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ABSTRACT
Deep neural networks (DNNs) are powerful types of arti-
ficial neural networks (ANNs) that use several hidden lay-
ers. They have recently gained considerable attention in
the speech transcription and image recognition community
(Krizhevsky et al., 2012) for their superior predictive prop-
erties including robustness to overfitting. However their ap-
plication to financial market prediction has not been pre-
viously researched, partly because of their computational
complexity. This paper describes the application of DNNs
to predicting financial market movement directions. A crit-
ical step in the viability of the approach in practice is the
ability to effectively deploy the algorithm on general purpose
high performance computing infrastructure. Using an Intel
Xeon Phi co-processor with 61 cores, we describe the process
for efficient implementation of the batched stochastic gradi-
ent descent algorithm and demonstrate a 11.4x speedup on
the Intel Xeon Phi over a serial implementation on the Intel
Xeon.

Categories and Subject Descriptors
G.4 [MATHEMATICAL SOFTWARE]: Parallel and
vector implementations

General Terms
Algorithms, Performance
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Many of the challenges facing methods of financial econo-
metrics include non-stationarity, non-linearity or noisiness
of the time series. While the application of artificial neu-
ral networks (ANNs) to time series methods are well docu-
mented (Faraway and Chatfield, 1998; Refenes, 1994; Trippi
and DeSieno, 1992; Kaastra and Boyd, 1995) their prone-
ness to over-fitting, convergence problems, and difficulty of
implementation raised concerns. Moreover, their departure
from the foundations of financial econometrics alienated the
financial econometrics research community and finance prac-
titioners.

However, algotrading firms employ computer scientists
and mathematicians who are able to perceive ANNs as not
just black-boxes, but rather a non-parametric approach to
modeling based on minimizing an entropy function. As such,
there has been a recent resurgence in the method, in part
facilitated by advances in modern computer architecture
(Chen et al., 2013; Niaki and Hoseinzade, 2013; Vanstone
and Hahn, 2010).

A deep neural network (DNN) is an artificial neural net-
work with multiple hidden layers of units between the input
and output layers. They have been popularized in the artifi-
cial intelligence community for their successful use in image
classification (Krizhevsky et al., 2012) and speech recogni-
tion. The field is referred to as ”Deep Learning”.

In this paper, we shall use DNNs to partially address some
of the deficiencies of ANNs. Specifically, we model complex
non-linear relationships between the independent variables
and dependent variable and reduced tendency to overfit. In
order to do this we shall exploit advances in low cost many-
core accelerator platform to train and tune the parameters
of our model.

For financial forecasting, especially in multivariate fore-
casting analysis, the feed-forward topology has gained much
more attention and shall be the approach used here. Back-
propagation and gradient descent have been the preferred
method for training these structures due to the ease of im-
plementation and their tendency to converge to better local
optima in comparison with other trained models. However,
these methods can be computationally expensive, especially
when used to train DNNs.

There are many training parameters to be considered with
a DNN, such as the size (number of layers and number of
units per layer), the learning rate and initial weights. Sweep-
ing through the parameter space for optimal parameters is
not feasible due to the cost in time and computational re-



sources. We use mini-batching (computing the gradient on
several training examples at once rather than individual ex-
amples) as one common approach to speeding up compu-
tation. We go further by expressing the back-propagation
algorithm in a form that is amenable to fast performance on
an Intel Xeon Phi co-processor (Jeffers and Reinders, 2013).
General purpose hardware optimized implementations of the
back propagation algorithm are described in the literature
(see for example Shekhar and Amin (1994); Oh and Jung
(2004)), however our approach is tailored for the Intel Xeon
Phi co-processor.

The main contribution of this paper is to describe an im-
plementation of deep neural networks to financial time series
data in order to classify financial market movement direc-
tions. Traditionally, researchers iteratively experiment with
a handful of signals to train a level based method, such as
vector autoregression, for each instrument (see for example
Kaastra and Boyd (1995); Refenes (1994); Trippi and De-
Sieno (1992)). More recently, however, Leung et al. (2000)
provide evidence that classification based methods outper-
form level based methods in the prediction of the direction
of stock movement and trading returns maximization.

Using 5 minute interval prices from June 1989 to March
2013, our approach departs from the literature by using
state-of-the-art parallel computing architecture to simulta-
neously train a single model from a large number of signals
across multiple instruments, rather than using one model
for each instrument. By aggregating the data across mul-
tiple instruments and signals, we enable the model to cap-
ture a richer set of information describing the co-movements
across signals for each instrument price movement. Our re-
sults show that our model is able to predict the direction
of instrument movement to, on average, 73% accuracy. We
further show how backtesting accuracy translates into the
P&L for a simple long-only trading strategy.

In the following section we introduce the back-propagation
learning algorithm and use mini-batching to express the
most computationally intensive equations in matrix form.
Once expressed in matrix form, hardware optimized nu-
merical linear algebra routines are used to achieve an ef-
ficient mapping of the algorithm on to the Intel Xeon Phi
co-processor. Section 3 describes the preparation of the data
used to train the DNN. Section 4 describes the implementa-
tion of the DNN. Section 4.1 then describes a parallel version
of the implementation that significantly reduces the overall
training time.

2. DEEP NEURAL NETWORKS
We begin with mathematical preliminaries. Let D denote

the historical dataset of M features and N observations. We
draw a training subset Dtrain ⊂ D of Ntrain observations and
a test subset of Dtest ⊂ D of Ntest observations.

Denote the nth observation (feature vector) as xn ∈ Dtrain.
In an ANN, each element of the vector becomes a node in
the input layer, as illustrated in the figure below for the case
when there are 7 input variables (features) per observation.
In a fully connected feed-forward network, each node is con-
nected to every node in the next layer. Although not shown
in the figure, associated with each edge between the ith node
in the previous layer and the jth node in the current layer l

is a weight w
(l)
ij .

In order to find optimal weightings w := {w(l)}l:=1→L
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Figure 1: An illustrative example of a feed-forward
neural network with two hidden layers, seven fea-
tures and two output states. Deep learning networks
typically have many more layers, use a large number
of features and several output states or classes. The
goal of learning is to find the weight on every edge
that minimizes a loss function.

between nodes in a fully connected feed forward network
with L layers, we seek to minimize a cross-entropy function
of the form

E(w) = −
Ntest∑
n=1

en(w), en(w) :=

K∑
k=1

yknln (ŷkn) . (1)

For clarity of exposition, we drop the subscript n. Here
K denotes the total number of classes. The binary target
vectors y and binary output vectors ŷ have a 1-of-ns en-
coding for each symbol, where ns is the number of classes
per symbol, so that each state associated with a symbol can
be interpreted as a probabilistic weighting. Put formally,
yk ∈ {0, 1}, ∀k ∈ K and

∑
k∈Ki

yk = 1, ∀i where Ki is the
set of ns class indices associated with symbol i.

To ensure analytic gradient functions under the cross-
entropy error measure, each of the nodes associated with
the ith symbol in the output layer are activated with a soft-
max function of the form

ŷk := φsoftmax(s(L)) =
exp(s

(L)
k )∑

j∈Ki
exp(s

(L)
j )

, ∀k ∈ Ki. (2)

The gradient of the likelihood function w.r.t. s then takes
the simple form:

∂e(w)

∂s
(L)
k

= ŷk − yk (3)

and in a fully connected feed-forward network s
(l)
k is the

weighted sum of outputs from the previous layer l − 1 that



connect to node j in layer l:

s
(l)
j =

nl−1∑
i

w
(l)
ij x

(l−1)
i + bias

(l)
j . (4)

Here nl is the number of nodes in layer l. For each node
i in the (l − 1)th layer, the recursion relation for the back
propagation using conjugate gradients is:

δ
(l−1)
i =

n(l)∑
j=1

δ
(l)
j w

(l)
ij σ(s

(l−1)
i )(1− σ(s

(l−1)
i )), (5)

where we have used the analytic form of the derivative of
the sigmoid function

σ′(v) = σ(v)(1− σ(v)), (6)

which is used to activate all hidden layer nodes.
A trained feed-forward network can be used to predict the

outputs states of all symbols, given any observation as an
input, by recursively applying Equation 4. The description
of how the network is trained now follows.

Stochastic Gradient Descent.
Following Rojas (1996), we now revisit the backpropaga-

tion learning algorithm based on the method of stochastic
gradient descent (SGD). After random sampling of an obser-
vation i, the SGD algorithm updates the parameter vector
w(l) for the lth layer using

w(l) = w(l) − γ∇Ei(w
(l)), (7)

where γ is the learning rate. The gradient expression with
respect to the bias terms has a similar expression.

A high level description of the sequential version of the
SGD algorithm is given in Algorithm 1. Note that for rea-
sons of keeping the description simple, we have avoided some
subtleties of the implementation.

Algorithm 1 Stochastic Gradient Descent

1: w← r, ri ∈ N (µ, σ), ∀i
2: E ← 0
3: for i = 0 to n− 1 do
4: E ← E + Ei(w)
5: end for
6: while E ≥ τ do
7: for t = 0 to n− 1 do
8: i← sample with replacement in [0, n− 1]
9: w← w − γ∇Ei(w)

10: end for
11: E ← 0
12: for i = 0 to n− 1 do
13: E ← E + Ei(w)
14: end for
15: end while

2.1 Mini-batching
It is well known that mini-batching improves the computa-

tional performance of the feedforward and backpropagation
computations. We process b observations in one mini-batch.
This results in a change to the SGD algorithm and the di-
mensions of data-structures that are used to store variables.
In particular, δ, x, s and E now have a batch dimension.

Note however that the dimensions of w(l) remain the same.
The above equations can be now be modified.

With slight abuse of notation, we redefine the dimensions
of δ(l), X(l), S(l) ∈ Rnl×b, ∀l, E ∈ RnL×b, where nl is the
number of neurons in layer l and b is the size of the mini-
batch.

The computation of the sum in the feed-forward network
can be expressed as a matrix-matrix product at each layer

S(l) =
(
X

(l−1)
i

)T
w(l). (8)

For the ith neuron in output layer L and the jth observation
in the mini-batch

δ
(L)
ij = σ

(L)
ij (1− σ(L)

ij )Eij . (9)

For all intermediate layers l < L, the recursion relation for
δ is

δ
(l−1)
ij = σ

(l)
ij (1− σ(l)

ij )w
(l)
ij δ

(l)
ij . (10)

The weights are updated with matrix-matrix products for
each layer

∆w(l) = γX(l−1)
(
δ(l)
)T

. (11)

3. THE DATA
Our historical dataset contains 5 minute mid-prices for

45 CME listed commodity and FX futures from March 31st
1991 to September 30th, 2014. We use the most recent fif-
teen years of data because the previous period is less liq-
uid for some of the symbols, resulting in long sections of
5 minute candles with no price movement. Each feature
is normalized by subtracting the mean and dividing by the
standard deviation. The training set consists of 37,500 con-
secutive observations and the test set consists of the next
12,500 observations. These sets are rolled from the start of
the liquid observation period in one month increments until
the final 50,000 observations from March 31st, 2005 until
the end of the dataset.

The overall training dataset consists of the aggregate of
feature training sets for each of the symbols. The training set
of each symbol consists of price differences and engineered
features including lagged prices differences from 1 to 100,
moving price averages with window sizes from 5 to 100, and
correlations between the returns and the returns of all other
symbols. The overall training set contains 9895 features.
The motivation for including these features in the model is
to capture memory in the historical data and co-movements
between symbols.

4. IMPLEMENTATION
The architecture of our network contains five learned fully

connected layers. The first of the four hidden layers contains
1000 neurons and each subsequent layer is tapered by 100.
The final layer contains 135 output neurons - three values
per symbol of each of the 45 futures contracts. The result
of including a large number of features and multiple hidden
layers is that there are 12,174,500 weights in total.

The weights are initialized with an Intel MKL VSL ran-
dom number generator implementation that uses the Mersenne
Twistor (MT19937) routine. Gaussian random numbers are
generated by transforming the uniform random numbers
with an inverse Gaussian cumulative distribution function



with zero mean and standard deviation of 0.01. We initial-
ized the neuron biases in the hidden layers with the constant
1.

We used the same learning rate for all layers. The learning
rate was adjusted according to a heuristic which is described
in Algorithm 2 below and is similar to the approach taken
in Krizhevsky et al. (2012) except that we use cross entropy
rather than the validation error. We sweep the parameter
space of the learning rate from [0.1, 1] with increments of 0.1.
We further divide the learning rate by 2 if the cross-entropy
does not decrease between epochs.

Algorithm 2 Deep Learning Methodology

1: for γ := 0.1, 0.2, . . . , 1 do
2: <Initialize all weights>

3: w
(l)
i,j ← r, r ∈ N (µ, σ), ∀i, j, l

4: <Iterate over epochs>
5: for e = 1, . . . , Ne do
6: Generate De

7: <Iterate over mini-batches>
8: for m = 1, . . . ,M do
9: Generate Dm

10: <Feed-Forward network construction>
11: for l = 2, . . . , L do

12: Compute all x
(l)
j

13: end for
14: for l = L, . . . , 2 do
15: <Backpropagation>

16: Compute all δ
(l)
j := ∇

s
(l)
j

E

17: <Update the weights>

18: w(l) ← w(l) − γX(l−1)
(
δ(l)
)T

19: end for
20: end for
21: end for
22: If crossentropy(e) ≤ crossentropy(e-1) then γ ← γ/2
23: end for
24: Return final weights w

(l)
i,j

In Algorithm 2, the subset of the training set used for each
epoch is defined as

De := {xnk ∈ Dtrain | nk ∈ U(1, Ntrain), k := 1, . . . , Nepoch}
(12)

and the mini-batch with in each epoch set is defined as

Dm := {xnk ∈ Dep | nk ∈ U(1, Nepoch), k := 1, . . . , Nmini-batch}.
(13)

4.1 Parallel Implementation
In designing an algorithm for parallel efficiency on a shared

memory architecture, three design goals have been imple-
mented:

• The algorithm has to be designed with good data lo-
cality properties. In other words, each processor is
assigned access to a single, contiguous and separate
region of memory for each global data structure. This
is important for performance and to avoid race condi-
tions.

• The dimension of the matrix or for loop being paral-
lelized is at least equal to the number of threads. This

CPU System Co-processor System
Processor Xeon E5-2690 v2 Xeon Xeon Phi 7120

- 16 cores - 61 cores
- 20 threads (HT on) - 244 threads (HT on)
- 2.30GHz - 1.24GHz

ECC on on
RAM 128GB 16GB
OS GNU 2.6.32 GNU 2.6.38
XE Composer 2015
Compiler ICC 15.0.2
Flags -O3 -O3 -mmic

Table 1: Benchmark system configurations.

is important to avoid redundancy of the vectorization
units.

• BLAS routines from the MKL should be used in pref-
erence to openmp parallel for loop primitives. This is
because the MKL BLAS routines are heavily optimized
for each architectures.

The approach that has currently be implemented uses a
combination of openmp and MKL BLAS routines for paral-
lelizing construction of the feedforward network and back-
propagation steps. In each case, parallelization is performed
over the mini-batch dimension, so it is important that b is
sufficiently large to exploit the parallelism on the Intel Xeon
Phi. Matrix-matrix multiplication is achieved using dgemm.

5. EXPERIMENTAL RESULTS
All performance results reported in this section are ob-

tained using an Intel Xeon and the Intel Xeon Phi. The
details of the configuration are given in Table 1.

Figure 2 shows the speed up of the back propagation al-
gorithm on the Intel Xeon Phi against the number of cores
for various batch sizes. The results are measured using the
KMP_AFFINITY= scattered setting and the batch size is var-
ied between 240, 1000, 5000 & 10000. We observe that the
back-propagation algorithm shows a sub-linear parallel scal-
ability which improves with batch size.

Figure 3 shows the effect of increasing the batch size on the
relative performance of the Intel Xeon Phi against the base-
line system. Increasing work load results in better parallel
efficiency and and hence an increase in relative performance.
Using larger batch sizes is approached with caution as this
can reduce the overall convergence properties of the learning
algorithm. For this reason we recommend using a batch size
of 1000 so as to achieve a 11.4× speedup against the base
line but avoid disrupting the convergence properties of the
learning algorithm.

The results in Table 2 below show the performance at-
tribution of the Intel Xeon Phi 7120 against the baseline
system for various batch sizes b. The Intel Xeon Phi is
configured to use 240 threads. We observe that the serial
time is dominated by the feed forward network construction
and the back-propagation of δ. On the Intel Xeon Phi, the
back-propagation is efficiently parallelized leaving the net-
work construction as the bottle-neck.

When using 60 cores on the Phi, the speedup of each mini-
batch iteration of size b = 1000 using 240 threads compared
to a serial implementation on the Intel Xeon is 11.4×, re-
ducing each mini-batch iteration time to under 0.5 seconds.
This is an important development since typically, to avoid
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Figure 2: Speedup of the batched back-propagation
algorithm on the Intel Xeon Phi as the number of
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Figure 3: Speedup of the batched back-propagation
algorithm on the Intel Xeon Phi relative to the base-
line for various batch sizes.

b platform ffwd delta weights total
baseline 2.03 2.22 1.34 5.59

1000 Xeon Phi 0.295 0.105 0.0915 0.491
speedup 6.88 x 21.1 x 14.6x 11.4x
baseline 8.45 21.0 6.71 36.1

5000 Xeon Phi 0.626 0.383 0.412 1.42
speedup 13.9 x 54.8 x 16.3x 25.4x
baseline 17.9 42.2 13.9 74.0

10000 Xeon Phi 1.15 0.704 0.846 2.70
speedup 15.6 x 59.9 x 16.4x 27.4x

Table 2: This table shows the elapsed wall-clock
time in seconds of one mini-batch iteration of the
learning together with the decomposition. The de-
composition is shown for various batch sizes b. ffwd
denotes the feed forward network construction, delta
denotes back propagation of δ and weights denotes
the cost of updating the weight matrices using the
dgemm routine. The serial version is benchmarked
on an Intel Xeon E5-2695 and the parallel version
is benchmarked on an Intel Xeon Phi co-processor
7120.

overfitting, a minimum of 100 mini-batch iterations are run
per epoch and up to 50 epochs are run for each value of the
learning rate. The overall time is therefore approximately
10 hours when factoring in time for calculation of error mea-
sures on the test set1 and thus the training can be run as an
overnight batch job.

Figure 4 (top) shows the GFLOPS of the weight matrix
update (using dgemm) for each layer. The batch size is set
here to 1000. Recall that the network tapers inwards and
thus the size of the matrices reduce as each layer is increased.
We observe the first layer most efficiently utilizes the hard-
ware resources although it is far below the theoretical peak
of 1.208 TFLOPS. Referring to the weights column in Table
2, we see that this step does not scale well and this can be
attributed to the underutilization of the hardware resources
in the smaller hidden layers which can not be avoided due
to data dependency. Figure 4 (bottom) shows, for com-
pleteness, how the GFLOPS of the first layer weight matrix
update (dgemm) vary with the batch size of the back propa-
gation algorithm.

6. CONCLUSION
This paper describes the application of DNNs to predict-

ing financial market movement directions. A critical step
in the viability of the approach in practice is the ability
to effectively deploy the algorithm on general purpose high
performance computing infrastructure. Using an Intel Xeon
Phi co-processor with 61 cores, we describe the process for
efficient implementation of the batched stochastic gradient
descent algorithm and demonstrate a 11.4x speedup on the
Intel Xeon Phi over a serial implementation on the Intel
Xeon.
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Figure 4: (top) The GFLOPS of the weight ma-
trix update (using dgemm) for each layer. (bottom)
Variation of the GFLOPS of the first layer weight
matrix update with the batch size.
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