
ments in total. The training data set consists of 40,449 ad-
vertisements, and the testing data set consists of 4,211 ad-
vertisements (9.4% of the sample). For the exogenous vari-
able {yt}Tt=1, we use the standardized Consumer Price In-
dex from February to September in 2014, so that p = 1, and
T = 8.

Figure 1 implies that GCLDA better predicts the words
in the new documents in terms of perplexity. This is due to
the fact that the introduction of the endogenous and exoge-
nous processes allows us to make more accurate inference
on the topic distributions of the documents in a given period
of time. The standard errors for the perplexity in each period
are also shown; we can observe that the difference is quite
significant.
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Figure 1: Perplexity results for the job advertisements from
February to September in 2014.

The 20 most common topics are presented in Figure 2.
The x-axis represent the degree of correlation ρ = η/π for
all topics, i.e. the percent change in the topic proportion
given one unit change in the exogenous covariate. Here π
and η denote the related component of

∑
πt/T and η for

each topic. Table 1 lists the highest probability words sorted

by their probabilities from high to low inside the five topics
with highest ρ in Figure 2.
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Figure 2: The 20 most common topics and their ρ from
GCLDA for the job advertisements.

“equal opportunity”: employment status disabled veteran equal
“health care”: health care medical service provide center hospital
“software”: development experience software design application
“secretarial”: management operations ensure training perform
“nursing”: care nursing patient required clinical practice medical

Table 1: The highest probability words inside the five topics
with highest ρ in Figure 2.

A number of facts can be inferred from Figure 2. The
topics with positive ρ are those that have a positive cor-
relation with the growth of the CPI in 2014. We can ob-
serve that two of them are supported by the U.S. gov-
ernment spending, namely “equal opportunity” and “health
care,” the latter of which is probably related to the Af-
fordable Care Act programs. This suggests that there is
a causal relationship between the increase in government
spending and the increase in the number of jobs in these
categories, and the former was also an underlying fac-
tor in the growth of the CPI in 2014. We also observe
that “software” and “secretarial” were moving in the same
direction of CPI, while some traditional higher-paid job
categories, such as engineering and marketing, were not.
This partly agrees with some news articles in 2014 in that
while the labor market was recovering, there was rela-
tively lower growth in traditional higher-paid job categories
(Lowrey 2014; Coy 2014).

We also compare our method with STM. Below is the
STM counterpart of Figure 2. We can observe that the topics
from GCLDA seem to be more time-related and tend to be
more informative of the economy during the period.
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Figure 3: The 20 most common topics and their γ from STM
for the job advertisements.



4.3 BusinessInsider.com: Financial News Articles

We consider all contributions in the “Finance” section of
BusinessInsider.com on all trading days in 2014. There are
15,659 articles in total, which are divided into a training
data set containing 12,527 articles and a testing data set con-
taining 3,132 articles (20% of all articles). We increase the
proportion of testing documents and let T = 252 (all trad-
ing days) in order to create a more challenging scenario for
GCLDA. We apply the daily price of the Chicago Board Op-
tions Exchange Market Volatility Index (VIX) as the exoge-
nous process, measuring the volatility of the U.S. financial
market. The other settings are the same as those in Section
4.2. We provide an analysis of the perplexity of LDA and
GCLDA in Figure 4. The lines are smoothed by LOESS with
a span of 0.15, as there are large fluctuations in perplexity
from day to day.

Again we observe that GCLDA generates a lower perplex-
ity for the testing documents over time, therefore improving
the fitting of the topic model. From Figure 5, the topics that
are strongly positively correlated with the VIX are generally
short-term news, such as stock market news and announce-
ments from central banks, as in the topics “FED” (the Fed-
eral Reserve), “revenue,” and “stock market,” which are in-
deed closely related to the stock market. From our analysis,
the drop in oil price and the instability in Russia and Ukraine
were also major causes of fluctuations in the stock market in
2014. On the other hand, we observe that news about longer-
term economic trends is not positively correlated with the
VIX, such as “companies” and “labor market.” We posit that
GCLDA can be used for finding topics that are major con-
tributors to changes in an exogenous process during a period
of time.
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Figure 4: Perplexity results for contributions in the “Fi-
nance” section in BusinessInsider.com in 2014.

FED

revenue

Ukraine

stock market

oil

investment

currency

society

sales

technology

returns

transportation
banking

retail

Asia

wealth
housing

tax

labor market

companies

−8% −6% −4% −2% 0% +2% +4% +6%

Figure 5: The 20 most common topics and their ρ from
GCLDA for the financial articles.

“FED”: rate FED inflation policies market federal expected
“revenue”: quarter billion year revenue million earnings share
“Ukraine”: Russia Ukraine Moscow gas country president
“stock market”: market trade stock week day close morning dollar
“energy”: oil price energies gas production crude supplies

Table 2: The highest probability words inside the five topics
with highest ρ in Figure 5.
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Figure 6: The 20 most common topics and their γ from STM
for the financial articles.

We also compare our method with STM, with Figure 6
being the STM counterpart of Figure 5. Again we observe
that the topics from GCLDA seem to be more time-related
and tend to be more informative of the stock market during
the period. These findings assert our view that GCLDA im-
proves the structure of the topic model and makes it more
time-dependent.

5 Conclusion

We have developed a temporal topic model which analyzes
time-stamped text documents with known exogenous pro-
cesses. Our new model, GCLDA, takes both endogenous and
exogenous processes into account, and applies Markov chain
Monte Carlo sampling for calibration. We have demon-
strated that this model better fits temporal documents in
terms of perplexity, and extracts well information from job
advertisements and financial news articles. We suggest that a
possible direction for the future could be analyzing the con-
tents of temporal documents so that they could predict the
trends of related exogenous processes.
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