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Abstract

We study a decentralized multi-agent multi-armed bandit problem in which multi-
ple clients are connected by time dependent random graphs provided by an envi-
ronment. The reward distributions of each arm vary across clients and rewards are
generated independently over time by an environment based on distributions that
include both sub-exponential and sub-gaussian distributions. Each client pulls
an arm and communicates with neighbors based on the graph provided by the
environment. The goal is to minimize the overall regret of the entire system
through collaborations. To this end, we introduce a novel algorithmic framework,
which first provides robust simulation methods for generating random graphs us-
ing rapidly mixing Markov chains or the random graph model, and then com-
bines an averaging-based consensus approach with a newly proposed weighting
technique and the upper confidence bound to deliver a UCB-type solution. Our
algorithms account for the randomness in the graphs, removing the conventional
doubly stochasticity assumption, and only require the knowledge of the number
of clients at initialization. We derive optimal instance-dependent regret upper
bounds of order logT in both sub-gaussian and sub-exponential environments,

and a nearly optimal mean-gap independent regret upper bound of order
√
T logT

up to a logT factor. Importantly, our regret bounds hold with high probability and
capture graph randomness, whereas prior works consider expected regret under
assumptions and require more stringent reward distributions.

1 Introduction

Multi-armed Bandit (MAB) [Auer et al., 2002a,b] is an online sequential decision-making process
that balances exploration and exploitation while given partial information. In this process, a single
player (agent, client) aims to maximize a cumulative reward or, equivalently, minimize the cumu-
lative loss, known as regret, by pulling an arm and observing the reward of that arm at each time
step. The two variants of MAB are adversarial and stochastic MAB, depending on whether rewards
are chosen arbitrarily or follow a time-invariant distribution, respectively. Recently, motivated by
the development of federated learning [McMahan et al., 1273–1282, 2017], multi-agent stochastic
multi-armed bandit has been drawing increasing attention (commonly referred to as multi-agent
MAB). In this variant, multiple clients collaboratively work with multiple stochastic MABs to max-
imize the overall performance of the entire system. Likewise, regret is an important performance
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measure, which is the difference between the cumulative reward of always pulling the global op-
timal arm by all clients and the actual cumulative reward gained by the clients at the end of the
game, where global optimality is defined with respect to the average expected reward values of arms
across clients. Thereafter, the question for each client to answer is essentially how to guarantee an
optimal regret with limited observations of arms and insufficient information of other clients. As-
suming the existence of a central server, also known as the controller, [Bistritz and Leshem, 2018,
Zhu et al., 3–4, 2021, Huang et al., 2021, Mitra et al., 2021, Réda et al., 2022, Yan et al., 2022], al-
low a controller-client framework where the controller integrates and distributes the inputs from and
to clients, adequately addressing the challenge posed by the lack of information of other clients.
However, this centralization implicitly requires all clients to communicate with one another through
the central server and may fail to include common networks with graph structures where clients per-
form only pair-wise communications within the neighborhoods on the given graphs. Non-complete
graphs capture the reality of failed communication links. Removing the centralization assumption
leads to a decentralized multi-agent MAB problem, which is a challenging but attracting direction
as it connects the bandit problem and graph theory, and precludes traditional centralized processing.

In the field of decentralized multi-agent MAB, it is commonly assumed that the mean reward
value of an arm for different clients is the same, or equivalently, homogeneous. This assump-
tion is encountered in [Landgren et al., 2016a,b, 2021, Zhu et al., 2020, Martínez-Rubio et al., 2019,
Agarwal et al., 2022]. However, this assumption may not always hold in practical scenarios. In re-
cent years, there has been an increasing emphasis on heterogeneous reward settings, where clients
can retain different mean values for the rewards of the same arm. The transition to heterogeneous
reward settings presents additional technical challenges. Clients are unable to infer the global opti-
mal arms without sequential communications regarding the rewards of the same arm at other clients.
Such communications, however, are limited by the partially observed rewards, as other clients may
not pull the same arm, and constrained by the underlying graph structure. We study the heteroge-
neous setting with time varying graphs.

Traditionally, rewards are assumed to be sub-Gaussian distributed. However, there has been a recent
focus on MAB with heavy-tailed reward distributions. This presents a non-trivial challenge as it
is harder to concentrate reward observations in sublinear time compared to the light-tailed counter-
part [Tao et al., 1546–1574, 2022]. In the work of [Jia et al., 2021], sub-exponential rewards are con-
sidered and analyzed in the single-agent MAB setting with newly proposed upper confidence bounds.
Meanwhile, for multi-agent MAB, heavy-tailed distributions are examined in a homogeneous setting
in [Dubey and Pentland, 2730–2739, 2020]. However, the heterogeneous setting studied herein has
not yet been formulated or analyzed, posing more challenges compared to the homogeneous setting,
as discussed earlier.

Besides rewards, the underlying graph assumptions are essential to the decentralized multi-agent
MAB problem, as increased communication among clients leads to better identification of global
optimal arms and smaller regret. There are two types of graphs from a time perspective: time-
invariant graphs, which remain constant over time, and time-varying graphs, which depend on time
steps and are more challenging but more general. Assumptions on time-invariant graphs include
complete graphs [Wang et al., 1531–1539, 2021] where all clients can communicate, regular graphs
[Jiang and Cheng, 1–33, 2023] where each client has the same number of neighbors, and connected
graphs under the doubly stochasticity assumption [Zhu et al., 2020, 2021, 3–4, 2021]. Independently
from our work, recent work [Zhu and Liu, 2023] has focused on time-varying B-connected graphs,
where the composition of every l consecutive graphs is a strongly connected graph. However, their
doubly stochasticity assumption, where all elements of edge probability also called weight matrices
are uniformly bounded by a positive constant, can be violated in several cases. Additionally, their
graphs may be strongly correlated to meet the connectivity condition when l > 1, which may
not always hold in practice. No research has been conducted on time-varying graphs with only
connectivity constraints or without constraints on connectivity. Additionally, current time-varying
graphs do not provide insight into how the graphs change over time. As the graphs are generated by
the environment, similar to the generation of rewards, it remained unexplored considering random
graphs in an i.i.d manner, such as random edge failures or random realizations as pointed out for
future research in [Martínez-Rubio et al., 2019]. We also address this situation.

Traditionally, random graphs have often been formulated using the Erdős–Rényi (E-R) model, which
has been widely adopted in various research domains. The model, described by G(M, c), consists
of M vertices with each pair of vertices being connected with probability c. Notably, the E-R
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model is 1) not necessarily connected and 2) stochastic that allows for random edge failures, and
has found applications in mean-field game [Delarue, 2017] and majority vote settings [Lima et al.,
2008]. Though it has only been used in numerical experiments for the decentralized multi-agent
MAB setting with homogeneous rewards [Dubey and Pentland, 2730–2739, 2020], the theoretical
study of this model in this context remained unexplored until this work, let alone with heteroge-
neous rewards and time-varying graphs. Alternatively, one can consider all connected graphs (there
are exponentially many of them), and the environment can randomly sample a connected graph and
produce i.i.d. samples of such random connected graphs. This approach mimics the behavior of
stochastic rewards and allows the environment to exhaust the sample space of connected graphs in-
dependently, without the doubly stochasticity assumption, which, however, has not yet been studied
and it is also addressed herein.

For the multi-agent MAB framework, methods in MAB are a natural extension. [Zhu et al.,
3–4, 2021] adapt the UCB algorithm to the multi-agent setting. This algorithm uses weighted av-
erages to achieve consensus among clients and is shown to have a regret of order logT for time-
invariant graphs. A follow-up study in [Zhu and Liu, 2023] re-analyzes this algorithm for time-
varying B-connected graphs under the aforementioned assumptions under the doubly stochasticity
assumption by adding an additional term compared to UCB. An effective UCB-based method for
random graphs without doubly stochasticity assumption and for sub-exponential distributed rewards
remained unexplored.

This paper presents a novel contribution to the decentralized multi-agent MAB problem by studying
both heterogeneous rewards and time-varying random graphs, where the distributions of rewards and
graphs are independent of time. To the best of our knowledge, this is the first work to consider this
problem and to investigate it with heavy-tailed reward distributions. Specifically, the paper investi-
gates 1) heterogeneous sub-exponential and sub-gaussian distributed rewards and 2) random graphs
including the possibly disconnected E-R model and random connected graphs, and applies them to
the decentralized multi-agent MAB framework. This work bridges the gap between large-deviation
theories for sub-exponential distributions and multi-agent MAB with heterogeneous rewards, and
the gap between random graphs and decentralized multi-agent MAB.

To this end, we propose a brand new algorithmic framework consisting of three main components:
graph generation, DrFed-UCB: burn-in period, and DrFed-UCB: learning period. For the learning
period, we modify the algorithm by [Zhu et al., 3–4, 2021] by introducing new UCB quantities that
are consistent with the conventional UCB algorithm and generalize to sub-exponential settings. We
also introduce a newly proposed stopping time and a new weight matrix without the doubly stochas-
ticity assumption to leverage more information in random graphs. A burn-in period is crucial in esti-
mating the graph distribution and initializing the weight matrix. We embed and analyze techniques
from random graphs since the number of connected graphs is exponentially large in the number
of vertices, and directly sampling such a graph is an NP-hard problem. In particular, we use the
Metropolis-Hastings method with rapidly mixing Markov chains, as proposed in [Gray et al., 2019],
to approximately generate random connected graphs in polynomial time. We additionally demon-
strate its theoretical convergence rate, making it feasible to consider random connected graphs in the
era of large-scale inference.

We present comprehensive analyses of the regret of the proposed algorithm, using the same regret
definition as in existing literature. Firstly, we show that algorithm DrFed-UCB achieves optimal
instance-dependent regret upper bounds of order logT with high probability, in both sub-gaussian
and sub-exponential settings, consistent with prior works. We add that although both [Zhu et al.,
2020] and our analyses use the UCB framework, the important algorithmic steps are different and
thus also the analyses. Secondly, we demonstrate that with high probability, the regret is univer-

sally upper bounded by O(
√
T logT ) in sub-exponential settings, including sub-gaussian settings.

This upper bound matches the upper and lower bounds in single-agent settings up to a logT factor,
establishing its tightness.

The paper is organized as follows. We first introduce the notations used throughout the paper, present
the problem formulation, and propose algorithms for solving the problem. Following that, we pro-
vide theoretical results on the regret of the proposed algorithm in various settings.

3



2 Problem Formulation and Methodologies

2.1 Problem Formulation

Throughout, we consider a decentralized system with M clients that are labeled as nodes 1, 2, . . . ,M
on a time-varying network, which is described by an undirected graph Gt for 1 ≤ t ≤ T where
parameter T denotes the time horizon of the problem. Formally, at time step t, Gt = (V,Et) where
V = {1, 2, . . . ,M} and Et denotes the edge set consisting of pair-wise nodes and representing the
neighborhood information in Gt. The neighbor set Nm(t) include all neighbors of client m based on
Gt. Equivalently, the graph Gt can be represented by the adjacency matrix (Xt

i,j)1≤i,j≤M where the

element Xt
i,j = 1 if there is an edge between clients i and j and Xt

i,j = 0 otherwise. We let Xi,i = 1
for any 1 ≤ i ≤ M . With this notation at hand, we define the empirical graph (adjacency matrix) Pt

as Pt =
(
∑

t
s=1

Xs
i,j)1≤i,j≤M

t
. It is worth emphasizing that 1) the matrix Pt is not necessarily doubly

stochastic, 2) the matrix captures more information about Gt than the prior works based on |Nm(t)|,
and 3) each client m only knows the m-th row of Pt without knowledge of Gt, i.e. {Pt(m, j)}j are
known to client m, while {Pt(k, j)}j for k 6= m are always unknown. Let us denote the set of all
possible connected graphs on M nodes as GM.

We next consider the bandit problems faced by the clients. In the MAB setting, the environment
generates rewards. Likewise, we again use the term, the environment, to represent the source of
graphs Gt and rewards rmi (t) in the decentralized multi-agent MAB setting. Formally, there are
K arms faced by each client. At each time step t, for each client 1 ≤ m ≤ M , let the reward of
arm 1 ≤ i ≤ K be rmi (t), which is i.i.d. distributed across time with the mean value µm

i , and is
drawn independently across the clients. Here we consider a heterogeneous setting where µm

i is not

necessarily the same as µ
j
i for m 6= j. At each time step t, client m pulls an arm atm, only observes

the reward of that arm rmat
m
(t) from the environment, and exchanges information with neighbors in

Gt given by the environment. In other words, two clients communicate only when there is an edge
between them.

By taking the average over clients as in the existing literature, we define the global reward of arm

i at each time step t as ri(t) = 1
M

∑M
m=1 r

m
i (t) and the subsequent expected value of the global

reward as µi = 1
M

∑M
m=1 µ

m
i . We define the global optimal arm as i∗ = argmaxi µi and arm

i 6= i∗ is called global sub-optimal. Let ∆i = µi∗ −µi be the sub-optimality gap. This enables us to

quantify the regret of the action sequence (policy) {atm}1≤t≤T
1≤m≤M as follows. Ideally, clients would

like to pull arm i∗ if knowledge of {µi}i were available. Given the partially observed rewards due
to bandits (dimension i) and limited accesses to information from other clients (dimension m), the
regret is defined as

RT = Tµi∗ −
1

M

T∑

t=1

M∑

m=1

µm
at
m

which measures the difference of the cumulative expected reward between the global optimal arm
and the action sequence. The main objective of this paper is to develop theoretically robust solutions
to minimize RT for clients operating on time-varying random graphs that are vulnerable to random
communication failures, which only require knowledge of M .

2.2 Algorithms

In this section, we introduce a new algorithmic framework that incorporates two graph generation
algorithms, one for the E-R model and the other for uniformly distributed connected graphs. More
importantly, the framework includes a UCB-variant algorithm that runs a learning period after a
burn-in period, which is commonly referred to as a warm-up phase in statistical procedures.

2.2.1 Graph Generation

We investigate two types of graph dynamics as follows, for which we propose simulation methods
that enable us to generate and analyze the resulting random graphs.

E-R random graphs At each time step t, the adjacency matrix of graph Gt is generated by the
environment by element-wise sampling Xt

i,j according to a Bernoulli distribution. Specifically, Xt
i,j

follows a Bernoulli distribution with parameter c.
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Uniformly distributed connected graphs At each time step t, the random graph Gt is generated
by the environment by uniformly sampling a graph from the sample space of all connected graphs
GM , which yields the adjacency matrix (Xt

i,j)1≤i6=j≤M corresponding to Gt. Generating uniformly
distributed connected graphs is presented in Algorithm 1. It is computationally infeasible to exhaust
the sample space GM since the number of connected graphs is exponentially large. To this end, we
import the Metropolis-Hastings method in [Gray et al., 2019] and leverage rapidly mixing Markov
chains. Remarkably, by adapting the algorithm into our setting which yields Algorithm 1, we con-
struct a Markov chain that converges to the target distribution after a finite number of burn-in steps.
This essentially traverses graphs in GM through step-wise transitions, with a complexity of O(M2)
from previous states. More precisely, at time step s with connected graph Gs, we randomly choose
a pair of nodes and check whether it exists in the edge set. If this is the case, we remove the edge
from Gs and check whether the remaining graph is connected, and only accept the graph as Gs+1 in
the connected case. If the edge does not exist in the edge set, we add it to Gs and get Gs+1. In this
setting, let c = c(M) be the number of times an edge is present among all connected graphs divided
by the total number of connected graphs. It is known that

c = 2
logM

M − 1
, (1)

[Trevisan]. The distribution of Gs eventually converges to the uniform distribution in GM . The
formal statements are in Appendix.

Algorithm 1: Generate a uniformly distributed connected graph

Initialization: Let τ1 be given; Generate a random graph Ginit by selecting each edge with
probability 1

2 ;

Connectivity: make Ginit connected by adding the least many edges to get G0 ;
for t = 0, 1, 2, . . . , τ1 do

Randomly sample an edge pair e = (i, j);
Denote the edge set of Gs as Es;
if e ∈ Es then

Remove e from Es to get G′
s = (V,Es\{e});

if G′
s is connected then
Gs+1 = G′

s;
else

reject G′
s and set Gs+1 = Gs;

end

else
Gs+1 = (V,Es ∪ {e});

end

end

2.2.2 Main Algorithm

In the following, we present the proposed algorithm, DrFed-UCB, which comprises of a burn-in
period and a learning period described in Algorithm 2 and Algorithm 3, respectively.

We start by introducing the variables used in the algorithm with respect to client m. We use
µ̄m
i (t), nm,i(t) to denote reward estimators and counters based on client m’s own pulls of arm i,

respectively, and use µ̃m
i , Nm,i(t) to denote reward estimators and counters based on the network-

wide pulls of arm i, respectively. By network-wide, we refer to the clients in Nm(t). Denote the
stopping time for the filtration {Gs}ts=1 as ht

m,j = maxs≤t{(m, j) ∈ Es}; it represents the most
recent communication between clients m and j. The weights for the network-wide and local estima-
tors are P ′

t (m, j) and dm,t defined later, respectively.

There are two stages in Algorithm 2 where t ≤ L as follows. For the first τ1 steps, the environment
generates graphs based on one of the aforementioned graph generation algorithms to arrive at the
steady state, while client m pulls arms randomly and updates local estimators {µ̄m

i , nm
i }i. After-

wards, the environment generates the graph Gt that follows the distribution of interest, while client
m updates {µ̄m

i , nm
i }i and row m of Pt by exchanging information with its neighbors in the graph

Gt. Note that client m does not have any global information about Gt. At the end of the burn-in
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period, client m computes the network-wide estimator µ̃m
i by taking the weighted average of local

estimators of other clients (including itself), where the weights are given by the m-th row of weight

matrix P ′ and d, which depend on P and knowledge of M and satisfy
∑M

j=1 P
′
t (m, j)+dm,tM = 1.

Subsequently, we describe Algorithm 3 where t ≥ L + 1. There are four phases in one iteration
enumerated below in the order indicated.

UCB Given the estimators µ̃m
i (t), nm,i(t), Nm,i(t), µ̄

m
i (t), client m either randomly samples an

arm or pulls the arm that maximizes the upper confidence bound using µ̃m
i (t), nm,i(t), depending on

whether nm,i(t) ≤ Nm,i(t)−K holds for some arm i. This additional condition ensures consensus
among clients regarding which arm to pull. The upper confidence bound F (m, i, t) is specified

as F (m, i, t) =
√

C1 ln t
nm,i(t)

and F (m, i, t) =
√

C1 lnT
nm,i(t)

+ C2 lnT
nm,i(t)

in settings with sub-gaussian and

sub-exponential rewards, respectively. Constants C1 and C2 are determined in the analyses and they
depend on σ which is an upper bound of standard deviations of the reward values (it is formally
defined later).

Environment and client interaction After client m pulls arm atm, the environment sends the
reward rtm,at

m
and the neighbor set Nm(t) in Gt to client m. Client m does not know the whole Gt

and obtains only the neighbor set Nm(t).

Transmission Client m sends the maintained local and network-wide estimators
{µ̄m

i (t), µ̃m
i (t), nm,i(t), Nm,i(t)}i to all clients in Nm(t) and receives the ones from them.

Update estimators At the end of an iteration, client m first updates the m-th row of matrix Pt.
Subsequently, client m updates the quantities{µ̄m

i (t), µ̃m
i (t), nm,i(t), Nm,i(t)}1≤i≤K adhereing to:

tm,j = maxs≥τ1{(m, j) ∈ Es)} and 0 if such an s does not exist

nm,i(t+ 1) = nm,i(t) + 1at
m=i, Nm,i(t+ 1) = max{nm,i(t+ 1), ˆ̄Nm

i,j(t), j ∈ Nm(t)}

µ̄m
i (t+ 1) =

µ̄m
i (t) · nm,i(t) + rm,i(t) · 1at

m=i

nm,i(t+ 1)

P ′
t (m, j) =

M − 1

M2
if Pt(m, j) > 0 and 0 otherwise (2)

µ̃m
i (t+ 1) =

M∑

j=1

P ′
t (m, j)ˆ̃µm

i,j(tm,j) + dm,t

∑

j∈Nm(t)

ˆ̃µm
i,j(t) + dm,t

∑

j 6∈Nm(t)

ˆ̄µm
i,j(tm,j)

with dm,t =
1−∑M

j=1 P
′
t (m, j)

M

Similar to [Zhu et al., 3–4, 2021, Zhu and Liu, 2023], the algorithm balances between exploration
and exploitation by the upper confidence bound and a criterion on nm,i(t) and Nm,i(t) that ensures
that all clients explore arms at similar rates and thereby “staying on the same page.” After interacting
with the environment, clients move to the transmission stage, where they share information with the
neighbors on Gt, as a preparation for the update stage.

Different from the upper confidence bound approach in [Zhu and Liu, 2023], which has an extra term
of 1

t
in the UCB criterion, our proposal is aligned with the conventional UCB algorithm. Meanwhile,

our update rule differs from that in [Zhu et al., 3–4, 2021, Zhu and Liu, 2023] in three key aspects:
(1) maintaining a stopping time tm,j that tracks the most recent communication to client j, and

(2) updating µ̃m
i based on both µ̃

j
i and µ̄

j
i for j ∈ Nm(t), and (3) using a weight matrix based

on P ′
t and Pt computed from the trajectory {Gs}s≤t in the previous steps. The first point ensures

that the latest information from other clients is leveraged, in case there is no communication at
the current time step. The second point ensures proper integration of both network-wide and local
information, smoothing out biases from local estimators and reducing variances through averaging.
The third point distills the information carried by the time-varying graphs and determines the weights
of the available local and network-wide estimators, removing the need for the doubly stochasticity
assumption. The algorithm assumes that the clients know M and σ2.

We note that tm,j is the stopping time by definition and that µ̄m
i is an unbiased estimator for µm

i

with a decaying variance proxy. Meanwhile, the matrices P ′
t and Pt are not doubly stochastic and
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Algorithm 2: DrFed-UCB: Burn-in period

Initialization: The length of the burn-in period is L and we are also given τ1 < L; In the time
step t = 0, the estimates are initialized as µ̄m

i (0) = 0, nm,i(0) = 0, ˆ̄µm
i,j(0) = 0, and

P0(m, j) = for any arm i and clients m, j;
for 1 ≤ t ≤ τ1 do

The environment generates a sample graph Gt = (V,Et) based on either E-R or
Algorithm 1;

end
for 1 ≤ t ≤ τ1 do

for each client m do
Sample arm amt = (t mod K);
Receive reward rmam

t
(t) and update nm,i(t) = nm,i(t− 1) + 1at

m=i;

Update the local estimate for any arm i: µ̄m
i (t) =

nm,i(t−1)µ̄m
i (t−1)+rmam

t
(t)·1am

t
=i

nm,i(t−1)+1am
t

=i
;

end

end
for τ1 < t ≤ L do

The environment generates a sample graph Gt = (V,Et) based on either E-R or
Algorithm 1;

for each client m do
Sample arm amt = (t mod K);
Receive rewards rmam

t
(t) and update nm,i(t) = nm,i(t− 1) + 1at

m=i;

Update the local estimates for any arm i: µ̄m
i (t) =

nm,i(t−1)µ̄m
i (t−1)+rm

am
t

(t)·1am
t

=i

nm,i(t−1)+1am
t

=i
;

Update the maintained matrix Pt(m, j) =
(t−1)Pt−1(m,j)+Xt

m,j

t
for each j ∈ V ;

Send {µ̄m
i (t)}i=K

i=1 to all clients in Nm(t);

Receive {µ̄j
i (t)}i=K

i=1 from all clients j ∈ Nm(t) and store them as ˆ̄µm
i,j(t).

end

end
for each client m and arm i do

For client 1 ≤ j ≤ M , set hL(m, j) = maxs≥τ1{(m, j) ∈ Es} or 0 if such s does not exist

µ̃m
i (L+ 1) =

∑M
j=1 P

′
m,j(L)ˆ̄µ

m
i,j(h

L
m,j) where P ′

m,j(L) =

{
1
M

if PL(m, j) > 0

0 otherwise
;

end

keep track of the history of the random graphs. By introducing tm,j and Pt, we can show that the
global estimator µ̃m

i (t) behaves similarly to a sub-gaussian/sub-exponential random variable with an

expectation of µi and a time-decaying variance proxy proportional to 1
minj nj,i(t)

. This ensures that

the concentration inequality holds for µ̃m
i (t) with respect to µi and that client m tends to identify

the global optimal arms with high probability, which plays an important role in minimizing regret.
The formal statements are presented in the next section.

3 Regret Analyses

In this section, we show the theoretical guarantees of the proposed algorithm, assuming mild con-
ditions on the environment. Specifically, we consider various settings with different model assump-
tions. We prove that the regret of Algorithm 3 has different instance-dependent upper bounds of
order logT for settings with sub-gaussian and sub-exponential distributed rewards, and a mean-gap

independent upper bound of order
√
T logT across settings. Many researchers call such a bound

instance independent but we believe such a terminology is misleading and thus we prefer to call it
man-gap independent, given that it still has dependency on parameters pertaining to the problem
instance. The results are consistent with the regret bounds in prior works.
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Algorithm 3: DrFed-UCB: Learning period

Initialization: For each client m and arm i ∈ {1, 2, . . . ,K}, we have µ̃m
i (L+ 1),

Nm,i(L + 1) = nm,i(L); all other values at L+ 1 are initialized as 0;
for t = L+ 1, L+ 2, . . . , T do

for each client m do // UCB
if there is no arm i such that nm,i(t) ≤ Nm,i(t)−K then

atm = argmaxi µ̃m,i(t) + F (m, i, t)
else

Randomly sample an arm atm.
end

Pull arm atm and receive reward rm,at
m
(t);

end
The environment generates a sample graph Gt = (V,Et)
based on E-R or Algorithm 1; // Env

Each client m sends µm
i (t), Nj,i(t), µ̄

m
i (t), µ̃m

i (t) to each client in Nm(t);

Each client m receives µ
j
i (t), Nj,i(t), µ̄

j
i (t), µ̃

j
i (t) from all clients j ∈ Nm(t) and stores

them as µ̂m
i,j(t), N̂

m
i,j(t), ˆ̄µ

m
i,j(t),

ˆ̃µm
i,j(t); // Transmission

for each client m do
for i = 1, . . . ,K do

Update Pt for 1 ≤ j ≤ M by Pt(m, j) =
(t−1)Pt−1(m,j)+Xt

m,j

t
;

Update P ′
t for 1 ≤ j ≤ M by P ′

t (m, j) =

{
1 if Pt(m, j) > 0

0 if Pt(m, j) = 0
;

Update nm,i(t), Nm,i(t) and µ̃m
i (t) based on equations (2);

end

end

end

3.1 Model Assumptions

By definition, the environment is determined by how the graphs (E-R or uniform) and rewards are
generated.

For reward we consider two cases.

Sub-g At time step t, the reward of arm i at client m has bounded support [0, 1], and is drawn from
a sub-gaussian distribution with mean 0 ≤ µm

i ≤ 1 and variance proxy 0 ≤ (σm
i )2 ≤ σ2.

Sub-e At time step t, the reward of arm i at client m has bounded support [0, 1], and follows a sub-
exponential distribution with mean 0 ≤ µm

i ≤ 1 and parameters 0 ≤ (σm
i )2 ≤ σ2, 0 ≤ αm

i ≤ α.

With these considerations, we investigate four different environments (settings) based on the two
graph assumptions and the two reward assumptions: Setting 1.1 corresponds to E-R and Sub-g,
Setting 1.2 to Uniform and Sub-g, Setting 2.1 to E-R and Sub-e, and Setting 2.2 to Uniform and
Sub-e.

For each setting, we derive upper bounds on the regret in the next section.

3.2 Regret Analyses

In this section, we establish the regret bounds formally when clients adhere to Algorithm 3 in various
settings. We denote Setting 1.1, Setting 1.2 with M < 11, and Setting 1.2 with M ≥ 11 as s1, s2
and s3, respectively. Likewise, we denote Setting 2.1, Setting 2.2 with M < 11, and Setting 2.2
with M ≥ 11 as S1, S2 and S3, respectively. See Table 1 for a tabular view of the various settings.

Note that the randomness of RT arises from both the reward and graph observations. Consider-
ing S1, S2, S3 differ in the reward assumptions compared to s1, s2, s3, we define an event A that
preserves the properties of the variables with respect to the random graphs. Given the length of
the burn-in period Li for i ∈ {s1, s2, s3} and the fact that Lsi = LSi

since it only relies on the
graph assumptions, we use L to denote maxi Lsi . Parameters 0 < δ, ǫ < 1 are any constants, and

8



Table 1: Settings

E-R uniform M reward

s1 X any sub-g

s2 X [1, 10] sub-g

s3 X [11,∞) sub-g

S1 X any sub-e

S2 X [1, 10] sub-e

S3 X [11,∞) sub-e

the parameter c = c(M) represents the mean value of the Bernoulli distribution in s1, S1 and the
probability of an edge in s2, S2, s3, and S3 among all connected graphs (see (1)). We define events
A1 = {∀t ≥ L, ||Pt − cE||∞ ≤ δ}, A2 = {∃t0, ∀t ≥ L, ∀j, ∀m, t + 1 − minj tm,j ≤ t0 ≤
c0 minl nl,i(t + 1)}, and A3 = {∀t ≥ L,Gt is connected}. Here E is the matrix with all values of
1. Constant c0 = c0(K,mini6=i∗ ∆i,M, ǫ, δ) is defined later. Since c = c(M) this implies that Gt

depends on M . We define A = Aǫ,δ = A1 ∩ A2 ∩ A3, which yields A ∈ Σ with Σ being the sub-
σ-algebra formed by {Ω, ∅, A,Ac}. This implies E[·|A] and P [·|A] are well-defined, since A only
relies on the graphs and removes the differences among s1, s2, s3 (S1, S2, S3), enabling universal
regret upper bounds.

Next, we demonstrate that event A holds with high probability.

Theorem 1. For event Aǫ,δ and any 1 > ǫ, δ > 0, we have P (Aǫ,δ) ≥ 1− 7ǫ.

Proof Sketch. The complete proof is deferred to Appendix; we discuss the main logic here. The
proof relies on bounding the probabilities of A1, A2, A3 separately. For A1, its upper bound holds
by the analysis of the mixing time of the Markov chain underlying Gt and on the matrix-form
Hoeffding inequality. We obtain an upper bound on P (A2) by analyzing the stopping time tm,j and
the counter nm,i(t). For the last term P (A3), we show that the minimum degree of Gt has a high
probability lower bound that is sufficient for claiming the connectivity of Gt. To put all together, we
use the Bonferroni’s inequality and reach the lower bound of P (Aǫ,δ).

Subsequently, we have the following general upper bound on the regret RT of Algorithm 3 in the
high probability sense, which holds on A in any of the settings s1, s2, s3 with sub-gaussian rewards.

Theorem 2. Let f be a function specific to a setting and detailed later. For every 0 < ǫ < 1 and

0 < δ < f(ǫ,M, T ), in setting s1 with c ≥ 1
2 +

1
2

√

1− ( ǫ
MT

)
2

M−1 , s2 and s3, with the time horizon

T satisfying T ≥ L, the regret of Algorithm 3 with F (m, i, t) =
√

C1 ln t
nm,i(t)

satisfies that

E[RT |Aǫ,δ] ≤ L+
∑

i6=i∗

(max {[ 4C1 logT

∆2
i

], 2(K2 +MK)}+ 2π2

3P (Aǫ,δ)
+K2 + (2M − 1)K)

where the length of the burn-in period is explicitly

L = max

{

ln 2T
ǫ

2δ2
,
4K log2 T

c0
︸ ︷︷ ︸

Ls1

,
ln δ

10

ln p∗
+ 25

1 + λ

1− λ

ln 2T
ǫ

2δ2
,
4K log2 T

c0
︸ ︷︷ ︸

Ls2

,

ln δ
10

ln p∗
+ 25

1 + λ

1− λ

ln 2T
ǫ

2δ2
,

K ln(MT
ǫ

)

ln( 1

1−
2 log M
M−1

)

c0
︸ ︷︷ ︸

Ls3

}
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with λ being the spectral gap of the Markov chain in s2, s3 that satisfies 1 − λ ≥ 1
2 ln 2

ln 2p∗
ln 4+1

,

p∗ = p∗(M) < 1 and c0 = c0(K,mini6=i∗ ∆i,M, ǫ, δ), and the instance-dependent constant C1 =

8σ2 max{12M(M+2)
M4 }.

Proof Sketch. The proof is carried out in Appendix; here we describe the main ideas as follows. We
note that the regret is proportional to the total number of pulling global sub-optimal arms by the end
of round T . We fix client m for illustration without loss of generality. We tackle all the possible
cases when clients pull such a sub-optimal arm - (i) the condition nm,i(t) ≤ Nm,i(t)−K is met, (ii)
the upper confidence bounds of global sub-optimal arms deviate from the true means, (iii) the upper
confidence bounds of global optimal arms deviate from the true means, and (iv) the mean values
of global sub-optimal arms are greater than the mean values of global optimal arms. The technical
novelty of our proof is in that 1) we deduce that the total number of events (ii) and (iii) occurring
can be bounded by some constants using newly derived conditional concentration inequalities that
hold by our upper bounds on the conditional moment generating functions and by the unbiasedness
of the network-wide estimators and 2) we control (i) by analyzing the scenarios where the criteria
are met, which do not occur frequently.

There are several key challenges in the analysis. The concentration inequalities are for the neighbor-
wide estimators µ̃m

i , which necessitates deducing the properties of µ̃m
i (t) for any time step t, client

m and arm i. To this end, we show that µ̃m
i (t) are unbiased estimators of µi conditional on A that

relies on the execution of the algorithm during the burn-in period (Algorithm 2), and more impor-
tantly, we prove that µ̃m

i (t) have variance proxies proportional to the global variable 1
minj nj,i(t)

by

bounding the conditional moment generating function conditional on A and analyzing tm,j and the
weight matrix P ′. Meanwhile, the condition nm,i(t) ≤ Nm,i(t) −K is based on the difference be-
tween nm,i(t) and Nm,i(t). In view of that, we consider whether the clients in the neighborhood set
lead to an update in Nm,i(t) and whether client m updates nm,i(t) simultaneously. All the analyses
are made possible by the newly proposed update rule that aligns with the new settings.

Remark (The condition on the time horizon). Although the above regret bound holds for any T >
L, the same bound applies to T ≤ L as follows. Assuming T ≤ L, we obtain E[RT |Aǫ,δ] ≤ T ≤ L
where the first inequality is by noting that the rewards are within the range of [0, 1].

Remark (The upper bound on the expected regret). Theorem 2 states a high probability regret
bound, while the expected regret is often considered in the existing literature. As a corollary of

Theorem 2, we establish the upper bound on E[RT ] if ǫ = log T
MT

as follows. Note that

E[RT ] = E[RT |Aǫ,δ]P (Aǫ,δ) + E[RT |Ac
ǫ,δ]P (Ac

ǫ,δ) ≤ P (Aǫ,δ) ·E[RT |Aǫ,δ] + T · (1 − P (Aǫ,δ))

≤ (1− 7ǫ)(L+
∑

i6=i∗

(max {[ 4C1 log T

∆2
i

], 2(K2 +MK)}+ 2π2

3P (Aǫ,δ)
+K2 + (2M − 1)K)) + 7ǫT

≤ l1 + l2 logT +
∑

i6=i∗

(max {[ 4C1 logT

∆2
i

], 2(K2 +MK)}+ 2π2

3(1− 7ǫ)
+K2 + (2M − 1)K) + 7

logT

M

where the first inequality uses E[RT |Aǫ,δ] ≤ T and the second inequality follows by Theorem 1.
Here l1 and l2 are constants depending on K,M, δ,mini6=i∗ ∆i, and λ.

Remark (Specification of the parameters). Note that the choice of f depends on the problem

settings. Specifically, in setting s1, we set f(ǫ,M, T ) = 1
2 + 1

4

√

1− ( ǫ
MT

)
2

M−1 . By the definition

of c, we have f(ǫ,M, T ) < c. In setting s2 with M < 11, we specify f(ǫ,M, T ) = 1
2 which meets

f < c due to (1). Lastly, in setting s3 with M ≥ 11, we choose f(ǫ,M, T ) = 1
2
2 logM
M−1 and again

we have f < c due to (1).

Remark (Comparison with previous work). A comparison to the regret bounds in the exist-
ing literature considering sub-gaussian rewards is as follows. Our regret bounds are consistent
with the prior works where the expected regret bounds are of order logT . Note that the regret
bounds in [Zhu and Liu, 2023] cannot be used here since the update rule and the settings are dif-
ferent. Their update rule and analyses cannot carry over to our settings, which explains why we
invent these modifications and proofs. On the one hand, the time-varying graphs they consider
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do not include the E-R model, and we can find counter-examples where their doubly stochastic
weight matrices Wt result in the divergence of W1 · W2 . . .WT . This makes the key proof step
invalid in our framework. On the other hand, their time-varying graphs include the connected
graphs when l = 1, but they also make an additional assumption of doubly stochastic weight
matrices, which is not applicable to regular graphs. Furthermore, they study an expected regret
upper bound, while we prove a high probability regret bound that captures the dynamics in the
random graphs. The graph assumptions in other works, however, are stronger, such as [Zhu et al.,
3–4, 2021] consider time-invariant graphs and [Wang et al., 1531–1539, 2021] assume graphs are
complete [Perchet et al., 660–681, 2016]. In contrast to some work that focuses on homogeneous
rewards in decentralized multi-agent MAB, we derive regret bounds of the same order logT in a
heterogeneous setting. If we take a closer look at the coefficients in terms of K,M, λ,∆i, our regret
bound is determined by O(max(K, 1+λ

1−λ
, 1
M2∆i

) logT ). The work of [Zhu and Liu, 2023] arrives

at O(max{ log T
∆i

,K1,K2}) where K1,K2 are related to T without explicit formulas. Our regret is

smaller when K∆i ≤ 1 and 1+λ
1−λ

∆i ≤ 1, which can always hold by rescaling ∆i, i.e. for many

cases we get substantial improvement.

To proceed, we show a high probability upper bound on the regret E[RT |Aǫ,δ] of Algorithm 3 for
settings S1, S2, S3 with sub-exponential rewards.

Theorem 3. Let f be a function specific to a setting and defined in the above remark. For every

0 < ǫ < 1 and 0 < δ < f(ǫ,M, T ), in settings S1 with c ≥ 1
2 + 1

2

√

1− ( ǫ
MT

)
2

M−1 ,S2, S3 with the

time horizon T satisfying T ≥ L, the regret of Algorithm 3 with F (m, i, t) =
√

C1 lnT
nm,i(t)

+ C2 lnT
nm,i(t)

satisfies

E[RT |Aǫ,δ] ≤ L+
∑

i6=i∗

(∆i + 1) · (max([
16C1 logT

∆2
i

], [
4C2 logT

∆i

], 2(K2 +MK))

+
4

P (Aǫ,δ)T 3
+K2 + (2M − 1)K)

where L,C1 are specified as in Theorem 2 and C2

C1
≥ 3

2 .

Proof Sketch. The proof is detailed in Appendix. The proof logic is similar to that of Theorem 2.
However, the main differences lie in the upper confidence bounds, which require proving new con-
centration inequalities and moment generating functions for the network-wide estimators.

In addition to the instance-dependent regret bounds of order O( log T
∆i

) that depend on the sub-

optimality gap ∆i which may be arbitrarily small and thereby leading to large regret, we also es-
tablish a universal, mean-gap independent regret bound that applies to settings with sub-exponential
and sub-gaussian rewards.

Theorem 4. Assume the same conditions as in Theorems 2 and 3. The regret of Algorithm 3 satisfies
that

E[RT |Aǫ,δ] ≤ L1 +
4

P (Aǫ,δ)T 3
+ (

√

max (C1, C2) lnT + 1)
4M

P (Aǫ,δ)T 3
+

K(C2(lnT )
2 + C2 lnT +

√

C1 lnT
√

T (lnT + 1)) = O(
√
T lnT ).

where L1 = max(L,K(2(K2 + MK))), L,C1 is specified as in Theorem 2, and C2

C1
≥ 3

2 . The

involved constants depend on σ2 but not on ∆i.

Proof Sketch. A formal proof is deferred to Appendix; the general idea is as follows. We directly
decompose E[RT |Aǫ,δ] as the sum of - (i) the differences between the confidence bounds and the
true mean values, (ii) the differences between the upper and lower confidence bounds, and (iii) the
differences in the upper confidence bounds between the global optimal and sub-optimal arms. The
first term relies on the concentration inequalities for the network-wide estimators. The second term is

proportional to the cumulative sum of
√

C1 lnT
nm,i(t)

+ C2 lnT
nm,i(t)

which has an upper bound O(
√
T logT )

by the Cauchy-Schwarz inequality. The last term is based on the number of time steps when the
clients do not follow UCB, which is relevant to the criterion nm,i(t) ≤ Nm,i(t)−K .
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Remark. Based on the expression of L1, we obtain that L1 is independent of the sub-optimality

gap ∆i. Meanwhile, we have C1 = 8σ2 · 12M(M+2)
M4 and C2 = 3

2C1 = 12σ2 · 12M(M+2)
M4 . This

implies that the established regret bound in Theorem 4 does not rely on ∆i but does depend on σ2.
To this end, we use the terminology, mean-gap independent bounds, to only represent bounds having
no dependency on ∆i, rather than instance independent that seems to be an overclaim in this case.

Remark. The discussion regarding the conditions on T , the expected regret E[RT ], and the param-
eter specifications follow the same logic as those in Theorem 2. We omit the details here.

Remark (Comparison with previous work). For decentralized multi-agent MAB with homoge-
neous heavy-tailed rewards and time-invariant graphs, [Dubey and Pentland, 2730–2739, 2020]
provide an instance-dependent regret bound of order logT . In contrast, our regret bound has the
same order for heterogeneous settings with random graphs, as shown in Theorem 3. Additionally,
we provide a mean-gap independent regret bound as in Theorem 4. In the single-agent MAB set-
ting, [Jia et al., 2021] consider sub-exponential rewards and derive a mean-gap independent regret

upper bound of order
√
T logT . Our regret bound of

√
T logT is consistent with theirs, up to a

logarithmic factor. Furthermore, our result is consistent with the regret lower bound as proposed
in [Slivkins, 2019], up to a logT factor, indicating the tightness of our regret bound.
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