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Abstract

EXP-based algorithms are often used for exploration in non-stochastic bandit1

problems assuming rewards are bounded. Motivated by the recent advancements2

in reinforcement learning with rewards of any scale, we propose a new algorithm,3

namely EXP4.P, by modifying EXP4 and establish its regret upper bounds in4

both bounded and unbounded sub-Gaussian contextual bandits. The unbounded5

reward result also holds for a revised version of EXP3.P. Moreover, we provide6

a lower bound on regret that suggests no sublinear regret can be achieved given7

short time horizon. Unbounded rewards pose challenges as the regret cannot8

be limited by the number of trials, and choosing suboptimal arms may result in9

infinite regret. We also extend EXP4.P from bandit to reinforcement learning to10

incentivize exploration by multiple agents given black-box rewards. The resulting11

algorithm has been tested on hard-to-explore games and it shows an improvement12

on exploration compared to state-of-the-art.13

1 Introduction14

Multi-armed bandit (MAB) is to maximize cumulative reward of a player throughout a bandit game15

by choosing different arms at each time step. It is also equivalent to minimizing the regret defined16

as the difference between the best rewards that can be achieved and the actual reward gained by17

the player. Formally, given time horizon T , in time step t ≤ T the player chooses one arm at18

among K arms, receives rtat
among rewards rt = (rt1, r

t
2, . . . , r

t
K), and maximizes the total reward19 ∑T

t=1 r
t
at

or minimizes the regret. Traditionally, there are two classic versions of non-stochastic20

bandits: Adversarial and Contextual. For adversarial MAB, rewards of the K arms rt can be chosen21

arbitrarily by adversaries at step t. When the adversary is a context-dependent reward generator, it22

boils down to contextual bandits. Contextual bandit is a variant of MAB by adding context or state23

space S and a different regret definition. At time step t, the player has context st ∈ S and rewards rt24

follow f(µ(st)) where f is any distribution and µ(st) is the mean vector that depends on state st.25

Computationally efficient and with abundant theoretical analyses are the EXP-type MAB algorithms.26

Specifically, the regret of EXP3.P for adversarial bandit achieves optimality both in the expected and27

high probability sense. In EXP3.P, each arm has a trust coefficient (weight). The player samples each28

arm with probability being the sum of its normalized weights and a bias term, receives reward of the29

sampled arm and exponentially updates the weights based on the corresponding reward estimates.30

It achieves the regret of the order O(
√
T ) in a high probability sense. To incorporate the context31

information in contextual bandits, a variant of EXP-type algorithms is proposed as EXP4 [3]. In32

EXP4, there are any number of experts. Each expert has a sample rule over actions (arms) and a33

trust coefficient. The player samples according to the weighted average of experts’ sample rules and34

updates the weights respectively. Then the regret is defined by comparing the actual reward with the35

reward that can be achieved by the best expert instead of by the best arm. The expectation of regret is36

proven to be optimal for contextual bandit. Independently, [11] propose a modification of EXP4 that37
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achieves high probability guarantee, which, however, requires changes in the reward estimates. A38

high probability regret has not yet been studied in its original form of EXP4.39

Recently, contextual bandit has been further aligned with Reinforcement Learning (RL) where state40

and reward transitions follow a Markov Decision Process (MDP) represented by transition kernel41

P (st+1, r
t|at, st). A key challenge in RL is the trade-off between exploration and exploitation.42

Exploration is to encourage the player to try new arms in bandit or new actions in RL to understand43

the game better. It helps to plan for the future, but with the sacrifice of potentially lowering the current44

reward. Exploitation aims to exploit currently known states and arms to maximize the current reward,45

but it potentially prevents the player to gain more information to increase future reward. To maximize46

the cumulative reward, the player needs to learn the game by exploration, while guaranteeing current47

reward by exploitation.48

How to incentivize exploration in RL has been a main focus in RL. Since RL is built on bandits, it49

is natural to extend bandit techniques to RL and UCB is such a success. UCB [2] motivates count-50

based exploration [18] in RL and the subsequent Pseudo-Count exploration [4], though it is initially51

developed for stochastic bandits. Another line of work on RL exploration is based on deep learning52

techniques. Using deep neural networks to keep track of the Q-values by means of Q-networks in RL53

is called DQN [9]. This combination of deep learning and RL has shown great success. ϵ-greedy in54

[10] is a simple exploration technique based on DQN. Besides ϵ-greedy, intrinsic model exploration55

computes intrinsic rewards that directly measure and thereby incentivizing exploration when added to56

extrinsic (actual) rewards of RL, e.g. DORA [6] and [17]. Random Network Distillation (RND) [5]57

is a more recent suggestion relying on a fixed target network. A drawback of RND is its local focus58

without global exploration. EXP-type algorithms in contextual bandits work by integrating arbitrary59

experts and hence providing exploration possibilities for RL, which, however, has not yet been studied.60

Furthermore, the existing EXP4 or its variant cannot be directly adapted to RL. It is worth noting61

that EXP-type algorithms are optimal under the assumption that 0 ≤ rti ≤ 1 for any arm i and step t.62

The uniformly bounded assumption is crucial in the proof of regret bounds for existing EXP-type63

algorithms. It requires the rewards to be scalable with the knowledge of a uniform bound for all64

rewards in all states or context vectors. Nevertheless, reward in RL can be unbounded and unscalable65

in real-world scenarios, which violates the bounded assumption. Examples include navigation tasks,66

where the reward is unbounded for each step that brings the agent closer to the goal, and racing tasks,67

where the reward is the distance covered by the agent. The counterpart of bandit algorithms in the68

unbounded or scale-free case remained unexplored, unite the work herein and it necessitates a new69

algorithm based on EXP3.P and EXP4.70

In this paper, we are the first to propose a new algorithm, EXP4.P based on EXP4 without changing71

the reward estimates. We show its optimal regret holds with high probability and in expectation for72

contextual bandits with possibly unbounded (scale-free) rewards. The regret bounds for unbounded73

bandits studied herein are significantly different from prior works. Compared to the high probability74

version in [11], our algorithm only requires one parameter, is consistent with the reward estimate in75

EXP4 and EXP3.P, removes the reward assumption of [0, 1], and generalizes to the expected regret.76

The proof extension to the unbounded case is non-trivial since it requires several deep results from77

information theory and probability, by first establishing a high probability regret in the bounded case78

with exponential terms and then using the Randemacher complexity theory to capture the dynamics79

of arm selection in the unbounded case. Combining all these together is very technical and requires80

new ideas. As a by-product, the analysis can be applied to EXP3.P to deliver a similar result for81

bandits without expert advice. The upper bound for unbounded bandits requires T to be sufficiently82

large, i.e. unbounded rewards may lead to extremely large regret without enough exploration, which83

is computationally expensive in an RL setting. We herein provide a worst-case analysis implying no84

sublinear regret can be achieved below an instance-specific minimal T , by our brand new construction85

of instances. Precisely, we derive lower bounds of order Ω(T ) for certain fixed T and upper bounds86

of order O∗(
√
T ) for T being large enough. The question of bounds for any value of T remains open.87

Given the challenges of RL context where rewards are possibly unbounded or unrescalable which have88

not been addressed by existing methods, we combine the proposed scale-free EXP-type algorithms89

with deep RL. To this end, we extend the new EXP4.P to RL that allows for general experts by90

generalizing the concept of experts to be any RL algorithms. Here experts improve local policies91

with the underlying Markov process and exponential weights are assigned to the experts to produce a92

global optimal policy. This is the first RL algorithm using several experts enabling global exploration,93

where the overall performance is comparable to the best model even if we do not know which one94
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is the best beforehand, and thereby achieving model selections [8]. To address the issue of EXP4’s95

inefficiency with a large number of experts, we combine EXP4-RL with at least one state-of-the-art96

expert algorithm for improved efficiency and performance thus having only a few experts. Focusing97

on DQN, in the computational study we focus on two agents consisting of RND and ϵ-greedy DQN.98

We implement the EXP4-RL algorithm on hard-to-explore RL games Montezuma’s Revenge and99

Mountain Car and compare it with the benchmark RND [5]. The numerical results show that the100

algorithm gains more exploration than RND and it gains the ability of global exploration by avoiding101

local maxima of RND. Its total reward also increases with training. Overall, our algorithm improves102

exploration on the benchmark games.103

The main contributions are as follows. We introduce sub-Gaussian bandits with the unique aspect and104

challenge of unbounded and scale-free rewards both in contextual bandits and MAB when EXP-based105

algorithms are considered. We propose a new EXP4.P algorithm based on EXP4 and EXP3.P and106

analytically establish its optimal regret both in unbounded and bounded cases. Unbounded rewards107

and contextual setting pose non-trivial challenges in the analyses. We also provide the very first regret108

lower bound in such a case that indicates a threshold of T for sublinear regret, by constructing a novel109

family of Gaussian bandits. We also provide the very first extension of EXP4.P to RL exploration110

using multiple agents and show its superior performance on two hard-to-explore RL games.111

A literature review is provided in Section 2. Then in Section 3 we develop a new algorithm EXP4.P112

by modifying EXP4, and exhibit its regret bounds for contextual bandits and that of the EXP3.P113

algorithm for unbounded MAB, and lower bounds. Section 4 discusses the EXP4.P algorithm for RL114

exploration. Finally, in Section 5, we present numerical results related to the proposed algorithm.115

2 Literature Review116

The importance of exploration in RL is well understood. Count-based exploration in RL is such117

a success with the UCB technique. [18] develop Bellman value iteration V (s) = maxa R̂(s, a) +118

γE[V (s′)] + βN(s, a)−
1
2 , where N(s, a) is the number of visits to (s, a) for state s and action119

a. Value N(s, a)−
1
2 is positively correlated with curiosity of (s, a) and encourages exploration.120

This method is limited to tableau model-based MDP for small state spaces. While [4] introduce121

Pseudo-Count exploration for non-tableau MDP with density models, it is hard to model. However,122

UCB achieves optimality if bandits are stochastic and may suffer linear regret otherwise [21]. The123

work on CORRAL in [1] considers a group of bandit algorithms, but it requires a parameter search in124

the parameter space. In the RL setting, such updates are inefficient and do not fit the dynamic RL125

setting. EXP-type algorithms for non-stochastic bandits can generalize to RL with fewer assumptions126

about the statistics of rewards, which have not yet been studied. In conjunction with DQN, ϵ-greedy127

in [10] is a simple exploration technique using DQN. Besides ϵ-greedy, intrinsic model exploration128

computes intrinsic rewards by the accuracy of a model trained on experiences. Intrinsic rewards129

directly measure and incentivize exploration if added to actual rewards of RL, e.g. see [6, 17, 5].130

Random Network Distillation(RND) in [5] define it as e(s′, a) = ∥f̂(s′) − f(s′)∥22 where f̂ is a131

parametric model and f is a randomly initialized but fixed model. Here e(s′, a), independent of the132

transition, only depends on state s′ and drives RND to outperform others on Montezuma’s Revenge.133

None of these algorithms use several experts which is a significant departure from our work.134

Along the line of work on regret analyses focusing on EXP-type algorithms, [3] first introduce135

EXP3.P for bounded adversarial MAB and EXP4 for bounded contextual bandits. For the EXP3.P136

algorithm, an upper bound on regret of order O(
√
T ) holds with high probability and in expectation,137

which has no gap with the lower bound and hence it establishes that EXP3.P is optimal. EXP4 is138

optimal for contextual bandits in the sense that its expected regret is O(
√
T ). Then [11] extend139

it to a high probability counterpart by modifying the reward estimates. These regret bounds are140

invalid for bandits with unbounded support. Though [16] demonstrate a regret bound O(
√
T · γT )141

for noisy Gaussian process bandits, information gain γT is not well-defined in a noiseless setting.142

For noiseless Gaussian bandits, [7] show both the optimal lower and upper bounds on regret, but143

the regret definition is not consistent with [3]. We tackle these problems by establishing an upper144

bound of order O∗(
√
T ) on regret 1) with high probability for bounded contextual bandit and 2) for145

sub-Gaussian bandit both in expectation and with high probability.146
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3 Regret Bounds147

We first introduce notations. Let T be the time horizon. For bounded bandits, at step t, 0 < t ≤ T148

rewards rt can be chosen arbitrarily under the condition that −1 ≤ rt ≤ 1. For unbounded bandits,149

let rewards rt follow multi-variate distribution ft(µ,Σ) where µ = (µ1, µ2, . . . , µK) is the mean150

vector and Σ = (aij)i,j∈{1,...,K} is the covariance matrix of the K arms and ft is the density.151

We specify ft to be non-degenerate sub-Gaussian for analyses on light-tailed distributions where152

minj aj,j > 0. A random variable X is σ2-sub-Gaussian if for any t > 0, the tail probability satisfies153

P (|X| > t) ≤ Be−σ2t2 where B is a positive constant.154

The player receives reward yt = rtat
by pulling arm at. The regret is defined as RT =155

maxj
∑T

t=1 r
t
j −

∑T
t=1 yt in adversarial bandits that depends on realizations of rewards. For con-156

textual bandits with experts, besides the above let N be the number of experts and ct be the context157

information. We denote the reward of expert i by Gi =
∑T

t=1 zi(t) =
∑T

t=1 ξi(t)
Tx(t), where158

x(t) = rt and ξi(t) = (ξ1i (t), . . . , ξ
K
i (t)) is the probability vector of expert i. Then regret is defined159

as RT = maxi Gi −
∑T

t=1 yt, which is with respect to the best expert, rather than the best arm in160

MAB. This is reasonable since a uniform optimal arm is a special expert assigning probability 1 to the161

optimal arm throughout the game and experts can potentially perform better and admit higher rewards.162

This coincides with our generalization of EXP4.P to RL where the experts can be well-trained neural163

networks. We follow established definitions of pseudo regret R′
T = T ·maxk µk −

∑
t E[yt] and164 ∑T

t=1 maxi
∑K

j=1 ξ
j
i (t)µj −

∑
t E[yt] in adversarial and contextual bandits, respectively.165

3.1 Contextual Bandits and EXP4.P Algorithm166

For contextual bandits, [3] give the EXP4 algorithm and prove its expected regret to be optimal167

under the bounded assumption on rewards and under the assumption that a uniform expert is always168

included, where by uniform expert we refer to an expert that always assigns equal probability to each169

arm. Our goal is to extend EXP4 to RL where rewards are often unbounded, such as several games170

in OpenAI gym, for which the theoretical guarantee of EXP4 may be absent. To this end, herein171

we propose a new Algorithm, named EXP4.P, as a variant of EXP4. Its effectiveness is two-fold.172

First, we show that EXP4.P has an optimal regret with high probability in the bounded case and173

consequently, we claim that the regret of EXP4.P is still optimal given unbounded bandits. All the174

proof are in the Appendix under the aforementioned assumption on experts. Second, it is successfully175

extended to RL where it achieves computational improvements.176

3.1.1 EXP4.P Algorithm177

Algorithm 1 EXP4.P

Initialization: Weights wi(1) = exp ( αγ
3K

√
NT ), i ∈ {1, 2, . . . , N} for α > 0 and γ ∈ (0, 1);

for t = 1, 2, . . . , T do
Get probability vectors ξ1(t), . . . , ξN (t) of arms from experts where ξi(t) = (ξji (t))j ;

For any j = 1, 2, . . . ,K, set pj(t) = (1− γ)
∑N

i=1

wi(t) · ξji (t)∑N
j=1 wj(t)

+ γ
K ;

Choose it randomly according to the distribution p1(t), . . . , pK(t);
Receive reward rit(t) = xit(t);
For any j = 1, . . . ,K, set x̂j(t) =

rj(t)
pj(t)

· 1j=it ;
Set x̂(t) = (x̂j(t))j ;
For any i = 1, . . . , N , set

ẑi(t) = ξi(t)
T x̂(t) and wi(t+ 1) = wi(t) exp(

γ
3K (ẑi(t) +

α

( wi(t)∑N
j=1 wj(t)

+ γ
K )

√
NT

));

end for

Our proposed EXP4.P is shown as Algorithm 1. The main modifications compared to EXP4 lie in the178

update and the initialization of trust coefficients of experts as highlighted. The upper bound of the179

confidence interval of the reward estimate is added to the update rule for each expert, in the spirit of180

EXP3.P (see Algorithm 2) and removing the need of changing the reward estimate. However, this181

term and initialization of EXP4.P are quite different from that in EXP3.P for MAB.182
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3.1.2 Bounded Rewards183

Borrowing the ideas of [3], we claim EXP4.P has an optimal sublinear regret with high probability184

by first establishing two lemmas presented in Appendix. The main theorem is as follows. We assume185

that the expert family includes a uniform expert, which is also assumed in the analysis of EXP4 in [3].186

Theorem 1. Let 0 ≤ rt ≤ 1 for every t. For any fixed time horizon T > 0, for all K, N ≥ 2 and187

for any 1 > δ > 0, γ =
√

3K lnN
T ( 2N

3 +1)
≤ 1

2 , α = 2
√

K ln NT
δ , we have that with probability at least188

1− δ, RT ≤ 2

√
3KT

(
2N
3 + 1

)
lnN + 4K

√
KNT ln

(
NT
δ

)
+ 8NK ln

(
NT
δ

)
.189

Theorem 1 implies RT ≤ O∗(
√
T ). The regret bound does depend on N . In practice the number of190

experts is small compared to the time horizon and the independence among experts makes parallelism191

a possibility. Note that γ < 1
2 for large enough T . The proof of Theorem 1 essentially relies on the192

convergence of the reward estimators, similar to that in [3]. However, the objectives are different193

from [3], since our estimations and update of trust coefficients in EXP4.P are for experts, instead of194

EXP3.P for arms. This characterize the relationships among EXP4.P estimates and the actual value195

of experts’ rewards and the total rewards gained by EXP4.P and brings non-trivial challenges.196

3.1.3 Unbounded Rewards197

We proceed to show optimal regret bounds of EXP4.P for unbounded contextual bandit. Again, a198

uniform expert is assumed to be included in the expert family. Surprisingly, we report that the analysis199

can be adapted to the existing EXP3.P in next section, which leads to optimal regret in MAB under200

no bounded assumption which is also a new result.201

Theorem 2. For sub-Gaussian bandits, any time horizon T , for any 0 < η < 1, 0 < δ < 1202

and γ, α as in Theorem 1, with probability at least (1 − δ)(1 − η)T , EXP4.P has regret RT ≤203

4∆(η)
(
2

√
3KT

(
2N
3 + 1

)
lnN

)
+4∆(η)

(
4K

√
KNT ln

(
NT
δ

)
+8NK ln

(
NT
δ

))
where ∆(η)204

is determined by
∫∆

−∆
. . .

∫∆

−∆
f
(
x1, . . . , xK

)
dx1 . . . dxK = 1−η which yields ∆(η) of O( 1a log 1

η ).205

In the proof of Theorem 2, we first perform truncation of the rewards of sub-Gaussian bandits by206

dividing the rewards to a bounded part and unbounded tail. For the bounded part, we directly apply207

the upper bound on regret of EXP4.P presented in Theorem 1 and conclude with the regret upper208

bound of order O(∆(η)
√
T ). Since a sub-Gaussian distribution is a light-tailed distribution we can209

control the probability of the tail, i.e. the unbounded part, which leads to the overall result.210

The dependence of the bound on ∆ can be removed by considering large enough T as stated next.211

Theorem 3. For sub-Gaussian bandits, for any a > 2, 0 < δ < 1, and γ, α as in Theorem 1, EXP4.P212

has regret RT ≤ log(1/δ)O∗(
√
T ) with probability (1− δ) · (1− 1

Ta )
T .213

Note that the constant term in O∗(·) depends on a. The above theorems deal with RT ; an upper214

bound on pseudo regret or expected regret is established next. It is easy to verify by the Jensen’s215

inequality that R′
T ≤ E[RT ] and thus it suffices to obtain an upper bound on E[RT ].216

For bounded bandits, the upper bound for E[RT ] is of the same order as RT which follows by a217

simple argument. For sub-Gaussian bandits, establishing an upper bound on E[RT ] or R′
T based218

on RT requires more work. We show an upper bound on E[RT ] by using certain inequalities, limit219

theories, and Rademacher complexity. To this end, the main result reads as follows.220

Theorem 4. The regret of EXP4.P for sub-Gaussian bandits satisfies R′
T ≤ E [RT ] ≤ O∗(

√
T )221

under the assumptions stated in Theorem 3.222

3.2 MAB and EXP3.P Algorithm223

In this section, we establish upper bounds on regret in MAB given a high probability regret bound224

achieved by EXP3.P in [3]. We revisit EXP3.P and analyze its regret in unbounded scenarios in line225

with EXP4.P. Formally, we show that EXP3.P achieves regret of order O∗(
√
T ) in sub-Gaussian226

MAB, with respect to RT , E[RT ] and R′
T . The results are summarized as follows.227
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Theorem 5. For sub-Gaussian MAB, any T , for any 0 < η, δ < 1, γ = 2
√

3K lnK
5T , α = 2

√
ln NT

δ ,228

EXP3.P has regret RT ≤ 4∆(η) · (
√

KT log(KT
δ )+4

√
5
3KT logK+8 log(KT

δ )) with probability229

(1− δ)(1− η)T where ∆(η) = O( 1a log 1
η ), i.e.

∫∆

−∆
. . .

∫∆

−∆
f
(
x1, . . . , xK

)
dx1 . . . dxK = 1− η.230

To proof Theorem 5, we again do truncation. We apply the bounded result of EXP3.P in [3] and231

achieve a regret upper bound of order O(∆(η)
√
T ). The proof is similar to the proof of Theorem 2232

for EXP4.P.233

Similarly, we remove the dependence of the bound on ∆ in Theorem 6 and claim a bound on the234

expected regret for sufficiently large T in Theorem 7.

Algorithm 2 EXP3.P

Initialization: Weights wi(1) = exp (αγ3

√
T
K ), i ∈ {1, 2, . . . ,K} for α > 0 and γ ∈ (0, 1);

for t = 1, 2, . . . , T do
For any i = 1, 2, . . . ,K, set pi(t) = (1− γ) wi(t)∑K

j=1 wj(t)
+ γ

K ;

Choose it randomly according to the distribution p1(t), . . . , pK(t);
Receive reward rit(t);
For 1 ≤ j ≤ K, set x̂j(t) =

rj(t)
pj(t)

· 1j=it and wj(t+ 1) = wj(t) exp
γ
3K (x̂j(t) +

α
pj(t)

√
KT

);
end for

235 Theorem 6. For sub-Gaussian MAB, for a > 2, 0 < δ < 1, and γ, α as in Theorem 5, EXP3.P has236

regret RT ≤ log(1/δ)O∗(
√
T ) with probability (1− δ) · (1− 1

Ta )
T .237

Theorem 7. The regret of EXP3.P in sub-Gaussian MAB satisfies R′
T ≤ E [RT ] ≤ O∗(

√
T ) with238

the same assumptions as in Theorem 6.239

3.3 Lower Bounds on Regret240

Algorithms can suffer extremely large regret without enough exploration when playing unbounded241

bandits given small T . To argue that our bounds on regret are not loose, we derive a lower bound on242

the regret for sub-Gaussian bandits that essentially suggests that no sublinear regret can be achieved243

if T is less than an instance-dependent bound. The main technique is to construct instances that have244

certain regret, no matter what strategies are deployed. We need the following assumption.245

Assumption 1 There are two types of arms with general K with one type being superior (S is246

the set of superior arms) and the other being inferior (I is the set of inferior arms). Let 1 − q, q247

be the proportions of the superior and inferior arms, respectively which is known to the adversary248

and clearly 0 ≤ q ≤ 1. The arms in S are indistinguishable and so are those in I . The first pull249

of the player has two steps. First the player selects an inferior or superior set of arms based on250

P (S) = 1 − q, P (I) = q and once a set is selected, the corresponding reward of an arm from the251

selected set is received.252

An interesting special case of Assumption 1 is the case of two arms and q = 1/2. In this case, the253

player has no prior knowledge and in the first pull chooses an arm uniformly at random.254

The lower bound is defined as RL(T ) = inf supR′
T , where, first, inf is taken among all the strategies255

and then sup is among all Gaussian MAB. The following is the main result for lower bounds based256

on inferior arms being distributed as N (0, 1) and superior as N (µ, 1) with µ > 0.257

Theorem 8. In Gaussian MAB under Assumption 1, for any q ≥ 1/3 we have RL(T ) ≥ (q −258

ϵ) · µ · T , where µ has to satisfy G(q, µ) < q with ϵ and T determined by G(q, µ) < ϵ < q, T ≤259

ϵ−G(q,µ)

(1−q)·
∫ ∣∣∣∣e− x2

2 −e−
(x−µ)2

2

∣∣∣∣ + 2 where G(q, µ) is max{
∫
|qe− x2

2 − (1− q)e−
(x−µ)2

2 |dx,260

∫
|(1− q)e−

x2

2 − qe−
(x−µ)2

2 |dx}.261

To prove Theorem 8, we construct a special subset of Gaussian MAB with equal variances and zero262

covariances. On these instances we find a unique way to explicitly represent any policy. This builds a263

connection between abstract policies and this concrete mathematical representation. Then we show264
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that pseudo regret R′
T must be greater than certain values no matter what policies are deployed, which265

indicates a regret lower bound on this subset of instances.266

Feasibility of the aforementioned conditions is established in the following theorem.267

Theorem 9. In Gaussian MAB under Assumption 1, for any q ≥ 1/3, there exist µ and ϵ, ϵ < µ such268

that RL(T ) ≥ (q − ϵ) · µ · T .269

The following result with two arms and equal probability in the first pull deals with general MAB. It270

shows that for any fixed µ > 0 there is a minimum T and instances of MAB so that no algorithm can271

achieve sublinear regret. Table 1 (see Appendix) exhibits how the threshold of T varies with µ.272

Theorem 10. For general MAB under Assumption 1 with K = 2, q = 1/2, we have that RL(T ) ≥273
T ·µ
4 holds for any distributions f0 for the arms in I and f1 for the arms in S with

∫
|f1 − f0| > 0274

(possibly with unbounded support), for any µ > 0 and T satisfying T ≤ 1
2·
∫
|f0−f1| + 1.275

4 EXP4.P Algorithm for RL276

EXP4 has shown effectiveness in contextual bandits with statistical validity. Therefore, in this section,277

we extend EXP4.P to RL in Algorithm 3 where rewards are assumed to be nonnegative.278

The player has experts that are represented by deep Q-networks trained by RL algorithms (there279

is a one to one correspondence between the experts and Q-networks). Each expert also has a trust280

coefficient. Trust coefficients are also updated exponentially based on the reward estimates as in281

EXP4.P. At each step of one episode, the player samples an expert (Q-network) with probability that282

is proportional to the weighted average of expert’s trust coefficients. Then ϵ-greedy DQN is applied283

on the chosen Q-network. Here different from EXP4.P, the player needs to store all the interaction284

tuples in the experience buffer since RL is a MDP. After one episode, the player trains all Q-networks285

with the experience buffer and uses the trained networks as experts for the next episode. The basic

Algorithm 3 EXP4-RL

Initialization: Trust coefficients wk = 1 for any k ∈ {1, . . . , E}, E = number of experts (Q-
networks), K = number of actions, ∆, ϵ, η > 0 and temperature z, τ > 0, nr = −∞ (an upper
bound on reward);
while True do

Initialize episode by setting s0
for i = 1, 2, . . . , T (length of episode) do

Observe state si;
Let probability of Qk-network be ρk = (1− η) wk∑E

j=1 wj
+ η

E ;

Sample network k̄ according to {ρk}k;
For Qk̄-network, use ϵ-greedy to sample an action: a∗ = argmaxa Qk̄(si, a), j ∈
{1, 2, . . . ,K}, πj = (1− ϵ) · 1j=a∗ + ϵ

K−1 · 1j ̸=a∗ ;
Sample action ai based on π;
Interact with the environment to receive reward ri and next state si+1;
nr = max{ri, nr};
Update the trust coefficient wk of each Qk-network as follows: Pk = ϵ-greedy(Qk), x̂kj =

1− 1j=a∗

Pkj+∆ (1− ri
nr

),∀j, yk = E[x̂kj ], wk = wk · e
yk
z ;

Store (si, ai, ri, si+1) in experience replay buffer B;
end for
Update each expert’s Qk-network from buffer B

end while
286 idea is the same as in EXP4.P by using the experts that give advice vectors with deep Q-networks. It287

is a combination of deep neural networks with EXP4.P updates. From a different point of view, we288

can also view it as an ensemble in classification [20], by treating Q-networks as ensembles in RL.289

While general experts can be used, these are natural in a DQN framework. In our implementation290

and experiments we use two experts, thus E = 2 with two Q-networks. The first one is based on291

RND [5] while the second one is a simple DQN. To this end, in the algorithm before storing to the292

buffer, we also record cir = ||f̂(si) − f(si)||2, the RND intrinsic reward as in [5]. This value is293

then added to the 4-tuple pushed to B. When updating Q1 corresponding to RND at the end of an294
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iteration in the algorithm, by using rj + cjr we modify the Q1-network and by using cjr an update295

to f̂ is executed. Network Q2 pertaining to ϵ-greedy is updated directly by using rj . Intuitively,296

Algorithm 3 circumvents RND’s drawback with the total exploration guided by two experts with297

EXP4.P updated trust coefficients. When the RND expert drives high exploration, its trust coefficient298

leads to a high total exploration. When it has low exploration, the second expert DQN should have299

a high one and it incentivizes the total exploration accordingly. Trust coefficients are updated by300

reward estimates iteratively as in EXP4.P, so they keep track of the long-term performance of experts301

and then guide the total exploration globally. These dynamics of EXP4.P combined with intrinsic302

rewards guarantee global exploration. The experimental results exhibited in the next section verify303

this intuition regarding exploration behind Algorithm 3.304

We point out that potentially more general RL algorithms based on Q-factors can be used, e.g., boost-305

rapped DQN [13], random prioritized DQN [12] or adaptive ϵ-greedy VDBE [19] are a possibility.306

Furthermore, experts in EXP4 can even be policy networks trained by PPO [15] instead of DQN for307

exploration. A recommendation is to have a good enough expert and a small number of experts.308

5 Computational Study309

As a numerical demonstration of the superior performance and exploration incentive of Algorithm 3,310

we show the improvements on baselines on two hard-to-explore RL games, Mountain Car and311

Montezuma’s Revenge. More precisely, we present that the real reward on Mountain Car improves312

significantly by Algorithm 3 in Section 5.1. Then we implement Algorithm 3 on Montezuma’s313

Revenge and show the growing and remarkable improvement of exploration in Section 5.2. Intrinsic314

reward cir = ||f̂(si)− f(si)||2 given by intrinsic model f̂ represents the exploration of RND in [5]315

as introduced in Sections 2 and 4. We use the same criterion for evaluating exploration performance316

of our algorithm and RND herein. RND incentivizes local exploration with the single step intrinsic317

reward but with the absence of global exploration.318

5.1 Mountain Car319

In this part, we summarize the experimental results of Algorithm 3 on Mountain Car, a classical320

control RL game. This game has very sparse positive rewards, which brings the necessity and321

hardness of exploration. Blog post [14] shows that RND based on DQN improves the performance of322

traditional DQN, since RND has intrinsic reward to incentivize exploration. We use RND on DQN323

from [14] as the baseline and show the real reward improvement of Algorithm 3, which supports the324

intuition and superiority of the algorithm.325

The comparison between Algorithm 3 and RND is presented in Figure 1. Here the x-axis is the326

epoch number and the y-axis is the cumulative reward of that epoch. Figure 1a shows the raw327

data comparison between EXP4-RL and RND. We observe that though at first RND has several328

spikes exceeding those of EXP4-RL, EXP4-RL has much higher rewards than RND after 300 epochs.329

Overall, the relative difference of areas under the curve (AUC) is 4.9% for EXP4-RL over RND,330

which indicates the significant improvement of our algorithm. This improvement is better illustrated331

in Figure 1b with the smoothed reward values. Here there is a notable difference between EXP4-RL332

and RND. Note that the maximum reward hit by EXP4-RL is −86 and the one by RND is −118,333

which additionally demonstrates our improvement on RND.334

We conclude that Algorithm 3 performs better than the RND baseline and that the improvement335

increases at the later training stage. Exploration brought by Algorithm 3 gains real reward on this336

hard-to-explore Mountain Car, compared to the RND counterpart (without the DQN expert). The337

power of our algorithm can be enhanced by adopting more complex experts, not limited to only DQN.338

5.2 Montezuma’s Revenge and Pure exploration setting339

In this section, we show the experimental details of Algorithm 3 on Montezuma’s Revenge, another340

notoriously hard-to-explore RL game. The benchmark on Montezuma’s Revenge is RND based on341

DQN which achieves a reward of zero in our environment (the PPO algorithm reported in [5] has342

reward 8,000 with many more computing resources; we ran the PPO-based RND with 10 parallel343

environments and 800 epochs to observe that the reward is also 0), which indicates that DQN has344

room for improvement regarding exploration.345

To this end, we first implement the DQN-version RND (called simply RND hereafter) on Montezuma’s346

Revenge as our benchmark by replacing the PPO with DQN. Then we implement Algorithm 3 with347
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(a) original (b) smooth

Figure 1: The performance of Algorithm 3
and RND measured by the epoch-wise re-
ward on Mountain Car

(a) small (b) medium (c) large

Figure 2: The performance of Algorithm 3 and RND measured by
intrinsic reward without parallel environments with three different
burn-in periods

(a) Q-network losses with
0.25 update

(b) Intrinsic reward after
smoothing with 0.25 update

(c) Intrinsic reward after
smoothing with 0.125

Figure 3: The performance of Algorithm 3 and RND with 10 parallel environments and with RND update
probability 0.25 and 0.125, measured by loss and intrinsic reward.
two experts as aforementioned. Our computing environment allows at most 10 parallel environments.348

In subsequent figures the x-axis always corresponds to the number of epochs. RND update probability349

is the proportion of experience that are used for training the intrinsic model f̂ [5].350

A comparison between Algorithm 3 (EXP4-RL) and RND without parallel environments (the update351

probability is 100% since it is a single environment) is shown in Figure 2 with the emphasis on352

exploration by means of the intrinsic reward. We use 3 different numbers of burn-in periods (58,353

68, 167 burn-in epochs) to remove the initial training steps, which is common in Gibbs sampling.354

Overall EXP4-RL outperforms RND with many significant spikes in the intrinsic rewards. The larger355

the number of burn-in periods is, the more significant is the dominance of EXP4-RL over RND.356

EXP4-RL has much higher exploration than RND at some epochs and stays close to RND at other357

epochs. At some epochs, EXP4-RL even has 6 times higher exploration. The relative difference in358

the areas under the curves are 6.9%, 17.0%, 146.0%, respectively, which quantifies the much better359

performance of EXP4-RL.360

We next compare EXP4-RL and RND with 10 parallel environments and different RND update361

probabilities in Figure 3. The experiences are generated by the 10 parallel environments.362

Figure 3a shows that both experts in EXP4-RL are learning with decreasing losses of their Q-networks.363

The drop is steeper for the RND expert but it starts with a higher loss. With RND update probability364

0.25 in Figure 3b we observe that EXP4-RL and RND are very close when RND exhibits high365

exploration. When RND is at its local minima, EXP4-RL outperforms it. Usually these local minima366

are driven by sticking to local maxima and then training the model intensively at local maxima,367

typical of the RND local exploration behavior. EXP4-RL improves on RND as training progresses,368

e.g. the improvement after 550 epochs is higher than the one between epochs 250 and 550. In terms369

for AUC, this is expressed by 1.6% and 3.5%, respectively. Overall, EXP4-RL improves RND local370

minima of exploration, keeps high exploration of RND and induces a smoother global exploration.371

With the update probability of 0.125 in Figure 3c, EXP4-RL almost always outperforms RND with a372

notable difference. The improvement also increases with epochs and is dramatically larger at RND’s373

local minima. These local minima appear more frequently in training of RND, so our improvement374

is more significant as well as crucial. The relative AUC improvement is 49.4%. The excellent375

performance in Figure 3c additionally shows that EXP4-RL improves RND with global exploration376

by improving local minima of RND or not staying at local maxima.377

Overall, with either 0.25 or 0.125, EXP4-RL incentivizes global exploration on RND by not getting378

stuck in local exploration maxima and outperforms RND exploration aggressively. With 0.125379

the improvement with respect to RND is more significant and steady. This experimental evidence380

verifies our intuition behind EXP4-RL and provides excellent support for it. With experts being more381

advanced RL exploration algorithms, e.g. DORA, EXP4-RL can bring additional possibilities.382
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