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Abstract
Feature acquisition algorithms address the problem1

of acquiring informative features while balancing2

the costs of acquisition to improve the learning per-3

formances of ML models. Previous approaches4

have focused on calculating the expected utility5

values of features to determine the acquisition se-6

quences. Other approaches formulated the problem7

as a Markov Decision Process (MDP) and applied8

reinforcement learning based algorithms. We focus9

on 1) formulating the feature acquisition problem10

as a MDP and applying Monte Carlo Tree Search,11

2) calculating the intermediary rewards for each ac-12

quisition step based on model improvements and13

acquisition costs and 3) simultaneously optimiz-14

ing model improvement and acquisition costs with15

multi-objective Monte Carlo Tree Search. With16

Proximal Policy Optimization and Deep Q-Network17

algorithms as benchmark, we show the effectiveness18

of our proposed approach with experimental study.19

1 Introduction20

Many machine-learning algorithms work with the assump-21

tion that all features have been observed and available during22

training and testing times or the missing data are disregarded23

as unacquired. Feature acquisition, a process in which fur-24

ther relevant data are acquired at variable costs, addresses25

this assumption to more closely align with some real-world26

applications [Huang et al., 2018]. For medical diagnostic27

tasks, from the basis of incomplete features, doctors sequen-28

tially obtain additional test results until they obtain sufficient29

information to make adequate diagnoses of the patients. Deter-30

mining which features to acquire is dependent on the previous31

diagnostic observations and the sequence at which the fea-32

tures are obtained can vary from patient to patient. Although33

accurate diagnoses are more likely with additional features,34

acquiring them incurs variable costs and is balanced with the35

improvement in performance [Melville et al., 2004].36

Previous studies on the feature acquisition problem address37

the trade-off between acquisition costs and performance im-38

provement and the sequential decision making process, and39

are categorized into non-reinforcement learning and reinforce-40

ment learning (RL) approaches. Non-RL approaches focus41

on selecting the most informative features to acquire based 42

on their utility values. These methods, [Melville et al., 2004], 43

[desJardins et al., 2010], and [Huang et al., 2018], estimate 44

the expected utility of a feature for improving the model per- 45

formance and acquire the feature with maximum expected 46

utility. Although these methods provide a framework for fea- 47

ture acquisition based on utility values, they focus on subsets 48

of features to acquire at a time, do not consider acquisition 49

costs, or treat the model performance and acquisition costs 50

as an aggregated single objective. RL approaches, [Contardo 51

et al., 2016], [Shim et al., 2018], and [Li and Oliva, 2021], 52

formulate the feature acquisition problem as a Markov deci- 53

sion process (MDP), where the state is the set of currently 54

acquired features and the action is the acquisition of the next 55

feature, and learn the best feature acquisition policy. For each 56

acquisition step, the acquisition cost is incurred and defined as 57

the reward for the action. Prediction error is calculated when 58

the episode ends or the agent decides to stop the acquisition 59

process. Additionally, the additive constraint of the acquisition 60

costs to the rewards also necessitates further fine-tuning of a 61

regularization parameter. 62

Monte Carlo Tree Search, [Kocsis and Szepesvári, 2006], 63

for feature acquisition has the advantage over other RL al- 64

gorithms in the fact that the reward (prediction) is obtained 65

only at the end of an episode. Our Monte Carlo Tree Search 66

(MCTS) approach also considers intermediary rewards for 67

each acquisition step. We model the reward for each feature ac- 68

quisition action as the division of the classification prediction 69

probability with the feature being acquired by the cumulative 70

incurred acquisition costs. The cumulative incurred acquisi- 71

tion costs are normalized by the cost of all features. 72

We also propose the trade-off between acquisition costs and 73

model performance as a multi-objective optimization (MO) 74

problem. In MO-MCTS, we model the costs and classifica- 75

tion prediction probabilities as two conflicting objectives to 76

be optimized simultaneously. Previous studies have applied 77

the RL algorithms on the additive scalar aggregation of the 78

two objectives. The two policies may be incomparable and the 79

Pareto optimal set of solutions need to be found [Wang and 80

Sebag, 2012]. We modify the algorithm presented in [Wang 81

and Sebag, 2012] to find the Pareto optimal solution for each 82

feature acquisition step and incorporate it within MCTS. 83

In comparison to the Proximal Policy Optimization, [Schul- 84

man et al., 2017], and Deep Q-Network, [Mnih et al., 2015], 85



algorithms, our Monte Carlo Tree Search approach shows per-86

formance improvements in all the data sets we considered,87

with the relative improvement in the range of 1.2% to 25.1%.88

The multi-objective Monte Carlo Tree Search implementation89

shows an advantage in tight budget situations, as it leads to90

more variable feature acquisition sequences and can thus sat-91

isfy different cost budgets and confidence thresholds.92

Our main contributions in this work are as follows.93

• We propose to apply Monte Carlo Tree Search (MCTS)94

for the first time to the feature acquisition problem.95

• We apply multi-objective MCTS to optimize feature ac-96

quisition costs and classification prediction probabilities97

simultaneously.98

• We show the advantages of our proposed approaches99

on three medical data sets and the MNIST data set in100

comparison to two reinforcement learning approaches,101

Proximal Policy Optimization (PPO) [Schulman et al.,102

2017] and Deep Q-Network (DQN) [Mnih et al., 2015]).103

Related works are reviewed in Section 2. Section 3 presents104

our approaches in detail. Experimental setup and results are105

presented in Section 4.106

2 Related Works107

2.1 Feature Acquisition108

Previous non-RL approaches address the feature acquisition109

problem from the expected utility of an unacquired feature.110

[Melville et al., 2004] quantifies an Uncertainty Score for a111

feature, which is defined as the absolute difference between112

the estimated class probabilities of the two most likely classes113

when trained with the feature. [desJardins et al., 2010] cal-114

culates a Confidence Score for a subset of features based on115

an ensemble of classifiers. [Huang et al., 2018] incorporates116

an iterative supervised matrix completion algorithm with the117

variance of a feature after the iterations as its utility. [Melville118

et al., 2004] does not consider acquisition costs, but others119

incorporate them by first sorting the unacquired features by120

costs, [desJardins et al., 2010], or constructing an objective121

function with the acquisition costs and applying gradient de-122

scent, [Huang et al., 2018]. [Contardo et al., 2016] applies123

PPO to the policy network. Similarly, [Shim et al., 2018] also124

considers the DQN to model the feature acquisition policy.125

[Li and Oliva, 2021] uses a pretrained surrogate model to esti-126

mate both the state transitions and the prediction in a unified127

model in which the intermediate prediction errors based on128

information gain are also calculated. The classification errors129

and acquisition costs are additively aggregated into a single130

objective function in these RL approaches. With the excep-131

tion of [Li and Oliva, 2021], prediction errors are also only132

calculated at the end of an episode.133

2.2 Monte Carlo Tree Search134

By applying the Upper Confidence Bounds (UCB) bandit algo-135

rithm, [Auer et al., 2002], MCTS iteratively searches the state136

space while balancing the exploration of suboptimal actions137

and exploitation of optimal actions [Kocsis and Szepesvári,138

2006]. AlphaGo and its variants also utilize a neural network139

in conjunction with MCTS. This network outputs a vector of140

move probabilities and a scalar value estimation from the posi- 141

tion state s and is used as both policy and value networks. The 142

network is then used to guide the simulations and is iteratively 143

trained using the results from self-play [Silver et al., 2017]. In 144

our approach, we consider the default uniform random policy 145

for the simulations and similarly consider iteratively training 146

the acquisition policy based on the simulations. 147

2.3 Multi-objective Monte Carlo Tree Search 148

For multi-objective reinforcement learning problems, previous 149

approaches have focused on optimization based on the total 150

order of the solutions and aggregation of the vectorial objec- 151

tives into a scalar objective function. Similar to the previous 152

RL approaches, weighted summation of the different objec- 153

tives has been a popular choice [Wang and Sebag, 2012]. For 154

conflicting objectives, this strategy does not lead to an optimal 155

policy, as there exists a set of optimal solutions ordered along 156

the Pareto Front [Wang and Sebag, 2012]. [Wang and Sebag, 157

2012] proposes a hypervolume indicator based scalarization 158

scheme, where the rewards maximizing the indicator belong 159

to the Pareto Front [Fleischer, 2003]. [Painter et al., 2020] pro- 160

vides a linear transformation scheme to achieve scalarization. 161

In our approach, we closely follow the algorithm in [Wang 162

and Sebag, 2012]. 163

3 Feature Acquisition using Monte Carlo Tree 164

Search 165

3.1 Problem Statement 166

Consider a predictive task with feature vector X ∈ Rd and 167

class y. For C ∈ {1, · · · , d}, we denote vector XC = 168

(Xi)i∈C . Starting from an empty set of features, we perform 169

a sequential feature acquisition process. We address the case 170

where we obtain complete information with all the features 171

acquired for their ground-truth values. The aim of the process 172

is to obtain the sequences of feature acquisition steps that max- 173

imize the task performance while minimizing the acquisition 174

costs. 175

We formulate the problem as a Markov decision process 176

st = XOt ,

at ∈ At = {1, · · · , d} \Ot,

rt =
P (ŷ|XOt∪{at})

t∑
i=0

Ci

Ctotal

.

We consider episodic solutions from the empty set of features 177

(t = 0) to the complete set of features (t = d). At a given 178

time, the agent is in state st and selects a feature to acquire 179

(at) according to its policy. The agent then receives the reward 180

rt from the environment and transitions to the state st+1 = 181

XOt∪{at}. The goal of the agent is to maximize the cumulative 182

rewards. 183

State. The state at time t, st, is the XOt
, the values of the 184

already acquired feature subset Ot ⊆ {1, · · · , d}. 185

Action. The action space at time t is the unacquired feature 186

set At. The action at time t is then the acquisition step for a 187

candidate feature with its value Xat
. 188



Reward. The reward at all times of the episode is defined189

as the fraction of the classification prediction probability and190

the normalized incurred acquisition costs up to time t. The191

prediction is made with the feature vector consisting of the192

acquired feature subset XOt∪{at}. The incurred acquisition193

costs
∑
i

Ci is normalized by the total cost Ctotal of all features.194

3.2 Monte Carlo Tree Search for Feature195

Acquisition196

We present the Upper Confidence Tree MCTS algorithm with197

our approach-specific implementation details. Starting from198

an empty feature state as the root node, MCTS explores and199

builds a search tree with N simulations. Each simulation200

consists of three phases [Świechowski et al., 2021].201

Selection. Starting from the root node, a feature is selected202

iteratively until arriving at a leaf node. The set Ast of admis-203

sible features in node/state st defines the child nodes of st.204

Feature selection according to the maximization of the Upper205

Confidence Bound, Auer [Auer et al., 2002], reads206

a∗t = argmax
at∈Ast

Q(st, at) + c
√

ln(nst)/nst,at , (1)

where Q(st, at) is the average cumulative reward of feature207

at, nst is the visit count of node st, and nst,at is the number208

of times at has been selected in node st. The exploration and209

exploitation trade-off is controlled by the hyperparameter c,210

which is optimized as described in a next section.211

Expansion. Once a leaf node has been selected, all the ab-212

sent child nodes of the leaf node are added to the tree.213

Simulation. Starting from the leaf node, a feature is selected214

uniformly at random until the terminal state is reached. Differ-215

ently from previous studies in AlphaGo and its variants, we216

utilize the uniform random policy as our default simulation217

policy. As defined in the previous section, we compute the218

reward for each feature and calculate the cumulative reward.219

Backpropagation. During backpropagation, Q(st, at),220

nst,at
, and nst are updated221

rst,at
=

d∑
t′=t

rt′ ,

nst,at = nst,at + 1,

nst = nst + 1,

Q(st, at) =
rst,at

nst,at

.

After N simulations and updated statistics using backpropaga-222

tion, the feature acquisition action is defined as223

a∗t = argmax
at∈Ast

Q(st, at). (2)

The next state is then obtained according to the acquisition224

step and N further simulations are conducted with the next225

state as the new root node. This process continues until the226

terminal, complete feature state is reached.227

We have two variants of the MCTS algorithm. In the stan-228

dalone implementation, we conduct MCTS training by con-229

structing a search tree for each sample in the training data set.230

The visited states and their Q values are then stored for the 231

entire training data set. This stored set is then used to calculate 232

the next feature probabilities for each visited state. The next 233

feature probabilities are calculated with the cumulative Q val- 234

ues for each admissible feature. We then train a policy network 235

with the visited states and their next feature probabilities. 236

In the integrated implementation, we embed a policy net- 237

work in the training phase and periodically train the network 238

during MCTS training. After initializing with random weights, 239

the network is then used to guide the feature acquisition step. 240

The network is periodically trained with visited states and their 241

next feature probabilities. We also optimize the network train 242

frequency. 243

The pseudocodes for our integrated implementation is 244

shown in Algorithm 1. We highlight the problem specific 245

details in embedding the policy network and its training on the 246

visited states and their next feature probabilities. 247

3.3 Feature Acquisition using Multi-objective 248

Monte Carlo Tree Search 249

In this section, we present the multi-objective-MCTS algo- 250

rithm in [Wang and Sebag, 2012] with our modifications in 251

the reward formulation and scalarization, and Pareto Front 252

approximation. 253

Vectorial Rewards. We define the reward for all timesteps 254

in an episode as the vector of negative normalized incurred 255

acquisition costs and classification probability. During back- 256

propagation, the rewards are updated component-wise as 257

rc =

d∑
t′=t

rt′,c,

rp =

d∑
t′=t

rt′,p,

where rt′,c and rt′,p are the negative normalized incurred costs 258

and classification probabilities, respectively. 259

Pareto Front Approximation. In [Wang and Sebag, 2012], 260

an approximation to the Pareto Front is maintained during 261

training, which we use in the UCB feature selection and fea- 262

ture acquisition policy. When new nodes are added during the 263

expansion and simulation phases, the Pareto Front approxima- 264

tion is updated with the vectors of normalized incurred costs 265

and classification probabilities of the added nodes. We then 266

determine the non-dominated set and denote it as P. We use 267

P as the estimated Pareto Front for the data set. The pseu- 268

docode with the modifed expansion and simulation is shown 269

in Algorithm 2. 270

Reward Scalarization. We calculate the hypervolume indi- 271

cator as the reward scalarization method 272

HV (r; z) = µ (r; z) ,

which is defined as the Lebesgue measure with respect to a 273

reference point z [Fleischer, 2003]. Vector z is set at (−1.0, 0) 274

so that it is dominated by every r ∈ P ∪ {r}. Then, the 275



Algorithm 1 Single-objective Monte Carlo Tree Search (Integrated)
Input: Iteration number I , initial policy network weights θ, policy network update frequency f
Output: MCTS trained policy network weights θ

1: Initialize policy network ϕ with θ
2: Initialize list L of visited nodes and their Q and visit counts

N
3: i← 0
4: for sample = 1,2,. . .,m do
5: i← i+ 1
6: Initialize state s0
7: Create root node v0 with s0
8: Q(v0): reward of v0
9: N(v0): visit count of v0

10: C(v0): children of v0
11: a(v0): action of v0
12: while v0 not terminal do
13: MCTS(v0,I)
14: a← ϕθ(s0)
15: v0 ← makeChild(v0, a)
16: end while
17: Append Q(v) and N(v) for v in MCTS to L
18: if f % i == 0 then
19: S, A← preprocess(L)
20: Train ϕθ on S and A
21: end if
22: end for

23: function preprocess(L)
Input: List L of visited nodes and their Q and N
Output: Visited nodes S and their next action probabilities
A

24: Make each node v in L to be distinct with addition for Q(v)
and N(v) for duplicates

25: A =
#»
0

26: S = v in L
27: for v in L do
28: for action in A do
29: Find child nodes of v in L
30: for node in child nodes do
31: A(action) += Q(node)/N(node)
32: end for
33: end for
34: end for
35: Normalize A with division by max(A)
36: return S, A

modified Upper Confidence Bounds selection is276

Q(st, at) =
HV (P ∪ {r}; z)

nst,at

,

a∗t = argmax
at∈Ast

Q(st, at) + c
√

ln(nst)/nst,at .

For the acquisition policy, the next state is obtained with the277

selected acquisition feature and serves as the next root node.278

We also embed the policy network in the training phase in the279

integrated implementation.280

4 Experiments281

4.1 Data Sets and Benchmark Algorithms282

We use four data sets. (a) Heart Failure (HF) [Chicco and283

Jurman, 2020]: This data set contains medical records of 299284

patients who had heart failure with 13 clinical features and285

2 classes (boolean for death event). (b) Coronary Heart286

Disease (CHD) [FHS, 2022]: The Framingham Heart Disease287

data set contains medical records of 4,238 patients with 16288

risk factors for coronary heart disease as features and the ten289

year presence of CHD as the class. (c) PhysioNet [Goldberger290

et al., 2000]: The data set from the PhysioNet/CinC Challenge291

2012 consists of medical records of 4,000 ICU stay patients.292

The data set has 39 clinical features with 2 classes for the293

death event. (d) MNIST [Deng, 2012]: Each 4× 4 block is294

considered as a feature with 70,000 samples, 49 features, and295

10 classes.296

For the three medical datasets, acquisition cost is set at 1 297

and 7 for categorical and continuous features, respectively. 298

These costs are determined by the costs of the medical tests 299

required and comparing them to a previous data set where 300

the relative costs of similar tests were quantified [Cestnik et 301

al., 1988]. For the MNIST data set, we also define blocks of 302

4× 4 pixels as features. For each block, the acquisition cost is 303

defined as 16 with 1 for each pixel. 304

For the experiments, we create 4 splits and use 3 seeds for 305

the total of 3 experimental runs. For each data set, the 80/20 306

split is used for the training and test samples. 307

We use Proximal Policy Optimization (PPO) and Deep-Q 308

Network (DQN) as the baseline algorithms to compare to our 309

approaches. For PPO, we also incorporate two variants of 310

the algorithm: PPO-PG and PPO-AC with the difference in 311

network update frequencies to reflect vanilla policy gradient 312

and actor-critic methods, respectively. 313

4.2 Setup and Evaluation Metrics 314

For evaluation of the feature acquisition algorithms, we plot 315

the F1 scores against the incurred acquisition costs. We then 316

calculate the areas under the curves (AUCs) of the resulting F1 317

curves and average them across the splits and seeds. We also 318

report the highest test F1 AUC values of the 3 experimental 319

runs of each algorithm. Since the obtained feature acquisition 320

sequences do not contain all the cost points up to the full cost 321

of all features, we also extrapolate the F1 scores at these points 322

with the F1 scores of lower costs that are visited by the solu- 323

tion policy. Figure 1 shows a sample run of our experiments. 324



Algorithm 2 Multi-objective Monte Carlo Tree Search

1: function expand(v)
Input: Node v
Output: Child nodes of v, their initialized vectorial R’s,
and updated Pareto Front approximation

2: for all unacquired actions a ∈ A(v) do
3: v′← makeChild(v, a)
4: Add v′ to C(v)
5: a(v′)← a
6: R(v′)[0]← classificationProbability(v′)
7: R(v′)[1]← findCost(v′)
8: P ← findGlobalP(P ,R(v′))
9: end for

10: function simulate(v)
Input: Node v
Output: Cumulative vectorial reward of v from simula-
tion to the terminal state

11: reward = []
12: while v not terminal do
13: Choose a ∈ A(v) uniform randomly
14: v← make child(v, a)
15: R(v)[0]← R(v)[0]+classificationProbability(v)
16: R(v)[1]← R(v)[1]+findCost(v)
17: P ← findGlobalP(P ,R(v))
18: reward[0]← reward[0] +classificationProbability(v)
19: reward[1]← reward[1] +findCost(v)
20: end while
21: return reward

All experiments are run on a server with Intel core i9-13900k325

and NVIDIA GeForce RTX 3080 graphics card.326

We use the logistic regression and neural network clas-327

sifiers for the calculation of the rewards during training and328

for the evaluation of the F1 scores. To this end, we utilize329

the following 4 classifier strategies. Pretrain: The pretrain330

strategy uses classifiers trained on complete feature vectors.331

Random: The classifiers are trained on random subsets of the332

features. Retrain: Starting with the pretrain strategy, classi-333

fiers are retrained on the augmented data set with the feature334

vectors of states visited during training of the algorithms. The335

frequency at which the classifiers are retrained is optimized by336

the resulting AUC of the train F1 curve. Fit: In the fit strategy,337

each subset of the feature set is used to train a single classifier.338

Each classifier is used for the same subset of features whose339

states are visited. This strategy is considered for the HF, CHD,340

and PhysioNet data sets where the numbers of features are341

low.342

For categorical features, the unacquired features are set as343

its own categories and we one-hot encode such features. For344

continuous features, we initialize at −1 (all feature values in345

our data sets are non-negative). With the MNIST data set,346

all the unacquired features are set at 0; this value is used for347

the policy networks and classifiers. For other data sets, we348

also utilize hyperparameters to determine how the values of349

the unacquired continuous features are set with respect to the350

acquisition costs in calculating classification prediction prob-351

abilities and training the policy networks. Using 0 at 0 cost352

Figure 1: F1 score curve on the incurred acquisition costs.

and varying the values at full acquisition cost from 0 to a large 353

negative value (this hyperparameter is set at −100 in our ex- 354

periments), we fit a quadratic, linear, or constant function with 355

the value at full cost. The best strategy is determined by the 356

resulting AUCs of the train F1 curves for each algorithm and 357

classifier. We then use the identified function for setting the 358

all yet to be acquired continuous features. 359

Hyperparameters in the algorithms were optimized based 360

on the resulting F1 AUCs. For PPO, the number of episodes, 361

entropy and value coefficients and learning rates were opti- 362

mized. The number of episodes, learning rates and ϵ-decay 363

parameter were optimized in DQN. For MCTS, the number 364

of simulations and UCB parameter were optimized. For the 365

Retrain classifier strategy and the integrated implementations 366

of MCTS, the retrain frequencies were also optimized. 367

4.3 Experimental Results 368

F1 AUC 369

The Monte Carlo Tree Search implementations show perfor- 370

mance improvement from the benchmark algorithms for all 371

data sets in Figure 2. Comparing the best performing MCTS 372

implementation and the best performing benchmark algorithm, 373

the relative improvements range from 1.2% to 25.1% and the 374

logistic regression classifiers show higher improvement than 375

the neural network classifiers with the exception of MNIST. 376

Heart Failure For the logistic regression classifier (LR), 377

the SO-MCTS integrated implementation with the Pretrain 378

strategy is the best performer with PPO-PG with the Fit strat- 379

egy as the best benchmark. The SO-MCTS standalone im- 380

plementation with the Pretrain strategy performs best and 381

PPO-AC with the Random strategy is the best benchmark for 382

the neural network classifier. 383

Coronary Heart Disease The SO-MCTS standalone imple- 384

mentation with the Retrain strategy is the best performer with 385

PPO-PG with the Fit strategy as the best benchmark for LR. 386

The MO-MCTS integrated implementation with the Random 387

strategy performs best and PPO-PG with the Random strat- 388

egy is the best benchmark for the neural network classifier. 389



HF CHD PhysioNet MNIST
LR

Mean
LR

Max
LR

Mean
LR

Max
LR

Mean
LR

Max
LR

Mean
LR

Max

SO-MCTS Standalone 52.7 70.7 52.9 53.9 51.9 62.0 56.4 61.4
SO-MCTS Integrated 64.4 67.1 51.6 53.9 55.2 61.0 61.1 64.2
MO-MCTS Integrated 59.5 65.9 49.6 53.3 46.3 52.2 57.2 58.9

HF CHD PhysioNet MNIST
NN

Mean
NN
Max

NN
Mean

NN
Max

NN
Mean

NN
Max

CNN
Mean

CNN
Max

SO-MCTS Standalone 61.4 70.0 59.8 60.2 52.2 59.1 62.9 72.4
SO-MCTS Integrated 61.4 71.5 59.0 62.0 52.5 55.3 70.3 77.0
MO-MCTS Integrated 60.0 65.9 63.3 63.7 52.2 53.6 70.3 72.0

Table 1: Summary tables of the MCTS implementations. Results are the percentages of the average F1 AUCs with respect to the highest
possible F1 AUCs of total costs of full features. Mean are the average and max are the maximum individual experimental run. Maximum
values from the implementations are in bold.

Figure 2: Relative differences between the best performing Monte
Carlo Tree Search implementation and the benchmark algorithms
(LR: logistic regression, NN/CNN: neural network/convolutional
neural network).

PhysioNet For LR, the SO-MCTS integrated implemen-390

tation with the Retrain strategy is the best performer with391

PPO-PG with the Random strategy as the best benchmark.392

For the neural network classifier, the SO-MCTS integrated393

implementation with the Random strategy performs best and394

PPO-PG with the Random strategy is the best benchmark.395

MNIST The SO-MCTS integrated implementation with396

the Random strategy is the best performer with PPO-PG with397

the Random strategy as the best benchmark for LR. For the398

convolutional neural network classifier (CNN), the SO-MCTS399

integrated implementation with the Random strategy performs400

best and PPO-PG with the Random strategy is the best bench-401

mark. For 10 randomly selected samples, we also visually402

analyze the resulting feature acquisition sequences at the num-403

bers of acquired features of 10, 20, 30, 40, and 46 to determine404

Figure 3: At the number of acquired features at 10, 20, 30, 40, 46,
the unacquired features are plotted in black scale and the acquired
features in gray scale. The top row shows an anticipated acquisition
strategy of acquiring the informative pixels first before the back-
ground pixels. The second row exhibits a surprising acquisition
strategy. The last two rows are the anticipated and surpring acquisi-
tion strategies where the cost of acquiring the features in the 16× 16
pixel square in the middle is set to be 160.

that 70.0% of the samples are acquiring the informative digit 405

pixels first before acquiring the background pixels. In Figure 406

3, the top row shows an anticipated acquisition strategy. Of 407

the 70.0% samples exhibiting the anticipated behavior, at the 408

number of acquired features points of 10 and 20, the informa- 409

tive pixels consist of 84.0% and 67.0% of the acquired pixels, 410

respectively. The second row in Figure 3 exhibits a surpris- 411

ing acquisition strategy. We also set the cost of acquiring the 412

features in the 16 × 16 pixel square in the middle to be 160 413

and visually compare to the case when the cost of acquiring 414

each feature is 16. Of the randomly selected 10 samples, the 415

higher cost experiment shows 25.0% of the samples acquir- 416



Figure 4: Solutions of the SO-MCTS and MO-MCTS integrated implementations for the Heart Failure data set.

Figure 5: Sample feature acquisition sequences of the SO-MCTS and
MO-MCTS integrated implementations for the Heart Failure data set.

ing the informative digit pixels before the background pixels.417

At the number of acquired features points of 10 and 20, the418

informative pixels in this case consists of 66.0% and 62.0%,419

respectively. The last two rows in Figure 3 show anticipated420

and surprising acquisition cases with higher cost. We note that421

the AUC with all equal cost is 0.556, but with higher cost it422

is 0.387 (when integrating AUCs, both maximum costs have423

been scaled to 1).424

Comparison of the SO and MO MCTS Implementations425

Best performance results from our MCTS implementations426

are shown in Table 1. The results are shown as the percentages427

of the average F1 AUCs for each implementation with respect428

to the highest possible F1 AUCs of total costs of full features.429

With the exception of the Coronary Heart Disease data set,430

the SO-MCTS integrated implementation has higher F1 AUCs431

than the MO-MCTS integrated implementation. We plot the432

solutions from the Heart Failure data set in the objective space433

in Figure 4. We see that (1) for lower costs, the SO-MCTS 434

solutions are more frequent and (2) for higher costs, the SO- 435

MCTS solutions are confined to cost regions that are separated 436

by that of continuous features. This indicates that the SO- 437

MCTS trained policy acquires the lower cost categorical fea- 438

tures before the higher cost continuous features, whereas the 439

MO-MCTS trained policy does not. For the Coronary Heart 440

Disease with the random logistic regression classifier strategy, 441

where the MO-MCTS integrated implementation has a higher 442

F1 AUC, the solutions in the objective space are similar to the 443

SO-MCTS integrated implementation with the policy acquir- 444

ing the lower cost categorical features first before venturing to 445

the higher continuous features. 446

In Figure 5 with sample acquisition trajectories from the 447

Heart Failure data set, the SO-MCTS solution acquires the 448

lower cost categorical features before acquiring the higher cost 449

continuous features. For the MO-MCTS integrated implemen- 450

tation, the solution optimizes the classification probability and 451

the acquisition cost simultaneously. We also observe that the 452

MO-MCTS solution has more acquisition cost budgets (10) 453

than the SO-MCTS solution (5) under which the classifica- 454

tion confidence threshold of 1.0 can be reached. Since we 455

considered the case of infinite budgets, where we obtained 456

the ground-truth values for all the features, it is more advanta- 457

geous to use the MO-MCTS implementation in tight budget 458

situations. Since the MO-MCTS trained policy shows more 459

diversity in the solution space, it provides more solutions 460

matching variable budgets and confidence thresholds. 461

5 Conclusions 462

We studied the feature acquisition problem, where missing 463

features in data are acquired for ground-truth values at variable 464

costs. In comparison to the PPO and DQN algorithms, our 465

MCTS implementations show performance improvements, 466

with the relative improvement in the range of 1.2% to 25.1%. 467

The multi-objective implementation shows an advantage over 468

the single-objective implementation in budgeted situations, 469

as it leads to more variable sequences and thus can satisfy 470

different cost budgets and confidence thresholds. 471
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