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Recharging decisions for electric vehicles require many special considerations due to battery dynamics.

Battery longevity is prolonged by recharging less frequently and at slower rates, and also by not charging

the battery too close to its maximum capacity. In this paper, we address the problem of finding an optimal

recharging policy for an electric vehicle along a given path. The path consists of a sequence of nodes, each

with a charging station, and the driver must decide where to stop and how much to recharge at each

stop. We present efficient algorithms for finding an optimal policy in general instances and also for two

specialized cases. In addition, we develop two heuristic procedures that we characterize analytically and

explore empirically.
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1. Introduction

For drivers seeking to reduce their dependence on fossil fuels, battery electric vehicles (EVs) have

become a practical and affordable alternative in recent years to conventional gasoline-powered

vehicles. EVs are powered by electricity only, requiring no gasoline, and connect to the electrical

grid to recharge. While the ability to plug in and recharge offers the potential for significant

savings in fuel costs as well as other benefits, such as fewer greenhouse gas emissions and reduced

dependence on foreign oil, there are still a number of obstacles to mass EV adoption.

One reason why many buyers are reluctant to purchase an EV is range anxiety (Klabjan and

Sweda 2011). The maximum range of an EV is less than that of a comparable gasoline-powered

vehicle, and charging stations are scarcer than gasoline stations. Furthermore, if an EV runs out

of charge along its route, there is no convenient method of recharging it from the side of the

road. Spare batteries are prohibitively costly and bulky, in addition to being difficult to swap

with the vehicle’s depleted battery, and roadside charging services are either extremely limited or

unavailable. As a result, EV drivers must be cautious when planning their routes to ensure that

their vehicles do not run out of charge.

Unfamiliarity with battery dynamics also deters many potential EV purchasers. Recharging an

EV’s battery requires much more time than refueling a conventional vehicle, and unlike gasoline
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refueling, where the time required to refuel is roughly linearly related to the amount refueled (i.e.,

the refueling rate is constant), battery recharging occurs at a varying rate that depends on the

charge level. In addition, charging too close to its maximum capacity (known as overcharging) can

adversely affect the battery’s lifespan, which is a major concern to EV owners since batteries are

one of the most expensive and critical components of EVs. It is therefore important to understand

the impacts of recharging decisions in order to minimize the costs of owning and operating an EV.

To overcome the aforementioned issues, this paper addresses the problem of finding an optimal

recharging policy for an EV along a given path. The path consists of a sequence of nodes, each

with a charging station, and the vehicle must decide where to stop and how much to recharge

at each stop. Whenever the vehicle stops to recharge, it incurs a fixed stopping cost, a charging

cost based on the total amount it recharges, and an additional cost when the battery becomes

overcharged. The goal is to minimize the total cost of recharging along the path, including all

stopping, charging, and overcharging costs. Thus, optimal recharging policies provide the most

favorable tradeoff between the number of times that the vehicle stops to recharge and the amount

it recharges whenever it stops.

The model presented in this work represents the first effort in the literature to optimize recharging

behavior specifically for EVs. We begin by identifying several properties of optimal recharging

policies along a fixed path. Using these properties, we develop efficient algorithms for finding an

optimal recharging policy in the general case and in two specialized cases: when the vehicle can

stop to recharge anywhere along the path (not just at prespecified nodes), and when the nodes with

charging stations along the path are equidistant. We also describe two heuristic methods based on

the properties of optimal paths that we use to obtain reasonable policies quickly, and we derive

bounds on the quality of their solutions. To demonstrate the performance of these heuristics in

practice, we implement them using actual highway data and conduct a numerical study to compare

their solutions with those of optimal recharging policies.

The main contributions of this paper are: (i) an efficient algorithm for obtaining an optimal

recharging policy for the vehicle recharging problem; (ii) closed-form optimal policies for instances

in which either charging capability is available continuously along the path or charging stations are

equidistantly spaced; (iii) two heuristic methods that are easy to implement and yield reasonable

recharging policies with little computational effort, along with bounds on their solution quality;

and (iv) a numerical study that demonstrates the actual performance of the heuristics using data

from U.S. Interstate 90.

The remainder of the paper is organized as follows. Section 2 provides an overview of the existing

literature on topics related to EV recharging. Section 3 describes the model studied in this work

along with some properties of optimal recharging policies, and Section 4 details algorithms that
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can be used to obtain recharging policies both optimally and heuristically under different scenarios.

A case study implementation of the algorithms is demonstrated in Section 5. Lastly, Section 6

summarizes the conclusions and future directions of this research.

2. Literature review

The refueling problem for gasoline-powered vehicles, where drivers must decide at which nodes

to refuel as well as how much to refuel in order to minimize the total cost of fuel, has been well

studied. Khuller et al. (2007) and Lin et al. (2007) show that the optimal refueling policy along

a fixed path can be solved easily with dynamic programming when fuel prices at each node are

static and deterministic. For such a problem, the optimal decision at each node is always one of

the following: do not refuel, refuel completely, or refuel just enough to reach the next node where

refueling occurs. An algorithm for simultaneously finding the optimal path and refueling policy in

a network is detailed by Lin (2008a), and some combinatorial properties of the optimal policies

are explored by Lin (2008b). Specifically, it is proven that the problem of finding all-pairs optimal

refueling policies reduces to an all-pairs shortest path problem that can be solved in polynomial

time. However, all of the aforementioned analyses only consider fuel costs and not stopping or other

costs. We include these additional costs in our analysis because they can comprise a significant

portion of the total cost of traveling along a path and therefore can influence optimal recharging

policies.

Several models have expanded on the vehicle refueling problem by introducing costs for stopping

to refuel and traveling to refueling stations. A generic model for vehicle refueling is presented in

Suzuki (2008) that attempts to capture such aspects, penalizing longer routes and routes with more

refueling stops. Like other papers that study the vehicle refueling problem, it assumes that fuel

prices at each station are static and deterministic. Approaches for finding optimal refueling policies

when fuel prices are stochastic are given by Klampfl et al. (2008) and Suzuki (2009). Klampfl et

al. (2008) use a forecasting model for predicting future fuel prices to generate parameters for a

deterministic mixed integer program, and Suzuki (2009) presents a dynamic programming frame-

work that is designed to grant drivers greater autonomy to select the stations where they refuel.

These models are difficult to solve analytically, and the authors develop heuristics for obtaining

reasonable solutions. In addition, just like the other models of the vehicle refueling problem, these

ones do not include any costs that are analogous to battery overcharging costs for EVs. Sweda

and Klabjan (2012) address this issue by introducing generalized charging cost functions, but some

restrictive assumptions are required in order to perform insightful analysis. In this work, we use

a tractable yet realistic charging cost function that enables us to easily find optimal recharging

policies and develop a deeper understanding of such policies.
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Overcharging costs, incurred when an EV’s battery is charged near its maximum capacity, are

important to consider when creating EV recharging policies for a number of reasons. Recharging

an EV battery while it is already at a high state of charge takes place at a slower rate than when

it is more depleted, and storing high levels of charge for prolonged periods of time can shorten the

lifespan of the battery. A couple of models describing this relation can be found in Millner (2010)

and Serrao et al. (2011). Overcharging also causes battery degradation due to greater stresses from

being charged near full capacity and excess heat generated during recharging. In the refueling

problem for conventional vehicles, the only main disadvantage of traveling with a full tank of fuel is

the limited ability to take advantage of lower fuel prices further along the route. Optimal solutions

tend to favor filling large quantities and making fewer stops (assuming that stopping costs are

considered), but the opposite is true for optimal EV recharging policies.

To solve the problem of finding a path for an EV within a network with recharging considerations,

a recent thread of research has taken an entirely different approach, having vehicles recharge via

regenerative braking rather than by recharging at stations along their paths. As an EV decelerates,

it can recapture some of its lost kinetic energy as electrical energy, which can then be used to

recharge the battery. It is therefore possible in some cases for an EV’s state of charge to increase

while traveling rather than decrease, such as when the vehicle is coasting and braking downhill.

Artmeier et al. (2010) model the problem of finding the most energy-efficient path for an EV in a

network as a shortest path problem with constraints on the charge level of the vehicle, such that the

charge level can never be negative and cannot exceed the maximum charge level of the battery. Edge

weights are permitted to be negative to represent energy recapturing from regenerative braking,

but no negative cycles exist. A simple algorithm for solving the problem is provided, and more

efficient algorithms are presented by Eisner et al. (2011) and Sachenbacher et al. (2011). Eisner et

al. (2011) show that the battery capacity constraints can be modeled as cost functions on the edges,

and a transformation of the edge cost functions permits the application of Dijkstra’s algorithm.

The approach described by Sachenbacher et al. (2011) avoids the use of preprocessing techniques so

that edge costs can be calculated dynamically, and it achieves an order of magnitude reduction in

the time complexity of the algorithm from Artmeier et al. (2010). In practice, however, the amount

of energy recovered by regenerative braking is insignificant compared with the amount that must

be recharged at charging stations, and these papers do not model recharging decisions at nodes.

Consequently, they also do not capture overcharging costs considered in the presented work.

One model type that is well suited for capturing overcharging costs is the inventory model with

a convex ordering cost function. If the inventory corresponds to a vehicle’s charge level and the

ordering cost corresponds to the cost of recharging, then the convexity of the ordering cost function

can be interpreted as the result of overcharging costs. Unfortunately, few papers in the literature
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have studied inventory models with convex ordering costs. The earliest of such models appeared in

Bellman et al. (1955) and Karlin (1958), albeit with limited discussion. Three different models with

general convex ordering costs are analyzed by Bulinskaya (1967) and include assumptions such as

random delivery of orders, perishable inventory, and multiple orders with different delivery times,

although closed-form optimal policies are not given. A model with a piecewise linear convex ordering

cost function is studied in Henig et al. (1997), and Bhaskaran et al. (2010) characterize optimal

inventory policies for a model with convex ordering costs in which excess demand may either be

accepted (and backlogged) or rejected. However, these models all have stationary random demands,

whereas the demands in our model (i.e., the energy consumptions between each pair of nodes) are

deterministic and non-stationary. The models also assume that inventory levels are uncapacitated,

which is not useful for modeling vehicle recharging policies since batteries are limited in the amount

of energy that they can store. Atamtürk and Küçükyavuz (2005) study an inventory-capacitated

lot-sizing model, but their model does not consider convex inventory ordering cost functions.

3. Vehicle recharging problem

In this paper, we study the following recharging problem for EVs. Consider an EV with battery

capacity qmax that must travel along a fixed path P = (1, ..., n + 1) consisting of a sequence of

n+ 1 nodes. Charging stations are available at each of the first n nodes (let SP = (1, ..., n) denote

the sequence of nodes in P that have charging stations), and the driver must decide how much to

recharge at each station. The vehicle’s charge level can never exceed the maximum capacity of the

battery, and it can never drop below zero. We also do not allow the vehicle to discharge energy

back to the grid. We let qi denote the charge level of the vehicle when it arrives at node i and

hi > 0 denote the amount of charge required to travel from node i to node i+ 1. Then the set of

feasible charging amounts, which we denote Ai(qi), is Ai(qi) = [(hi − qi)+, qmax − qi]. We assume

that hi ≤ qmax for all i∈ SP so that a feasible recharging policy exists.

Each time that the vehicle stops to recharge, it incurs a fixed stopping cost s. It also incurs a

recharging cost at a rate of γ per unit of energy recharged (γ ≥ 0) plus an additional overcharging

cost if the vehicle’s charge level rises above αqmax, where 0<α< 1. This threshold represents the

point at which the charging voltage reaches its maximum value and the charging current begins

to decrease. Thus, the overcharging cost takes into account both the additional time per unit of

energy recharged (due to the decreasing current) and wear on the battery, each converted to the

same units as the stopping and recharging costs. We denote the overcharging cost as f(x), where

x∈ [0, (1−α)qmax] is the amount by which the vehicle’s charge level exceeds αqmax after recharging

and f(·) is convex and increasing with f(0) = 0. If the vehicle’s charge level already exceeds αqmax

when it stops to recharge, we discount the overcharging cost by f(q−αqmax). Therefore, if we let
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c(r, q) denote the cost of recharging r at a node when the vehicle arrives at the node with charge

level q, then we have

c(r, q) = sI{r>0}+ γr+
[
f
(
(q+ r−αqmax)+

)
− f

(
(q−αqmax)+

)]
, (1)

where I{r>0} is the indicator function that equals 1 if r > 0 and 0 otherwise (see Figure 1 for an

example illustration of c(r,0)). Note that c(r, q) = 0 whenever r = 0. We assume that all charging

stations are identical, which is reasonable since most public charging stations in existence today

have similar hardware configurations (most recharge at 220 volts, with the exception of a few

“fast charging” stations that recharge at 440 volts) and regional variations in electricity rates are

minimal.

Figure 1 Sample illustration of c(r, q) for q= 0

Our objective is to minimize the total cost of recharging along the path P . We let Vi(qi) denote

the value function, which represents the minimum cost of traveling to the end of P from node i

starting with charge level qi, and it can be defined recursively as

Vi(qi) = min
ri∈Ai(qi)

{c(ri, qi) +Vi+1(qi + ri−hi)}. (2)

The first term within the brackets is the cost of recharging ri at node i and the second term is the

optimal recharging cost from the next node to the end of the path. We set Vn+1(·) = 0 and seek to

evaluate V1(0), the minimum total cost when the vehicle’s initial charge level at the beginning of

the path is 0.

3.1. Properties of optimal recharging policies

In this section, we establish properties of optimal recharging policies. We first define a recharging

policy and its optimality. Let πP = [r1, ...., rn] be an ordered sequence, where ri represents the
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amount to recharge at node i (i= 1, ..., n). From (2), it follows that these recharging amounts must

satisfy

ri ∈Ai

(
i−1∑
j=1

(rj −hj)

)
for all i∈ SP in order for πP to be a (feasible) recharging policy for P .

We denote by

C(πP ) =
∑
i∈SP

c

(
ri,

i−1∑
j=1

(rj −hj)

)
the total cost of policy πP = [r1, ..., rn]. Our goal is to find an optimal policy for P that minimizes

the total cost. However, the action space Ai(·) at each node is a continuous interval in R. This

can be problematic from an optimization perspective since there are infinitely many actions that

must be considered. Thus, it would be beneficial to show that the action space can be reduced to a

finite set without increasing the optimal cost. The following lemma establishes that there exists an

optimal policy in which the vehicle only recharges when its charge level is zero (see Figure 2). (In

the inventory theory, these policies are known as zero-inventory-ordering policies. It is interesting

to point out that such policies are not optimal in the presence of a replenishment upper bound,

which is another indication that our problem is quite different.)

Figure 2 Original recharging policy (solid line) and alternate policy that only recharges when q= 0 (dotted line),

with charging station locations identified along the horizontal axis

Lemma 1. Suppose π∗P = [r∗1 , ..., r∗n] is an optimal recharging policy for P in which

m= min

{
`∈ SP : r∗` > 0,

`−1∑
j=1

(r∗` −h`)> 0

}
is the first node where the vehicle stops to recharge with a non-zero charge level and

i= max{`∈ {1, ...,m− 1} : r∗` > 0}

is the previous node with a positive recharging amount in the policy. Then policy πP = [r1, ..., rn]

defined as

r` =


∑m−1

j=i hj, `= i

r∗m +
(
r∗i −

∑m−1

j=i hj

)
, `=m

r∗` , `∈ SP\{i,m}
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is also optimal.

Proof of Lemma 1. Note that πP is feasible because ri =
∑m−1

j=i hj ensures that the vehicle will

reach node m (albeit with 0 charge remaining), rm = r∗m+
(
r∗i −

∑m−1

j=i hj

)
ensures that the vehicle

departs node m with the same charge level as it would have in π∗P , and all other recharging amounts

are the same as in π∗P . We have

C(π∗P )−C(πP ) =
n∑
`=1

[
c

(
r∗` ,

`−1∑
j=1

(r∗j −hj)

)
− c

(
r`,

`−1∑
j=1

(rj −hj)

)]

= c

(
r∗i ,

i−1∑
j=1

(r∗j −hj)

)
− c

(
ri,

i−1∑
j=1

(rj −hj)

)
+ c

(
r∗m,

m−1∑
j=1

(r∗j −hj)

)

− c

(
rm,

m−1∑
j=1

(rj −hj)

)
,

since r∗` = r` and
∑`−1

j=1(r
∗
j −hj) =

∑`−1

j=1(rj −hj) for all `∈ {1, ..., i− 1,m+ 1, ..., n} and

c

(
r∗` ,

`−1∑
j=1

(r∗j −hj)

)
= c

(
r`,

`−1∑
j=1

(rj −hj)

)
= 0

for all `∈ {i+ 1, ...,m− 1} due to r∗` = r` = 0 and c(0, ·) = 0. We also have

i−1∑
j=1

(r∗j −hj) =
i−1∑
j=1

(rj −hj) =
m−1∑
j=1

(rj −hj) = 0

by definition of i and m. It follows that

C(π∗P )−C(πP ) = c(r∗i ,0)− c(ri,0) + c

(
r∗m, r

∗
i −

m−1∑
j=i

hj

)
− c(rm,0)

=
(
s+ γr∗i + f

(
(r∗i −αqmax)+

))
−

s+ γri + f

(m−1∑
j=i

hj −αqmax

)+


+

s+ γr∗m +

f
(r∗i −m−1∑

j=i

hj + r∗m−αqmax

)+


−f

(r∗i −m−1∑
j=i

hj −αqmax

)+


−

s+ γrm + f

(r∗m + r∗i −
m−1∑
j=i

hj −αqmax

)+


= f
(
(r∗i −αqmax)+

)
− f

(m−1∑
j=i

hj −αqmax

)+
− f

(r∗i −m−1∑
j=i

hj −αqmax

)+

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≥ f
(
(r∗i −αqmax)+

)
− f

(m−1∑
j=i

hj −αqmax

)+

+

(
r∗i −

m−1∑
j=i

hj −αqmax

)+


≥ f
(
(r∗i −αqmax)+

)
− f

(
(r∗i −αqmax)+

)
= 0

since
∑m−1

j=i hj > 0, r∗i −
∑m−1

j=i hj > 0, and f(·) is convex and increasing. Because π∗P is an optimal

policy, C(π∗P ) =C(πP ) and πP is also an optimal policy.

As a consequence of this lemma, the feasible action space at each node can be reduced to a

discrete set without affecting the optimal cost. Thus, at any stop, the vehicle can recharge just

enough to reach some later node, of which there are finitely many, and one such recharging policy

is optimal. Without loss of generality, we introduce a property based on this result that will be

used in our later analysis.

Property 1. Let πP = [r1, ..., rn] be a recharging policy for P . Then for all i ∈ SP , ri > 0 if and

only if
∑i−1

j=1 rj =
∑i−1

j=1 hj.

A vehicle obeying a recharging policy that satisfies this property only recharges when its charge

level is zero, and therefore never recharges more than necessary to reach its next stop. The following

two lemmas show that further reduction of the action space is possible, providing a lower bound

on the amount that the vehicle recharges at each stop that it makes.

Lemma 2. Let P ′ denote the path consisting of P with an additional node at the beginning (node

0), and let SP ′ = (0, SP ). If π∗P and π∗P ′ are optimal recharging policies for P and P ′, respectively,

then C(π∗P ′)≥C(π∗P ) + γh0.

Proof of Lemma 2. Suppose r′0 and r′1 are the amounts to recharge at nodes 0 and 1, respec-

tively, specified by policy π∗P ′ . Let πP = [r1, ..., rn] denote the recharging policy for P that satisfies

r` =
{
r′0 + r′1−h0, `= 1
r′`, `∈ SP\{1}.

This policy is feasible because r1 = r′0 + r′1 − h0 ensures that the vehicle departs node 1 with the

same charge level as in π∗P ′ , and all other recharging amounts are the same as in π∗P ′ (with the

exception of node 0, which is not part of P and therefore has no corresponding recharging amount

in πP ). Then the total cost of π∗P ′ exceeds that of πP by

C(π∗P ′)−C(πP ) = c(r′0,0) + c(r′1, r
′
0−h0)− c(r′0 + r′1−h0,0)

=
[
s+ γr′0 + f((r′0−αqmax)+)

]
+
[
sI{r′1>0}+ γr′1 + f((r′0−h0 + r′1−αqmax)+)

− f((r′0−h0−αqmax)+)
]
−
[
s+ γ(r′0 + r′1−h0) + f((r′0 + r′1−h0−αqmax)+)

]
= sI{r′1>0}+ γh0 + f((r′0−αqmax)+)− f((r′0−h0−αqmax)+)

≥ γh0
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because f(·) is increasing. Since π∗P is an optimal recharging policy for P , it follows that

C(π∗P ′)≥C(πP ) + γh0 ≥C(π∗P ) + γh0,

as desired.

One consequence of this lemma is that when an optimal recharging policy specifies an amount

to recharge at a node that is less than αqmax, and increasing that amount by just enough to reach

some further node along the path does not cause it to exceed αqmax (see Figure 3), the total cost of

the new policy is no greater than that of the original policy. This is formally stated in the following

lemma.

Figure 3 Original recharging policy (solid line) and alternate policy that recharges an additional amount at node

i without exceeding αqmax (dotted line), with charging station locations identified along the horizontal

axis

Lemma 3. Let π∗P = [r∗1, ..., r∗n] be an optimal recharging policy for P where Property 1 holds. Sup-

pose that r∗i > 0 for some node i∈ SP and that

m= min{`∈ {i+ 1, ..., n} : r∗` > 0}

is the next node where the vehicle is recharged. If r∗i +hm ≤ αqmax, then the policy πP = [r1, ..., rn]

with

r` =


r∗i +hm, `= i
0, `=m
r∗m + r∗m+1−hm, `=m+ 1
r∗` , `∈ SP\{i,m,m+ 1},

where r∗n+1 = rn+1 = 0, is also optimal.

Proof of Lemma 3. Note that πP is feasible since ri = r∗i +hm ensures that the vehicle departs

node i with just enough charge to reach node m+ 1 (and ri ≤ αqmax by supposition), and rm+1 =

r∗m + r∗m+1− hm ensures that the vehicle departs node m+ 1 with the same charge level as in π∗P .

We define the following subpaths of P along with corresponding recharging policies:

P1 = (1, ...,m), π∗P1
= [r∗1, ..., r

∗
m−1];
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P2 = (m, ..., n+ 1), π∗P2
= [r∗m, ..., r

∗
n];

P ′1 = (1, ...,m+ 1), πP ′
1

= [r1, ..., rm];

P ′2 = (m+ 1, ..., n+ 1), πP ′
2

= [rm+1, ..., rn];

where π∗P1
and π∗P2

are subpolicies of π∗P , and πP ′
1

and πP ′
2

are subpolicies of πP . These policies are

all feasible due to Property 1, which ensures that the recharging policies can be subdivided at any

node where the vehicle stops to recharge since the charge level there will be 0. Then we have

C(π∗P )−C(πP ) = (C(π∗P1
) +C(π∗P2

))− (C(πP ′
1
) +C(πP ′

2
))

≥C(π∗P1
)−C(πP ′

1
) + γhm (by Lemma 2)

= c(r∗i ,0)− c(r∗i +hm,0) + γhm

=−γhm + f((r∗i −αqmax)+)− f((r∗i +hm−αqmax)+) + γhm

= 0

since r∗i +hm ≤ αqmax. Because π∗P is an optimal policy, C(π∗P ) =C(πP ) and πP is also an optimal

policy.

We have now established several properties of optimal recharging policies that restrict the range

of possible recharging amounts at each node to a discrete set. In the next section, we show how to

apply these properties in order to find recharging policies under various sets of assumptions.

4. Solution methods

This section describes methods for obtaining recharging policies for EVs along a fixed path. We

first find optimal recharging policies for general paths and two specific path types. We then analyze

two heuristic methods and derive bounds on the costs of the resulting policies.

4.1. Optimal policy algorithm for a general path

The properties established in the previous section for optimal recharging policies can be used to

design an algorithm capable of finding an optimal recharging policy for a given path P efficiently.

Although it is possible to solve the recursive expression given in equation (2) by imposing restric-

tions on the amount that can be recharged at each node, a disadvantage to this approach is that

the value function must be calculated for every node and for multiple different charge levels. We

instead propose a modified reaching procedure (see Algorithm 1) that computes the value function

only when qi = 0 and only for nodes where the vehicle stops whenever the properties from Section

3.1 apply. A naive dynamic programming algorithm would use the fact that the vehicle recharges

only when qi = 0 and scan all nodes along the path. Here, we present a more efficient version relying

on Lemma 3.
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In Algorithm 1, Uj is the total cost of traveling from the beginning of the path to node j and

Nj is the node from which the vehicle reaches node j in an optimal recharging policy for the

subpath (1, ..., j) (i.e., the previous node where the vehicle stops to recharge in order to arrive at

node j with charge level qj = 0) for every j ∈ SP . Beginning in line 2, for all nodes m satisfying

αqmax − hm <
∑m−1

j=i hj ≤ qmax (i.e., the set of nodes requiring a charge level between αqmax − hm
and qmax in order to be reached from i), if the sum of Ui and the cost of recharging the exact

amount required to reach node m is less than Um, then Um and Nm are updated. The procedure is

repeated for each possible value of i, and at the end, Un+1 gives the total cost of an optimal policy

while the Nj values allow the optimal recharging stops to be determined.

It is important to note that when the algorithm terminates, there may be some nodes i for which

Ui (and also Ni) is not updated and therefore not equal to the optimal cost of traveling from the

beginning of the path to node i. This is especially the case near the beginning of the path. For

example, in the first iteration, if m> 1 is the smallest index for which Um and Nm are updated,

then U2 = ...=Um−1 =∞ at the end of the algorithm. The fact that Ui =∞ at these nodes does not

imply that stopping to recharge at any of them is infeasible, but rather that no optimal recharging

policy (at least among the policies we consider) has recharging stops at those nodes.

4.2. Optimal policy for a path with continuous charging capability

Next we consider the special case in which charging capability is available continuously along

a path. In other words, a vehicle can stop to recharge anywhere along the path, not just at

prespecified nodes. Because of this alteration, we redefine ri > 0 as the amount recharged at the ith

stop for i= 1, ..., ξ, where ξ is the total number of stops. We also use H to denote the total energy

required to traverse the entire path P , and we redefine the encoding of path P as the function

P (·) : [0,1]→ [0,H], with P (x) = Hx, since P is no longer a sequence of nodes. Because of this

new definition, we no longer need to use hi. We now explicitly define how continuous recharging

policies differ from the recharging policies described previously.

Definition 1. Let ρP,ξ = ([λ1, ..., λξ], [r1, ..., rξ]) be a pair of ordered sequences satisfying λ1 = 0

and

(i) λi <λi+1,

(ii)
∑i

j=1 rj ≥ P (λi+1), and

(iii)
(
P (λi+1)−

∑i−1

j=1 rj

)+

≤ ri ≤ qmax−
(∑i−1

j=1 rj −P (λi)
)

for all i ∈ {1, ..., ξ} (where λξ+1 = 1). Then ρP,ξ is a (feasible) continuous recharging policy

with ξ stops for a path P , where λi is the location of the ith recharging stop and ri represents the

amount to recharge at the ith stop (i= 1, ..., ξ).
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Algorithm 1 Finding an optimal recharging policy for a path P

Input: number of nodes in P (i.e., n+ 1); inter-node energy requirements (hj for every j ∈ SP )

Output: an optimal recharging policy for P , π∗P = [r∗1, ..., r∗n]

Initialize: hn+1 =∞; U1 = 0, U2 = ...=Un+1 =∞; Nj = 1 for every j ∈ P ; r∗j = 0 for every j ∈ SP
1: for i= 1, ..., n do

2: m= i+ 1

3: while
∑m−1

j=i hj ≤ qmax do

4: if
∑m

j=i hj >αqmax and Ui + c
(∑m−1

j=i hj,0
)
<Um then

5: Um =Ui + c
(∑m−1

j=i hj,0
)

6: Nm = i

7: end if

8: m=m+ 1

9: end while

10: end for

11: i= n+ 1

12: while i > 1 do

13: r∗Ni =
∑i−1

j=Ni
hj

14: i=Ni

15: end while

We denote by

D(ρP,ξ) =
ξ∑
i=1

c

(
ri,

i−1∑
j=1

rj −P (λi)

)
the total cost of policy ρP,ξ = ([λ1, ..., λξ], [r1, ..., rξ]). Here, i indexes the actual stops that the vehicle

makes to recharge (as opposed to the nodes where the vehicle may stop in the previous definition

of c(·)).
By allowing the vehicle to recharge anywhere along the path instead of only at prespecified nodes,

the total cost of an optimal continuous recharging policy is no greater than when the vehicle may

only recharge at discrete intervals and provides a lower bound on the cost in the discrete case. The

following theorems show how to easily find an optimal policy in the continuous case and compute

such a bound for the discrete case. We first show that a continuous recharging policy of the form

ρ∗P,ξ = ([λ∗` = (`− 1)H/ξ : `= 1, ..., ξ], [r∗` =H/ξ : `= 1, ..., ξ]) (3)

is optimal for given P and ξ.

Theorem 1. For given P and ξ, the continuous recharging policy ρ∗P,ξ = ([λ∗` = (`− 1)H/ξ : ` =

1, ..., ξ], [r∗` =H/ξ : `= 1, ..., ξ]) is optimal.
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Proof of Theorem 1. Suppose for some continuous recharging policy ρP,ξ =

([λ1, ..., λξ], [r1, ..., rξ]) that
∑i

`=1 r` = P (λi+1) =Hλi+1 for all i∈ {1, ..., ξ}. Note that this condition

is the continuous analog of Property 1 and there exists an optimal recharging policy that satisfies

it. Also suppose that ri < rj for some i, j ∈ {1, ..., ξ}. Let ρ′P,ξ = ([λ′1, ..., λ′ξ], [r′1, ..., r′ξ]) be a policy

with

r′` =

 ri + ε, `= i
rj − ε, `= j
r`, `∈ {1, ..., ξ}\{i, j}

for some ε ∈ (0, rj − ri) and
∑i

j=1 r
′
j = P (λ′i+1) =Hλ′i+1 for all i ∈ {1, ..., ξ}. That is, the locations

of recharging stops i through j (or j through i) are adjusted such that
∑i

`=1 r
′
` = P (λi+1) for all

i∈ {1, ..., ξ}. Note that this policy is feasible because the total amount recharged along the path is

still H and the vehicle only recharges when its charge level is 0. Then we have

D(ρ′P,ξ)−D(ρP,ξ) =
ξ∑
`=1

(c(r′`,0)− c(r`,0))

= c(ri + ε,0)− c(ri,0) + c(rj − ε,0)− c(rj,0)

=
[
s+ γ(ri + ε) + f((ri + ε−αqmax)+)

]
−
[
s+ γri + f((ri−αqmax)+)

]
+
[
s+ γ(rj − ε) + f((rj − ε−αqmax)+)

]
−
[
s+ γrj + f((rj −αqmax)+)

]
=
(
f((ri + ε−αqmax)+)− f((ri−αqmax)+)

)
−
(
f((rj −αqmax)+)− f((rj − ε−αqmax)+)

)
≤ 0

by the convexity of f(·) since ri + ε < rj. No such improvement exists when r1 = ...= rξ, in which

case we must have r` =H/ξ and λ` = (`−1)H/ξ for all `∈ {1, ..., ξ} in order to satisfy the condition∑i

`=1 r` = P (λi+1) =Hλi+1 for all i ∈ {1, ..., ξ}. Therefore, the continuous recharging policy ρ∗P,ξ is

optimal.

In addition to the structure of an optimal policy for a given number of stops, it is also desirable to

know the number of stops that minimizes the total cost of an optimal recharging policy. To this end,

we must evaluate the expression argminξ{D(ρ∗P,ξ)} to determine the optimal number of stops. This

requires calculating D(ρ∗P,ξ) for every integer value of ξ between dH/qmaxe (the minimum feasible

number of stops) and dH/αqmaxe (the minimum number of stops with no overcharging), inclusive.

Note that for any ξ > dH/αqmaxe, we have D(ρ∗P,ξ) = D(ρ∗P,dH/αqmaxe) + (ξ − dH/αqmaxe)s since

neither policy has any overcharging cost and there is no difference in the total amount recharged.

In fact, for optimal policies of the form (3), the total amount recharged is the same for any ξ. To

obtain a closed-form expression for the optimal number of stops, the following assumption must

be made.
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Assumption 1. In the expression for the cost of recharging given in (1), let γ = 0 and f(x) = kx,

where k≥ 0 is a constant.

Setting γ = 0 is without loss of generality because every feasible recharging policy incurs a fixed

cost of at least γH, with optimal policies of the form (3) having a fixed cost of exactly γH, and

thus optimal recharging policies are not affected by adjusting γ. The use of a linear function for

the overcharging cost f(·) simplifies some of our later calculations by allowing us to determine the

optimal number of recharging stops as a function of the model parameters without having to create

multiple different policies and evaluate their costs.

When Assumption 1 holds, the optimal number of stops depends on the ratio between the

stopping cost, s, and the overcharging cost rate, k, of charging above the level αqmax. If the ratio

is sufficiently small, then the minimum number of stops such that the amount recharged at each

stop is less than αqmax is optimal. As the ratio increases towards αqmax, it becomes optimal to

recharge at least αqmax at each stop, and if the ratio is equal to αqmax or greater, then the amount

recharged at each stop should be maximized in order to minimize the total number of stops. The

following theorem states this in rigorous terms.

Theorem 2. Let Assumption 1 hold. For a path P , the value of ξ that minimizes the total cost is

argmin
ξ

{
D(ρ∗P,ξ)

}
=



⌈
H

αqmax

⌉
, s

k
<H −αqmax

⌊
H

αqmax

⌋
(4a)⌊

H

αqmax

⌋
, H −αqmax

⌊
H

αqmax

⌋
≤ s

k
<αqmax and

⌊
H

αqmax

⌋
≥
⌈

H
qmax

⌉
(4b)⌈

H

qmax

⌉
, otherwise. (4c)

Proof of Theorem 2. For any ξ, let ρ∗P,ξ = ([λ∗` = (`−1)H/ξ : `= 1, ..., ξ], [r∗` =H/ξ : `= 1, ..., ξ]).

By Theorem 1, this policy is optimal for a given ξ. The total cost of the policy ρ∗P,ξ is thus

D(ρ∗P,ξ) = ξs+ k(H − ξαqmax)+. (5)

We consider the following two cases that describe the possible relations of the recharging amount

at each stop, which is the same for all stops, to αqmax:

Case 1: αqmax < H
ξ

(i.e., the vehicle always overcharges whenever it stops) and

Case 2: αqmax ≥ H
ξ

(i.e., the vehicle never overcharges when it stops).

Then for a given case, increasing the value of ξ by one (i.e., adding an extra recharging stop)

decreases the amount recharged at each stop to H
ξ+1

. This results in a transition from Case 1 to

Case 2 if H
ξ+1

<αqmax ≤ H
ξ

or no change otherwise. We define the possible transitions as follows:

Transition 1: Case 1 to Case 1,

Transition 2: Case 1 to Case 2, and
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Transition 3: Case 2 to Case 2.

The difference in cost when increasing the number of stops by one is

D(ρ∗P,ξ+1)−D(ρ∗P,ξ) = s−


kαqmax, ξ ≤ H

αqmax
− 1 (6a)

k

(
H −αqmax

⌊
H

αqmax

⌋)
, H

αqmax
− 1< ξ ≤ H

αqmax
(6b)

0, ξ > H
αqmax

(6c)

for feasible ξ (i.e., ξ ≥H/qmax). The subcases (6a), (6b), and (6c) correspond to the cost differences

of Transitions 1, 2, and 3, respectively. As ξ increases, note that Transition 1 cannot occur after

Transition 2, which in turn cannot occur after Transition 3. We can therefore order the transitions

and compare them sequentially. Comparing Transitions 1 and 2 first, we find that

s− kαqmax < s− k
(
H −αqmax

⌊
H

αqmax

⌋)
since H −αqmaxbH/αqmaxc<αqmax, and comparing Transitions 2 and 3 reveals that

s− k
(
H −αqmax

⌊
H

αqmax

⌋)
≤ s

because H − αqmaxbH/αqmaxc ≥ 0. The function D(ρ∗P,ξ) is therefore convex and also piecewise

linear with respect to ξ and has up to three segments. We are interested in the value of ξ that

minimizes D(ρ∗P,ξ), or the smallest feasible integer value of ξ such that the cost difference is non-

negative. There are three different cases to consider.

• If the expression in (6b) is negative, then only the third segment of the function has a non-

negative slope. (It is also implied that H
αqmax

is non-integer in this case because otherwise we

would have H − αqmax
⌊

H
αqmax

⌋
= 0 and consequently s < 0, which is not possible since the

stopping time is assumed to be non-negative.) That segment includes values of ξ that are

greater than H
αqmax

, and the smallest integer value of ξ such that ξ > H
αqmax

, where H
αqmax

is non-

integer, is
⌈

H
αqmax

⌉
. This result corresponds to the case (4a), and because

⌈
H

αqmax

⌉
≥
⌈

H
qmax

⌉
,

where
⌈

H
qmax

⌉
is the minimum possible number of stops, it is feasible.

• If the expression in (6a) is negative and the one in (6b) is not, then both the second and

third segments of the function have non-negative slopes. Thus, the optimal number of stops

is included in the second segment (if feasible), which consists of values satisfying H
αqmax

− 1<

ξ ≤ H
αqmax

. The only integer value of ξ that satisfies the inequalities is
⌊

H
αqmax

⌋
, but it cannot

be less than the minimum possible number of stops,
⌈

H
qmax

⌉
. This result corresponds to the

the case (4b).

• If the expression in (6a) is non-negative, then all three segments of the function have non-

negative slopes. Therefore, the function is minimized when ξ is minimized, and the smallest

feasible integer value of ξ is
⌈

H
qmax

⌉
. This is also the number of stops made when

⌊
H

αqmax

⌋
is

infeasible for ξ in the previous case, and the result corresponds to the case (4c).
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Therefore, the stated expression for argminξ
{
D(ρ∗P,ξ)

}
holds.

In this section, we have shown how to find an optimal continuous recharging policy for a given

path. By calculating the ratio of the stopping cost parameter to the overcharging cost rate parame-

ter, we can determine the optimal number of stops analytically, which we then use to determine the

corresponding stopping locations and recharging amounts. The total cost of an optimal continuous

recharging policy can therefore be computed quickly and in closed form. We use this solution in

later sections to bound and compare the costs of other recharging policies.

4.3. Optimal policy for a path with equidistant charging locations

We now return to our original definition of a path, P , as a sequence of nodes, where P = (1, ..., n+1).

The vehicle may once again only recharge at nodes, but in this section we suppose that the nodes

in P are equidistant such that the distance between any pair of adjacent nodes is hi = h for all

i ∈ SP . We motivate this scenario as an intermediate case between general paths and paths with

continuous charging capability. Although we enforce that recharging can only occur at nodes, the

uniform spacing between nodes makes finding an optimal recharging policy easier than in the

case of general paths. In fact, we show later in this section that a path with continuous charging

capability is a limiting case of a path with equidistant charging locations, and thus the optimal

policies in both cases are related.

Rather than use the same notation as before for optimal recharging policies for general paths,

we define a new type of policy specifically for paths with equidistant charging locations, mimicking

the continuous case.

Definition 2. Let σP,ξ = ([µ1, ..., µξ], [r1, ..., rξ]) be a pair of ordered sequences satisfying µ1 = 1

and

(i) µi <µi+1 (for all µi ∈ SP ),

(ii)
∑i

j=1 rj ≥ (µi+1− 1)h, and

(iii)
(

(µi+1− 1)h−
∑i−1

j=1 rj

)+

≤ ri ≤ qmax−
(∑i−1

j=1 rj − (µi− 1)h
)

for all i∈ {1, ..., ξ} (where µξ+1 = n+1). Then σP,ξ is a (feasible) equidistant recharging policy

with ξ stops for a path P , where µi is the node index of the ith recharging stop and ri represents

the amount to recharge at the ith stop (i= 1, ..., ξ).

We let

E(σP,ξ) =
ξ∑
i=1

c

(
ri,

i−1∑
j=1

rj − (µi− 1)h

)
denote the total cost of a policy σP,ξ = ([µ1, ..., µξ], [r1, ..., rξ]). An optimal policy over all policies

with ξ stops is defined in the same way as in the continuous case.
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When the number of recharging stops is fixed at ξ, then there exists a feasible recharging policy

σP,ξ = ([µ1, ..., µξ], [r1, ..., rn]) with ri =
⌈
n
ξ

⌉
h at n− ξ

⌊
n
ξ

⌋
of the stops and ri =

⌊
n
ξ

⌋
h at each of the

remaining stops. The following theorem shows that this policy is also optimal.

Theorem 3. For given P and ξ, where hi = h for all i ∈ SP , the equidistant recharging policy

σ∗P,ξ = ([µ∗1, ..., µ∗ξ ], [r∗1, ..., r∗ξ ]) with r∗1 = ... = r∗
n−ξbnξ c

=
⌈
n
ξ

⌉
h, r∗

n−ξbnξ c+1
= ... = r∗ξ =

⌊
n
ξ

⌋
h, and

corresponding [µ∗1, ..., µ∗ξ ] that satisfy Property 1 is optimal.

Proof of Theorem 3. Suppose for some equidistant recharging policy σP,ξ =

([µ1, ..., µξ], [r1, ..., rξ]) satisfying Property 1 that ri + h < rj for some i, j ∈ {1, ..., ξ}. Let

σ′P,ξ = ([µ′1, ..., µ′ξ], [r′1, ..., r′ξ]) be the policy in which

r′` =

 ri +h, `= i
rj −h, `= j
r`, `∈ {1, ..., ξ}\{i, j}

and corresponding [µ′1, ..., µ′ξ] are defined based on Property 1. Note that this policy is feasible

because the total amount recharged along the path is still nh and the vehicle only recharges when

its charge level is 0. Then we have

E(σ′P,ξ)−E(σP,ξ) =
ξ∑
`=1

(c(r′`,0)− c(r`,0))

= c(ri +h,0)− c(ri,0) + c(rj −h,0)− c(rj,0)

=
[
s+ γ(ri +h) + f((ri +h−αqmax)+)

]
−
[
s+ γri + f((ri−αqmax)+)

]
+
[
s+ γ(rj −h) + f((rj −h−αqmax)+)

]
−
[
s+ γrj + f((rj −αqmax)+)

]
=
(
f((ri +h−αqmax)+)− f((ri−αqmax)+)

)
−
(
f((rj −αqmax)+)− f((rj −h−αqmax)+)

)
≤ 0

by the convexity of f(·) since ri+h< rj. No such improvement exists when maxi,j∈{1,...,ξ}{ri−rj} ≤

h, and the total cost cannot be further reduced by violating Property 1. Therefore, the equidistant

recharging policy σ∗P,ξ is optimal.

As with continuous optimal recharging policies, the optimal number of stops depends on the

ratio between the stopping cost and overcharging cost rate when Assumption 1 holds. If the ratio is

sufficiently small, then the minimum number of stops such that the amount recharged at each stop

is less than αqmax is optimal. The optimal number of stops decreases as the ratio increases, crossing

different thresholds until it equals the minimum possible number of stops. The next theorem shows

how to find the number of stops that minimizes the total cost of an optimal equidistant recharging

policy in rigorous terms.
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Theorem 4. Let Assumption 1 hold. For a path P with hi = h for all i∈ SP , if σ∗P,ξ is an optimal

equidistant recharging policy with ξ stops and y= bαqmax/hc (i.e., y is the largest integer multiple

of h such that yh≤ αqmax), then the value of ξ that minimizes the total cost of such a policy is

argmin
ξ

{
E(σ∗P,ξ)

}
=



⌈
n

y

⌉
, s

k
<nh−

⌊
n
y

⌋
αqmax (7a)⌊

n

y

⌋
, nh−

⌊
n
y

⌋
αqmax ≤ s

k
<αqmax and

⌊
n
y

⌋
≥
⌈

n
bqmax/hc

⌉
(7b)⌈

n

bqmax/hc

⌉
, otherwise (7c)

if n
y+1

>
⌊
n
y

⌋
and

argmin
ξ

{
E(σ∗P,ξ)

}
=



⌈
n

y

⌉
, s

k
<
(
n− y

⌊
n
y

⌋)
((y+ 1)h−αqmax) (8a)

⌊
n

y

⌋
,

(
n− y

⌊
n

y

⌋)
((y+ 1)h−αqmax)≤

s

k
< y((y+ 1)h−αqmax)

and
⌊
n

y

⌋
≥
⌈

n

bqmax/hc

⌉ (8b)

⌈
n

y+ 1

⌉
,

y((y+ 1)h−αqmax)≤
s

k
< αqmax−

(
(y+ 1)

⌈
n

y+ 1

⌉
−n
)
·

(αqmax− yh) and
⌈

n

y+ 1

⌉
≥
⌈

n

bqmax/hc

⌉ (8c)

⌊
n

y+ 1

⌋
,

αqmax−
(

(y+ 1)
⌈

n

y+ 1

⌉
−n
)

(αqmax− yh)≤ s

k
< αqmax

and
⌊

n

y+ 1

⌋
≥
⌈

n

bqmax/hc

⌉ (8d)

⌈
n

bqmax/hc

⌉
, otherwise (8e)

if n
y+1
≤
⌊
n
y

⌋
.

Proof of Theorem 4. Let σ∗P,ξ = ([µ∗1, ..., µ∗ξ ], [r∗1, ..., r∗ξ ]) with r∗1 = ... = r∗
n−ξbnξ c

=
⌈
n
ξ

⌉
h and

r∗
n−ξbnξ c+1

= ...= r∗ξ =
⌊
n
ξ

⌋
h. By Theorem 3, this policy is optimal for a given ξ. The total cost of

policy σ∗P,ξ is thus

E(σ∗P,ξ) = ξs+ k

ξ∑
i=1

(r∗i −αqmax)+. (9)

If we relate the two possible values for the amount to recharge at each stop to αqmax, we see that

there are three possible cases to consider:

Case 1: αqmax <
⌊
n
ξ

⌋
h≤

⌈
n
ξ

⌉
h (i.e., the vehicle always overcharges whenever it stops),

Case 2:
⌊
n
ξ

⌋
h≤ αqmax <

⌈
n
ξ

⌉
h (i.e., the vehicle overcharges at the first n− ξ

⌊
n
ξ

⌋
stops but not

at the remaining stops), and
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Case 3:
⌊
n
ξ

⌋
h≤

⌈
n
ξ

⌉
h≤ αqmax (i.e., the vehicle never overcharges when it stops).

Then for a given case, increasing the value of ξ by one (i.e., adding an extra recharging stop)

decreases the amounts recharged to
⌊

n
ξ+1

⌋
h and

⌈
n
ξ+1

⌉
h for the corresponding stops. This could

result in a new relationship of the recharging amounts to αqmax and transition us to a different

case. For example, we transition from Case 1 to Case 2 when αqmax <
⌊
n
ξ

⌋
h≤

⌈
n
ξ

⌉
h and

⌊
n
ξ+1

⌋
h≤

αqmax <
⌈

n
ξ+1

⌉
h. The possible transitions are the following:

Transition 1: Case 1 to Case 1,

Transition 2: Case 1 to Case 2,

Transition 3: Case 2 to Case 2,

Transition 4: Case 1 to Case 3,

Transition 5: Case 2 to Case 3, and

Transition 6: Case 3 to Case 3.

Note that n
y+1

is the maximum (possibly fractional) number of stops such that the amount

recharged at each stop is greater than αqmax, and
⌊
n
y

⌋
is the maximum feasible number of stops

such that not all of the amounts recharged at each stop are less than αqmax. If n
y+1

>
⌊
n
y

⌋
, then

there is no feasible value for ξ such that
⌊
n
ξ

⌋
h≤ αqmax <

⌈
n
ξ

⌉
h. Thus, we only need to consider

Transitions 1, 4, and 6. Alternatively, if n
y+1
≤
⌊
n
y

⌋
, then all transitions except Transition 4 are

possible. We now compute the costs for each of the six possible transitions.

The difference in cost when increasing the number of stops by one is

E
(
σ∗P,ξ+1

)
−E

(
σ∗P,ξ

)
=

s−



kαqmax, ξ <
⌊

n
y+1

⌋
(10a)

k

(
αqmax−

(
(y+ 1)

⌈
n

y+ 1

⌉
−n
)

(αqmax− yh)
)
, ξ =

⌊
n
y+1

⌋
< n

y+1
and n

y+1
≤
⌊
n
y

⌋
(10b)

ky((y+ 1)h−αqmax),
⌈

n
y+1

⌉
≤ ξ <

⌊
n
y

⌋
and n

y+1
≤
⌊
n
y

⌋
(10c)

k

(
nh−

⌊
n

y

⌋
αqmax

)
, ξ =

⌊
n
y

⌋
< n

y
and n

y+1
>
⌊
n
y

⌋
(10d)

k

(
n− y

⌊
n

y

⌋)
((y+ 1)h−αqmax), ξ =

⌊
n
y

⌋
< n

y
and n

y+1
≤
⌊
n
y

⌋
(10e)

0, ξ ≥
⌈
n
y

⌉
(10f)

for feasible ξ (i.e., ξ ≥ H/qmax). The six subcases in (10) correspond to the cost differences of

Transitions 1 through 6, in order.

We first consider the case where n
y+1

>
⌊
n
y

⌋
. As ξ increases, note that Transition 1 cannot occur

after Transition 4, which in turn cannot occur after Transition 6. We can therefore order the
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transitions and compare them sequentially. Beginning with Transitions 1 and 4, we compare (10a)

and (10d) and find that

s− kαqmax ≤ s− k
((

n− y
⌊
n

y

⌋)
h−

⌊
n

y

⌋
(αqmax− yh)

)
= s− k

(
nh−

⌊
n

y

⌋
αqmax

)
since

(
n− y

⌊
n
y

⌋)
h < yh ≤ αqmax and

⌊
n
y

⌋
(αqmax − yh) ≥ 0. Comparing Transitions 4 and 6, we

note that

s− k
(
nh−

⌊
n

y

⌋
αqmax

)
< s− k

(
nh− n

y+ 1
(y+ 1)h

)
= s

because n
y+1

>
⌊
n
y

⌋
and (y + 1)h > αqmax. Thus, E(·) is convex and piecewise linear with respect

to ξ in this case.

We next consider the case where n
y+1
≤
⌊
n
y

⌋
. As in the previous case, the transitions can be

ordered and compared sequentially. We first compare (10a) and (10b) (Transitions 1 and 2) and

see that

s− kαqmax ≤ k
(
αqmax−

(
(y+ 1)

⌈
n

y+ 1

⌉
−n
)

(αqmax− yh)
)

because (y+ 1)
⌈

n
y+1

⌉
−n≥ 0 and αqmax− yh≥ 0. We next compare Transitions 2 and 3 and find

that

s− k
(
αqmax−

(
(y+ 1)

⌈
n

y+ 1

⌉
−n
)

(αqmax− yh)
)
≤ s− k (αqmax− (y+ 1)(αqmax− yh))

= s− ky((y+ 1)h−αqmax).

Comparing (10c) and (10e), or Transitions 3 and 5, gives

s− ky((y+ 1)h−αqmax)< s− k
(
n− y

⌊
n

y

⌋)
((y+ 1)h−αqmax),

and the expression in (10e) is no greater than s, the cost of Transition 6. Therefore, in each of the

cases n
y+1

>
⌊
n
y

⌋
and n

y+1
≤
⌊
n
y

⌋
, the function E(·) is convex and also piecewise linear with respect

to ξ. We are interested in the value of ξ that minimizes E(·), or the smallest feasible integer of ξ

such that the cost difference is non-negative. There are several cases to consider.

• If the expression in (10d) is negative when n
y+1

>
⌊
n
y

⌋
or the expression in (10e) is negative

when n
y+1
≤
⌊
n
y

⌋
, then only the last segment of the function has a non-negative slope. That

segment includes values of ξ that are at least
⌈
n
y

⌉
, and the smallest integer value of ξ such that

ξ ≥
⌈
n
y

⌉
is
⌈
n
y

⌉
. This result corresponds to cases (7a) and (8a), and because

⌈
n
y

⌉
≥
⌈

n
bqmax/hc

⌉
,

where
⌈

n
bqmax/hc

⌉
is the minimum possible number of stops, it is feasible.
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• If the expression in (10a) is negative and the one in (10d) is not when n
y+1

>
⌊
n
y

⌋
, or if the

expression in (10c) is negative and the one in (10e) is not when n
y+1
≤
⌊
n
y

⌋
, then if

⌊
n
y

⌋
is

a feasible number of stops, the last two segments of the function have non-negative slopes.

Thus, the optimal number of stops is included in the second-to-last segment, which consists

of values satisfying ξ =
⌊
n
y

⌋
< n

y
. The only integer value of ξ that satisfies the expression is⌊

n
y

⌋
, where n

y
must be non-integer. This result corresponds to cases (7b) and (8b).

• If the expression in (10b) is negative and the one in (10c) is not when n
y+1
≤
⌊
n
y

⌋
, then the

third, fourth, and fifth segments of the function have non-negative slopes. The optimal number

of stops is therefore included in the third segment (if feasible) when n
y+1
≤
⌊
n
y

⌋
, which consists

of values satisfying
⌈

n
y+1

⌉
≤ ξ <

⌊
n
y

⌋
. The smallest integer value of ξ satisfying the expression

is
⌈

n
y+1

⌉
, but it must be feasible and cannot be less than

⌈
n

bqmax/hc

⌉
. This result corresponds

to case (8c).

• If the expression in (10a) is negative and the one in (10b) is not when n
y+1
≤
⌊
n
y

⌋
, and if

⌊
n
y+1

⌋
is a feasible number of stops, then the second through fifth segments of the function have non-

negative slopes. Thus, the optimal number of stops is included in the second segment when
n
y+1
≤
⌊
n
y

⌋
, which consists of values satisfying ξ =

⌊
n
y+1

⌋
< n

y+1
. The only integer value of ξ

that satisfies the expression is
⌊

n
y+1

⌋
, where n

y+1
must be non-integer. This result corresponds

to case (8d).

• If the expression in (10a) is non-negative, then all segments of the function have non-negative

slopes. Therefore, the function is minimized when ξ is minimized, and the smallest feasible

integer value of ξ is
⌈

n
bqmax/hc

⌉
. This is also the number of stops that is made if the value in

any of the previous cases is infeasible, and the result corresponds to cases (7c) and (8e).

Therefore, the stated expressions for argminξ
{
E(σ∗P,ξ)

}
hold.

In a similar manner as for optimal continuous recharging policies, we have shown how to find

an optimal equidistant recharging policy as well as the number of stops that minimizes the total

cost of such a policy. It is also useful to compare the optimal policies of the continuous and

equidistant charging location scenarios. The continuous case can be viewed as a limiting instance

of the equidistant case in which h→ 0. This relationship is verified in the next lemma.

Lemma 4. Let P be a path with n+1 equidistant nodes such that hi = h for all i∈ SP and nh=H,

and let P ′(x) = Hx be a path with continuous charging capability. Also, let σ∗P,ξ be an optimal

equidistant recharging policy for P and ρ∗P ′,ξ be an optimal continuous recharging policy for P ′.

Then limh→0E(σ∗P,ξ) =D(ρ∗P ′,ξ).

Proof of Lemma 4. Let σ∗P,ξ = ([µ∗1, ..., µ∗ξ ], [r∗1 , ..., r∗ξ ]), and let maxi,j∈SP {r∗i − r∗j} ≤ h since by

Lemma 3, such a policy cannot be improved by adjusting the recharging amounts at each stop in
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increments of h. Then in the limit as h→ 0, the amounts recharged at each stop approach the same

value, namely r∗1 = ...= r∗ξ =H/ξ. This gives

lim
h→0

E(σ∗P,ξ) = lim
h→0

{
ξs+ k

ξ∑
i=1

(r∗i −αqmax)+

}

= ξs+ kξ

(
H

ξ
−αqmax

)+

= ξs+ k(H − ξαqmax)+

=D(ρ∗P ′,ξ).

Therefore, in the limit as h→ 0, the costs of an optimal recharging policy in both the equidistant

and continuous cases are equal.

We have thus established that the case of continuous charging capability along the path is a

limiting instance of the case with equidistant charging locations in which the distance between

nodes goes to 0. Because of the consistent path structure in each case, manageable closed-form

threshold recharging policies exist, but this is not necessarily true for general paths. In the next

section, we discuss heuristic methods that build on the special cases discussed here and impose

consistency in their recharging policies despite possible irregularities in the distances between nodes

for an arbitrary path.

4.4. Heuristic solution methods

So far, we have examined methods for finding optimal recharging policies. We have shown how to

obtain optimal continuous and equidistant recharging policies by first solving a closed-form expres-

sion to determine the optimal number of stops, and then using that number of stops to construct

an optimal policy. For general paths, we have presented an algorithm that uses forward recursion

to identify the nodes where the vehicle should stop to recharge. Although this last approach can

be useful for minimizing the total cost, the resulting policy can be unstructured and difficult to

understand at a glance. An EV driver may prefer a simpler recharging policy that can be deter-

mined quickly with less computation. For that reason, we have developed two heuristic methods

for creating reasonable recharging policies with intuitive interpretation and limited computational

effort.

In Section 3.1, we established a range of possible actions at each recharging stop. Subsequently,

from our analysis of optimal continuous and equidistant recharging policies in Sections 4.2 and 4.3,

respectively, we found that there exist thresholds when the vehicle should never overcharge and

when it should overcharge to minimize its total number of stops. These observations motivate the

two heuristics presented below.
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4.4.1. Heuristic 1: Avoid overcharging Our first heuristic, outlined in Algorithm 2, yields

a policy in which the vehicle minimizes its total number of stops while avoiding overcharging

whenever possible. In the algorithm, r̂j denotes the recharging amount at node j. The procedure

finds the maximum value m such that
∑m−1

j=i hj ≤ αqmax (i.e., the charge level required at node i

to reach node m is no greater than αqmax), or if no such value exists, then m= i+ 1.

Note that the vehicle overcharges only when consecutive charging stations are sufficiently far

apart (i.e., when hi > αqmax for some i ∈ SP ). Otherwise, it will never overcharge but still try to

minimize the number of times that it stops to recharge. This heuristic method is most preferable

when a driver is primarily concerned with preserving battery health and would rather stop more

frequently to recharge than incur overcharging costs.

Algorithm 2 Heuristic method for finding a recharging policy for a path P that never overcharges
Input: number of nodes in P (i.e., n+ 1); inter-node energy requirements (hj for every j ∈ SP )

Output: a recharging policy for P , π̂P = [r̂1, ..., r̂n]

Initialize: r̂j = 0 for every j ∈ SP ; i= 1; hn+1 =∞

1: while i < n+ 1 do

2: m= i+ 1

3: while
∑m

j=i hj ≤ αqmax do

4: m=m+ 1

5: end while

6: r̂i =
∑m−1

j=i hj

7: i=m

8: end while

In the following two lemmas, we derive bounds on the number of stops and total cost of the

policy obtained using Algorithm 2. We let H =
∑

i∈SP
hi denote the total energy required to travel

along the path P .

Lemma 5. Let Assumption 1 hold, and let π̂P = [r̂1, ..., r̂n] be the recharging policy obtained using

Algorithm 2 for the path P . Also let ξ̂ =
∑

j∈SP
I{r̂j>0} be the number of recharging stops in π̂P .

Then

ξ̂ ≤
⌈

2H
αqmax

⌉
,

and this bound is tight.
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Proof of Lemma 5. Let µi denote the index of the ith recharging stop where r̂µi > 0 for all

i ∈ {1, ..., ξ̂}. Due to the construction of π̂P , it must be true that αqmax < r̂µi + r̂µi+1
for any

i∈ {1, ..., ξ̂− 1}. Then we have

(ξ̂− 1)αqmax <
ξ̂−1∑
i=1

(r̂µi + r̂µi+1
)< 2

ξ̂∑
i=1

r̂µi = 2H,

which implies

ξ̂− 1<
2H
αqmax

,

and

ξ̂ ≤
⌈

2H
αqmax

⌉
.

In the extreme case where hi = 1
2
αqmax + ε with ε < 1 for all i ∈ SP , the above bound is tight

since

ξ̂ =
H

1
2
αqmax + ε

< lim
ε→0

(
H

1
2
αqmax + ε

)
=

2H
αqmax

.

We thus have

ξ̂ ≤
⌊

2H
αqmax

⌋
,

which is also equal to d2H/αqmaxe if 2H/αqmax is an integer, and equality holds when

ε=
H

b2H/αqmaxc
− 1

2
αqmax.

Therefore, the lemma statement is valid.

We use this result in the next theorem to calculate the maximum ratio between the cost of the

policy from Algorithm 2 and the cost of an optimal recharging policy.

Theorem 5. Let Assumption 1 hold. Let π∗P = [r∗1, ..., r∗n] be an optimal recharging policy for the

path P , and let π̂P = [r̂1, ..., r̂n] be the recharging policy obtained using Algorithm 2. Then the cost

of π̂P relative to that of π∗P is bounded by

C(π̂P )
C(π∗P )

≤ 2
α

+
qmax
H

. (11)

Proof of Theorem 5. Let K denote the overcharging cost incurred by the policy π̂P , where

K = k
n∑
i=1

(hi−αqmax)+

since the policy only overcharges whenever hi >αqmax. Then the total cost of the policy π̂P satisfies

C(π̂P ) = ξ̂s+K

≤
⌈

2H
αqmax

⌉
s+K (by Lemma 5).
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It follows that the ratio of the cost of the heuristic policy to the cost of an optimal policy must

satisfy

C(π̂P )
C(π∗P )

≤

⌈
2H

αqmax

⌉
s+K⌈

H
qmax

⌉
s+ k

∑n

i=1(r
∗
i −αqmax)+

≤

⌈
2H

αqmax

⌉
s+K

H
qmax

s+K

because any feasible recharging policy must incur overcharging costs of at least K. Furthermore,

since
⌈

2H
αqmax

⌉
s > H

qmax
s, it follows that

C(π̂P )
C(π∗P )

≤

⌈
2H

αqmax

⌉
H

qmax

<
2H

αqmax
+ 1

H/qmax
=

2
α

+
qmax
H

,

as desired.

In the result of Theorem 5, the term qmax/H represents a correction factor for the ceiling function

in the numerator. As H →∞, the effect of the ceiling function becomes negligible and the ratio

simply becomes 2/α, which is also equal to the maximum ratio between the number of stops in

the two policies.

4.4.2. Heuristic 2: Minimize number of stops Our second heuristic seeks to minimize

the total number of stops. As shown in Sections 4.2 and 4.3 for optimal continuous and equidistant

recharging policies, as the stopping cost increases relative to the cost rate of overcharging, it

becomes desirable to minimize the number of times that the vehicle stops to recharge. A method

for obtaining such a policy is detailed in Algorithm 3. The heuristic finds the maximum value m

such that
∑m−1

j=i hj ≤ qmax (i.e., the charge level required at node i to reach node m is no greater

than qmax).

In a recharging policy produced by this procedure, the vehicle minimizes its total number of

recharging stops and, whenever it stops, always recharges enough to travel as far as it can without

having to stop again. This heuristic performs best when overcharging costs are low or the driver is

averse to stopping more frequently to recharge.

We next derive an upper bound on the total cost of a policy obtained using Algorithm 3 relative

to the cost of an optimal recharging policy in the following theorem. As with Lemma 5 and Theorem

5, we use Assumption 1 in our analysis.
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Algorithm 3 Heuristic method for finding a recharging policy for a path P that minimizes the

number of recharging stops
Input: number of nodes in P (i.e., n+ 1); inter-node energy requirements (hj for every j ∈ SP )

Output: a recharging policy for P , π̃P = [r̃1, ..., r̃n]

Initialize: r̃j = 0 for every j ∈ SP ; i= 1; hn+1 =∞

1: while i < n+ 1 do

2: m= i+ 1

3: while
∑m

j=i hj ≤ qmax do

4: m=m+ 1

5: end while

6: r̂i =
∑m−1

j=i hj

7: i=m

8: end while

Theorem 6. Let Assumption 1 hold. Let π∗P = [r∗1, ..., r∗n] be an optimal recharging policy for the

path P , and let π̃P = [r̃1, ..., r̃n] be the recharging policy obtained using Algorithm 3. Then the cost

of π̃P relative to that of π∗P is bounded by

C(π̃P )
C(π∗P )

≤



1 + (1−α)
(

H/αqmax
bH/αqmaxc

)(
αqmax
s/k

)
, s/k < αqmax

1/α, s/k≥ αqmax and H −
⌈

H
qmax

⌉
αqmax ≤ 0

1 + αqmax
H

, s/k≥ αqmax and H −
⌈

H
qmax

⌉
αqmax > 0.

(12)

Proof of Theorem 6. By extension of Lemma 3, it can be seen that the policy π̃P minimizes the

number of recharging stops along P . For α = 1, the lemma states that the policy π̃P is optimal,

and its corresponding cost would be ξ̃s, where ξ̃ is the number of stops in the policy. Therefore,

ξ̃ must be the minimum feasible number of stops. For the case where α < 1, however, the policy

may not be optimal due to the possibility of overcharging costs. At most, the amount overcharged

along the entire path is (1−α)H, where H =
∑n

j=1 hj is the total energy requirement of the path

P . If we let ξ∗ denote the number of stops in the optimal policy π∗P , then we have

C(π̃P )
C(π∗P )

≤ ξ̃s+ k(1−α)H
ξ∗s+ k(H − ξ∗αqmax)+

.

For s/k < αqmax, the cost of an optimal policy is bounded below by
⌊

H
αqmax

⌋
s, which comes from

the continuous result given in Theorem 2. It follows that

C(π̃P )
C(π∗P )

≤ 1 +
k(1−α)H

ξ∗s+ k(H − ξ∗αqmax)+
(since ξ̃ ≤ ξ∗)
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≤ 1 +
k(1−α)H⌊

H
αqmax

⌋
s

= 1 + (1−α)
(
H/αqmax
bH/αqmaxc

)(
αqmax
s/k

)
.

When s/k ≥ αqmax, the cost of an optimal policy is bounded below by
⌈

H
qmax

⌉
s +

k
(
H −

⌈
H

qmax

⌉
αqmax

)+

(from Theorem 2), and therefore

C(π̃P )
C(π∗P )

≤ 1 +
k(1−α)H − k (H − ξ∗αqmax)+

ξ∗s+ k (H − ξ∗αqmax)+ (since ξ̃ ≤ ξ∗)

≤ 1 +
k(1−α)H − k

(
H −

⌈
H

qmax

⌉
αqmax

)+

⌈
H

qmax

⌉
s+ k

(
H −

⌈
H

qmax

⌉
αqmax

)+

≤ 1 +
(1−α)H −

(
H −

⌈
H

qmax

⌉
αqmax

)+

⌈
H

qmax

⌉
αqmax +

(
H −
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⌈

H
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⌉
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Thus, the stated bound for C(π̃P )/C(π∗P ) is valid.

When the stopping cost is sufficiently high and s/k ≥ αqmax, the goals of the optimal and

heuristic policies are both to minimize the total number of stops. Because their goals are aligned,

the two policies perform similarly and the total cost of the heuristic policy is close to that of

an optimal recharging policy. The bounding ratio 1/α applies for larger values of α whereas the

ratio 1 +αqmax/H applies for smaller values of α, and both bounds are nearly equal to 1 for their

respective α values. If the stopping cost is low, then the heuristic method performs quite poorly,

and the value of the bounding ratio approaches ∞ as s/k→ 0.

5. Numerical results

To compare the actual performance of the two heuristic methods against the exact algorithm

for finding an optimal recharging policy, we implemented Algorithms 1, 2, and 3 using data for

U.S. Interstate 90. We consider the portion in the eastbound direction beginning at the Wiscon-

sin/Illinois state border and ending at the New York/Massachusetts state border, which spans

approximately 950 miles. This stretch of the road passes through Chicago, Cleveland, Buffalo, and
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other big cities and stretches along the north side of the country. The 256 node locations were

determined by identifying existing exits along the highway leading to rest areas, towns, or other

places where charging stations might feasibly be located. (Exits leading to other interstates, for

example, are not included as nodes.)

We compare the recharging policies of the three methods for all combinations of the following

parameter settings, where Assumption 1 applies.

qmax ∈ {70,75,80,85,90,95,100}

α∈ {0.75,0.76,0.77,0.78,0.79.0.80,0.81,0.82,0.83,0.84,0.85}

s/k ∈ {0,10,20,30,40,50,60,70}

The range of values for qmax corresponds to the maximum driving range of the Nissan Leaf under

various weather and driving conditions. Rather than use traditional units of kilowatt-hours, we

assume that the energy consumed per mile traveled is constant and instead use the amount of

energy required to travel one mile as our unit of measure for qmax (e.g., qmax = 70 implies that

the vehicle can travel 70 miles on a full charge). For α, the most commonly used value in practice

is 0.8, but we consider the interval [0.75,0.85] to account for possible error. It is more difficult to

assign a realistic value to the ratio s/k because it depends on a number of different factors, and as

a result we include a wide range of values. If the overcharging cost rate is high (i.e., when charging

stations use higher voltages to recharge vehicles and thus cause greater battery degradation), then

the ratio can be low. On the other hand, if k is small or s is large, such as when the driver has an

aversion to stopping to recharge, then the ratio can take on larger values.

5.1. Recharging policy analysis

The number of times that the vehicle stops to recharge in the optimal and heuristic recharging

policies is shown in Figure 4. Because Heuristic 1 avoids overcharging, its policies have the greatest

number of stops, and Heuristic 2’s policies achieve the minimum number of stops. The number of

stops in an optimal policy is always between those of the two heuristic policies, but it can also equal

one or the other. Thus, the range of the numbers of stops in optimal policies among all parameter

settings studied spans the ranges of both heuristics.

The solution quality of the recharging policies generated by both heuristics is illustrated in Figure

5. Recall from the expression in (11) that the bound on the ratio of the cost of a policy generated

by Heuristic 1 to that of an optimal policy is 2/α+ qmax/H. However, we see in the figure that all

of the Heuristic 1 policies are within 20% of the optimal value. This suggests that the calculated

bound may be skewed towards extreme cases and that, in practice, the heuristic performs much

better than the worst case.
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Figure 4 Number of stops in optimal and heuristic recharging policies

Policies generated by Heuristic 2 achieved a median ratio below 1.2, albeit with much variability

overall and the worst instances having ratios above 2. Based on the bound given in (12), this result

is to be expected. Heuristic 2 performs best when s/k ≥ αqmax but does much poorer as s/k→ 0,

and some of the parameter settings used in our numerical study have low s/k ratios. It should

therefore be used more selectively for obtaining recharging policies in order to achieve the best

results. This also confirms our earlier statement that minimizing the number of recharging stops

is not beneficial if the stopping cost is relatively low.

Figure 5 Heuristic recharging policy costs, measured relative to optimal recharging policy costs



Sweda, Dolinskaya, and Klabjan: Optimal Recharging Policies for Electric Vehicles
Article submitted to Operations Research; manuscript no. 1 31

5.2. Recharging stop locations

In Figure 6, the fraction of policies that recharge at each node, or stop frequencies, are shown for

each of the different solution methods. (Note that recharging policies obtained from Heuristic 2

only depend on qmax, so there is little variability in the stop frequencies among the nodes.) The

plot for optimal policies reveals one node near the center of the path that is used frequently as

a recharging stop (by approximately 40% of policies), even though other nodes are nearby, which

suggests that this particular node is important for optimal recharging policies along the studied

path. The higher frequencies for some of the nodes between Chicago and Cleveland are simply

due to the lower number of nodes within that region and do not highlight the importance of any

one node in specific. These types of observations can be important to policy makers to suggest

locations for building EV charging infrastructure.

Figure 6 Recharging stop frequencies in optimal and heuristic policies

The plots for the two heuristic methods also show one node as being significant – approximately

halfway between Buffalo and the New York/Massachusetts state border – although this one is
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different than the most frequent stopping location for optimal recharging policies. The portion of

the route between Chicago and Cleveland again has several important nodes, and thus the nodes in

regions without many other possible stopping locations are more likely to be stops in a recharging

policy regardless of how the policy is determined. Other nodes that happen to be important for

recharging policies obtained using one method may not be as important for policies created with

another method.

One way to use the stop frequencies for locating charging stations is to first locate charging

stations at the nodes with the greatest stop frequencies, and then distribute the remaining stations

so that they are approximately evenly spaced along the rest of the path. A sample recommendation

using this method is shown in Figure 7, where the stop frequencies for optimal policies are used. It

includes 31 charging stations with an average distance of 29 miles, minimum distance of 17 miles,

and maximum distance of 40 miles between adjacent stations. Placing stations based strictly on

the stop frequencies is not appropriate because regions with fewer nodes would tend to have more

charging stations than necessary, whereas the regions near major cities with high node densities

would have few to none. However, by locating the first few charging stations at the nodes with the

greatest stop frequencies, it becomes easier to place the remaining stations since the regions without

charging stations yet will tend to have higher node densities and therefore fewer restrictions on

where stations may be located.

Figure 7 Sample recommendation for locating 31 charging stations based on stop frequencies for optimal policies

The analysis performed in this section assumes that traffic volume is constant along the entire

route studied and that all drivers recharge their vehicles at the beginning of the route. More detailed

traffic data that captures drivers entering the route at different exits along the way and departing

before the end of the path would help to provide a more accurate picture of where charging stations

are most needed along the highway. Also, better parameter estimation would reduce some of the

noise present in the stop frequency plots and allow policy makers to more easily recognize the

charging station locations with the most potential.

6. Conclusions and future work

In this paper, we study the problem of finding an optimal recharging policy for an EV along a fixed

path. We first determine properties of optimal policies, and based on those properties, we design

methods for obtaining optimal recharging policies for general paths, paths with continuous charging
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capability, and paths with equidistant charging locations. We also develop two heuristics and

analyze the quality of their recharging policies, both theoretically and empirically for a designated

stretch of U.S. Interstate 90. We find that each heuristic performs well, yielding recharging policies

within 20% of optimal on average, with one of the heuristics producing policies within 20% of

optimal for all considered parameter sets.

An important aspect of our work is the inclusion of a realistic recharging model for electric vehi-

cles. While most of the literature on vehicle refueling policies has focused primarily on the limited

range of the vehicles, we show in this paper that the costs associated with battery overcharging can

significantly influence recharging decisions, and thus, they should be taken into consideration when

determining recharging policies for EVs. The simpler models of vehicle refueling used for conven-

tional gasoline-powered vehicles are not suitable for EVs and require major enhancements before

they can be used to improve our understanding of the range of influences that battery dynamics

have on EV recharging decisions.

Our current model considers recharging policies along a given route. A more detailed model

would simultaneously find a path within a network, as well as a recharging policy for that path in

order to minimize the total travel cost. In our future work, we plan to extend our current analysis

and results in order to design algorithms that also determine the best path for the vehicle to take.

Furthermore, we intend to integrate additional features into our model that capture such aspects

of EV recharging as the impacts of overcharging and temperature on battery storage capacity, the

ability to recover energy via regenerative braking, and time-of-use energy prices.
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