
Figure A.1: Relative differences in the algorithm training times
between the standalone and integrated implementations of the SO-
MCTS.

A Experiments1

A.1 Experimental Results2

Comparsion of the Standalone and Integrated3

Implementations4

The F1 AUCs of the SO-MCTS integrated implementation5

shows relative improvement of 4.6% and 1.8% for the logistic6

regression and neural network classifiers from the SO-MCTS7

standalone implementation. Solutions in the objective space8

do not show differences between the two implementations. In9

Figure A.1, we show the relative difference in the algorithm10

training times for the standalone implementation from the11

integrated implementation, where the standalone implementa-12

tion has faster relative algorithm training times by 8.3% and13

24.7% from the integrated implementation. When the algo-14

rithm training time is another constraint in the usage of the15

MCTS algorithm for feature acquisition, it is advantageous to16

use the standalone implementation with lower training times17

if there is an option of slightly higher AUC.18

Comparsion of the Classifier Strategies19

For the Heart Failure, Coronary Heart Disease, and PhysioNet20

data sets, we use the fit strategy, where each subset of the21

feature set is used to train a single classifier. In comparison22

to the fit strategy, the best performing strategies with the SO-23

MCTS integrated implementation show relative performance24

improvements of 4.1% to 24.2%. For the MO-MCTS inte-25

grated implementation, the best performing strategies show26

relative improvements of 2.4% and 31.4%. We also plot the27

MO-MCTS solutions from the Heart Failure data set in the ob-28

jective space in Figure A.2 for the logistic regression classifier29

with the fit strategy. In comparing the MO-MCTS solutions30

with the pretrain strategy, we observe that the solutions for the31

fit strategy are concentrated in the lower classification prob-32

ability regions for all costs in Figure A.2. Thus, in the case33

when we use the MO-MCTS implementation for tight budget34

situations, it is also advantageous to use the fit strategy, as35

Figure A.2: Solutions for the MO-MCTS integrated implementation
with the logistic regression classifier and fit strategy for the Heart
Failure data set.

solutions can be obtained for lower costs with slight decreases 36

in confidence thresholds. 37

Comparsion of the Strategies for the Unacquired 38

Continuous Feature Values 39

As described in a previous section, we also optimize a func- 40

tion strategy for unacquired continuous feature values in the 41

classifiers. The optimized hyperparameters are provided in 42

the Appendix B.2. For the logistic regression classifiers, the 43

quadratic cost function strategy has the highest train F1 AUCs 44

for the Heart Failure, Coronary Heart Disease and PhysioNet 45

data sets. For the neural network classifiers, the quadratic cost 46

function strategy has the highest train F1 AUCs for the Heart 47

Failure data set and constant function of 0 for the Coronary 48

Heart Disease and PhysioNet data sets. Thus, it is advanta- 49

geous to use the quadratic cost function strategies to set the 50

values of unacquired continuous features. 51

B Experimental Setup 52

B.1 Network Architectures 53

The same network architectures are used for the neural network 54

and convolutional neural network classifiers and policy and 55

value networks in the algorithms, Table B.1 and B.2. 56

B.2 Algorithm Hyperparameters 57

The algorithm hyperparameters are presented in Tables B.3- 58

B.6. 59

B.3 Continuous Unacquired Feature Values 60

We fitted four functions with quadratic maximum at 0 cost, 61

quadratic minimum at full cost, linear, and constant. The 62

choices are shown in Tables B.7-B.9. 63



Hyperparameter Heart Failure Coronary Heart Disease PhysioNet

Feedforward1 Units 32 512 256
Activation ReLU ReLU ReLU

Feedforward2 Units 16 256 128
Activation ReLU ReLU ReLU

Feedforward3 Units 8 128 64
Activation ReLU ReLU ReLU

Table B.1: Neural network architectures for classification and policy and value networks in the algorithms.

Layer Hyperparameter Value

Conv1
Filters
Kernel

Dilation

64
3
2

Activation − ReLU
Max Pooling Pool 2

Conv2
Filters
Kernel

Dilation

128
3
2

Activation − ReLU
Max Pooling Pool 2

Conv3
Filters
Kernel

Dilation

256
3
2

Activation − ReLU
Max Pooling Pool 2
Final Layer Units 512

Table B.2: MNIST convolutional neural network architecture for classification and feature acquisition policy.

Hyperparameter Heart Failure Coronary Heart Disease PhysioNet MNIST

Number of simulations 100 100 100 100
c 1.0 1.0 1.0 1.0

Update frequency 18 20 36 100
Optimizer Adam Adam Adam Adam

Learning rate 10−5 10−5 10−5 10−5

Retrain frequency 54 180 324 10000

Table B.3: SO-MCTS hyperparameters.

Hyperparameter Heart Failure Coronary Heart Disease PhysioNet MNIST

Number of simulations 100 100 100 100
c 2.0 1.0 1.0 1.0

Update frequency 18 20 36 100
Optimizer Adam Adam Adam Adam

Learning rate 10−5 10−5 10−5 10−5

Retrain frequency 18 20 36 100

Table B.4: MO-MCTS hyperparameters.



Hyperparameter Heart Failure Coronary Heart Disease PhysioNet MNIST

Episodes 100 100 100 100
Batch size 6 20 18 25

Update frequency 6 20 18 25
γ 0.5 0.99 0.999 0.99

ϵ-decay 0.99 0.99 0.99 0.5
Learning rate 10−6 10−6 10−6 10−7

Optimizer Adam Adam Adam Adam
Retrain frequency 108 360 684 12000

Table B.5: DQN hyperparameters.

Hyperparameter Heart Failure Coronary Heart Disease PhysioNet MNIST

Episodes 100 100 100 100
Clip parameter 0.2 0.2 0.2 0.2
GAE parameter 0.95 0.95 0.95 0.95

Entropy coefficient 0.01 0.01 0.02 0.02
Value function coefficient 1.0 1.0 1.0 1.0

Learning rate 10−5 10−5 10−5 10−5

Optimizer Adam Adam Adam Adam
Retrain frequency 120 400 360 10000

Table B.6: PPO hyperparameters.

Algorithms Unacquired Features (LR) Unacquired Features (NN)
MO-MCTS Integrated Quad Min at 41 with −70 Quad Min at 41 with −70
SO-MCTS Integrated Quad Min at 41 with −70 Quad Min at 41 with −70
SO-MCTS Integrated Quad Max at 0 with −50 Quad Min at 41 with −50

DQN Quad Min at 41 with −50 Quad Min at 41 with −70
PPO-PG Quad Max at 0 with −70 Quad Min at 41 with −70
PPO-AC Quad Max at 0 with −90 Quad Min at 41 with −70

Table B.7: Heart Failure data set.

Algorithms Unacquired Features (LR) Unacquired Features (NN)
MO-MCTS Integrated Quad Max at 0 with −50 0
SO-MCTS Integrated Quad Min at 51 with −70 0
SO-MCTS Integrated Quad Min at 51 with −70 0

DQN Quad Max at 0 with −10 0
PPO-PG Quad Min at 51 with −20 0
PPO-AC Quad Max at 0 with −90 0

Table B.8: Coronary Heart Disease data set.

Algorithms Unacquired Features (LR) Unacquired Features (NN)
MO-MCTS Integrated Quad Max at 0 with −50 0
SO-MCTS Integrated Quad Min at 229 with −70 0
SO-MCTS Integrated Quad Min at 229 with −70 0

DQN Quad Min at 229 with −60 0
PPO-PG Quad Min at 229 with −60 0
PPO-AC Quad Min at 229 with −60 0

Table B.9: PhysioNet data set.



C Pseudocodes64

Algorithm 1: Single-objective Monte Carlo Tree Search Functions

1 function MCTS(v,I)
2 for iteration = 1,2,. . .,I do
3 train(v)
4 end for

5 function train(v)
6 vl = select(v)
7 expand(vl)
8 reward = simulate(vl)
9 backprop(vl,reward)

10 function makeChild(v, a)
11 Obtain the feature by a in s of v to set s′
12 Create node v′ with s′ where a(v′) = a
13 return v′

14 function select(v)
15 while True do
16 if v unexplored or terminal do
17 return v
18 end if

19 v← argmax
v′∈C(v)

Q(v′)
N(v′) + c

√
lnN(v)
N(v′)

20 end while

21 function expand(v)
22 for all unacquired actions a ∈ A(v) do
23 v′ ← makeChild(v, a)
24 Add v′ to C(v)
25 Set a(v′) = a
26 end for

27 function simulate(v)
28 reward = 0
29 while v not terminal do
30 Choose a ∈ A(v) uniformly at random
31 v← make child(v, a)
32 reward += Q(v)
33 end while
34 return reward

35 function backprop(v, reward)
36 while v not null do
37 N(v) += 1
38 Q(v) += reward
39 v← parent of v
40 end while



Algorithm 2: Multi-objective Monte Carlo Tree Search (Integrated)
Input :Iteration number I , initial policy network weights θ, policy network update frequency f

1 Initialize policy network ϕ with θ
2 Initialize list L of visited nodes and their R and visit counts N
3 Initialize list M of global Pareto Front approximations P
4 i← 0

5 function preprocess(L,M )
6 Make each node v in L to be distinct with non-dominated union for R(v) and N(v) for duplicates
7 A =

#»
0

8 S = v in L
9 for v in L do

10 for action in A do
11 Find child nodes of v in L
12 for node in child nodes do
13 R(node) = [R(node),M ]
14 A(action)← A(action) + HV(R(node))
15 end for
16 end for
17 Normalize A with division by max(A)
18 return S, A

19 for sample = 1,2,. . .,m do
20 i← i+ 1
21 Initialize state s0
22 Initialize global Pareto Front approximation P
23 Create root node v0 with s0
24 R(v0): local Pareto Front approximation
25 N(v0): visit count of v0
26 C(v0): children of v0
27 a(v0): action of v0
28 while v0 not terminal do
29 MO-MCTS(v0,I)
30 a← ϕθ(s0)
31 v0 ← makeChild(v0, a)
32 end while
33 Append R(v) and N(v) to L
34 M ← findGlobalP(M ,P )
35 if f % i == 0 do
36 S, A← preprocess(L,M )
37 Train ϕθ on S and A
38 end if
39 end for

40 function MO-MCTS(v,I)
41 for iteration = 1,2,. . .,I do
42 train(v)
43 end for

44 function train(v)
45 vl = select(v)
46 expand(vl)
47 reward = simulate(vl)
48 backprop(vl,reward)

49 function makeChild(v, a)
50 Obtain the feature by a in s of v to set s′
51 Create node v′ with s′ where a(v′) = a
52 return v′

53 function HV(R(v))
54 Set reference point at [−1.0, 0.0]
55 hv = 0
56 for front in R(v) do
57 h = front[i][0] - reference[0]
58 hv← hv+ (front[i][1] - front[i− 1][1])h
59 return hv

60 function select(v)
61 while True do
62 if v unexplored or terminal do
63 return v
64 end if
65 for v′ ∈ C(v) do

66 R(v′)← R(v′)
N(v′) + c

√
2lnN(v)
N(v′)

67 v← argmax
v′∈C(v)

HV (R(v′))

68 end while

69 function backprop(v, reward)
70 while v not null do
71 N(v)← N(v) + 1
72 R(v)[0]← R(v)[0]+reward[0]
73 R(v)[1]← R(v)[1]+reward[1]
74 P ← findGlobalP(P, R(v′))
75 v← parent of v
76 end while


	Experiments
	Experimental Results
	Comparsion of the Standalone and Integrated Implementations
	Comparsion of the Classifier Strategies
	Comparsion of the Strategies for the Unacquired Continuous Feature Values


	Experimental Setup
	Network Architectures
	Algorithm Hyperparameters
	Continuous Unacquired Feature Values

	Pseudocodes

