
Fully Polynomial Time Approximation Schemes for

Stochastic Dynamic Programs∗

Nir Halman†‡ Diego Klabjan‡§ Chung-Lun Li¶ James Orlin∥∗∗

David Simchi-Levi∥‡

halman@huji.ac.il, d-klabjan@northwestern.edu, chung-lun.li@polyu.edu.hk,

jorlin@mit.edu, dslevi@mit.edu

June 13, 2013

Revised June 18, 2014

Abstract

We present a framework for obtaining Fully Polynomial Time Approximation Schemes (FPTASs) for
stochastic univariate dynamic programs with either convex or monotone single-period cost functions. This
framework is developed through the establishment of two sets of computational rules, namely the Calculus
of K-approximation Functions and the Calculus of K-approximation Sets. Using our framework, we pro-
vide the first FPTASs for several NP-hard problems in various fields of research such as knapsack models,
logistics, operations management, economics, and mathematical finance. Extensions of our framework via
the use of the newly established computational rules are also discussed.

Keywords: Fully polynomial time approximation schemes; stochastic dynamic programming; K-approximation

∗This article is the full-length paper of the extended abstract published in the Proceedings of the Nineteenth Annual ACM-
SIAM Symposium on Discrete Algorithms 2008.

†The Hebrew University, Jerusalem, Israel. The research was conducted while the author was a post-doctorate associate
at MIT. Research supported in part by the European Community’s Seventh Framework Programme FP7/2007-2013 [Grant
agreement 247757], the Recanati Fund of the School of Business Administration, the Hebrew University of Jerusalem and NSF
Contract CMMI-0758069.

‡Research supported in part by NSF Contracts DMI-0085683 and DMI-0245352, and by NASA interplanetary supply chain
management and logistics architecture.

§Northwestern University, Evanston, IL.
¶The Hong Kong Polytechnic University, Hong Kong, China. Research supported in part by the Research Grants Council of

Hong Kong under grant PolyU5228/08E.
∥Massachusetts Institute of Technology, Cambridge, MA. Research supported in part by NSF Contract CMMI-0758069

∗∗Research supported in part by ONR grant N00014-98-1-0317.

1 Introduction

Dynamic Programming. Dynamic Programming (DP) is an algorithmic technique used for solving se-
quential, or multi-stage, decision problems and is a fundamental tool in combinatorial optimization (see, e.g.,
Hochbaum [1997], Ausiello et al. [1999, sec. 2.5], and Vazirani [2001, chap. 8]). A stochastic discrete time
finite horizon dynamic program (DP, to be distinguished from dynamic programming by context) aims to
find an optimal policy over a finite time horizon that minimizes the expected cost. In each time period, the
state of the system is observed before an action is taken. Based on exogenous stochastic information, the
state, and the action, the system transitions into a new state at the beginning of the next time period, while
a single period cost is incurred at the same time.

We can formally model this by means of the optimality equation (or Bellman equation). Let zt(It) be the
cost-to-go function (or value function). The value zt(It) is simply the cost of an optimal policy from time
period t to the end of the time horizon, given that at the beginning of time period t the state is It. The
optimality equation reads

zt(It) = min
xt∈At(It)

EDt

{
gt(It, xt, Dt) + zt+1(ft(It, xt, Dt))

}
. (1)

Here, xt is the action, At(It) is the action set, and Dt is a vector of random variables corresponding to
the stochastic exogenous information flow. The random variables are assumed to be independent, but they
are not necessarily identically distributed. The system dynamics are represented by a transition function
ft, and the cost incurred in period t is gt. In our context, It and xt are one-dimensional, while Dt is a
fixed-dimensional vector.

Monotone/Convex DP. We study three special cases of such DPs. In the first case, for every t, the cost
function gt is nonincreasing in It and monotone in xt, while the transition function ft is nondecreasing in
It and monotone in xt. We call this the nonincreasing case. The second case, in which the conditions are
analogous to the nonincreasing case, is called the nondecreasing case. We refer to these first two cases as the
monotone case. In the third case, the transition function ft is linear in It and xt, while the cost function gt
has a convex structure (we give a formal definition in Section 3), and we call this the convex case.

Fully Polynomial Time Approximation Schemes. When facing NP-hard problems, DPs will en-
counter difficulty in generating optimal solutions efficiently. One good resolution to this issue would be to
employ fully polynomial time approximation schemes (FPTASs), which can efficiently generate solutions
that are arbitrarily close to the optima. For any given tolerance ϵ, an FPTAS generates a solution with a
relative error guaranteed to be no more than ϵ, while the running time of the algorithm is polynomial in
1/ϵ and in the size of the problem. The essence of FPTASs is to apply a discrete approximation to the cost
function so that the DP can be executed in polynomial time. It would be critical to design an algorithm and
an approximation for the DP in such a way that small errors at one stage do not turn into large errors at
subsequent stages.

Literature Review. The earliest work conducted on FPTASs can be traced back to the mid-70s, starting
with the classic work of Ibarra and Kim [1975], Horowitz and Sahni [1976], and Sahni [1976] on scheduling and
knapsack problems. Since then, the most common techniques for constructing FPTASs have been dominance
(i.e., omitting states or actions of the DP which are dominated, or approximately dominated, by other states
or actions) and scaling/rounding the data (see, e.g., Hochbaum [1997] and Ausiello et al. [1999, sec. 2.5]).
Although many FPTASs can be easily constructed once the key ideas from Ibarra and Kim [1975] and Sahni
[1976] are understood, other FPTASs would require great care in algorithm design and analysis. In fact,
the existence of FPTASs for some optimization problems are nontrivial. In particular, to the best of our

1

knowledge, no FPTAS has been reported for stochastic optimization problems prior to 2006 (see the recent
works of Halman et al. [2009a] and Shmoys and Swamy [2006], where the latter deals with stochastic linear
and integer programming rather than stochastic DP).

Woeginger [2000] made a key observation that many FPTASs were designed by modifying DPs, and he
designed a framework for deriving FPTASs for deterministic DPs satisfying certain regularity conditions.
His framework encompassed results from a dozen of optimization problems, including the knapsack prob-
lem, for which the first FPTAS was developed in the seminal work of Ibarra and Kim [1975]. However,
Woeginger [2000] did not address some deterministic problems that were known to have FPTASs, including
treelike variants of the knapsack problem, problems involving convex or monotone functions, and stochastic
optimization problems.

We note that many #P-complete problems exhibit fully polynomial randomized approximation schemes
(FPRASs); for example, counting Hamiltonian cycles in dense graphs [Dyer et al., 1998], counting knapsack
solutions [Dyer, 2003], counting Eulerian orientations of a directed graph [Mihail and Winkler, 1996], counting
perfect matchings in a bipartite graph [Jerrum and Sinclair, 1989], or computing the permanent [Jerrum
et al., 2004]. To the best of our knowledge, deterministic FPTASs for #P-hard problems known up-to-date
and published in the literature can only be found in the recent works of Weitz [2006], Bandyopadhyay and
Gamarnik [2008], Bayati et al. [2007], and Gamarnik and Katz [2007], which were developed by applying
methods from statistical physics. Our FPTAS, which uses different methods, would provide another unique
example of a (deterministic) FPTAS for #P-hard problems.

Our Results. In this paper we adopt Woeginger’s goal of transforming DPs into FPTASs. We develop
a novel methodology that is both general and easy-to-use for deriving FPTASs for stochastic DPs. An
important ingredient in this methodology is the development of a set of conditions such that if a DP satisfies
it, then the DP admits an FPTAS. Our framework extends that of Woeginger in several key aspects. In
particular, it applies to stochastic optimization problems, and it permits functions defined over a large
interval of integers. Nevertheless, it is not yet a proper generalization of Woeginger’s framework, and several
problems with FPTASs that fit into Woeginger’s framework do not fit into ours. Figure 1 depicts the
interrelations between Woeginger’s framework and ours. The figure is not drawn to scale. In fact, about
80% of the problems presented in Woeginger [2000] fall into our framework.

Deterministic

Stochastic
������������������������

&%
'$
W

&%
'$

O

Figure 1: NP-hard optimization problems and the frameworks of Woeginger (W) and of ours (O).

We show that our newly developed set of the conditions is satisfied by several basic problems in inventory
control, economics, theoretical computer science, and finance. Moreover, all the FPTASs for stochastic opti-
mization problems are new. (Recall that previous to 2006 there were no FPTASs for stochastic optimization
problems.) We show that in many aspects this set of conditions is also necessary by giving inapproxiability
results whenever some parts of the sufficient conditions are not satisfied.

Our Approach. In a previous work [Halman et al., 2009a], we have studied a single-item stochastic
dynamic inventory control problem. In that work, we introduced the notions of K-approximation sets and

2

K-approximation functions and “tailored” them to the specific functions involved in a certain formulation
of the inventory control problem. Using this novel technique (which is different from dominance and/or
scaling), we provided an ad hoc FPTAS for the inventory control problem.

Our current work also makes use of the notions of K-approximation sets and functions but targets at
developing a general framework for FPTAS construction. To achieve this, we provide two sets of general
computational rules for manipulating K-approximation functions and K-approximation sets, which we call
Calculus of K-approximation Functions and Calculus of K-approximation Sets, respectively. While the
Calculus of K-approximation Functions bounds the approximation ratio of the resulting functions (see the
last column of Table 1), the Calculus of K-approximation Sets consists of a set of permissible operations on
functions such that the resulting functions can be approximated without performing any additional queries
to the original functions.

Assuming φ̃i and Wi are Ki-approximation function and Ki-approximation set, respectively, of a given
function φi, i = 1, 2, and α, β are nonnegative real numbers, Table 1 summarizes which operations on
which functions would admit an approximation set without further querying the functions involved. For
instance, min{φ̃1, φ̃2} serves as a max{K1,K2}-approximation function of min{φ1, φ2}, while W1 ∪ W2

serves as a max{K1,K2}-approximation set for min{φ1, φ2}, whenever φ1, φ2 are monotone functions. The
calculus serves as a simple (and often automated) tool for analyzing the error propagations for monotone,
unimodal, and convex functions. While some of the rules in the calculus are straightforward, others (e.g.,
Propositions 5.3, 7.1, and 7.2) are far more subtle (including some of the rules restricted to convex functions)
and demand more thorough analysis.

Table 1: The Calculus of K-approximation Sets and Functions.

Operation (nickname) φi is unimodal φi is monotone φi is convex Apx. set Apx. ratio (Prop. 5.1)
φ(ψ) (composition) Prop. 6.1(3) Prop. 6.1(3) Prop. 6.1(3) ψ−1(W1) K1

α+ βφ1 (linearity) Prop. 6.1(4) Prop. 6.1(4) Prop. 6.1(4) W1 K1

max{φ1, φ2} (maximization) Prop. 6.1(5) Prop. 6.1(5) Prop. 6.1(5) W1 ∪W2 max{K1,K2}
min{φ1, φ2} (minimization) - Prop. 6.2(2) - W1 ∪W2 max{K1,K2}
φ1 + φ2 (summation) - Prop. 6.2(1) Prop. 6.3 W1 ∪W2 max{K1,K2}

Comparison to Halman et al. [2009a]. We now highlight the main difference of contribution between
our previous work Halman et al. [2009a], where we introduced the concepts of K-approximation sets and
functions, and the current paper. In [Halman et al., 2009a] the main assumption is that the single period cost
functions are integer-valued convex functions over a contiguous interval of integers. Using this assumption
and the notions of K-approximation sets and functions, we designed an FPTAS to a specific inventory control
problem. The focus of the current work is on a more general setting of general monotone functions (which
are not necessarily integer-valued convex). Indeed, eight of the applications presented in Table 2 satisfy the
monotone assumption.

Our contribution. The contribution of this paper is sevenfold. First, we model the DP as a nicely-
structured function and carefully develop a theory (calculus) for the error propagation of functions. This
theory is very convenient to work with and, therefore, is fruitful for further research. Second, in addition to
developing the calculus, we develop a sufficient set of conditions that guarantee the existence of an FPTAS.
Third, we illustrate the generality and applicability of our framework by providing FPTASs to ten different
optimization problems as summarized in Table 2 (no FPTAS has been reported in the literature for any of
these problems except for problem 5). Fourth, we give new hardness results to five different optimization
problems as summarized in Table 2. Fifth, we meticulously study the limits of our framework and show

3

that it cannot be relaxed to deal with general non-independent random variables (Corollary 10.2) and that
the condition dealing with convex DP essentially cannot be relaxed (Theorem 9.2). Sixth, we show how to
construct approximations to monotone functions that cannot be accessed directly, and are instead accessed
by non-monotone functions that approximate them (Section 4.2). This is a key ingredient in the development
of our FPTAS for monotone DP, and may be of independent interest. Seventh, we use the notion of discrete
convexity (formally defined in the next section), together with some additional technical conditions to prove
that function zt in (1) is convex (Proposition 9.1). This is a key ingredient in the development of our FPTAS
for convex DP, and may also be of independent interest.

Applications. Our newly developed framework has numerous applications. To demonstrate the applica-
bility of our framework, we present ten examples of such applications. A summary of the previous results
and the new results of these ten problems is presented in Table 2. Formal definitions and detailed explana-
tions of how these problems fit into our framework are available in Appendix A. Problems 1–3 are variants
of the classical 0/1 knapsack problem; problems 4–7 are related to logistics and operations management;
and problems 8–10 are in the areas of economics and mathematical finance. Some of these problems are
deterministic, and some are stochastic. Note that no FPTAS has been reported in the literature for any of
these problems except problem 5.

1. Stochastic ordered adaptive knapsack problem [Dean et al., 2008]: A number of items are to be
considered sequentially for placing into a knapsack. Each item i has a deterministic profit πi and a stochastic
volume vi in which the distribution is known in advance. The actual volume of an item is unknown until we
instantiate the item by attempting to place it into the knapsack, and we have to decide whether or not to
select the item for packing. The packing process will be terminated once the knapsack capacity is exceeded.
The objective is to maximize the expected total profit of the packed items.

2. Nonlinear knapsack problem [Hochbaum, 1995, Kameshwaran and Narahari, 2009]: This
problem is similar to the classical integer knapsack problem, in which a quantity of each given item is
selected and packed into the knapsack. However, instead of having fixed volumes and profits per unit, a
general nondecreasing volume function and a general nondecreasing profit function are given; that is, placing
x units of item i into the knapsack will result in a profit of πi(x) and take up a volume of vi(x). The objective
is to maximize the total profit without exceeding the knapsack’s capacity.

3. Dynamic capacity expansion [Saniee, 1995]: This problem is best viewed as a multi-period mini-
mization integer knapsack problem. Given a sequence of demands c1, . . . , cT and a set of items {1, . . . , n}
of various volumes vi and time-dependent cost functions πt,i (i = 1, . . . , n; t = 1, . . . , T), we would like to
determine a combination of quantities of each of these items to be placed in a knapsack in each time period.
The objective is to satisfy the accumulated demand at minimum cost.

4. Time-cost tradeoff machine scheduling [Cheng et al., 1998]: There is a single machine and a given
set of jobs. The processing time of a job is a nonincreasing function of the amount of monetary resources
allocated to it. Each job is given a due date, and a late penalty will be incurred if the job completes after
its due date. The objective is to determine the job processing times and to schedule the jobs on the machine
in such a way that the sum of the total late penalty and the total resource consumption is minimized.

5. Single-item stochastic inventory control [Halman et al., 2009a]: This is a stochastic version of
the classical single-item dynamic lot sizing problem. The planning horizon consists of a finite number of time
periods. In each time period, the decision maker has to determine the procurement quantity of the item.
Demand is stochastic and time-dependent. Any leftover at the end of a time period will be carried forward
to the next period and incur an inventory holding cost. All shortages are backordered. The procurement cost
function, holding cost function, and backlogging cost function are convex, and the objective is to minimize
the expected total cost.

4

6. Single-item stochastic batch dispatch [Papadaki and Powell, 2003]: Consider running a dispatch
station over a finite time horizon, where a vehicle with a finite capacity is available to dispatch goods in
batches. In each time period, goods arrive randomly based on a time-dependent distribution known in
advance. The decision in each time period is whether we should send off the vehicle and if yes, how many
units of the goods should be carried by the vehicle. Dispatching the vehicle will incur a fixed cost as well
as a per-unit cost of the dispatched goods, while the goods left at the dispatch station will incur a per-unit
holding cost.

7. Single-resource revenue management [Talluri and van Ryzin, 2004, chap. 2]: There is a single
resource with a given limited capacity C (e.g., an airplane with seat capacity C for a specific flight). There
are T customer classes, in which class t has a revenue contribution of rt per arrival. All customers in class t
arrive in time period t, and the number of such customers is distributed randomly based on a random variable
Dt with a known distribution. We assume no cancellations or no-shows, no overbookings, and independent
customer arrivals. The problem is to find acceptance policies to maximize the expected total revenue.

8. Lifetime consumption of risky capital [Phelps, 1962]: Consider an individual managing her capital
over a finite time horizon. In each time period, she can consume some of her capital, and the subsequent
utility is derived from her consumption based on an underlying utility function. The remaining capital yields
a stochastic return. In addition, she receives an income at the end of the period. The problem is to determine
an optimal consumption strategy which maximizes her expected total utility.

9. Stochastic growth model [Adda and Cooper, 2003, chap. 5]: This is a variant of “lifetime
consumption of risky capital.” In each time period, a household decides how much of its capital it should
consume, and utility is derived from its consumption. The rest of the capital can be used to produce output
via a production process. There is a deterministic depreciation of the remaining capital, but fluctuations in
capital are created by random shocks to the production process. The objective is to maximize the expected
total utility throughout the time horizon.

10. Cash management problem [Dreyfus and Law, 1977, pp. 154–155]: A person needs to manage
the cash flow of a mutual fund. At the beginning of each time period, the cash balance can be changed
by either selling or buying stocks. At the end of each time period, the net value of deposits/withdrawals is
observed, and consequently the cash balance of the mutual fund is determined. If the balance is negative,
the fund will borrow money from the bank. If the balance is positive, a cost will be incurred, as the fund’s
money could have been invested elsewhere. The problem is to determine a policy that minimizes the total
cost.

Organization of the Paper. In Section 2, a number of notations are defined, and an overview of discrete
convex functions is presented. Section 3 describes our framework and states the sufficient conditions needed
for the framework. In Section 4, we explain how K-approximation sets and functions can be built succinctly
and efficiently. The development of Calculus ofK-approximation Functions and Calculus ofK-approximation
Sets is presented in Section 5 and Section 6, respectively. In Section 7, a theory linking K-approximation
sets and functions to dynamic programming is introduced. Based on this theory, our main results for
monotone DPs and convex DPs (i.e., the FPTAS together with its analysis) are discussed in Section 8 and
Section 9, respectively. Several variants of our framework dealing with maximization problems, random
vectors, correlated stochastic events, implicit descriptions of stochastic events, profit maximization, non-
exact evaluation of the cost functions, etc., and an analysis of the structure of an optimal policy for convex
DPs are provided in Section 10. Concluding remarks are made in Section 11. A detailed description of the
applications of our model is available in Appendix A. Proofs of the propositions in Sections 4, 5, 6, and 10
are provided in Appendix B. All proofs of computational intractability are presented in Appendix C.

5

Table 2: Applications of the new framework.

Problem Previous results New results DP case

1 Stochastic
ordered adaptive
knapsack problem

NP-hardness; polynomial-time algorithm which
gives a solution whose value is at least the opti-
mal value and violates the knapsack constraint
by no more than ϵ× 100% [Dean et al., 2008]

FPTAS monotone

2 Nonlinear
knapsack problem

NP-hardness; FPTASs for various special cases
[Lawler, 1979, Hochbaum, 1995, Safer and
Orlin, 1995, Chauhan et al., 2005,
Kameshwaran and Narahari, 2009]

FPTAS for the general
model with monotone
objective and monotone
packing constraint

monotone

3 Dynamic capacity
expansion

NP-hardness; pseudo-polynomial time algorithm
for the special case with cost function
πt,i(xt,i) = xt,iπiγ

t−1 [Saniee, 1995]

FPTAS monotone

4 Time-cost
tradeoff machine
scheduling

NP-hardness; FPTAS for the case with a
maximization objective and a linear tradeoff
function [Cheng et al., 1998]

FPTAS for the minimi-
zation model with a
general monotone
tradeoff function

monotone

5 Single-item
stochastic
inventory control

#P-hardness; FPTAS [Halman et al., 2009a] Problem fits into our
framework; approximat-
ed limit policy

convex

6 Single-item
stochastic batch
dispatch

Heuristics without provably-bounded error for
the special case of time-independent costs
[Papadaki and Powell, 2003]

FPTAS; #P-hardness
proof

monotone

7 Single-resource
revenue
management

Pseudo-polynomial time algorithm [Talluri and
van Ryzin, 2004]

FPTAS; #P-hardness
proof

monotone

8 Lifetime
consumption of
risky capital

DP formulation for the model with discounted
utility function and stationary growth-rate
distribution [Phelps, 1962]

FPTAS for the general
model with time-varying
utility function and
growth-rate distribution;
#P-hardness proof

monotone

9 Stochastic growth
model

DP formulation for a model under different
assumptions [Adda and Cooper, 2003]

FPTAS; #P-hardness
proof

monotone

10 Cash management
problem

Pseudo-polynomial time algorithm [Dreyfus and
Law, 1977]; heuristic that converges to the
optimum [Nascimento and Powell, 2010]

FPTAS; #P-hardness
proof; approximated
limit policy

convex

2 Preliminaries

2.1 General notation

Let R,Z,N,Q denote the set of real numbers, integers, positive integers, and rational numbers, respectively.
Let D ⊂ R be a finite set of real numbers. Let Dmin and Dmax denote the minimal and maximal element
in D, respectively. For x < Dmax, let next(x,D) = min{y ∈ D | y > x}. For x > Dmin, let prev(y,D) =
max{y ∈ D | y < x}. For any pair of integers A ≤ B, let [A, . . . , B] = {A,A + 1, . . . , B} denote the set of
integers between A and B. We call [A, . . . , B] a contiguous interval. Let X be a set, and let Y (x) be a set
for every x ∈ X. We denote by X ⊗ Y the set

∪
x∈X({x} × Y (x)); see Figure 2.

For any x ∈ R, let x+ = max{0, x} and x− = max{0,−x}. For any X ⊆ R, let X+ denote the set of
nonnegative numbers in X, i.e., X+ = {x ∈ X | x ≥ 0}. For example, R+ denotes the set of all nonnegative
real numbers. For any x ∈ R, let ⌈x⌉ denote the smallest integer no less than x, and let ⌊x⌋ denote the
largest integer no greater than x. For every Boolean expression X, let δX be 1 if X is true, and 0 otherwise.
The base two logarithm of z is denoted by log z.

Consider any real-valued function φ : D→R. Let argminφ = argmin{φ(x) | x ∈ D} (argmaxφ =

6

-
X

6Y

1

2

3

4

1 2 3 4

tt tt
t

tt
t

Figure 2: X ⊗ Y for X = {1, 2, 3}, Y (1) = {2, 3}, Y (2) = {2, 3, 4}, and Y (3) = {1, 2, 3}.

argmax{φ(x) | x ∈ D}) be any x ∈ D where φ(x) is minimized (maximized). Note that if function φ has
multiple minimizers (maximizers), we may arbitrarily select any minimizer (maximizer) of φ as argminφ(x)
(argmaxφ(x)). Let φmax = maxx∈D |φ(x)|. If φ ̸≡ 0, then let φmin = min{|φ(x)| | x ∈ D and φ(x) ̸= 0}.
We denote by tφ the time needed to evaluate φ on a single point in its domain. Function φ is said to be
unimodal over D if there exists x∗ ∈ D such that φ is nonincreasing over D∩{x | x ≤ x∗} and nondecreasing
over D ∩ {x | x ≥ x∗}. Note that monotone functions and convex functions are special cases of unimodal
functions. Note also that in our context the “mode” of a unimodal function is a minimum point of the
function.

Consider any multi-parameter real-valued function φ(x1, . . . , xk). For 1 ≤ i ≤ k, we say that φ is
monotone in xi (or equivalently “φ(x1, . . . , xi−1, ·, xi+1, . . . , xk) is monotone”) if either φ is nondecreasing
in xi for any fixed values of x1, . . . , xi−1, xi+1, . . . , xk, or φ is nonincreasing in xi for any fixed values of
x1, . . . , xi−1, xi+1, . . . , xk.

2.2 Notation for convex DPs

For any subset E ⊆ D, we define the piecewise linear extension of φ induced by E as the continuous
function over the domain {x ∈ D | Emin ≤ x ≤ Emax} obtained by making φ linear between successive
values of E. We define the convex extension of φ induced by E as the continuous function over the domain
{x ∈ D | Emin ≤ x ≤ Emax} obtained by making φ equal to the lower envelop of the convex hull of
{(x, φ(x)) | x ∈ E}. Note that the convex extension of φ induced by E is a piecewise linear function and
is the greatest convex function that does not lie above φ over the points in E. For any subset D′ ⊆ D, a
function φ : D→R is said to be convex over D′ if its piecewise linear extension induced by D′ is convex.

We now turn to a discussion of convex functions over two-dimensional discrete domains. We consider the
following important example:

Example 2.1. Let φ : R2→R be defined as φ(x, y) = (x − 2y)2. Clearly, φ is convex over R2. Define
ψ1, ψ2 : R→R such that

ψ1(x) = min
y∈R

φ(x, y)

and
ψ2(x) = min

y∈Z
φ(x, y). (2)

Note that ψ1 ≡ 0. Hence, it is convex over R. On the other hand, because ψ2 is 0 for even x’s and is 1 for
odd x’s, it is not convex over R.

This example shows that if we want ψ2 to be convex over R, we will need to impose a stronger condition on
φ than just requiring φ to be convex on R2. To achieve this, we first explain the meaning of integrally convex
sets introduced by Murota [2003]. Let X be a contiguous interval, and let Y (x) be a nonempty contiguous
interval for every x ∈ X. The set X ⊗ Y =

∪
x∈X({x} × Y (x)) ⊂ Z2 is said to be integrally convex if there

7

exists a convex (but not necessarily bounded) polyhedron CXY such that X ⊗ Y = CXY ∩ Z2 and that the
slopes of CXY ’s edges are in the set {−∞,−1, 0, 1,∞}; see Figure 3, which is adopted from Murota [2003].

t ttt tt�
�

@
@�

�

Integrally convex

t t t
�
�

����

Not integrally convex

t tt t
�
�
��@@

����

Not integrally convex

Figure 3: Concept of integrally convex sets.

As will be seen in the proof of Proposition 9.1, a sufficient condition for ψ2 in (2) to be convex is that φ
is defined over an integrally convex set, and that it can be expressed as φ(x, y) = φ1(x)+φ2(y)+ω(τ(x, y)),
where φ1, φ2, ω are univariate convex functions and τ(x, y) = ax+by+c for some a, c ∈ Z and b ∈ {−1, 0, 1}.
This is a key observation for developing our convex DP model.

We remark that in discrete optimization, discrete analogs of convexity, or “discrete convexity” for short,
have been considered. Miller [1971] investigated a class of discrete functions, called “discrete convex func-
tions,” of which local optimality implies global optimality. Favati and Tardella [1990] considered a certain
special way of extending functions defined over the integer lattice to piecewise-linear functions defined over
the real space, and they introduced the concept of “integrally convex functions.” Murota introduced the con-
cepts of “L-convexity” and “M-convexity,” in which “L” stands for “Lattice” and “M” stands for “Matroid”
[Murota, 2003]. L- and M-convex functions possess several desirable properties as discrete convex functions,
including extendability to ordinary (continuous) convex functions, duality theorems, and conjugacy between
L- and M-convex functions, etc. An alternative sufficient condition for ψ2 in (2) to be convex is that func-
tion φ is “integrally convex” as defined in Favati and Tardella [1990]. Because all the convex problems we
solve satisfy the abovementioned sufficient condition, the alternative sufficient condition that φ should be
integrally convex will not be discussed in this paper.

3 Model statement

In this section, a basic model of decision making under stochastic uncertainty over a finite number of time
periods is reviewed. We consider the following formulation for a finite horizon stochastic DP, as defined in
Bertsekas [2005]. The model has two principal features: (i) an underlying discrete time dynamic system, and
(ii) a cost function that is additive over time. The system dynamics are of the form

It+1 = ft(It, xt, Dt), t = 1, . . . , T, (3)

where t is the discrete time index,
It is the state of the system,
xt is the action or decision to be selected in time period t,
Dt is a discrete random variable, and
T is the number of time periods.

The cost function, denoted by gt(It, xt, Dt), is additive in the sense that the cost incurred in time period t is
accumulated over time. Let I1 be the initial state of the system. Given a realization dt of Dt, for t = 1, . . . , T ,
the total cost is

gT+1(IT+1) +
T∑
t=1

gt(It, xt, dt),

where gT+1(IT+1) is the terminal cost incurred at the end of the process. The problem is to determine

8

z∗(I1) = min
x1,...,xT

E

{
gT+1(IT+1) +

T∑
t=1

gt(It, xt, Dt)

}
, (4)

where the expectation is taken with respect to the joint distribution of the random variables involved. The
optimization is over the actions x1, . . . , xT . Here, xt is selected with the knowledge of the current state It
but before the realization of Dt takes place.

The state It is an element of a given state space St, the action xt is constrained to take values in a given
action space At(It), and the discrete random variable Dt takes values in a given set Dt. The state space and
the action space are one-dimensional. Note that the domain of functions gt and ft is (St ⊗ At) × Dt. The
following theorem states the well known DP recursion for this model:

Theorem 3.1 (The DP recursion [Bellman and Dreyfus, 1962]). For every initial state I1, the optimal cost
z∗(I1) of the DP is equal to z1(I1), where the function z1 is given by the last step of the following recursion,
which proceeds backward from period T to period 1:

zT+1(IT+1) = gT+1(IT+1), (5)

zt(It) = min
xt∈At(It)

EDt {gt(It, xt, Dt) + zt+1(ft(It, xt, Dt))} , t = 1, . . . , T, (6)

where the expectation is taken with respect to the probability distribution of Dt.

Note that the DP recursion given in Theorem 3.1 yields an exact solution for z1(I1) but may require a
pseudo-polynomial running time. For example, if At(It) ≡ A and St ≡ S for every t and It, then this DP
has a running time of O(T |A||S|), but |A| and |S| may be exponential in the (binary) input size.

We assume that the random variables are given explicitly in the following way: For each Dt, we are given
nt, the number of different values it admits with positive probability, and its support Dt := {dt,1, . . . , dt,nt},
where dt,i < dt,j for i < j. We are also given positive integers qt,1, . . . , qt,nt such that

Prob(Dt = dt,i) =
qt,i∑nt
j=1 qt,j

.

For every t = 1, . . . , T and i = 1, . . . , nt, we denote pt,i = Prob(Dt = dt,i). Then, we have

EDt {gt(It, xt, Dt) + zt+1(ft(It, xt, Dt))} =
nt∑
j=1

pt,j

[
gt(It, xt, dt,j) + zt+1(ft(It, xt, dt,j))

]
. (7)

In our analysis, the following notations will be used:

n∗ = maxt nt = maximum number of different values that Dt can take over the
entire time horizon;

D∗ =
∑T

t=1 |dt,nt | = maximum possible total value that the random variables can take
over the entire time horizon;

US = maxt=1,...,T+1 |St| = maximal size of the state space;
UA = maxt=1,...,T maxIt∈St |At(It)| = maximal size of the action space.

Let gmax
t = maxI∈St, x∈At(I), d∈Dt

gt(I, x, d) be the maximal cost value in time period t, for t = 1, . . . , T . Let
gmax
T+1 = maxI∈ST+1

gT+1(I). Let gmin
t = minI∈St, x∈At(I), d∈Dt

{gt(I, x, d) | gt(I, x, d) > 0} be the minimal
positive cost value in time period t, for t = 1, . . . , T . Let gmin

T+1 = minI∈ST+1
{gT+1(I) | gT+1(I) > 0}. (Note:

For t = 1, . . . , T + 1, if gt ≡ 0, then gmin
t = +∞.) Let

Ug =
maxt=1,...,T+1 g

max
t

mint=1,...,T+1 g
min
t

.

In order to derive an FPTAS for our DP, the following conditions are needed:

9

Condition 1. ST+1,St,At(It) ⊂ Z for It ∈ St and t = 1, . . . , T . For any set X among these sets,
logmaxx∈X(|x|+1) is bounded polynomially by the (binary) input size, and the kth largest element in X can
be identified in constant time for any 1 ≤ k ≤ |X|. For every t = 1, . . . , T , the number of different values
the random variable Dt admits with positive probability is a given integer nt, and its probability distribution
function is given as nt ordered pairs (dt,i, pti), where pt,i = Prob(Dt = dt,i) ∈ Q for i = 1, . . . , nt. Moreover,
Dt ⊂ Q for t = 1, . . . , T .

Condition 2. For every t = 1, . . . , T+1, functions ft, gt are either given explicitly (i.e., as explicit formulae)
or are accessed via oracle calls. Moreover, the values of gt are polynomially bounded by the (binary) size of
the input.

Condition 3. At least one of the following properties holds:

(i) (Nondecreasing DP) Function gT+1 is nondecreasing. For t = 1, . . . , T , function ft is nondecreasing
in its first variable and monotone in its second variable, and gt is monotone in its second variable.
Moreover, for each t = 1, . . . , T , either zt is nondecreasing, or gt is nondecreasing in its first variable
and At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≥ I ′.

(ii) (Nonincreasing DP) Function gT+1 is nonincreasing. For t = 1, . . . , T , function ft is nondecreasing
in its first variable and monotone in its second variable, and gt is monotone in its second variable.
Moreover, for each t = 1, . . . , T , either zt is nonincreasing, or gt is nonincreasing in its first variable
and At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≤ I ′.

(iii) (Convex DP) The terminal state space ST+1 is a contiguous interval. Function gT+1 is an integer-
valued convex function over ST+1. For t = 1, . . . , T , Dt ⊂ Z, the set St⊗At is integrally convex, function
gt can be expressed as gt(I, x, d) = gIt (I, d) + gxt (x, d) + ut(ft(I, x, d)), where g

I
t (·, d), gxt (·, d), ut(·) are

univariate integer-valued convex functions, and function f can be expressed as ft(I, x, d) = aI+bx+c(d),
where a ∈ Z, b ∈ {−1, 0, 1}, and c(d) ∈ Z.

The input data of the problem consists of the number of time periods T , the initial state I1, and the explicit
description of the random variables as described in Condition 1. We call DP formulation (5)–(6) monotone
whenever it satisfies either Condition 3(i) or Condition 3(ii), and convex whenever it satisfies Condition 3(iii).

Condition 1 requires the kth largest element in each of the state and action spaces to be obtainable in
constant time. However, the monotone DP model and the convex DP model remain valid if this requirement
is relaxed by allowing the kth largest element in each of the state and action spaces to be obtainable in
time polylogarithmic in the size of the space. Note that whenever the state and action spaces are contiguous
intervals, one can find the kth largest element in constant time. This is indeed the situation in the convex
case and in most applications of the monotone case. Condition 1 also requires that Dt ⊂ Q. However, the
monotone DP model and the convex DP model remain valid if Dt ⊂ Qℓ, where ℓ is a positive integer constant
(see Section 10.2 for details). Note that Condition 1 implies that logUS and logUA are polynomially bounded
by the input size, and Condition 2 implies that logUg is polynomially bounded by the input size.

At a first glance, one may think that Condition 3, with its three cases, is quite cumbersome. It is due
to our effort to formulate it in a general way. As shown in the ten examples described in Section 1 (with
the details provided in Appendix A), each of the three cases has applications. Condition 3(iii) is somewhat
restrictive. Unfortunately, as shown in Theorem 9.2, the condition “b ∈ {−1, 0, 1}” and the condition that
“St⊗At is an integrally convex set” are both needed to ensure that the convex DP model admits an FPTAS.
(We note in passing that the condition “St⊗At is an integrally convex set” implies that both St and At are
contiguous intervals.)

We aim to provide an FPTAS for generating an approximated value of z1(I1). Note that even in the very
restrictive case where the number of states in the system is a constant, computing the optimal solution by

10

the DP recursion in Theorem 3.1 can take up to
∑T

t=1maxI |At(I)| evaluations of gt. When the action spaces
are “large,” this number can be exponential in the input size. Woeginger [2000] has designed a framework
for deriving an FPTAS for deterministic DPs. Among various assumptions, he requires the cardinality of
the action space to be bounded by a polynomial over the binary input size (Condition C.4(ii) in Woeginger
[2000]). Our work does not require this assumption. Hence, our framework, when applied to deterministic
DPs, is not a special case of Woeginger’s framework.

The main result of this paper, proven in Sections 4–9, is stated in the following theorem:

Theorem 3.2. Every stochastic minimization DP satisfying Conditions 1–3 admits an FPTAS.

Our result also applies to maximization problems, where the DP recursion (6) has a “max” function instead
of a “min” function. In order to achieve this, Condition 3 for maximization problems is reformulated as
follows:

Condition 4. At least one of the following properties holds:

(i) (Nondecreasing DP) Function gT+1 is nondecreasing. For t = 1, . . . , T , function ft is nondecreasing
in its first variable and monotone in its second variable, and gt is monotone in its second variable.
Moreover, for each t = 1, . . . , T , either zt is nondecreasing, or gt is nondecreasing in its first variable
and At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≤ I ′.

(ii) (Nonincreasing DP) Function gT+1 is nonincreasing. For t = 1, . . . , T , function ft is nondecreasing
in its first variable and monotone in its second variable, and gt is monotone in its second variable.
Moreover, for each t = 1, . . . , T , either zt is nonincreasing, or gt is nonincreasing in its first variable
and At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≥ I ′.

(iii) (Concave DP) The terminal state space ST+1 is a contiguous interval. Function gT+1 is an integer-
valued concave function over ST+1. For t = 1, . . . , T , Dt ⊂ Z, the set St⊗At is integrally convex, func-
tion gt can be expressed as gt(I, x, d) = gIt (I, d) + gxt (x, d) + ut(ft(I, x, d)), where g

I
t (·, d), gxt (·, d), ut(·)

are univariate concave functions and function ft can be expressed as ft(I, x, d) = aI + bx+ c(d), where
a ∈ Z, b ∈ {−1, 0, 1}, and c(d) ∈ Z.

Theorem 3.3. Every stochastic maximization DP satisfying Conditions 1, 2, and 4 admits an FPTAS.

In the analysis presented in Sections 4–9, we focus on minimization problems. A discussion of the validity
of Theorem 3.3 is provided in Section 10.1. Details of the ten problems mentioned in the Introduction and
specifically how each problem is casted as either monotone or convex DP are provided in Appendix A.

4 K-approximation sets and functions

Suppose φ : D→R+ is an arbitrary implicit function over a finite domain D, and φ is accessed via an oracle
in tφ time units. We want to preprocess a representation for it such that any further evaluation of φ(·)
will be done by this representation instead of querying φ(·) directly. Of course, by querying all values φ(x)
in x ∈ D and storing them in a sorted array of the form {(x, φ(x)) | x ∈ D}, we can obtain in O(|D|tφ)
time a representation of size O(|D|) which can return the value φ(x) for any x in O(log |D|) time. However,
whenever either |D| or tφ is large, we would like to have a representation that takes less space or queries to
construct. We say that a representation is succinct if its size is polylogarithmic in |D| and φmax

φmin , and that
a representation is efficient if it can be built in time polylogarithmic in both of these terms. Note: Recall
that φmin = min

{
|φ(x)|

∣∣ x ∈ D and φ(x) ̸= 0
}
. Hence, if φ ̸≡ 0, then φmin > 0, and the ratio φmax

φmin is

well-defined. If φ ≡ 0, then φmin is undefined, and we will refer to φmax

φmin as 1.

11

Of course, not all functions admit efficient succinct representations. In fact, even polynomial functions
do not admit efficient succinct representations in general. However, as shown below, if the given function φ
is a unimodal function (e.g., monotone functions and convex/concave functions), then we can build a step
function φ̂ (see Definitions 4.4 and 4.2 below) to approximate it, and this step function admits an efficient
succinct representation.

Definition 4.1. Let K ≥ 1 and r, r̃ ≥ 0. We say that r̃ is a K-approximation value of r (or more briefly,
a K-approximation of r) if r ≤ r̃ ≤ Kr. Let φ, φ̃ : D→R+ be real-valued functions over a finite set D. We
say that φ is succinct if it admits a representation in space polylogarithmic in both |D| and φmax

φmin . Function

φ̃ : D→R+ is said to be a K-approximation function of φ (or more briefly, a K-approximation of φ) if
φ(x) ≤ φ̃(x) ≤ Kφ(x) for all x ∈ D (i.e., if φ̃(x) is a K-approximation value of φ(x) for all x ∈ D).
Function φ̃ is called a succinct K-approximation of φ if it is a succinct function and is a K-approximation
of φ. Such a function φ̃ is said to be efficient if it can be constructed in time polylogarithmic in both |D| and
φmax

φmin .

Remark. If φ is a well-structured function, e.g., a monotone function, a K-approximation of it is not
necessarily so. In this section we show how to construct K-approximation functions that do maintain the
structure of the function they approximate.

In order to get succinct approximations, we consider only succinct subsets of the domain. (Of course, this
can be done only by sacrificing accuracy.)

Definition 4.2. Let K ≥ 1, and let φ : D→R+ be a real-valued function over a finite domain of real numbers.
We say that W ⊆ D is a K-approximation set of φ if the following three conditions are satisfied:

1. Dmin, Dmax ∈W .

2. (Boundedness) For every x ∈ W \ {Dmax}, either next(x,D) ∈ W or max{φ(x), φ(next(x,W))} ≤
Kmin{φ(x), φ(next(x,W))}.

3. (Locality) max{φ(prev(x,W)), φ(next(x,W))} ≤ Kφ(x) for every x ∈ D \W .

Remark. The notion of K-approximation sets was introduced by Halman et al. [2009a]. The original defi-
nition of K-approximation set in Halman et al. [2008, 2009a] (called weak K-approximation set in Halman
et al. [2008]) required that argminφ ∈W and that W satisfies the first two conditions of Definition 4.2. In
our new definition, we do not require W to include argminφ. As indicated in Proposition 4.3, this new defi-
nition is a generalization of the original definition, and it provides us with stronger properties. For example,
in Section 6 we have Proposition 6.3 and Property 5 of Proposition 6.1, which do not hold under the original
definition of K-approximation set.

It is easy to check that for any unimodal function φ, if argminφ ∈ W , then the first two conditions of
Definition 4.2 automatically imply the third condition. Hence, we have the following proposition:

Proposition 4.3. Let K ≥ 1, and let φ : D→R+ be a unimodal function over a finite domain of real
numbers. Let W be a subset of D that satisfies the first two conditions of Definition 4.2. If argminφ ∈ W ,
then W is a K-approximation set of φ.

Note that if φ is a monotone function, then by Proposition 4.3, any subset W of D that satisfies the first
two conditions of Definition 4.2 is a K-approximation set of φ.

12

4.1 Direct access to φ

In this section we show that every unimodal (e.g., convex or monotone) function φ : D→R with a given argmin
admits a succinct approximation that preserves the convex/monotone/unimodal structure of φ. Suppose W
is a subset of D that contains Dmin, Dmax. Having access to φ, we can construct the following approximation
of φ.

Definition 4.4. Let φ : D→R+ be a real-valued function over a finite domain of real numbers. Let W ⊆ D
be a set that contains Dmin, Dmax. The approximation of φ induced by W is:

φ̂(x) =

{
φ(x), if x ∈W ;
max{φ(prev(x,W)), φ(next(x,W))}, otherwise.

In the next proposition we show that K-approximation sets are useful for getting K-approximation functions.
The proof of this proposition is provided in Appendix B. We give more properties of K-approximation sets
in Section 6.

Proposition 4.5. [Approximation of a unimodal function with direct access] Let φ : D→R+ be a unimodal
function over a finite domain of real numbers. For any K ≥ 1, any K-approximation set W of φ, and any
minimizer x∗W = argmin{φ(x) | x ∈ W}, the following properties hold (where φ̂ is the approximation of φ
induced by W):

1. φ̂ is a K-approximation of φ. In addition, if φ is stored in a sorted array {(x, φ(x)) | x ∈ W}, then
for any x ∈ D, φ̂(x) can be determined in O(log |W |) time.

2. Let W− = {prev(x,D) | x ∈ W \ {Dmin}} and W+ = {next(x,D) | x ∈ W \ {Dmax}}. Then, W is a
K-approximation set of φ̂, and W ∪W− ∪W+ is a 1-approximation set of φ̂. If φ is nondecreasing,
then W ∪W+ is a 1-approximation set of φ̂. If φ is nonincreasing, then W ∪W− is a 1-approximation
set of φ̂.

3. φ̂ is a unimodal function minimized at x∗W . If φ is monotone, then so is φ̂. If φ is convex over D,
then the convex extension of φ̂ induced by W is a convex K-approximation of φ which is minimized at
x∗W .

We say that a K-approximation set of φ : D → R is succinct if its size is polylogarithmic in both |D| and
φmax

φmin . Clearly, if there exists a succinct 1-approximation set of φ, then φ is succinct. When no succinct
1-approximation set of φ is available, the focus would be to find succinct K-approximations of φ, for some
small K > 1, through constructing succinct K-approximation sets for φ. In Algorithm 1 below, ApxSet is
a procedure for constructing a K-approximation set for any given constant K > 1 and unimodal function φ
which is minimized at a given x∗.

1: Function ApxSet(φ,D, x∗,K)
2: x← Dmax

3: W ← {Dmin, Dmax}
4: while x > Dmin do
5: if x > x∗ then x← min

{
prev(x,D),min{y ∈ D | y ≥ x∗ and Kφ(y) ≥ φ(x)}

}
6: else x← min

{
prev(x,D),min{y ∈ D | Kφ(x) ≥ φ(y)}

}
7: W ←W ∪ {x}
8: end while
9: Return W

Algorithm 1: Constructing a K-approximation set for a unimodal φ : D → R which is minimized at x∗.

13

The next proposition in this section, when coupled with Proposition 4.5, tells us that for any given
convex or monotone function φ, or any unimodal function φ with a given minimizer, we can efficiently build
a succinct K-approximation function that preserves the same structure as φ. The proof of this proposition
is provided in Appendix B.

Proposition 4.6. Let φ : D→R+ be a unimodal function over a finite domain of real numbers. Let x∗ be
a minimizer of function φ. Let tφ be an upper bound on the time needed to evaluate φ(x) for any x ∈ D.
Then, for every given parameters φ, D, x∗, and K > 1, function ApxSet computes a K-approximation set
of φ in O(tφ(1 + logK

φmax

φmin) log |D|) time. This K-approximation set contains x∗ and has a cardinality of

O(1 + logK
φmax

φmin).

4.2 Approximated (indirect) access to φ

Sometimes, as happens when we deal with monotone DP, “direct” access to the function φ which we want
to approximate is impossible, and only an access to function φ̄ that L-approximates φ is available (L > 1).
If φ̄ itself is monotone, then we can build for it a K-approximation set W and, as we shall see in the next
section, the approximation of φ̄ induced by W is a monotone KL-approximation of φ. Suppose now that φ
is nondecreasing but φ̄ is not necessarily such. This begs the question: Is it still possible to efficiently build
a succinct nondecreasing approximation function for φ? The answer is in the affirmative, though some extra
work is involved: First, in Algorithm 2 below, we construct a subset W̄ of the domain D of φ. We then
define φ̃ to be the maximal nondecreasing function that is bounded from above by φ̄ over W̄ . Proposition 4.7
below, which serves as a key proposition in the proof of the FPTAS for the monotone DP case, tells us that
W̄ is a K-approximation set of φ̃, and that φ̃ is a nondecreasing KL-approximation of φ. The proof of this
proposition is given in Appendix B.

1: Function IndirectApxSet(φ̄,D,K)
2: x← Dmax and W̄ ← {Dmin, Dmax}
3: while x > Dmin and Kφ̄(Dmin) < φ̄(x) do
4: x← x′ | x′ < x and Kφ̄(x′) < φ̄(x) and Kφ̄(next(x′, D)) ≥ φ̄(x)
5: W̄ ← W̄ ∪ {x,next(x,D)}
6: end while
7: Return W̄

Algorithm 2: Constructing a subset of D for a function φ̄ that approximates a nondecreasing function φ.

Proposition 4.7. [Succinct approximation of a nondecreasing function via an L-approximation general
oracle] Let φ : D→R+ be a nondecreasing function over a finite domain of real numbers. Let φ̄ be an
(unnecessarily nondecreasing) L-approximation function of φ (L > 1). Let W̄ be the output of function
IndirectApxSet for given parameters φ̄, D, and K > 1. Let φ̃ be the maximal nondecreasing function that
is bounded from above by φ̄ over W̄ . Let tφ̄ be an upper bound on the time needed to evaluate φ̄(x) for any
x ∈ D. Then, W̄ is a K-approximation set of φ̃; φ̃ is a nondecreasing KL-approximation step function of
φ; function IndirectApxSet computes W̄ in O(tφ(1 + logK

φmax

φmin) log |D|) time; and |W̄ | = O(1 + logK
φmax

φmin).

We conclude this section with the following example, which demonstrates the outcome of Algorithm 2 on the
specific instance of φ and φ̄ given in Table 3. This example also shows the resulted function φ̃ and illustrates
that the approximation ratio of φ̃ may equal the worst case bound guaranteed by Proposition 4.7.

Example 4.8. Let L = K = 2 and D = [0, 10]. Let φ and φ̄ be as given in Table 3. The black dots in Figure 4
are the values of φ, and the small circles are the values of φ̄. Note that φ̄ is a non-monotone 2-approximation
of the nondecreasing function φ. The modification of φ̄ to a maximal nondecreasing function bounded from

14

Table 3: An example of a 4-approximation of φ built via a non-monotone 2-approximation φ̄ of φ.

Objects \ i 0 1 2 3 4 5 6 7 8 9 10

φ(i) 0 1 1 2 2 2 2 2 4 4 5
φ̄(i) 0 2 1 4 3 3 4 3 6 5 8

W̄ * * * * * * *
φ̃ 0 3 3 3 3 3 4 8 8 8 8

above by φ̄ (i.e., the solid step function with small circle endpoints in Figure 4) is a nondecreasing 2-
approximation of φ, but since it is computed in linear time, it is too costly to compute. The big circles
are the values of φ̄(x) for those x ∈ W̄ , where set W̄ is constructed by Algorithm 2 (see also the proof of
Proposition 4.7 for details). Function φ̃ is the dashed step function with big circle endpoints in Figure 4. It
is a nondecreasing 4-approximation of φ.

- i

6

r = φ

d = φ̄

f= φ̄(x), x ∈ W̄

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10
r r r r r r r r

r r r

d
d d

d d d d d

d d

d

f
f f

f f f

f

Figure 4: Constructing W̄ and φ̃ in Example 4.8.

5 Calculus of K-approximation Functions

In this section, a set of computational rules for manipulating K-approximation functions is developed. The
following proposition, referred as Calculus of K-approximation Functions, follows directly from the definition
of K-approximation functions, and its proof is therefore omitted. (Properties 2, 3, and 4 in the proposition
are adopted from Halman et al. [2009a].)

Proposition 5.1 (Calculus of K-approximation Functions). For i = 1, 2, let Ki ≥ 1, let φi : D→R+ be an
arbitrary function over any finite domain D, and let φ̃i : D→R be a Ki-approximation of φi. Let ψ1 : D

′→D
be an arbitrary function over any finite domain D′. Let α, β ∈ R+. The following properties hold:

1. φ1 is a 1-approximation of itself.

2. (Linearity of approximation) α+ βφ̃1 is a K1-approximation of α+ βφ1.

3. (Summation of approximation) φ̃1 + φ̃2 is a max{K1,K2}-approximation of φ1 + φ2.

4. (Composition of approximation) φ̃1(ψ1) is a K1-approximation of φ1(ψ1).

15

5. (Maximization of approximation) max{φ̃1, φ̃2} is a max{K1,K2}-approximation of max{φ1, φ2}.
6. (Minimization of approximation) min{φ̃1, φ̃2} is a max{K1,K2}-approximation of min{φ1, φ2}.
7. (Approximation of approximation) If φ2 = φ̃1, then φ̃2 is a K1K2-approximation of φ1.

Table 4 summarizes the places where the Calculus of K-approximation Functions is used.

Table 4: Places where the Calculus of K-approximation Functions is used.

Rule Prop. 5.2 Prop. 5.3 Prop. 6.4 Prop. 7.1 Prop. 7.2 Thm. 9.3 Sec. 10.1
Linearity of apx. X X X
Summation of apx. X
Composition of apx. X X
Maximization of apx. X
Minimization of apx. X
Approximation of apx. X

The following two propositions will be useful in Section 7 when K-approximation sets and functions are
linked with dynamic programming. Proofs of these propositions are available in Appendix B.

Proposition 5.2 (Minimization of summation of composition). Let n ∈ N, let Ki ≥ 1 for i = 1, . . . , n, let
D be any finite domain, and let C(x) be any finite domain for every x ∈ D. Let φi : D→R+, let φ̃i be a
Ki-approximation of φi, and let ψi : D ⊗ C→D for i = 1, . . . , n. Let φ, φ̃ : D → R+ such that

φ(x) = min
y∈C(x)

{
n∑

i=1

φi(ψi(x, y))

}
and φ̃(x) = min

y∈C(x)

{
n∑

i=1

φ̃i(ψi(x, y))

}
.

Then, φ̃ is a max{K1, . . . ,Kn}-approximation of φ.

Since the cardinality of C(x) may be “big”, applying Proposition 5.2 and calculating the minimum over
all of the elements of C(x) may take time exponential in the input size. For this reason, we would like to
“approximate” C(x) succinctly in such a way that performing the minimization of

∑n
i=1 φ̃i(ψi(x, y)) under

this approximated set, instead of under the entire C(x), will result in an efficient K-approximation of φ for
some “reasonable” K. This would be possible whenever the functions to be approximated are monotone.

Proposition 5.3. For i = 1, . . . , n, let Ki, Li ≥ 1, let φi : D → R+ be a function with a finite domain
D ⊂ R, let φ̃i : D → R be an Li-approximation of φi, and let ψi : D ⊗ C → D be a function such that for
any fixed x ∈ D, φ̃i(ψi(x, ·)) is monotone over a finite linearly ordered domain C(x). Let m be an integer
such that 1 ≤ m ≤ n. For any i = 1, . . . ,m and any x ∈ D, let Wi(x) ⊆ C(x) be a Ki-approximation set of
φ̃i(ψi(x, ·)). Let φ, φ̃ : D → R+ such that

φ(x) = min
y∈C(x)

{
n∑

i=1

φi(ψi(x, y))

}
and φ̃(x) = min

y∈
∪m

i=1 Wi(x)

{
n∑

i=1

φ̃i(ψi(x, y))

}
.

Suppose for every x ∈ D, the function φ̃i(ψi(x, ·)) is monotone in one direction (e.g., nondecreasing) for
i = 1, . . . ,m and is monotone in the other direction (e.g., nonincreasing) for i = m+ 1, . . . , n. Then, φ̃ is a
max{K1L1, . . . ,KmLm, Lm+1, . . . , Ln}-approximation of φ.

Remark. Note that while Proposition 5.3 provides an upper bound to the approximation ratio of φ̃, function φ̃
is not necessarily monotone. However, scanning φ̃ (i.e., reading its values) in a linear way (e.g., sequentially
from Dmin to Dmax) and using the monotonicity of the original function φ, one can build a monotone
K-approximation function for φ. This approach will be adopted in Section 8.

16

6 Calculus of K-approximation Sets

In this section, a set of computational rules based on the notion of K-approximation sets and functions is
developed. Unlike the Calculus of K-approximation Functions, which focuses on the range of the functions,
the Calculus ofK-approximation Sets focuses on the domain of the functions. Detailed proofs of the following
propositions are available in Appendix B.

Proposition 6.1 (Calculus of K-approximation Sets of Unimodal Functions). Let K1,K2 ≥ 1. Let φ1 :
D→R+ and φ2 : D→R+ be unimodal functions with a finite domain D of real numbers. Let Wi be a Ki-
approximation set of φi for i = 1, 2. Let ψ : D′→D be a monotone function with a finite domain D′ of real
numbers. Denote ψ−1(Wi) =

{
max{x | ψ(x) ≤ y}, min{x | ψ(x) ≥ y}

∣∣ y ∈ Wi

}
if ψ is nondecreasing, and

ψ−1(Wi) =
{
max{x | ψ(x) ≥ y}, min{x | ψ(x) ≤ y}

∣∣ y ∈ Wi

}
if ψ is nonincreasing. Let α, β ∈ R+. The

following properties hold:

1. D is a 1-approximation set of φ1.

2. (Monotonicity of approximation sets) Every superset W ′ of W1, where W
′ ⊆ D, is a K1-approximation

set of φ1.

3. (Composition of approximation sets) ψ−1(W1) is a K1-approximation set of φ1(ψ).

4. (Linearity of approximation sets) W1 is a K1-approximation set of α+ βφ1.

5. (Maximization of approximation sets) W1 ∪W2 is a max{K1,K2}-approximation set of max{φ1, φ2}.

If the functions involved are monotone in addition to being unimodal, then three more rules hold:

Proposition 6.2 (Calculus of K-approximation Sets of Monotone Functions). Let K1,K2 ≥ 1. Let φ1 :
D→R+ and φ2 : D→R+ be monotone functions of the same direction (i.e., either both are nondecreasing or
both are nonincreasing) with a finite domain D of real numbers. Let Wi be a Ki-approximation set of φi for
i = 1, 2. The following properties hold:

1. (Summation of approximation sets) W1 ∪W2 is a max{K1,K2}-approximation set of φ1 + φ2.

2. (Minimization of approximation sets) W1 ∪W2 is a max{K1,K2}-approximation set of min{φ1, φ2}.
3. (Approximation of approximation sets) If φ1 is a K2-approximation of the restriction of φ2 over W1,

then φ̂1 (i.e., the approximation of φ1 induced by W1) is a K1K2-approximation of φ2.

If the functions involved are convex in addition to being unimodal, then one more rule holds:

Proposition 6.3 (Calculus ofK-approximation Sets of Convex Functions). Let K1,K2 ≥ 1. Let φ1 : D→Z+

and φ2 : D→Z+ be convex over a finite domain D of real numbers. Let Wi be a Ki-approximation set of φi

for i = 1, 2. Then,

(Summation of approximation sets) W1 ∪W2 is a max{K1,K2}-approximation set of φ1 + φ2.

Note that the Calculus of K-approximation Sets of Unimodal Functions includes neither summation of
approximation sets nor minimization of approximation sets since unimodal functions are not closed under
either summation or minimization. Moreover, the Calculus of K-approximation Sets of Convex Functions
does not include minimization of approximation sets since the minimum of two convex functions is not
necessarily convex or even unimodal. Table 5 summarizes the places where the Calculus of K-approximation
Sets is used.

The last proposition in this section is as follows:

17

Table 5: Places where the Calculus of K-approximation Sets is used.

Rule Prop. 6.1 Prop. 6.2 Prop. 6.3 Prop. 7.1 Thm. 8.2 Thm. 9.3
Monotonicity of apx. sets X X X
Composition of apx. sets X X
Linearity of apx. sets X X
Approximation of apx. sets X

Proposition 6.4. Let K ′, L′ ≥ 1, and let φ be a convex function. Let φ̃ be a convex L′-approximation
function of φ. Let W be a K ′-approximation set of φ̃, and ˆ̃φ be the approximation of φ̃ induced by W . Then,
the convex extension of ˆ̃φ induced by W is a convex K ′L′-approximation of φ.

Note that this proposition is valid because (i) by property 3 of Proposition 4.5, ˆ̃φ is a convexK ′-approximation
of φ̃; and (ii) by approximation of approximation (Proposition 5.1), ˆ̃φ is a K ′L′-approximation of φ.

7 From K-approximation sets and functions to dynamic programming

In this section, two propositions linking the notions of K-approximation sets and functions with DP are
presented. The first proposition deals with monotone DPs and is applied when zt+1 is guaranteed to be a
monotone function. Note that in equation (8) below, the function EDt{g̃t(It, ·, Dt)}+EDt{z̃t+1(ft(It, ·, Dt))}
is not necessarily convex, and therefore we cannot use binary search to determine its minimum point. In
order to find an efficient approximation, the minimization in equation (8) is over a set W−1(It), which is of
size polylogarithmic in the size of the action space At(It).

Proposition 7.1. Suppose the DP formulation (5)–(6) is monotone (so either Condition 3(i) or Condi-
tion 3(ii) is satisfied). Let K ′, L′, L′′, t, and It be fixed values, where K ′, L′ ≥ 1, 1 ≤ L′′ ≤ K ′L′,
It ∈ St, and t ∈ [1, . . . , T]. Let gt be as stated in Conditions 3(i) and 3(ii). Let z̃t+1 be a monotone L′-
approximation of zt+1, and W be a K ′-approximation set of z̃t+1. Let W−1(It) =

∪nt
i=1 f

−1
t,i (It,W), where

f−1
t,i (It,W) =

{
max{xt | ft(It, xt, dt,i) ≤ w}, min{xt | ft(It, xt, dt,i) ≥ w}

∣∣ w ∈ W}
if ft is nondecreasing in

its second variable, and f−1
t,i (It,W) =

{
max{xt | ft(It, xt, dt,i) ≥ w}, min{xt | ft(It, xt, dt,i) ≤ w}

∣∣ w ∈ W}
if ft is nonincreasing in its second variable. Let g̃t(It, ·, Dt) be a monotone L′′-approximation of gt(It, ·, Dt).
Let

z̄t(It) = min
xt∈W−1(It)

EDt

{
g̃t(It, xt, Dt) + z̃t+1(ft(It, xt, Dt))

}
. (8)

Then, z̄t(It) is a K
′L′-approximation value of zt(It), and it can be determined in O(nt(tg̃t+tft+tz̃t+1)|W−1(It)|)

time if the elements of W−1(It) are given.

Proof. Since ft is monotone in its second variable and z̃t+1 is monotone, the function EDt z̃t+1(ft(It, ·, Dt)) is
monotone. Also, since g̃t is monotone in its second variable, the function EDt g̃t(It, ·, Dt) is monotone. We
consider two different cases.

Case 1: EDt g̃t(It, ·, Dt) and EDt z̃t+1(ft(It, ·, Dt)) are monotone in the same direction. We consider the
situation where these two functions are nondecreasing (the analysis for the nonincreasing case follows a
similar argument). Under this situation, the minimum of the expression EDt{g̃t(It, ·, Dt)+ z̃t+1(ft(It, ·, Dt))}
is attained when xt is the smallest element in At(It) (which is also an element ofW−1(It)). By composition of
approximation (Proposition 5.1), z̃t+1(ft(It, ·, Dt)) is an L

′-approximation of zt+1(ft(It, ·, Dt)). By linearity
of approximation and summation of approximation (Proposition 5.1), EDt{g̃t(It, ·, Dt) + z̃t+1(ft(It, ·, Dt))}
is a max{L′, L′′}-approximation of EDt{gt(It, ·, Dt) + zt+1(ft(It, ·, Dt))}. Hence, z̄t(It) is a max{L′, L′′}-
approximation of zt(It). This implies that z̄t(It) is a K ′L′-approximation of zt(It). In this case, z̄t(It) can
be determined in O(nt(tg̃t + tft + tz̃t+1)) time.

18

Case 2: EDt g̃t(It, ·, Dt) and EDt z̃t+1(ft(It, ·, Dt)) are monotone in the opposite direction. In this case,
we apply Proposition 5.3 with the following parameter setting: Let D = St, C(·) = At(·), n = 2nt, m = nt,
x = It, y = xt, φ(·) = zt(·), and φ̃(·) = z̄t(·). For i = 1, . . . , nt, let φi(·) = pt,izt+1(·), φ̃i(·) = pt,iz̃t+1(·),
ψi(x, y) = ft(x, y, dt,i), Ki = K ′, Li = L′, and Wi(x) = f−1

t,i (x,W). For i = nt + 1, . . . , 2nt, let φi(·) =
pt,i−ntgt(It, ·, dt,i−nt), φ̃i(·) = pt,i−nt g̃t(It, ·, dt,i−nt), ψi(x, y) = y, and Li = L′′.

Because z̃t+1 is an L
′-approximation of zt+1, by linearity of approximation (Proposition 5.1), φ̃i(·) is an L′-

approximation (i.e., Li-approximation) of φi(·) for i = 1, . . . , nt. Similarly, φ̃i(·) is an L′′-approximation (i.e.,
Li-approximation) of φi(·) for i = nt + 1, . . . , 2nt. Because g̃t(It, ·, dt,i), z̃t+1, and ψi(It, ·) are monotone, the
function φ̃i(ψi(It, ·)) is monotone for i = 1, . . . , 2nt. In addition, φ̃i(ψi(It, ·)) is monotone in one direction
for i = 1, . . . , nt and is monotone in the other direction for i = nt + 1, . . . , 2nt. Because ft(It, xt, dt,i) is
monotone in xt, and because W is a K ′-approximation set of z̃t+1, by composition of approximation sets
(Proposition 6.1), f−1

t,i (It,W) is a K ′-approximation set of z̃t+1(ft(It, ·, dt,i)), for i = 1, . . . , nt. By linearity of

approximation sets (Proposition 6.1), f−1
t,i (It,W) is a K ′-approximation set of φ̃i(ψi(It, ·)), for i = 1, . . . , nt.

Thus, by Proposition 5.3, φ̃ is a max{K1L1, . . . ,KmLm, Lm+1, . . . , Ln}-approximation of φ. Hence, z̄t is a
max{K ′L′, L′′}-approximation (i.e., a K ′L′-approximation) of zt.

In equation (8), the minimum of the function can be obtained in |W−1(It)| steps by scanning all the
elements of W−1(It). Each of these steps involves nt queries to g̃t, ft, and z̃t+1, and requires O(nt(tg̃t + tft +
tz̃t+1)) time.

Remark. As will be shown in Proposition 8.1, function zt in the DP formulation (5)–(6) is guaranteed to
be monotone. Therefore, finding a monotone approximation for it makes sense. This is exactly the approach
we take in Section 8 by using Proposition 4.7.

The next proposition deals with convex DPs and is applied when both gt and zt+1 are guaranteed to be
convex. Note that the minimization in equation (9), which is taken over the entire action space At(It), is
performed efficiently by exploiting the convexity of EDt{g̃t(It, ·, Dt)} and EDt{z̃t+1(ft(It, ·, Dt))}.

Proposition 7.2. Suppose the DP formulation (5)–(6) is convex (so Condition 3(iii) is satisfied). Let K ′,
K ′′, t, and It be fixed values, where K ′′ ≥ K ′ ≥ 1, It ∈ St, and t ∈ [1, . . . , T]. Let g̃t(It, ·, dt,i) be a convex
K ′-approximation function of gt(It, ·, dt,i) for every i = 1, . . . , nt. Let z̃t+1 be a convex K ′′-approximation
function of zt+1. Let

z̄t(It) = min
xt∈At(It)

EDt

{
g̃t(It, xt, Dt) + z̃t+1(ft(It, xt, Dt))

}
. (9)

Then, z̄t(It) is a K
′′-approximation value of zt(It) and can be determined in O(nt(tg̃t+tft+tz̃t+1) log |At(It)|)

time.

Proof. We apply Proposition 5.2 with the following parameter setting: Let D = St, C(·) = At(·), n = 2nt,
x = It, y = xt, and φ(·) = zt(·). For i = 1, . . . , nt, let φi(·) = pt,igt(It, ·, dt,i), φ̃i(·) = pt,ig̃t(It, ·, dt,i),
ψi(x, y) = y, and Ki = K ′. For i = nt + 1, . . . , 2nt, let φi(·) = pt,i−ntzt+1(·), φ̃i(·) = pt,i−nt z̃t+1(·),
ψi(x, y) = ft(x, y, dt,i−nt), and Ki = K ′′. Because g̃t(It, ·, dt,i) is a K ′-approximation of gt(It, ·, dt,i), by
linearity of approximation (Proposition 5.1), φ̃i(·) is a K ′-approximation (i.e., Ki-approximation) of φi(·) for
i = 1, . . . , nt. Similarly, φ̃i(·) is a K ′′-approximation (i.e., Ki-approximation) of φi(·) for i = nt + 1, . . . , 2nt.
Hence, by Proposition 5.2, φ̃ is a max{K1, . . . ,Kn}-approximation of φ; that is, z̄t is a K

′′-approximation of
zt.

As for the computational time, note that for any fixed dt, function ft(It, ·, dt) is linear with slope in
{−1, 0, 1}. Thus, z̃t+1(ft(It, ·, dt)) is a convex function. Because a conical combination (i.e., linear combina-
tion with nonnegative coefficients) of convex functions is convex, EDt{g̃t(It, ·, Dt) + z̃t+1(ft(It, ·, Dt))} is a
convex function, and therefore its minimum can be obtained in O(log |At(It)|) steps by performing binary
search over the contiguous interval At(It). Each of these steps involves nt queries to g̃t, ft, and z̃t+1, and
requires O(nt(tg̃t + tft + tz̃t+1)) time.

19

Remark. As will be shown in Proposition 9.1, function z̄t in (9) is guaranteed to be convex. Therefore,
finding a convex approximation for it makes sense. This is exactly the approach we take in Section 9.

From Propositions 7.1 and 7.2, we can see that approximating the stochastic DP recursion (6) is essentially
as hard as approximating the deterministic counterpart of the problem (i.e., when the random variable is
constant with probability 1), except for an additional complexity factor of nt (i.e., the size of the support of
the random variable). This situation is substantially different from the determination of an exact solution
for the problem. For example, Halman et al. [2009a] showed that the single-item stochastic inventory
control problem with discrete demand is #P-hard (see Appendix A.5), but it is known that the deterministic
counterpart of this problem can be solved in polynomial time as a minimum convex cost network flow problem
or as a linear program (see Florian et al. [1980, sec. 4]).

8 An FPTAS for Monotone DP

In this section, we develop an FPTAS for nondecreasing DPs. The FPTAS for nonincreasing DPs is analogous.
Our FPTAS is summarized in Algorithm 3 (recall that function IndirectApxSet is summarized in Algorithm 2
in Section 4.2).

1: Procedure FPTASNondecreasingDP
2: K ← 1 + ϵ

2(T+1) , zT+1 ← gT+1, and W̄T+1 ← ApxSet(zT+1,ST+1, D
min,K)

3: Let z̃T+1 be the approximation of zT+1 induced by W̄T+1

4: for t := T downto 1 do
5: W̄t ← IndirectApxSet(z̄t,St,K) /* z̄t is as defined in (8); see details in the text */
6: Let z̃t be the maximal nondecreasing function that is bounded from above by z̄t on W̄t

7: end for

Algorithm 3: FPTAS for Nondecreasing DP.

We give two remarks on Algorithm 3. The first remark is about Step 5. In this step, the function z̄t
is given by equation (8) with the following setting: Function g̃t is set equal to gt. The set W−1

t (It) equals∪nt
i=1 f

−1
t,i (It,W), whereW = W̄t+1∪{next(x,St+1) | x ∈ W̄t+1\{Smax

t+1 }} (W̄t+1 is obtained from the previous
iteration of the for-loop). Note that z̄t is not necessarily monotone (nor unimodal). Thus, aK-approximation
set of it is undefined, and executing function ApxSet over φ cannot always be done efficiently (Step 5 of
Algorithm 1 does not necessarily run in logarithmic time when φ is not unimodal). Hence, we call function
IndirectApxSet instead.

The second remark is about Step 6. This step determines the maximal nondecreasing function z̃t such
that z̃t(x) ≤ z̄t(x) for all x ∈ W̄t. Note that z̃t is a nondecreasing step function. Hence, this step can be
performed easily as follows: We first set z̃t(Smax

t)← z̄t(Smax
t). Then, we scan W̄t backwards. For every pair

of consecutive elements x, y in W̄t (x < y), we set z̃t(x)← min{z̄t(x), z̃t(y)}.
In order to prove that Algorithm 3 is indeed an FPTAS, it would be essential for certain property to

remain invariant throughout the execution of the algorithm. This property is stated in the next proposition.

Proposition 8.1 (Monotone Invariant). If Condition 3(i) is satisfied, then for every t = 1, . . . , T + 1,
function zt in the DP formulation (5)–(6) is nondecreasing over St.

Proof. We use backward induction. We first consider the base case of t = T + 1. Because zT+1 ≡ gT+1

and gT+1 is nondecreasing, zT+1 is nondecreasing. Now, consider any t = 1, . . . , T , and assume that zt+1 is
nondecreasing. By condition 3(i), either zt is nondecreasing or At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≥ I ′.
Thus, it suffices to show that if At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≥ I ′, then zt is nondecreasing. Because

20

ft(·, xt, Dt) is nondecreasing, so is the composition function zt+1(ft(·, xt, Dt)). Because gt(·, xt, Dt) is nonde-
creasing, so is the sum gt(·, xt, Dt)+zt+1(ft(·, xt, Dt)). This implies that EDt{gt(·, xt, Dt)+zt+1(ft(·, xt, Dt))}
is nondecreasing. If At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≥ I ′, then At(·) is nonincreasing (by set con-
tainment) over St, which implies that the minimization minxt∈At(·)EDt{gt(·, xt, Dt) + zt+1(ft(·, xt, Dt))} is
nondecreasing over St. Hence, zt is nondecreasing.

The main result of this section is stated in the next theorem.

Theorem 8.2 (FPTAS for nondecreasing DP). Consider a DP that satisfies Conditions 1, 2, and 3(i), and
consider any 0 < ϵ < 1. For every initial state I1, z̃1(I1) is a (1 + ϵ)-approximation of the optimal cost
z∗(I1), where z̃1(I1) is given in Step 6 in the last iteration of Algorithm 3. Moreover, Algorithm 3 runs in
time polynomial in both 1

ϵ and the (binary) input size.

Proof. We first explain the correctness of Algorithm 3. Note that zT+1 is a nonnegative unimodal function
whose value is minimized at Dmin. Thus, the call to function ApxSet in Step 1 is valid. Note also that z̄t is
a nonnegative function, and function IndirectApxSet does not require its input function φ to be unimodal.
Hence, the call to function IndirectApxSet in Step 5 is valid as well.

Next, we prove that Algorithm 3 returns a (1 + ϵ)-approximation solution. To do so, we first show
by induction that z̃t is a nondecreasing KT+2−t-approximation step function of zt, and that W̄t is a K-
approximation set of z̃t, for every t = 1, . . . , T + 1. By Propositions 4.5 and 4.6, z̃T+1 is a nondecreasing
K-approximation of zT+1, and W̄T+1 is a K-approximation set of z̃T+1. Thus, the base case of t = T + 1
is valid. The induction hypothesis is that z̃t+1 is a nondecreasing KT+1−t-approximation step function of
zt+1, and that W̄t+1 is a K-approximation set of z̃t+1. We will show that z̃t is a nondecreasing KT+2−t-
approximation step function of zt, and that W̄t is a K-approximation set of z̃t.

The evaluation of z̄t in Step 5 of Algorithm 3 is performed by applying Proposition 7.1 with K ′ = L′′ = 1,
L′ = KT+1−t, and W = W̄t+1 ∪ {next(x,St+1) | x ∈ W̄t+1 \ {Smax

t+1 }}. In this way we get that z̄t is an
(unnecessarily monotone) KT+1−t-approximation of zt (note: the approximation of z̃t+1 induced by W̄t+1

equals z̃t+1, i.e., ˆ̃zt+1 ≡ z̃t+1; thus, by property 2 of Proposition 4.5, such a W is indeed a 1-approximation
set of z̃t+1). Note that by the Monotone Invariant, zt is a nondecreasing function. Therefore, by applying
Proposition 4.7 with φ = z̄t, D = St , K = K and L = KT+1−t we get that W̄t is a K-approximation set
of z̃t and that z̃t is a nondecreasing KT+2−t-approximation step function of zt. This completes the proof by
induction, and the result implies that z̃1 is a KT+1-approximation of z1. Recall that K = 1+ ϵ

2(T+1) . Hence,

z∗(I1) ≤ z1(I1) ≤
[
1+ ϵ

2(T+1)

]T+1
z∗(I1). Because the inequality (1+ x

n)
n ≤ 1+ 2x holds for every 0 ≤ x ≤ 1

and n ∈ N, we have z∗(I1) ≤ z1(I1) ≤ (1 + ϵ)z∗(I1) for any given 0 < ϵ < 1.
It remains to prove that the running time of Algorithm 3 is polynomial in both the input size and

1
ϵ . From Conditions 1 and 2, logUS , logUA, and logUg are all polynomially bounded by the input size.
For ease of exposition, we assume that the values of US , UA, and Ug are at least 2 (so that their log-
arithmic values are at least 1). Clearly, the running time of Algorithm 3 is dominated by the for-loop,
which has T iterations. In each iteration, the running time is dominated by the execution of function In-
directApxSet in Step 5. By Proposition 4.7, each execution of function IndirectApxSet takes O(tz̄t(1 +
logK(TUg)) logUS) = O(tz̄t logK(TUg) logUS) time (note that the maximum possible value of z̄t is bounded
from above by KT+2−t(T + 2 − t)Ug ≤ 2TUg, as K

T+1 ≤ 1 + ϵ < 2). Note that (i) by Proposition 7.1,
evaluating z̄t takes O(nt(tgt + tft + tz̃t+1)|W−1(It)|) time once W−1(It) is given; and (ii) by the monotonicity
of ft(·, ·, Dt) in its first two variables, the time needed to construct W−1(It) is O(nt|W |tft logUA), once W
is given. Thus, tz̄t = O

(
nt(tgt + tft + tz̃t+1)|W−1(It)| + nt|W |tft logUA

)
. Note that |W−1(It)| = O(nt|W |).

By Proposition 4.7, |W | = O(1 + logK(TUg)) = O(logK(TUg)). Note also that z̃t+1 (which is obtained
from the previous iteration of the for-loop) can be stored succinctly in a sorted array of size |W̄t+1|. Hence,
tz̃t+1 = O(log |W̄t+1|) = O(log logK(TUg)) (recall that we apply Proposition 7.1 with |W | ≤ 2|W̄t+1| − 1).

21

This implies that

tz̄t = O
(
n2t (tgt + tft + log logK(TUg)) logK(TUg) + nttft logUA logK(TUg)

)
.

This in turn implies that each execution of function IndirectApxSet takes O
(
[n2t (tgt + tft + log logK(TUg))+

nttft logUA] log
2
K(TUg) logUS

)
time. Therefore, the running time of the entire algorithm is

O
(
Tn∗

[
n∗tg + (n∗ + logUA)tf + n∗ log logK(TUg)

]
log2K(TUg) logUS

)
,

where n∗ = maxt nt, tg = maxt tgt , and tf = maxt tft . Because 0 < ϵ < 1, we have 1 < K < 2. It is easy to

check that O(logK(TUg)) = O(
log(TUg)
K−1). Replacing K with 1 + ϵ

2(T+1) , we conclude that the running time
of the algorithm is

O

(
T 3n∗

ϵ2

[
n∗tg + (n∗ + logUA)tf + n∗ log

(
T

ϵ
log(TUg)

)]
log2(TUg) logUS

)
, (10)

which is polynomial in both 1
ϵ and the input size.

Remark. The dependency of the running time of the algorithm on T is at most (T log T)3 and the dependency
on ϵ is at most 1

ϵ2
log 1

ϵ . Note that if the transition functions ft(·, ·, Dt), t = 1, . . . , T, are given explicitly and
are strictly monotone in their second variable, then the construction of each W−1(It) can be speeded up to
O(nt|W |tft) time, and the term logUA can be dropped from equation (10).

9 An FPTAS for Convex DP

In this section, we develop an FPTAS for any DP that satisfies Conditions 1, 2, and 3(iii). Our FPTAS is
summarized in Algorithm 4. In order to prove that Algorithm 4 is indeed an FPTAS, it would be essential
for certain property to remain invariant throughout the execution of the algorithm. This property is stated
in the following proposition.

1: Procedure FPTASConvexDP
2: K ← 1 + ϵ

2(T+1) , x∗ ← argmin gT+1, WT+1 ← ApxSet(gT+1,ST+1, x
∗,K)

3: Let z̆T+1 be the convex extension of gT+1 induced by WT+1

4: for t := T downto 1 do
5: x∗ ← argmin z̄t /* z̄t is as defined in (9) with g̃t set equal to gt */
6: Wt ← ApxSet(z̄t,St, x∗,K)
7: Let z̆t be the convex extension of z̄t induced by Wt

8: end for

Algorithm 4: FPTAS for Convex DP.

Proposition 9.1 (Convex Invariant). If Condition 3(iii) is satisfied, then function zt in the DP formulation
(5)–(6) is convex over St for every t = 1, . . . , T + 1, and function z̄t in (9) is convex over St for every
t = 1, . . . , T .

Proof. We first prove the convexity of function zt. Our proof follows the lines of, but generalizes, the proof
of Proposition 6.1 in Halman et al. [2009a]. We use backward induction. Consider first the base case of
t = T + 1. Note that zT+1 ≡ gT+1. By Condition 3(iii), gT+1 is convex, and hence zT+1 is convex. For any
t = 1, . . . , T , we assume by induction that zt+1 is convex and prove that zt is also convex. By Condition 3(iii),
equation (6) can be rewritten as

zt(I) = EDt{gIt (I,Dt)}+ min
x∈At(I)

EDt

{
gxt (x,Dt) + ut(ft(I, x,Dt)) + zt+1(ft(I, xt, Dt))

}
.

22

Define qt(·) = EDt{gxt (·, Dt)}, and define yt,I(·) = EDt{ut(ft(I, ·, Dt)) + zt+1(ft(I, ·, Dt))} for all I ∈ St.
Note that qt and yt,I are univariate functions over the contiguous interval At(I). Because ut and zt+1 are
convex functions and ft is linear in its second variable, functions ut(ft(I, ·, Dt)) and zt+1(ft(I, ·, Dt)) are
convex. In addition, because a conical combination of convex functions is a convex function, functions qt,
yt,I , and EDt{gIt (·, Dt)} are convex. Since EDt{gIt (·, Dt)} is a convex function, it is sufficient to prove that
the function

ζt(I) = min
x∈At(I)

{
qt(x) + yt,I(x)

}
(11)

is convex. It suffices to show that 2ζt(I) ≤ ζt(I + 1) + ζt(I − 1) for all I ∈ St \ {Smin
t ,Smax

t }. Consider any
I ∈ St \ {Smin

t ,Smax
t }. Let x′ ∈ At(I − 1) such that ζt(I − 1) = qt(x

′) + yt,I−1(x
′), and let x′′ ∈ At(I + 1)

such that ζt(I + 1) = qt(x
′′) + yt,I+1(x

′′). Let x∗ = ⌊x′+x′′

2 ⌋ and x∗ = ⌈x′+x′′

2 ⌉. Because St is a contiguous
interval, the convexity of qt implies that qt(x∗) + qt(x

∗) ≤ qt(x
′) + qt(x

′′). We divide the analysis into three
different cases depending on the coefficient b of x in the function ft(I, x,D). Suppose first that b = 1. The
convexity of yt,I implies that (recall that a is the coefficient of I in the function ft(I, x,D))

yt,I(x∗) + yt,I(x
∗) ≤ yt,I(x′ − a) + yt,I(x

′′ + a) = yt,I−1(x
′) + yt,I+1(x

′′). (12)

If x∗, x
∗ ∈ At(I), then ζt(I) ≤ qt(x∗) + yt,I(x∗) and ζt(I) ≤ qt(x

∗) + yt,I(x
∗), which imply that 2ζt(I) −

[ζt(I + 1) + ζt(I − 1)] ≤ qt(x∗) + qt(x
∗)− [qt(x

′) + qt(x
′′)] + yt,I(x∗) + yt,I(x

∗)− [yt,I−1(x
′) + yt,I+1(x

′′)] ≤ 0,
or equivalently, 2ζt(I) ≤ ζt(I + 1) + ζt(I − 1). Hence, it suffices in this case to prove that x∗, x

∗ ∈ At(I). If,
on the other hand, b = −1, we replace (12) with

yt,I(x∗) + yt,I(x
∗) ≤ yt,I(x′ + a) + yt,I(x

′′ − a) = yt,I−1(x
′) + yt,I+1(x

′′),

and, again, it suffices to prove that x∗, x
∗ ∈ At(I). Last, if b = 0, then yt,I(·) is a constant, say yt,I , and we

replace (11) with
ζt(I) = yt,I + min

x∈At(I)

{
qt(x)

}
,

so if x∗, x
∗ ∈ At(I), then ζt(I) ≤ qt(x∗)+ yt,I and ζt(I) ≤ qt(x∗)+ yt,I , yt,I = yt,I−1+a, and yt,I = yt,I+1−a,

which imply that 2ζt(I)− [ζt(I+1)+ζt(I−1)] ≤ qt(x∗)+qt(x∗)− [qt(x
′)+qt(x

′′)]+2yt,I− [yt,I−1+yt,I+1] ≤ 0,
or equivalently, 2ζt(I) ≤ ζt(I + 1) + ζt(I − 1). Hence, once again, it suffices to prove that x∗, x

∗ ∈ At(I).
To prove that x∗, x

∗ ∈ At(I) (i.e., (I, x∗), (I, x
∗) ∈ St ⊗ At), we consider the case where x′ ≤ x′′. The

case where x′ > x′′ follows a similar argument and is omitted. Note that (I − 1, x′), (I +1, x′′) ∈ St⊗At and
that St ⊗At is integrally convex. Thus, it suffices to show that both (I, x∗) and (I, x∗) are elements of the
minimal integrally convex set S that contains (I − 1, x′) and (I + 1, x′′). We divide the analysis into four
different cases (see Figure 5):

Case 1: x′′ = x′. In this case, x∗ = x∗ = x′ = x′′ and S = {(I − 1, x′), (I, x′), (I + 1, x′)}. Hence,
(I, x∗), (I, x

∗) ∈ S.
Case 2: x′′ = x′ + 1. In this case, x∗ = x′ and x∗ = x′′. Note that the edges of S must have slopes in
{−∞,−1, 0, 1,∞}. Hence, S = {(I − 1, x′), (I, x′), (I, x′′), (I + 1, x′′)}, and therefore (I, x∗), (I, x

∗) ∈ S.
Case 3: x′′ = x′ + 2. In this case, x∗ = x∗ = x′+x′′

2 and S = {(I − 1, x′), (I, x
′+x′′

2), (I + 1, x′′)}. Hence,
(I, x∗), (I, x

∗) ∈ S.
Case 4: x′′ ≥ x′ + 3. Because the edges of S have slopes in {−∞,−1, 0, 1,∞}, set S is bounded from below

by the line connecting the points (I − 1, x′) and (I + 1, x′ + 2) and is bounded from above by the line
connecting the points (I − 1, x′′ − 2) and (I + 1, x′′). Hence, points (I, x∗) and (I, x∗) must be included
in S.

23

This completes the proof of convexity of function zt.
To show the convexity of z̄t, we define qt,I(·) = EDt{g̃t(I, ·, Dt)} and yt,I(·) = EDt{z̃t+1(ft(I, ·, Dt))} for

all I ∈ St. Then, qt,I and yt,I are convex functions, and

z̄t(I) = min
x∈At(I)

{
qt,I(x) + yt,I(x)

}
.

Using the same argument as in the above convexity proof for ζt, we get that z̄t is convex.

s s s
Case 1

s ss s
����

Case 2

s s s
�
�
�

Case 3

s s ss s s
�

�
��

�
�

Case 4

Figure 5: The four cases in the proof of Proposition 9.1.

It should be noted that the Convex Invariant does not necessarily hold if we drop from Condition 3(iii)
either the requirement that St⊗At is integrally convex, or the requirement that the coefficient of the second
variable of ft is in {−1, 0, 1}. This is demonstrated in the following two examples:

St ⊗At is not integrally convex. Consider the following single-period example: T = 1, S1 = {0, 1, 2},
S2 = {0, 1}, A1(0) = {0}, A1(1) = {1}, A1(2) = {1}, g1(I, x, d) = 2x, g2(I) = |I|, and f1(I, x, d) = I − x.
Note that in this example S1 ⊗A1 is depicted in the second diagram of Figure 3, where the bottom-left
point is (0, 0), and is not integrally convex. Note also that z1(0) = 0, z1(1) = 2, and z1(2) = 3. Hence, z1
is not convex.

The coefficient of the second variable of ft is not in {−1, 0, 1}. Consider the following single-period
example: T = 1, S1 = [0, . . . , 10], S2 = [−8, . . . , 10], A1(I) = {0, 1, 2}, g1 ≡ 0, g2(I) = |I|, and
f1(I, x, d) = I − 4x. Note that S1 ⊗ A1 is integrally convex, as it is the intersection of a rectangle with
the integer lattice. The global minima of z1 are at 0, 4, and 8 (with value 0), while the global maxima
are at 2, 6, and 10 (with value 2). Hence, z1 is not convex.

These two examples show that if one of the major requirements of Condition 3(iii) does not hold, then the
objective function z1 is not necessarily convex. But is it still possible to design an FPTAS for the problem?
The following theorem, which is proven in Appendix C, tells us that this is unlikely to happen.

Theorem 9.2. A convex DP where either St ⊗ At is not integrally convex, or b /∈ {−1, 0, 1}, does not
necessarily admit a constant factor approximation unless P = NP .

The main result of this section is stated in the next theorem.

Theorem 9.3 (FPTAS for convex DP). Consider a DP that satisfies Conditions 1, 2, and 3(iii), and
consider any 0 < ϵ < 1. For every initial state I1, z̆1(I1) is a convex (1 + ϵ)-approximation of the optimal
cost z∗(I1), where z̆1(I1) is generated from Step 7 in the last iteration of Algorithm 4. Moreover, Algorithm 4
runs in time polynomial in both 1

ϵ and the (binary) input size.

Proof. Note first that the Convex Invariant (Proposition 9.1) assures that all the z̄t’s are convex functions.
Hence, all calls to function ApxSet in Step 6 are valid.

Next, we prove that Algorithm 4 returns a (1 + ϵ)-approximation solution. To do so, we first show by
induction that z̆t is a convex KT+2−t-approximation function of zt for every t = 1, . . . , T + 1. For the base
case of t = T +1, we apply Proposition 6.4 with K ′ = K, L′ = 1, φ = φ̃ = zT+1, and W =WT+1, and we get

24

that z̆T+1 is convex K-approximation of zT+1. Thus, the base case is valid. The induction hypothesis is that
z̆t+1 is a convex KT+1−t-approximation of zt+1. We will show that z̆t is a convex KT+2−t-approximation
of zt. We apply Proposition 7.2 with K ′ = 1 (since g̃t ≡ gt) and K ′′ = KT+1−t (since z̆t+1 is a convex
KT+1−t-approximation of zt+1). We get that z̄t is a KT+1−t-approximation function of zt. By the Convex
Invariant (Proposition 9.1), z̄t is a convex KT+1−t-approximation of zt. Applying Proposition 6.4 with
φ = zt, φ̃ = z̄t, K

′ = K, L′ = KT+1−t, and W =Wt (from Step 6 of the algorithm, Wt is a K-approximation
set of z̄t), we get that z̆t is a convex KT+2−t-approximation of zt. This completes the proof by induction,
and the result implies that z̆1 is a convex KT+1-approximation of z1. Recall that K = 1 + ϵ

2(T+1) . Hence,

z∗(I1) ≤ z1(I1) ≤
[
1+ ϵ

2(T+1)

]T+1
z∗(I1). Because the inequality (1+ x

n)
n ≤ 1+ 2x holds for every 0 ≤ x ≤ 1

and n ∈ N, we have z∗(I1) ≤ z1(I1) ≤ (1 + ϵ)z∗(I1) for any given 0 < ϵ < 1.
It remains to prove that the running time of Algorithm 4 is polynomial in both the input size and 1

ϵ .
From Conditions 1 and 2, logUS , logUA, and logUg are all polynomially bounded by the input size. For
ease of exposition, we assume that the values of US , UA, and Ug are at least 2 (so that their logarithmic
values are at least 1). Clearly, the running time of Algorithm 4 is dominated by the for-loop, which has
T iterations. In each iteration, the running time of Step 7 is dominated by that of Steps 5 and 6. As
mentioned above, z̄t is a convex function. Therefore, binary search can be applied over the state space US
to determine an argmin. Thus, Step 5 takes O(tz̄t logUS) time. Note that the maximum possible value
of z̄t is bounded from above by KT+2−t(T + 2 − t)Ug ≤ 2TUg (as KT+1 ≤ 1 + ϵ < 2). Subsequently,
by Proposition 4.6, Step 6 takes O(tz̄t [1 + logK(TUg)] logUS) time. Hence, each iteration of the for-loop
takes O(tz̄t [1 + logK(TUg)] logUS) = O(tz̄t logK(TUg) logUS) time. By Proposition 7.2, each evaluation of
z̄t(It) requires O(nt(tgt + tft + tz̆t+1) logUA) time. Note that z̆t+1 can be stored in a sorted array of size
no larger than |Wt|. Thus, by property 1 of Proposition 4.5 and Proposition 4.6, z̆t+1 can be evaluated in
O(log(1 + logK(TUg))) time; that is, tz̆t+1 = O(log logK(TUg)). This implies that

tz̄t = O
(
nt
[
tgt + tft + log logK(TUg)

]
logUA

)
.

Therefore, the running time of the entire algorithm is

O
(
Tn∗

[
tg + tf + log logK(TUg)

]
logK(TUg) logUS logUA

)
,

where n∗ = maxt nt, tg = maxt tgt , and tf = maxt tft . Because 0 < ϵ < 1, we have 1 < K < 2. It is easy to

check that O(logK(TUg)) = O(
log(TUg)
K−1). Replacing K with 1 + ϵ

2(T+1) , we conclude that the running time
of the algorithm is

O

(
T 2n∗

ϵ

[
tg + tf + log

(
T

ϵ
log(TUg)

)]
log(TUg) logUS logUA

)
,

which is polynomial in both 1
ϵ and the input size.

Remark. The dependency of the running time of the algorithm on T is at most (T log T)2, and the depen-
dency on ϵ is at most 1

ϵ log
1
ϵ .

10 Extensions

Our framework for designing FPTASs for stochastic DPs can be extended well beyond the results stated
in Theorems 3.2 and 3.3. However, there is a tradeoff between the level of generalization of a framework
for designing FPTASs and the complication of its construction and analysis. The goal of this paper, in
this respect, is to develop a “reasonable” sufficient set of conditions that guarantees the existence of an

25

FPTAS, and to provide such an FPTAS. The conditions are satisfied by some basic problems in logistics,
operations management, economics, and finance, as we have demonstrated with the 10 problems stated in
the Introduction. On the other hand, it is possible to extend the framework much further at the expense of
additional complexity. In this section we show how to extend the framework in a few directions, including
maximization problems, random vectors, correlated stochastic events, implicit descriptions of stochastic
events, and profit approximation. Some of these extensions are moderately involved and are discussed in
detail here. Other extensions, such as those in Sections 10.6–10.9, are more involved and will be presented
in full in other papers.

10.1 Maximization problems

Not surprisingly, our framework also applies to maximization problems as summarized in Theorem 3.3. We
now give some detailed explanation of why this is so. So far, we have considered the one-sided approximation,
where for every K ≥ 1, we construct a function z̃ that K-approximates z, i.e., z(x) ≤ z̃(x) ≤ Kz(x), for
every x. If one draws the graph of z and z̃, then z̃ lies “above” z. To emphasize this point, we say that
z̃ K-approximates z from above. For maximization problems, we would like to construct an approximation
function z̃ so that the error remains one-sided but is of the other side. In other words, z̃ is a K-approximation
of z from below if z

K ≤ z̃ ≤ z. Clearly, if z̃ K-approximates z from above, then z̃
K K-approximates z from

below. Similarly, if z̃ K-approximates z from below, then Kz̃ K-approximates z from above. It is possible,
and rather straightforward, to extend the definitions and results in Sections 4–9 to deal with maximization
problems.

10.2 Random vectors

Until now we have assumed that D1, . . . , DT are independent 1-dimensional random variables. It is not
difficult to check that the analysis of our framework remains valid if D1, . . . , DT are nonnegative independent
multi-dimensional random variables, i.e., random vectors. Extending D1, . . . , DT to random vectors enables
our framework to have more applications. Consider, for example, a more general version of the stochastic
ordered adaptive knapsack problem described in Appendix A.1, in which not only the volume vt, but also
the profit πt, is a random variable. In this case, the input includes the probability distribution of Dt =
(vt, πt) (for every t, we allow vt and πt to be non-independent). The domains of the single-period cost
function gt and the transition function ft are now 4-dimensional, where gt(It, xt, vt, πt) = xtπtδvt≤It and
ft(It, xt, vt, πt) = (It − xtvt)+. This example can be further extended to include random yields, in which
the order of an item for inclusion into the knapsack may not be fulfilled. Let γt be a binary random
variable, which is equal to 1 when the inclusion of item t into the knapsack is successful, and is equal
to 0 otherwise. Then, Dt = (vt, πt, γt), and the domains of functions gt and ft are 5-dimensional, where
gt(It, xt, vt, πt, γt) = γtxtπtδvt≤It and ft(It, xt, vt, πt, γt) = (It − γtxtvt)+.

An example of a binary random process in inventory control theory is given in Parlar et al. [1995]. Random
yield models in logistics generalize the supply process in that the proportion of the order being executed is a
random variable (see the survey of Yano and Lee [1995] and the references therein). Consider, for example,
a random yield version of single-item stochastic batch dispatch problem studied in Appendix A.6, in which
the single-period cost function gt and the transition function ft depend on both the random variable Gt

counting the number of units of newly arriving goods, and a rational random yield random variable Ot (i.e.,
the random vector is Dt = (Gt, Ot)). In this case, gt(It, xt, Gt, Ot) = Ktδ⌊Otxt⌋>0 + ct⌊Otxt⌋ + ht−1It and
ft(It, xt, Gt, Ot) = It − ⌊Otxt⌋+Gt.

Another example of random vectors is presented in Appendix A.7 when we deal with single-resource
revenue management with stochastic customer arrivals and cancellations.

26

10.3 Non-independent random vectors

Dealing with non-independent random vectors would demand greater attention. Let us consider the well-
studied model of “Markov-Modulated Demand” (or “World-Driven Demand”); see, for example, Chen and
Simchi-Levi [2004], Iglehart and Karlin [1962], Karlin and Fabens [1959], Song and Zipkin [1993], and Zipkin
[2000, pp. 415-420]. There is an exogenous discrete-time Markov process W = {Wt}, called the world. The
distribution of Dt now depends on the current value of Wt. This means that D1, . . . , DT are no longer
independent. Random vector Dt is influenced by Wt, and the Markovian dependence among W1, . . . ,WT

induces dependence in D1, . . . , DT . We also allow Dt and the next world stateWt+1 to be driven by common
events, so that Dt and Wt+1 may be dependent. We assume, however, that these are the only sources of
dependence; that is, conditional on Wt, the pair (Dt,Wt+1) is independent of all past events. For example,
in a generalization of the cash management problem, the world may represent the economy [Hinderer and
Waldmann, 2001]. In a generalization of the single-item dispatch problem in which the goods are ash of
fireplaces, the world may represent the weather.

Let the world state consist of the n states [1, . . . , n] and be represented by a transition probability matrix
(Wi,j). Note that the classical model with independent and identically distributed Dt is a special case of
this model with the world being a single state. The basic model presented in Section 3 is also a special case
of this model with the number of states in the world being n = T and the transition matrix (Wi,j) being a
T × T stochastic matrix with wi,i+1 = 1 for i = 1, . . . , T − 1, wT,T = 1, and wi,j = 0 for all other i, j pairs.

In the Markov-Modulated Demand model, the domain of zt is [1, . . . , n] × St. Thus, instead of (4), we
have

z∗(w1, I1) = min
x1,...,xT

E

{
gT+1(wT+1, IT+1) +

T∑
t=1

gt(Wt, It, xt, Dt)

}
,

where the expectation is taken with respect to the mutual probability distribution of Wt and Dt, and
W1 = w1. Instead of (5)–(6), we have

zT+1(wT+1, IT+1) = gT+1(wT+1, IT+1)

and

zt(wt, It) = min
xt∈At(It)

EDt|Wt=wt

{
gt(wt, It, xt, Dt) + EWt+1|Wt=wt

zt+1(Wt+1, ft(wt, It, xt, Dt))
}
,

for t = 1, . . . , T . Instead of (7), we have

ED|Wt=wt

{
gt(wt, It, xt, Dt) + EWt+1|Wt=wt

zt+1(Wt+1, ft(wt, It, xt, Dt))
}

=
∑nwt

j=1 pwt,j

[
gt(wt, It, xt, dwt,j) +

∑n
i=1wwt,izt+1(i, ft(wt, It, xt, dwt,j))

]
.

For every fixed world-state wt, we compute K-approximation sets and functions of zt(wt, ·). Since the world
transition probability matrix is given explicitly, the computation will take polynomial time in the (binary)
input size.

Our framework can be easily generalized to provide FPTASs for any constant number of Markov-
modulated processes, in which each process is modulated by a separate Markov chain. For example, if
we have a Markov-modulated demand process WD and a Markov-modulated supply process WS , as studied
in Gallego and Hu [2004], then the domain of zt(w

D
t , w

S
t , It) becomes 3-dimensional, and for every pair of

states (wD
t , w

S
t) ∈ [1, . . . , nD]× [1, . . . , nS], we compute K-approximating sets and functions for it.

It is also possible to handle another case of non-independence. Here, there is no “world” state, but the
random process {D1, . . . , DT } forms a Markov chain with transition matrix (Pij). Then, the state of the
environment dt in period t is dependent only on the observed state dt−1 in period t− 1.

27

Finally, we consider a non-Markov-modulated process, where the world state wt at time t transitions to
the next state by a deterministic transition function ht : W × S ×A×D→W (i.e., being in world state wt

and inventory state It, performing action xt, and having an instantiation dt of the random variable Dt, the
next world state is ht(wt, It, xt, dt)). If the number of world states is polynomially bounded by the input
size, then this case also admits an FPTAS.

We conclude this subsection by considering Monotone/Convex DP with general non-independent random
variables.

Theorem 10.1. The stochastic ordered adaptive knapsack problem with non-independent item volumes is
APX-hard.

The proof of Theorem 10.1 is provided in Appendix C. Because we have formulated the stochastic ordered
adaptive knapsack problem as a maximization nondecreasing DP in Section A.1, we have the following
corollary:

Corollary 10.2. The Monotone/Convex DP framework presented in this paper cannot be extended to deal
with general non-independent random variables unless P = NP .

10.4 Structure of optimal policies

In this paper, we mainly deal with complexity and computational issues of our framework. A natural issue
to explore is the structure of optimal and approximate policies for the problems in our framework. We start
with two definitions: A continuous real-valued function ϕ : Rd→R+ is said to be V-shaped in its variable x if
it is linear with non-positive slope for x < 0, and is linear with nonnegative slope for x ≥ 0. A policy is said
to be a limit policy (r, s), −∞ ≤ r ≤ s ≤ ∞, if (i) whenever state I falls below r, it increases the state to r
by adding r − I units; (ii) whenever state I exceeds s, it decreases the state to s by removing I − s units;
and (iii) it does nothing when state I is between r and s.

Proposition 10.3. Suppose a given convex DP satisfies the following: The coefficients of function ft satisfy
|a| = |b| for every d, and function gt can be expressed as gt(It, xt, Dt) = vt(xt, Dt) + ut(ft(It, xt, Dt), Dt),
where vt is V-shaped in xt, and ut is convex in xt. Then, this convex DP admits an optimal limit policy
(rt, st).

A proof of this proposition is available in Appendix B. Both the cash management problem described
in Section A.10 and the single-item stochastic inventory control problem described in Section A.5, where
procurement/disposal costs are V-shaped and holding cost is convex, satisfy the conditions stipulated in this
proposition.

Note that Algorithm 4 can be easily modified to compute an approximated limit policy (r̂t, ŝt) for the given
problem. It is because all approximated functions calculated by the algorithm are piecewise-linear convex
functions with breakpoints belonging to the approximation sets built during the execution of the algorithm.
Hence, the optimal policy for these approximated functions is also a limit policy, with the additional property
that both policy levels are at breakpoints. Since the algorithm checks all these breakpoints, the xt values
output by the algorithm follow the optimal limit policy for these (approximated) piecewise-linear convex
functions, and these quantities will serve as approximated quantities for the exact convex functions.

10.5 Non-exact evaluation of cost functions

In our model stated in Section 3, we assume that the input data includes an oracle that computes gt
exactly. We can weaken this assumption by requiring that an FPTAS exists for evaluating gt, i.e., weakening
Condition 2 to the following condition:

28

Condition 5. For every t = 1, . . . , T + 1, function ft is either given explicitly (i.e., as explicit formula) or
accessed via oracle calls, and an FPTAS for evaluating gt is given. Moreover, the values of gt are polynomially
bounded by the (binary) size of the input.

We use such non-exact evaluation of the cost function in one of the applications of our framework, namely
dynamic capacity expansion (see Appendix A.3).

Assumption 10.4. For every ∆ ≥ 0 and time period t, there exists a function ḡ∆t such that

gt(I, x, d)

1 + ∆
≤ ḡ∆t (I, x, d) ≤ (1 + ∆)gt(I, x, d)

for every I ∈ St, x ∈ At(I), and d ∈ Dt, and function ḡ∆t can be evaluated in time polynomial in the input
size and 1/∆.

Definition 10.5. Let K ≥ 1, and let φ : D→R+ be a real-valued function over a finite set D. We say that
φ̃ : D→R is a two-sided K-approximation of φ if φ(x)/K ≤ φ̃(x) ≤ Kφ(x) for all x ∈ D.

Assumption 10.4 is equivalent to the statement that for every K ≥ 1, function gt has a two-sided K-
approximation. The validity of the following proposition is obvious:

Proposition 10.6. Let K ≥ 1, and let φ : D→R+ be a real-valued function over a finite domain D of real
numbers. If φ̃ : D→R+ is a two-sided K-approximation of φ, then Kφ̃ is a (one-sided) K2-approximation
of φ.

For a monotone DP (i.e., either Condition 3(i) or Condition 3(ii) is satisfied), suppose an FPTAS for
evaluating gt is given. In order to apply our framework, we need to build a monotone K-approximation
function for gt. We achieve this as follows: Consider the case where gt(I, ·, d) is nondecreasing (the case

where gt(I, ·, d) is nonincreasing is analogous). Let I ∈ St and d ∈ Dt be fixed. Let ḡ
√
K

t (I, ·, d) be a
two-sided

√
K-approximation of gt(I, ·, d). Due to Assumption 10.4, such an approximation is available to

us. Let g̃t(I, ·, d) =
√
Kḡ

√
K

t (I, ·, d). By Proposition 10.6, g̃t(I, ·, d) is a K-approximation of g(I, ·, d). Our
framework remains valid if we apply Proposition 7.1 in the proof of Theorem 8.2 with L′′ = K instead of
L′′ = 1. Hence, we have the following result:

Theorem 10.7. Every stochastic monotone DP satisfying Conditions 1 and 5 admits an FPTAS.

We now turn to convex DPs. Suppose an FPTAS for evaluating gt is given. If the FPTAS returns values
of a convex function, then we say that it is a convex FPTAS. In this case, in the proof of Theorem 9.3, we

use
√
Kḡ

√
K

t (I, ·, d) as a one-sided convex K-approximation of gt and apply Proposition 7.2 with K ′ = K
instead of K ′ = 1.

If the FPTAS is not convex, we first convert it into a convex FPTAS and then repeat the arguments
explained above. The conversion of a non-convex FPTAS into a convex FPTAS is quite involved and is
reported in a follow-up paper, and the result is summarized as follows:

Theorem 10.8. (Halman [2014]) A convex function φ : [A,B]→R+ that cannot be evaluated directly but
only via an FPTAS admits a convex FPTAS.

Hence, we have the following result:

Theorem 10.9. Every stochastic convex DP satisfying Conditions 1 and 5 admits an FPTAS.

Combining Theorems 10.7 and 10.9, we conclude that every stochastic DP satisfying Conditions 1, 3, and 5
admits an FPTAS.

29

10.6 Multivariate functions

One may ask if Proposition 4.6 can be generalized to multivariate functions. In the special case where
function φ is separable (i.e., it is the sum of d univariate functions φ1, . . . , φd, and each of which is either
monotone or convex), the answer is in the affirmative. To do so, we build a K-approximation set Wi of
φi and the approximation φ̂i of φi induced by Wi, for all i = 1, . . . , d. We note that due to summation of
approximation (property 3 in Proposition 5.1),

∑d
i=1 φ̂i is a K-approximation function of φ.

The analysis for other types of multivariate functions is more involved. For the ease of exposition, we
limit the domain of the function to be [A, . . . , B]d. We say that function φ : [A, . . . , B]d → R is nondecreasing
if φ(x1, . . . , xd) ≥ φ(x′1, . . . , x

′
d) for every pair of vectors (x1, . . . , xd), (x

′
1, . . . , x

′
d) ∈ [A, . . . , B]d that satisfy

xi ≥ x′i, ∀i = 1, . . . , d. We say that φ is nonincreasing if −φ is nondecreasing. We say that φ is monotone
if it is either nondecreasing or nonincreasing. Regarding the convexity of discrete functions, as mentioned
in Section 2.2, different classes of discrete convex functions have been considered by Miller [1971], Favati
and Tardella [1990], and Murota [2003]. Other known classes of discrete convex functions include “convex
extensible,” “separable convex,” “L♮-convex,” and “M♮-convex.” See Murota [2003, Sec. 1.4.5] for a discussion
of various classes of multivariate discretly convex functions and the inclusion relationships among them. A
function φ is said to be Miller’s discrete convex if

min{φ(z) | z ∈ N(αx+ (1− α)y)} ≤ αφ(x) + (1− α)φ(y)

holds for any x, y ∈ [A, . . . , B]d and any 0 ≤ α ≤ 1, where N(t) = {t′ ∈ Zd | ∥t− t′∥∞ < 1} for t ∈ Rd [Miller,
1971]. The following theorem states an example of a negative approximability result regarding Miller’s
discrete convex multivariate functions.

Theorem 10.10 (Non-existence of succinct approximations for multivariate Miller’s convex functions [Hal-
man, 2014]). For any 1 ≤ K < 2, a bivariate monotone discretly convex function in the sense of Miller does
not necessarily admit a succinct K-approximation, regardless of the scheme used to represent the function.

A few open research problems related to multivariate discretly convex functions are discussed in Section 11.

10.7 Other recursive structures

The problems that fit into our framework all share the same recursive structure (5)–(6), and it is possible to
extend the framework to other recursive structures. One such possible extension is as follows: We can view
the recursion structure (5)–(6) as “walking” on a directed path from node T + 1 backward to node 1, where
node t represents the optimal value function in time period t, for t = T+1, . . . , 1. Now, consider optimization
problems over other networks such as trees and series-parallel graphs. In these cases, the recursive structure
may be different. As an example, we briefly describe here a time-cost tradeoff project scheduling model
studied in a follow-up paper [Halman et al., 2009b].

There is a series-parallel project network of n activities in activity-on-arc representation. Denote the
activities as 1, . . . , n. Associated with each activity i is a nonincreasing function fi : Ti→Z+, where fi(ti) is
the cost incurred when the activity time is ti, and Ti = [ti, . . . , t̄i] is the set of all possible time duration of
activity i. Here, we assume that all activity times and costs are integer-valued.

Let ϕ(t1, . . . , tn) denote the total duration of the project (i.e., the length of the longest path in the
network) when the time duration of activity i is ti, for i = 1, 2, . . . , n. Given a deadline d, we are interested
in determining t1, . . . , tn so that ϕ(t1, . . . , tn) ≤ d and that f1(t1) + · · ·+ fn(tn) is minimized.

A series-parallel network can be reduced to a single-arc network via a sequence of series and parallel
reduction operations. A series reduction is an operation that replaces two series arcs by a single arc, while
a parallel reduction is an operation that replaces two parallel arcs by a single arc. In a project network, a
reduction of two series activities with time duration t′ and t′′ will result in a single activity with time duration

30

t′ + t′′, while a reduction of two parallel activities with time duration t′ and t′′ will result in a single activity
with time duration max{t′, t′′}. Thus, for a given series-parallel project network of n activities, it takes only
n− 1 series/parallel reduction operations to reduce it to a single-activity network. However, when there are
time-cost tradeoff decisions for the activities, the integration of the two time-cost tradeoff functions during
a series/parallel reduction operation becomes a challenge if we want to perform the computation efficiently.

First, suppose that we allocate t time units to a pair of parallel activities i1 and i2; that is, we allow each
of these two activities to spend no more than t time units. Then, the merged activity, which has a maximum
duration of t, will incur a cost of

fi(t) = fi1(t) + fi2(t), (13)

where fi1(t) and fi2(t) are the costs of the original activities i1 and i2, respectively.
Next, suppose that we allocate t time units to a pair of series activities i1 and i2; that is, we allow these

two activities to spend no more than a total of t time units. Then, the merged activity i (along the merged
arc u→ w), which has a duration of t, will incur a cost of

fi(t) = min
t′=0,1,...,t

{
fi1(t

′) + fi2(t− t′)
}
, (14)

where fi1(t
′) and fi2(t− t′) are the costs of the original activities i1 and i2 if they are allocated t′ and t− t′

time units, respectively.
Suppose we do not know the exact time-cost tradeoff functions fi1 and fi2 , but instead we have a K1-

approximation f̃i1 for fi1 and a K2-approximation f̃i2 for fi2 . Then, summation of approximation (Propo-
sition 5.1) tells us that f̃i(t) = f̃i1(t) + f̃i2(t) is a max{K1,K2}-approximation of (13). In the following
proposition, we extend the Calculus of K-approximation Functions to deal with the recursive structure (14)
in a way similar to the way Proposition 5.3 deals with the recursive structure (5)–(6).

Proposition 10.11 (Halman et al. [2009b]). Let fi be the functions defined in (14). For j = 1, 2, let Kj ≥ 1,
let f̃ij (t) be a nonincreasing Kj-approximation function of fij , and let Wij be Kj-approximation set of fij .
Then,

f̄i(t) = min
t′∈{0,1,...,t}∩(Wi1

∪{t−x | x∈Wi2
})

{
f̃i1(t

′) + f̃i2(t− t′)
}

is a max{K1,K2}-approximation of fi.

10.8 Different descriptions of stochastic events

One limitation of our framework is that it requires the probability distribution functions of the random
variables to be given explicitly. In a follow-up work [Halman et al., 2012], we relax this requirement in
the following way: The input of the stochastic variables is given as oracles for the cumulative distribution
functions of each of the random variables, together with bounds on their supports. The FPTAS is required
to query these oracles a polynomial number of times. One advantage of this model is that the assumptions
are so weak that they encompass various ways of specifying random variables, such as truncated Poisson
distribution with an a priori given rate. An example of how the calculus of K-approximation is extended in
this setting is given below:

Proposition 10.12 (Halman et al. [2012]). Let D be a nonnegative integer-valued random variable, and let F
be its cumulative distribution function. Let ξ : [L, . . . , U]→Z+ be a nondecreasing function. Let K1,K2 ≥ 1,
let ξ(a0) = 0, and let S = {a1 < · · · < an} be a K1-approximation set of ξ. Let F̃ be a K2-approximation of
F . Then,

ξ̃1(x) =

n∑
i=1

[
ξ(ai)− ξ(ai−1)

]
F̃ (x− ai)

is a K1K2-approximation of ED[ξ(x−D)]. Moreover, if F̃ (·) is nondecreasing, then so is ξ̃1(·).

31

Considering the stochastic single-item inventory control problem discussed in the Introduction (and formally
defined in Appendix A.5), we note that under general lead times, the optimal value function is multivariate. It
is well-known that this DP can be transformed into a single-variate DP of the same form as the one presented
in Section A.5 (the state corresponds to inventory position, which is defined as the inventory on hand plus all
outstanding inventory). It is easy to show that this transformation preserves the approximation ratio, and,
as a result, it suffices to find an FPTAS for this single-variate DP. If L > 0 is an arbitrary lead time, then
the underlying demand distribution of the transformed problem is D̄t =

∑t+L−1
t̂=t

Dt̂. The presented FPTAS

requires that we know Prob(D̄t = d̄t,i), which is a convolution of L distributions. Consequently, computing
these probabilities takes (n∗)L time. If L is 2 or 3 (or any other constant value), then the term (n∗)L is
polynomial, and the algorithm is an FPTAS. If L is not constant (e.g., L = T/4), then the running time is
exponentially large. In the latter case, our algorithm is not an FPTAS. An open question raised in Halman
et al. [2009a] is whether one can modify the approach and create an FPTAS for the problem in which the
lead times are permitted to be a fraction of T .

In Halman et al. [2012], we give a positive answer to this question and design an FPTAS in the following
way: For 0 ≤ j ≤ L and 1 ≤ i ≤ T − j, let F j

i be the cumulative distribution function of the convolution

of Di, . . . , Di+j ; that is, F j
i (x) = Prob(Di + · · · + Di+j ≤ x). We compute F j

i exactly for j = 0, 1 and

1 ≤ i ≤ T − j. For 2 ≤ j ≤ L and 1 ≤ i ≤ T − j, we build a Kj−1-approximation function F̃ j
i for F j

i via
K-approximation sets in a recursive way by using the calculus of K-approximation and the equality

F j
i (x) = P (Di + · · ·+Di+j ≤ x) =

∑
(y≤x) and y is in the support of Di

Prob(Di = y)F j−1
i+1 (x− y).

(Note: Since the cumulative distribution function is monotone, a K-approximation set for it is well-defined.)
By using Proposition 10.12 and other tools, Halman et al. [2012] derive an FPTAS for this problem.

10.9 Approximating profits

All the problems studied in this paper and in Halman et al. [2008, 2009b] are either for minimizing cost or
for maximizing revenue. If one wants to maximize profit, i.e., the difference between revenue and cost, then
having a rule in the calculus of K-approximation that deals with subtraction of functions is desirable. Note
that such a rule cannot be analogous to “summation of approximation” (Property 3 in Proposition 5.1).
This is because while the ratio between φ1 + φ2 and φ̃1 + φ̃2 is bounded, it is not necessarily so between
φ1 − φ2 and φ̃1 − φ̃2 (e.g., when φ1 and φ2 are very close to each other).

The next proposition shows that by imposing the restriction that φ2 ≤ cφ1 for some given constant c > 0,
the aforementioned ratio will be bounded.

Proposition 10.13 (Subtraction of approximation from below [Halman et al., 2012]). Let φi : D→R+

be a nonnegative function over domain D and Ki ≥ 1 be arbitrary, i = 1, 2. Let φ̃1 : D→R+ be a K1-
approximation of φ1 from below, and φ̃2 : D→R+ be a K2-approximation of φ2 from above. Let c < 1

K1K2

be an arbitrary positive real number. If x ∈ D satisfies φ2(x) ≤ cφ1(x), then (φ̃1 − φ̃2)(x) is a
(1−c)K1

1−cK1K2
-approximation of (φ1 − φ2)(x) from below.

By using Proposition 10.13, among other ingredients, Halman et al. [2012] derive an FPTAS for a certain
basic inventory control problem. Please refer to Halman et al. [2012] for further details.

11 Concluding remarks and future research

In this paper we have presented a framework for obtaining FPTASs for stochastic monotone or convex
DPs. While other recent developments in approximation algorithms for stochastic dynamic and multistage

32

programs are based on gradients or sampling, our framework is based on the notion of approximation sets and
functions. Under our framework, standard recurrence recursion is used, but we consider only polynomially
many states. Our algorithm relies on either monotonicity or convexity of the value function.

We start with two complexity remarks. First, Alekhnovich et al. [2005] present a model for backtracking
and dynamic programming. They prove several upper and lower bounds on the capabilities of algorithms
in their model, and show that their model captures the simple DP framework of Woeginger [2000]. In their
paper, they question whether their model could capture other DP algorithms. It would be interesting to
explore the capabilities of our framework in this context.

Second, Dyer et al. [2004] investigate classes of counting problems that are interreducible under
approximation-preserving reductions. One of these classes is the class of counting problems that admit
(randomized) FPRASs. It would be interesting to investigate the class of counting problems that admit
FPTASs in this context.

It is appropriate to point out some limitations of our approach. It is interesting to consider relaxing any of
Conditions 1–3. We have shown that the framework cannot be extended to general non-independent random
events (Corollary 10.2). We have also shown that the condition regarding convex DP (Condition 3(iii))
cannot be relaxed (Theorem 9.2). Regarding Condition 1, it would have been more desirable if we could
extend our framework to deal with multivariate DPs, i.e., to allow fixed-dimensional state and action spaces.
Following the discussion in Section 10.6, our FPTAS framework can be extended to multivariate separable
functions. Specifically, if St,At ⊂ Zd for all t, then the transition function ft and the cost function gt can be
expressed as ft(I, x,D) = (f1t (I1, x1, D), . . . , fdt (Id, xd, D)) and gt(I, x,D) =

∑d
i=1 g

i
t(Ii, xi, D). In this case,

the minimization and the expectation in the DP formulation (5)–(6) can be split into d separable problems,
allowing the solution of the problem to be d uni-dimensional DPs. Thus, the FPTAS can be applied, provided
that Conditions 2 and 3 are satisfied by each git and f

i
t . On the negative side, Theorem 10.10 tells us that

when the cost functions gt are either monotone or Miller’s convex (or both), one cannot have a succinct K-
approximation of the cost-to-go functions zt, so our approach fails. This begs the question of whether other
approaches can succeed. For multivariate monotone functions, the answer is in the negative. It is known
that the existence of an FPTAS for the 2-dimensional 0/1 knapsack problem (which can be formulated as a
2-dimensional nondecreasing DP) would imply P = NP (see Kellerer et al. [2004, p. 252] and the references
therein).

This leaves open the following interesting future research directions. First, it is interesting to characterize
which of the various classes of discrete convex functions admit succinct representation. Second, for these
classes, it is desirable to extend our FPTAS framework. The most interesting class of discrete convex functions
to study is perhaps that of L♮-convex functions. Recently, Chen et al. [2014] studied fixed-dimensional
stochastic dynamic programs in a discrete setting over a finite horizon, under the primary assumption that
the cost-to-go functions are discrete L♮-convex. They proposed a pseudo-polynomial time approximation
scheme that solves multi-dimensional dynamic programs to within an arbitrary pre-specified additive error
of ϵ > 0. The proposed approximation algorithm is a generalization of the explicit-enumeration algorithm,
offers a full control in the tradeoff between accuracy and running time, but runs in time pseudo-polynomial
in the input size. If the class of discrete L♮-convex functions turns out not to admit efficient succinct
approximations, then their result is in a way best possible. Otherwise, the knowledge of how to construct
efficient succinct approximations for L♮-convex functions may be a first step towards the design of an FPTAS
for such dynamic programs.

Despite the above limitations, our framework appears to be generalizable to other problems by using the
general framework of the calculus of K-approximation. Indeed, since the calculus of K-approximation is
modular, other researchers may choose various building blocks required for a problem at hand and develop
an FPTAS by adding more tools as appropriate. This is exactly the approach used in Halman et al. [2009b,
2012].

33

Acknowledgments

The authors thank the anonymous referees for their helpful comments and suggestions. The first author
also thanks Oded Goldreich, Sudipto Guha, and Asaf Levin for their inspiring discussions regarding the
conference version of this paper, and Nimrod Megiddo for bringing his attention to the book of Murota and
the references therein.

References

J. Adda and R. Cooper. Dynamic Economics: Quantitative Methods and Applications. MIT Press, Cambridge, MA,
2003.

M. Alekhnovich, A. Borodin, J. Buresh-Oppenheim, R. Impagliazzo, A. Magen, and T. Pitassi. Toward a model for
backtracking and dynamic programming. In Proceedings of the 20th Annual IEEE Conference on Computational
Complexity, 2005.

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi. Complexity and Approxi-
mation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, Berlin, 1999.

A. Bandyopadhyay and D. Gamarnik. Counting without sampling: Asymptotics of the log-partition function for certain
statistical physics models. Random Structures and Algorithms, 33:452–479, 2008.

M. Bayati, D. Gamarnik, D. Katz, C. Nair, and P. Tetali. Simple deterministic approximation algorithms for counting
matchings. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pages 122–127, 2007.

R. E. Bellman and S. E. Dreyfus. Applied Dynamic Programming. Princeton University Press, Princeton, NJ, 1962.

D. P. Bertsekas. Dynamic Programming and Optimal Control, Volume I. Athena Scientific, Belmont, MA, third edition,
2005.

K. M. Bretthauer and B. Shetty. The nonlinear knapsack problem – algorithms and applications. European Journal
of Operational Research, 138:459–472, 2002.

R. L. Carraway, R. L. Schmidt, and L. R. Weatherford. An algorithm for maximizing target achievement in the
stochastic knapsack problem with normal returns. Naval Research Logistics, 40:161–173, 1993.

S. S. Chauhan, A. V. Eremeev, A. A. Romanova, V. V. Servakh, and G. J. Woeginger. Approximation of the supply
scheduling problem. Operations Research Letters, 33:249–254, 2005.

W. Chen, M. Dawande, and G. Janakiraman. Fixed-dimensional stochastic dynamic programs: An approximation
scheme and an inventory application. Operations Research, 62:81–103, 2014.

X. Chen and D. Simchi-Levi. Coordinating inventory control and pricing strategies with random demand and fixed
ordering cost: The finite horizon case. Operations Research, 52:887–896, 2004.

T. C. E. Cheng, Z.-L. Chen, C.-L. Li, and B. M.-T. Lin. Scheduling to minimize the total compression and late costs.
Naval Research Logistics, 45:67–82, 1998.

S. Chubanov, M. Y. Kovalyov, and E. Pesch. An FPTAS for a single-item capacitated economic lot-sizing problem
with monotone cost structure. Mathematical Programming, 106:453–466, 2006.

B. C. Dean, M. X. Goemans, and J. Vondrák. Approximating the stochastic knapsack problem: The benefit of
adaptivity. Mathematics of Operations Research, 33:945–964, 2008.

S. E. Dreyfus and A. M. Law. The Art and Theory of Dynamic Programming. Academic Press, New York, 1977.

M. Dyer. Approximate counting by dynamic programming. In Proceedings of the 35th Annual ACM Symposium on
the Theory of Computing, pages 693–699, San Diego, CA, 2003.

34

M. Dyer, A. Frieze, and M. Jerrum. Approximately counting Hamilton paths and cycles in dense graphs. SIAM Journal
on Computing, 27:1262–1272, 1998.

M. Dyer, L. A. Goldberg, C. Greenhill, and M. Jerrum. The relative complexity of approximate counting problems.
Algorithmica, 38:471–500, 2004.

E. J. Elton and M. J. Gruber. On the cash balance problem. Operational Research Quarterly, 25:553–572, 1974.

G. D. Eppen and E. F. Fama. Cash balance and simple dynamic portfolio problems with proportional costs. Interna-
tional Economic Review, 10:119–133, 1969.

B. H. Faaland. The multiperiod knapsack problem. Operations Research, 29:612–616, 1981.

P. Favati and F. Tardella. Convexity in nonlinear integer programming. Ricerca Operativa, 53:3–44, 1990.

U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM, 45:634–652, 1998.

M. Florian, J. K. Lenstra, and A. H. G. Rinnooy Kan. Deterministic production planning: Algorithms and complexity.
Management Science, 26:669–679, 1980.

S. Frederick, G. Loewenstein, and T. O’Donoghue. Time discounting and time preference: A critical review. Journal
of Economic Literature, 40:351–401, 2002.

G. Gallego and H. Hu. Optimal policies for production/inventory systems with finite capacity and Markov-modulated
demand and supply processes. Annals of Operations Research, 126:21–41, 2004.

D. Gamarnik and D. Katz. Correlation decay and deterministic FPTAS for counting list-colorings of a graph. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1245–1254, 2007.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-completeness. W. H.
Freeman, New York, 1979.

A. Goel and P. Indyk. Stochastic load balancing and related problems. In Proceedings of the 40th Annual IEEE
Symposium on Foundations of Computer Science, pages 579–586, 1999.

N. Halman. Approximating convex functions via non-convex oracles under the relative noise model. Technical report
4226, www.optimization-online.org/DB HTML/2014/02/4226.html, 2014.

N. Halman, D. Klabjan, C.-L. Li, J. Orlin, and D. Simchi-Levi. Fully polynomial time approximation schemes for
stochastic dynamic programs. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 700–709, 2008.

N. Halman, D. Klabjan, M. Mostagir, J. Orlin, and D. Simchi-Levi. A fully polynomial-time approximation scheme
for single-item stochastic inventory control with discrete demand. Mathematics of Operations Research, 34:674–685,
2009a.

N. Halman, C.-L. Li, and D. Simchi-Levi. Fully polynomial-time approximation schemes for time-cost tradeoff problems
in series-parallel project networks. Operations Research Letters, 37:239–244, 2009b.

N. Halman, J. B. Orlin, and D. Simchi-Levi. Approximating the nonlinear newsvendor and single-item stochastic
lot-sizing problems when data is given by an oracle. Operations Research, 60:429–446, 2012.

M. I. Henig. Risk criteria in a stochastic knapsack problem. Operations Research, 38:820–825, 1990.

K. Hinderer and K.-H. Waldmann. Cash management in a randomly varying environment. European Journal of
Operational Research, 130:468–485, 2001.

D. S. Hochbaum. A nonlinear Knapsack problem. Operations Research Letters, 17:103–110, 1995.

35

D. S. Hochbaum. Various notions of approximations: Good, better, best, and more. In D. S. Hochbaum, editor,
Approximation Algorithms for NP-hard Problems, pages 346–398. PWS Publishing Company, Boston, 1997.

E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling nonidentical processors. Journal of the
ACM, 23:317–327, 1976.

O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum of subset problems. Journal of
the ACM, 22:463–468, 1975.

D. L. Iglehart and S. Karlin. Optimal policy for dynamic inventory process with nonstationary stochastic demands.
In K. J. Arrow, S. Karlin, and H. Scarf, editors, Studies in Applied Probability and Management Science, pages
127–147. Stanford University Press, Stanford, CA, 1962.

M. Jerrum and A. Sinclair. Approximating the permanent. SIAM Journal on Computing, 18:1149–1178, 1989.

M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm for the permanent of a matrix
with nonnegative entries. Journal of the ACM, 51:671–697, 2004.

S. Kameshwaran and Y. Narahari. Nonconvex piecewise linear knapsack problems. European Journal of Operational
Research, 192:56–68, 2009.

S. Karlin and A. J. Fabens. A stationary inventory model with Markovian demand. In K. J. Arrow, S. Karlin, and
P. Suppes, editors, Mathematical Methods in the Social Sciences, pages 159–175. Stanford University Press, Stanford,
CA, 1959.

R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher, editors, Complexity of
Computer Computations, pages 85–103. Plenum Press, New York, 1972.

H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, Berlin, 2004.

J. Kleinberg, Y. Rabani, and E. Tardos. Allocating bandwidth for bursty connections. In Proceedings of the 29th
Annual ACM Symposium on Theory of Computing, pages 664–673, 1997.

A. J. Kleywegt and J. D. Papastavrou. The dynamic and stochastic knapsack problem with random sized items.
Operations Research, 49:26–41, 2001.

E. L. Lawler. Fast approximation algorithms for knapsack problems. Mathematics of Operations Research, 4:339–356,
1979.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Sequencing and scheduling: Algorithms and
complexity. In S. C. Graves, A. H. G. Rinnooy Kan, and P. H. Zipkin, editors, Handbooks in Operations Research and
Management Science, Volume 4: Logistics of Production and Inventory, pages 445–522. North-Holland, Amsterdam,
1993.

R. Levi, M. Pál, R. O. Roundy, and D. B. Shmoys. Approximation algorithms for stochastic inventory control models.
Mathematics of Operations Research, 32:284–302, 2007a.

R. Levi, R. O. Roundy, and D. B. Shmoys. Provably near-optimal sampling-based policies for stochastic inventory
control models. Mathematics of Operations Research, 32:821–839, 2007b.

R. Levi, R. O. Roundy, D. B. Shmoys, and V. A. Truong. Approximation algorithms for capacitated stochastic inventory
control models. Operations Research, 56:1184–1199, 2008.

L. W. McKenzie. Turnpike theory. Econometrica, 44:841–865, 1976.

M. Mihail and P. Winkler. On the number of Eulerian orientations of a graph. Algorithmica, 16:402–414, 1996.

B. L. Miller. On minimizing nonseparable functions defined on the integers with an inventory application. SIAM
Journal on Applied Mathematics, 21:166–185, 1971.

36

K. Murota. Discrete Convex Analysis. SIAM, Philadelphia, PA, 2003.

J. Nascimento and W. Powell. Dynamic programming models and algorithms for the mutual fund cash balance problem.
Management Science, 56:801–815, 2010.

K. P. Papadaki and W. B. Powell. An adaptive dynamic programming algorithm for stochastic multiproduct batch
dispatch problem. Naval Research Logistics, 50:742–769, 2003.

J. D. Papastavrou, S. Rajagopalan, and A. J. Kleywegt. The dynamic and stochastic knapsack problem with deadlines.
Management Science, 42:1706–1718, 1996.

M. Parlar, Y. Wang, and Y. Gerchak. A periodic review inventory model with Markovian supply availability. Interna-
tional Journal of Production Economics, 42:131–136, 1995.

E. S. Phelps. The accumulation of risky capital: A sequential utility analysis. Econometrica, 30:729–743, 1962.

H. M. Safer and J. B. Orlin. Fast approximation schemes for multi-criteria flow, knapsack, and scheduling problems.
Sloan School of Management Working Paper 3757-95, Massachusetts Institute of Technology, 1995.

S. K. Sahni. Algorithms for scheduling independent tasks. Journal of the ACM, 23:116–127, 1976.

I. Saniee. An efficient algorithm for the multiperiod capacity expansion of one location in telecommunications. Opera-
tions Research, 43:187–190, 1995.

D. B. Shmoys and C. Swamy. An approximation scheme for stochastic linear programming and its application to
stochastic integer programs. Journal of the ACM, 53:978–1012, 2006.

D. Simchi-Levi, X. Chen, and J. Bramel. The Logic of Logistics: Theory, Algorithms, and Applications for Logistics
Management. Springer-Verlag, New York, third edition, 2014.

M. Sniedovich. Preference order stochastic knapsack problems: Methodological issues. Journal of the Operational
Research Society, 31:1025–1032, 1980.

J.-S. Song and P. Zipkin. Inventory control in a fluctuating demand environment. Operations Research, 41:351–370,
1993.

E. Steinberg and M. S. Parks. A preference order dynamic program for a knapsack problem with stochastic rewards.
Journal of the Operational Research Society, 30:141–147, 1979.

K. T. Talluri and G. J. van Ryzin. The Theory and Practice of Revenue Management. Kluwer, Boston, 2004.

C. P. M. Van Hoesel and A. P. M. Wagelmans. Fully polynomial approximation schemes for single-item capacitated
economic lot-sizing problems. Mathematics of Operations Research, 26:339–357, 2001.

V. V. Vazirani. Approximation Algorithms. Springer, Berlin, 2001.

H. M. Wagner and T. M. Whitin. Dynamic version of the economic lot size model. Management Science, 5:89–96,
1958.

D. Weitz. Counting independent sets up to the tree threshold. In Proceedings of the 38th Annual ACM Symposium on
Theory of Computing, pages 140–149, 2006.

W. D. Whisler. A stochastic inventory model for rented equipment. Management Science, 13:640–647, 1967.

G. J. Woeginger. When does a dynamic programming formulation guarantee the existence of a fully polynomial time
approximation scheme (FPTAS)? INFORMS Journal on Computing, 12:57–74, 2000.

C. A. Yano and H. L. Lee. Lot sizing with random yields: A review. Operations Research, 43:311–334, 1995.

P. H. Zipkin. Foundations of Inventory Management. McGraw-Hill, Boston, 2000.

37

Appendix

A Applications of the framework

In this appendix we demonstrate the applications of our framework to various stochastic and deterministic
optimization problems.

A.1 Stochastic ordered adaptive knapsack problem

Consider the following stochastic ordered adaptive knapsack problem [Dean et al., 2008]: We are given an
ordered set of n items and a knapsack with constant capacity B ∈ Z+. Each item t has a constant profit
πt ∈ Q+. Item t has a volume vt, which is a random variable having a known probability distribution with
support Dt as described in Section 3. We would like to determine sequentially whether an item should be
placed into the knapsack. The decision of whether to put item t in the knapsack is made after knowing the
remaining capacity of the knapsack resulted from the execution of the previous t − 1 decisions. The actual
volume of item t is unknown until we instantiate the item by attempting to place it in the knapsack. If its
volume exceeds the remaining knapsack capacity, then the process will terminate immediately, and the final
overflowing item will contribute no profit. The objective is to maximize the expected total profit of those
items placed in the knapsack.

Clearly, our problem is a generalization of the following classical (deterministic) 0/1 knapsack problem:

maximize
∑n

i=1 πixi
subject to

∑n
i=1 vixi ≤ B

xi ∈ {0, 1}, i = 1, . . . , n,
(15)

where πi is the unit profit of item i, vi is the (deterministic) volume of item i, and xi indicates whether item
i is selected. Problem (15) is known to be NP-hard [Karp, 1972]. Because our problem is a generalization
of problem (15) (the latter is a special case of our problem in which every random variable accepts a single
value with probability 1), our problem is also NP-hard.

Different variants of the stochastic knapsack problem have been studied in the literature. Knapsack
problems with deterministic item volumes and random item profits have been studied by Carraway et al.
[1993], Henig [1990], Sniedovich [1980], and Steinberg and Parks [1979]. Another somewhat related variant,
known as the stochastic and dynamic knapsack problem, involves items that arrive on-line according to certain
stochastic process [Kleywegt and Papastavrou, 2001, Papastavrou et al., 1996]. Kleinberg et al. [1997] and
Goel and Indyk [1999] have considered a stochastic knapsack problem with “chance” constraints, in which
the objective is to find a maximum-profit set of items whose probability of overflowing the knapsack is no
greater than some specified value. Dean et al. [2008] have studied the stochastic ordered adaptive knapsack
problem, in which the item volumes are independent random variables with arbitrary distributions. They
have developed a polynomial-time algorithm for the problem. For every ϵ > 0, their algorithm gives a
solution in which the value is at least the optimal value, at the expense of a slight loss in terms of feasibility;
that is, the total volume of the items placed in the knapsack does not exceed (1+ ϵ)B. While valuable, their
algorithm is not in the spirit of FPTASs, in which constraints are treated as “hard” and feasibility is always
maintained.

The stochastic ordered adaptive knapsack problem can be formulated as a pseudo-polynomial time DP as
follows: Let zt(It) be the expected profit when considering only items t, . . . , n, where the remaining available
volume in the knapsack is It. The recurrence relation is

zt(It) = max
{
Evt{πtδvt≤It + zt+1((It − vt)+)}, zt+1(It)

}
(16)

38

for It = 0, . . . , B and t = 1, . . . , n. The boundary condition is zn+1(In+1) = 0 for In+1 ≥ 0. The optimal
solution value is z1(B). The first term in the maximization function on the right hand side of (16) is the
outcome of attempting to place item t into the knapsack, while the second term is the outcome of not doing
so.

In order to show that this DP fits into our framework, we need to reformulate (16) as a maximization of
a function over an action space. It is easy to see that equation (17) below is equivalent to (16), and that it
is indeed a maximization over an action space:

zt(It) = max
xt=0,1

Evt

{
xtπtδvt≤It + zt+1((It − xtvt)+)

}
. (17)

Next, we show that the above DP with recurrence relation (17) is a maximization nondecreasing DP
that fits into our framework; that is, a DP satisfying Conditions 1, 2, and 4(i) (recall that the Condition 4
is the maximization counterpart of Condition 3 for maximization problems). For simplicity, we assume
that πt > 0 for t = 1, . . . , T (otherwise item t generates no profit and can be ignored). Define T = n,
gT+1 ≡ 0, and ST+1 = [0, . . . , B]. For t = 1, . . . , T , we define Dt = vt, St = [0, . . . , B], At(It) = {0, 1},
gt(It, xt, Dt) = xtπtδDt≤It , and ft(It, xt, Dt) = (It−xtDt)

+. Note that ST+1, St, and At(It) are all contiguous
intervals for any It ∈ St and t = 1, . . . , T , and that the logarithm of any nonzero element in ST+1, St, and
At(It) is bounded from above by log(B+1). Thus, Condition 1 holds. Because the functions ft, gt are given
explicitly, Condition 2 also holds. As for Condition 4(i), we notice that for t = 1, . . . , T , both functions gt
and ft are nondecreasing in It, function ft is nonincreasing in xt, and function gt is nondecreasing in xt.
Furthermore, At(It) is independent of It, which implies that At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≤ I ′.
Therefore, Condition 4(i) is also satisfied.

A.2 Nonlinear knapsack problem

Consider the following nonlinear knapsack problem with a separable nondecreasing objective function, a
separable nondecreasing packing constraint, and integer variables:

maximize
∑n

i=1 πi(xi)
subject to

∑n
i=1 vi(xi) ≤ B

ℓi ≤ xi ≤ ui, i = 1, . . . , n
xi ∈ Z+, i = 1, . . . , n.

(18)

In this formulation, xi represents the number of units of item i selected; πi(xi) is the profit generated from
these xi units; vi(xi) is the space or weight consumption of these xi units; B ≥ 0 is the capacity of the
knapsack; ℓi ≥ 0 is a lower bound requirement of xi; and ui ≥ 0 is an upper bound requirement of xi. We
assume that πi : Z+ → Q+ and vi : Z+ → Z+ are nondecreasing functions which satisfy πi(0) = vi(0) = 0
and the binary size of any of their values is polynomially bounded by the (binary) input size. The input
data for the problem consists of (i) the knapsack size B, (ii) the bounds ℓi and ui (for each i = 1, . . . , n),
and (iii) oracles that compute πi and vi for each i = 1, . . . , n. Without loss of generality, we assume that∑n

i=1 vi(ℓi) ≤ B (otherwise the problem would be infeasible, and this can be checked in linear time). Because
problem (18) is a generalization of problem (15) and because the input size of (18) is bounded by a polynomial
of the input size of (15), problem (18) is also NP-hard.

Many versions of the nonlinear knapsack problem have been addressed in the literature, but the setting
of our problem is relatively general because functions πi and vi are not restricted to be linear, convex, or
concave. For recent surveys on nonlinear knapsack models, see Bretthauer and Shetty [2002], Kellerer et al.
[2004], and Kameshwaran and Narahari [2009].

An FPTAS for the 0/1 knapsack problem (and for the integer knapsack problem where xi can be any
nonnegative integer) was first developed by Ibarra and Kim [1975]. Lawler [1979] has improved the efficiency

39

of Ibarra and Kim’s FPTAS and has discussed its extension to the nonlinear case. However, Lawler’s approx-
imation scheme is no longer polynomial when it is applied to the nonlinear knapsack problem. Hochbaum
[1995] has demonstrated that Lawler’s approximation scheme is implementable in polynomial time when πi
is concave and vi is convex for i = 1, . . . , n. Kameshwaran and Narahari [2009] have developed an FPTAS
for the case where vi is linear and πi is a piecewise-linear monotone function represented explicitly by tuples
of breakpoints, slopes, and costs at breakpoints.

Problem (18) can be formulated as a pseudo-polynomial time DP as follows: Define ρt : Z+ → Z+ such
that ρt(y) = max{x | vt(x) ≤ y} for any y ∈ Z+. Function ρt is nondecreasing and can be evaluated in
logarithmic numbers of oracle calls to v(·). Define zt(It) as the maximum total profit obtained from items
t, . . . , n, given that the available knapsack space is It. The recurrence relation is

zt(It) = max
xt∈[ℓt,...,min{ut,ρt(It−

∑n
i=t+1 vi(ℓi))}]

{
πt(xt) + zt+1(It − vt(xt))

}
,

for
∑n

i=t vi(ℓi) ≤ It ≤ B −
∑t−1

i=1 vi(ℓi) and t = 1, . . . , n. The boundary condition is zn+1(In+1) = 0 for
In+1 ≥ 0. The optimal solution value is z1(B).

Next, we show that the above is a maximization nondecreasing DP that fits into our framework. Since
the problem is deterministic, the discrete random variables in the framework accept one single value with
probability 1. For simplicity, in the following discussion we omit the random variables from our functions.
Also, for simplicity, we assume that B > 0, ut > 0, and πt ̸≡ 0 for t = 1, . . . , T . Define T = n, ST+1 =
[0, . . . , B −

∑T
i=1 vi(ℓi)], and gT+1 ≡ 0. For t = 1, . . . , T , we define St = [

∑n
i=t vi(ℓi), . . . , B −

∑t−1
i=1 vi(ℓi)],

At(It) = [ℓt, . . . ,min{ut, ρt(It −
∑n

i=t+1 vi(ℓi))}], gt(It, xt) = πt(xt), and ft(It, xt) = It − vt(xt). Note that
ST+1, St, and At(It) are all contiguous intervals for any It ∈ St and t = 1, . . . , T , and that the logarithm
of any nonzero element in ST+1, St, and At(It) is bounded from above by max{log umax, logB}, where
umax = max{u1, . . . , uT }. Thus, Condition 1 holds. Because of our assumptions regarding the functions
πi, vi, Condition 2 also holds. As for Condition 4(i), we notice that for t = 1, . . . , T , both functions gt
and ft are nondecreasing in It, function ft is nonincreasing in xt, and function gt is nondecreasing in xt.
Furthermore, because min{ut, ρt(It)} is nondecreasing in It, we have At(I) ⊆ At(I

′) for all I, I ′ ∈ St with
I ≤ I ′. Therefore, Condition 4(i) is also satisfied.

Note that using a similar approach, we can also provide an FPTAS for the following nonlinear minimiza-
tion knapsack problem:

minimize
∑n

i=1 πi(xi)
subject to

∑n
i=1 vi(xi) ≥ B

ℓi ≤ xi ≤ ui, i = 1, . . . , n
xi ∈ Z+, i = 1, . . . , n.

(19)

Remark. There is an alternative way to develop an FPTAS for problem (18). Safer and Orlin [1995,
pp. 26–29] have provided an FPTAS to the special case of problem (18) where vi is a linear function. We can
transform problem (18) into Safer and Orlin’s model as follows: For i = 1, . . . , n, let ℓ′i ← vi(ℓi), u

′
i ← vi(ui),

and π′i(y) = max{πi(x) | vi(x) ≤ y and x ∈ Z+}, ∀y ∈ Z+. Clearly, π′i is a nondecreasing function. Given
any feasible solution (y1, . . . , yn) of Safer and Orlin’s model, we can obtain a feasible solution (x1, . . . , xn)
to problem (18) with

∑n
i=1 πi(xi) =

∑n
i=1 π

′
i(yi) by setting xi = max{x | vi(x) ≤ yi and x ∈ Z+} for

i = 1, . . . , n. Thus, we can obtain an ϵ-approximation solution to problem (18) by transforming it to Safer
and Orlin’s model and apply their FPTAS.

Remark. Chauhan et al. [2005] have provided an FPTAS to a “supply scheduling problem.” An alternative
way of developing an FPTAS for problem (19) is to transform problem (19) into Chauhan et al.’s model
using the technique presented in the previous remark and then apply their FPTAS.

40

A.3 Dynamic capacity expansion

Consider the following multi-period capacity expansion problem in telecommunication network planning
[Saniee, 1995]: Given a set of transmission technologies {1, . . . , n} such as copper cables of various sizes,
optical fiber cables with different bit rates, etc., we would like to determine a combination of sizes of these
technologies to be installed in each time period. Our objective is to satisfy a given demand of circuits in
each time period of the planning horizon at minimum cost. The problem is formulated as follows:

minimize
∑T

t=1

∑n
i=1 πt,i(xt,i)

subject to
∑t

j=1

∑n
i=1 vixj,i ≥ Ct, t = 1, . . . , T

xt,i ∈ Z+, t = 1, . . . , T ; i = 1, . . . , n.

(20)

In this formulation, the planning horizon is divided into T time periods. Variable xt,i is the amount of
technology i installed in period t. Parameter vi is the unit capacity of technology i, where vi > 0. Parameter
Ct is the accumulated demand over time periods 1, . . . , t; that is, Ct =

∑t
j=1 cj , where cj as the added

demand requirement (expansion) in period j. We assume that vi and cj are integers for i = 1, . . . , n and
j = 1, . . . , T . The quantity πt,i(xt,i) is the present value of the monetary resources spent on technology i
in period t, where πt,i : Z+ → Q+ is a nondecreasing function. The input data for the problem consists of
(i) the number of time periods T , (ii) the accumulated demand Ct (for each t = 1, . . . , T), (iii) the number
of transmission technologies n, (iv) the unit capacity vi of technology i (for each i = 1, . . . , n), and (v) an
oracle that computes function πt,i (for each time period t and technology i). We assume that the binary size
of each of the values of πt,i is polynomially bounded by the (binary) input size.

Note that when T = 1, problem (20) becomes a nonlinear minimization knapsack problem, which is
NP-hard (see Kellerer et al. [2004, pp. 412–413] for a discussion of the equivalence between the minimization
knapsack problem and the maximization knapsack problem). Therefore, problem (20) is a generalization of
the nonlinear minimization knapsack problem and is also NP-hard.

Saniee [1995] has studied this multi-period capacity expansion problem in which the function πt,i is of
the form πt,i(xt,i) = xt,iπiγ

t−1, where πi is the unit cost of technology i and γ is a constant discount factor
(0 < γ < 1). He has developed a pseudo-polynomial time DP algorithm for the problem. In our model we
allow a general nondecreasing cost function πt,i.

In what follows, we develop an FPTAS for problem (20) by modifying Saniee’s DP and applying our
framework. First, we consider a single time period t, and let Πt(Xt) be the optimal cost to meet Xt units
of demand in that period (assuming that there is no capacity carried over from the previous period). The
value of Πt(Xt) is the optimal objective value of the following nonlinear minimization knapsack problem:

minimize
∑n

i=1 πt,i(xt,i)

subject to
∑n

i=1 vixt,i ≥ Xt

xt,i = 0, . . . , x̄t,i, i = 1, . . . , n.

(21)

Here, x̄t,i represents an upper bound on xt,i. For example, we may set x̄t,i = ⌈Xt/vi⌉. Thus, problem
(21) is an instance of problem (19). Clearly, Πt is a nondecreasing function. Therefore, by Proposition 4.6,
developing a K-approximation set of Πt and the K-approximation function induced by it would require a
computational time which is polynomial in the input size of the problem.

Problem (20) can be formulated as a pseudo-polynomial time DP as follows: Define zt(It) as the minimum
total cost to meet the demands of periods t, . . . , T , given that there are already It units of accumulated
capacity available from period t − 1 (i.e., It =

∑t−1
j=1

∑n
i=1 vixj,i), for t = 1, . . . , T + 1 and It = 0, . . . , CT .

The recurrence relation is

zt(It) = min
Xt=(Ct−It)+,...,CT

{
Πt(Xt) + zt+1(min{It +Xt, CT })

}
41

for It = 0, . . . , CT and t = 1, . . . , T , where Xt is the increase in capacity in period t. The boundary condition
is zT+1(IT+1) = 0 for IT+1 ≥ 0. The optimal solution value is z1(0).

Next, we show that problem (20) is a nonincreasing DP that fits into our framework. Since the problem
is deterministic, the discrete random variables in the framework accept one single value with probability 1.
For simplicity, in the following discussion we omit the random variables from our functions. Define gT+1 ≡ 0
and ST+1 = [0, . . . , CT]. For t = 1, . . . , T , we define St = [0, . . . , CT], At(It) = [(Ct − It)

+, . . . , CT],
gt(It, Xt) = Πt(Xt), and ft(It, Xt) = min{It + Xt, CT }. Note that ST+1, St, and At(It) are all contiguous
intervals for any It ∈ St and t = 1, . . . , T , and that the logarithm of any nonzero element in ST+1, St, and
At(It) is bounded from above by log(CT + 1). Thus, Condition 1 holds. As for Condition 3(ii), we notice
that for t = 1, . . . , T , function ft is nondecreasing in both It and Xt, while function gt is constant in It and
nondecreasing in Xt. Furthermore, At(It) satisfies At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≤ I ′. Therefore,
Condition 3(ii) is also satisfied. Regarding Condition 2, while the ft’s are given explicitly, we do not have
an oracles to compute the various gt’s (i.e., Πt) exactly. However, as discussed above, we have an FPTAS
for gt. Hence, as explained in Section 10.5, our framework can also be applied in this case.

Note that our FPTAS can be easily extended to the case with nonlinear capacities, where the capacity of
xt,i unit of technology i in period t is a nondecreasing function vi : Z+ → Z+. In addition, it is not difficult
to check that the following maximization version of problem (20) can be solved in an analogous way:

maximize
∑T

t=1

∑n
i=1 πt,i(xt,i)

subject to
∑t

j=1

∑n
i=1 vixj,i ≤ Ct, t = 1, . . . , T

xt,i ∈ Z+, t = 1, . . . , T ; i = 1, . . . , n.

(22)

Since problem (22) is a generalization of the (linear) multi-period knapsack problem [Faaland, 1981], our
FPTAS is also applicable to the multi-period knapsack problem.

A.4 Time-cost tradeoff machine scheduling

Consider the following machine scheduling problem: There are one single machine and n jobs J1, . . . , Jn.
Job Jj has a given due date dj ∈ Z+, a late penalty wj ∈ Z+, a “normal” processing time p̄j ∈ Z+, and a
nonincreasing resource consumption function ρj : Z+→Z+ with ρj(x) = 0 for any x ≥ p̄j . The processing
time of Jj , denoted as xj , is a nonnegative integer decision variable, and a cost of ρj(xj) is incurred if xj is
chosen to be less than p̄j . All jobs are available for processing at time 0, and job preemption is not allowed.
The objective is to determine the job processing times and to schedule the jobs on the machine so that the
total cost,

∑n
j=1[wjδCj>dj +ρj(xj)], is minimized, where Cj is the completion time of processing of Jj . Here,

δCj>dj = 1 if Jj is a late job, and δCj>dj = 0 if Jj is an on-time job. Note that in reality a job processing
time xj cannot be smaller than some lower limit p

j
> 0, no matter how much resources we allocate to the

job. In such a case, we define ρj(xj) =M for xj < p
j
, where M is a large number. The input data consists

of (i) the number of jobs n, (ii) the parameters dj , wj , and p̄j for every job j = 1, . . . , n, and (iii) an oracle
that computes function ρj (for each job j). We assume that the binary size of any value of ρj and the binary
size of the number M are polynomially bounded by the (binary) input size.

Note that the special case in which all job compressions are prohibitively expensive (denoted as 1||
∑
wjUj

in the machine scheduling literature) is already NP-hard [Lawler et al., 1993]. Thus, our problem is also
NP-hard. Cheng et al. [1998] have considered a special case of this problem in which ρj is a linear function.
They have converted the special case into a profit maximization problem and developed an FPTAS for it.
However, the existence of an FPTAS for the profit maximization problem does not imply the existence of an
FPTAS for the original cost minimization problem. We will present an FPTAS for the original minimization
problem and consider a general nonincreasing resource consumption function.

Our problem can be formulated as a pseudo-polynomial time DP as follows: First, we renumber the jobs
such that d1 ≥ d2 ≥ · · · ≥ dn. Note that there exists an optimal schedule in which all on-time jobs are

42

arranged in nondecreasing order of due dates and all late jobs are scheduled behind the on-time jobs. Hence,
it suffices to consider the job list Jn, . . . , J1, decide which jobs in this list should be designated as late jobs
(and are removed from the list), and decide how much resources should be allocated to the on-time jobs
(which are retained in the list).

Let zt(It) be the minimum total cost of a partial schedule containing Jt, . . . , Jn, given that the total
processing time of the on-time jobs in this partial schedule is no greater than It. For notational convenience,
we denote dn+1 = 0. The recurrence relation is

zt(It) = min

{
min

xt=0,...,It

{
zt+1(min{It − xt, dt+1}) + ρt(xt)

}
, zt+1(min{It, dt+1}) + wt

}
, (23)

for t = 1, . . . , n and It = 0, . . . , dt. Here, “zt+1(min{It−xt, dt+1})+ρt(xt)” is the cost of the partial schedule
if Jt is made on-time and is assigned xt units of processing time, while “zt+1(min{It, dt+1})+wt” is the cost
of the partial schedule if Jt is selected to be a late job. The boundary condition is zn+1(0) = 0. The optimal
solution value is z1(d1). It is easy to see that equation (23) can be rewritten as

zt(It) = min
xt=0,...,It

{
zt+1(min{It − xt, dt+1}) + min{ρt(xt), wt}

}
. (24)

Next, we show that the above DP with recurrence relation (24) is a nonincreasing DP that fits into our
framework. For simplicity, we assume that wmax > 0, where wmax = max{w1, . . . , wn} (otherwise there is an
optimal solution where all jobs are late). Define T = n, gT+1 ≡ 0, and ST+1 = {0}. For t = 1, . . . , T , we
define St = [0, . . . , dt], At(It) = [0, . . . , It], Dt = dt+1 with probability 1, gt(It, xt, Dt) = min{ρt(xt), wt}, and
ft(It, xt, Dt) = min{It − xt, Dt}. Note that ST+1, St, and At(It) are all contiguous intervals for any It ∈ St
and t = 1, . . . , T , and that the logarithm of any nonzero element in ST+1, St, and At(It) is bounded from
above by log(d1 + 1). Thus, Condition 1 holds. Because of our assumption on the values of ρt, we get that
Condition 2 also holds. As for Condition 3(ii), we notice that for t = 1, . . . , T , function ft is nondecreasing
in It and nonincreasing in xt, and function gt is nonincreasing in It and xt. Furthermore, At(I) ⊆ At(I

′) for
all I, I ′ ∈ St with I ≤ I ′. Therefore, Condition 3(ii) is also satisfied.

A.5 Single-item stochastic inventory control

Consider the following single-item stochastic inventory control problem with time-varying demand [Halman
et al., 2009a]: The planning horizon is divided into T time periods. At the beginning of a time period
t, the inventory level It is observed, and then a replenishment decision is made. Let xt ≥ 0 denote the
replenishment quantity in period t. We assume that the replenishment lead time is zero; that is, the xt
units will arrive in period t. After that, a demand Dt of the item occurs, where Dt is a nonnegative random
variable. The ending inventory level of period t equals It+1 = It + xt −Dt. Backlogging is allowed, which
implies that the inventory level It+1 can be negative. If It+1 > 0, then a holding cost is charged; if It+1 < 0,
then a backlogging cost is incurred. For ease of discussion, we refer to both of these components as the
holding cost. Thus, our objective is

min
x1,...,xT

E

T∑
t=1

[
ct(xt) + ht(It + xt −Dt)

]
,

subject to the system dynamics It+1 = It + xt −Dt for t = 1, . . . , T , where ct(xt) is the procurement cost in
period t when the order size is xt, ht(y) is the holding cost in period t when the inventory level at the end of
the period is y (y can be positive, zero, or negative), and the expectation is taken with respect to the joint
distribution of the random variables involved. We assume that I1 = 0 (i.e., we start with zero inventory).
We assume that the procurement and holding costs are convex for all time periods. The input data for the

43

problem consists of (i) the number of time periods T , (ii) an oracle that computes functions ct and ht (for
each period t), and (iii) the demand distribution with support Dt as described in Section 3 (for each period
t). All demand, procurement, and inventory levels are integral. For every t = 1, . . . , T , functions ct and ht
are nonnegative integer-valued, and the binary size of any of their values is polynomially bounded by the
(binary) input size.

When the demand is deterministic and the cost functions are linear, the problem is reduced to the
classical Wagner-Whitin model, which is solvable in polynomial time [Wagner and Whitin, 1958]. However,
with general cost functions, the problem becomes computationally intractable (see, e.g., Florian et al. [1980]).
A number of authors have developed FPTASs for various NP-hard deterministic inventory control problems
with time-varying demand [Van Hoesel and Wagelmans, 2001, Chubanov et al., 2006]. Recently, there has
been a growing interest in approximation algorithms for stochastic inventory control problems [Levi et al.,
2007a,b, 2008]. However, none of these algorithms is an FPTAS. In a previous work of ours [Halman et al.,
2009a], we show that the single-item stochastic inventory control problem with discrete demand is #P-hard,
and we give an FPTAS for it. While the FPTAS presented in Halman et al. [2009a] is an ad-hoc algorithm
tailored to the specific problem studied, we will show in the following how this problem can be fitted into
our framework as a convex DP, and therefore the presented FPTAS can be applied.

To formulate the problem as a convex DP, we define ST+1 = [−D∗, . . . , D∗] and gT+1 ≡ 0. For t =
1, . . . , T , we define St = [−D∗, . . . , D∗], At(It) = [0, . . . ,min{D∗ − It, D∗}], gt(It, xt, Dt) = ct(xt) + ht(It +
xt−Dt), and ft(It, xt, Dt) = It + xt−Dt. Then, our problem can be solved as a DP as presented in (5)–(6).
Note that ST+1, St, and At(It) are all contiguous intervals for any It ∈ St and t = 1, . . . , T , and that the
logarithm of the absolute value of any nonzero element in ST+1, St, and At(It) is bounded from above by
log(D∗ +1). Thus, Condition 1 holds. Since the binary size of any of the values of ct and ht is polynomially
bounded by the (binary) input size, Condition 2 also holds. As for Condition 3(iii), we have

St ⊗At =
{
(−D∗, 0), . . . , (−D∗, D∗); (−D∗ + 1, 0), . . . , (−D∗ + 1, D∗); . . . ; (−1, 0), . . . , (−1, D∗);

(0, 0), . . . , (0, D∗); (1, 0), . . . , (1, D∗ − 1); . . . ; (D∗ − 1, 0), (D∗ − 1, 1); (D∗, 0)
}
,

which is an integrally convex set. Let gIt ≡ 0, gxt (·, d) = ct(·), and ut = ht. Then, function gt can be expressed
as gt(I, x, d) = gIt (I, d) + gxt (x, d) + ut(ft(I, x, d)), where g

I
t (·, d), gxt (·, d) and ut(·) are univariate convex

functions. Let a = 1, b = 1, and c(d) = −d. Then, function ft can be expressed as ft(I, x, d) = aI+bx+c(d).
Therefore, Condition 3(iii) is also satisfied.

It is easy to see that the three variants of the single-item stochastic inventory control problem with
discrete demand stated in Halman et al. [2009a], namely the capacitated version, the discounted version, and
the version which allows disposal at a cost, can be formulated as convex DPs in a similar fashion.

A.6 Single-item stochastic batch dispatch

Consider managing a dispatch station over a finite time horizon with T time periods, where a single vehicle of
capacity Q is available to dispatch the goods in each period. At the beginning of each period t, the decision
maker has to decide whether to send off the vehicle or not and if yes, how many units of goods should be
dispatched to the vehicle. If the vehicle is dispatched, then a fixed cost of Kt and a variable cost of ct per
unit of goods are incurred. During period t, an amount of goods Dt will arrive, where Dt is a nonnegative
random variable with a known probability distribution with support Dt as described in Section 3. The goods
left at the dispatch station at the end of period t will incur a per-unit holding cost of ht. We assume that
the cost parameters ht, ct,Kt are nonnegative rational values, and the capacity Q is a positive integer. Let
It be the amount of goods in the dispatch station at the beginning of period t, where I1 is a given constant.
Our objective is

min
x1,...,xT

E
T∑
t=1

[
Ktδxt>0 + ctxt + ht ·(It − xt +Dt)

]
,

44

subject to the system dynamics It+1 = It − xt + Dt for t = 1, . . . , T , where xt is the amount of goods
dispatched in period t (which must not exceed It), and the expectation is taken with respect to the joint
distribution of the random variables involved.

Papadaki and Powell [2003] have considered a multiproduct batch dispatch problem. When the number
of products equals one, Papadaki and Powell’s problem becomes a single-item batch dispatch problem. They
consider the case where the fixed costs and per-unit holding costs are time-independent, except that there
is a constant discount factor. Here, we analyze a more general setting of the single-product problem with
time-varying cost parameters. Neither a provably-bounded approximation nor a complexity result is known
for this problem. We provide a proof of the following theorem in Appendix C.

Theorem A.1. The single-item stochastic batch dispatch problem with time-varying costs is #P-hard.

Define zt(It) as the optimal total cost incurred in periods t, . . . , T , given that the inventory level at the
beginning of period t is It. Denote h0 = 0. The problem can be formulated as a DP with recurrence relation

zt(It) = min
xt=0,...,min{Q,It}

EDt

{
Ktδxt>0 + ctxt + ht−1It + zt+1(It − xt +Dt)

}
(25)

for It = 0, . . . , I1+D∗ and t = 1, . . . , T . The boundary condition is zT+1(IT+1) = hT IT+1 for IT+1 ≥ 0. The
optimal solution value is z1(I1).

Next, we show that this is a nondecreasing DP that fits into our framework. We define ST+1 = [0, . . . , I1+
D∗] and gT+1(IT+1) = hT IT+1. For t = 1, . . . , T , we define St = [0, . . . , I1+D

∗], At(It) = [0, . . . ,min{Q, It}],
gt(It, xt, Dt) = Ktδxt>0 + ctxt + ht−1It (for t = 1, . . . , T), and ft(It, xt, Dt) = It − xt +Dt. Note that ST+1,
St, and At(It) are all contiguous intervals for any It ∈ St and t = 1, . . . , T , and that the logarithm of any
nonzero element in ST+1, St, and At(It) is bounded from above by log(I1+D

∗+1). Thus, Condition 1 holds.
Since the binary size any of the values of gt is polynomially bounded by the (binary) input size, Condition 2
also holds. As for Condition 3(i), we notice that for t = 1, . . . , T , function ft is nondecreasing in It and
nonincreasing in xt, and function gt is nondecreasing in It and nondecreasing in xt. Thus, to show that
Condition 3(i) holds, it suffices to show by induction that zt is nondecreasing for every t. Obviously, zT+1 is
nondecreasing. For t = 1, . . . , T , suppose that zt+1 is nondecreasing. Consider any I ∈ [1, . . . , I1 +D∗], and
let x∗t be a minimizer of the right hand side of (25) when It = I. If x∗t = 0, then

zt(I − 1) ≤ EDt{ht−1 ·(I − 1) + zt+1(I − 1 +Dt)} ≤ EDt{ht−1I + zt+1(I +Dt)} = zt(I).

If x∗t ≥ 1, then

zt(I − 1) ≤ EDt

{
Ktδx∗

t−1>0 + ct ·(x∗t − 1) + ht−1 ·(I−1) + zt+1

(
(I−1)− (x∗t−1) +Dt

)}
≤ EDt

{
Ktδx∗

t>0 + ctx
∗
t + ht−1I + zt+1(I − x∗t +Dt)

}
= zt(I).

Hence, zt is also nondecreasing. Therefore, Condition 3(i) is satisfied.
We note that our FPTAS can be easily extended to the nonlinear case in which the disposal costs and

holding costs are nondecreasing functions.

A.7 Single-resource revenue management

We consider a static setting of single-resource capacity control in revenue management [Talluri and van
Ryzin, 2004, sec. 2.2], in which customers arrive in batches, and only a single class can arrive in each time
period. We present a model that assumes no cancellations or no-shows, no overbookings, and independent
customer arrivals. The model presented here does not follow the convention in Talluri and van Ryzin [2004],
in which their (pseudo-polynomial time) DP formulation assumes that in each period the action is taken

45

after the demand of that period is revealed. Our framework requires that the action is taken before the
demand is realized. (Note: The two conventions are mathematically equivalent.)

Let C ∈ Z+ be the available capacity. There are T customer classes, where class t has a revenue
contribution of rt ∈ Q+ per arrival (t = 1, . . . , T). All customers in class t arrive in period t, and the number
of such customers is distributed randomly based on nonnegative random variable Dt with support Dt as
described in Section 3. Let the state of the system It correspond to the number of bookings accepted up to
period t − 1, and let xt be an upper bound on the number of accepted bookings in period t. The problem
is to find acceptance policies (i.e., x1, . . . , xT) to maximize the expected total revenue. To the best of our
knowledge, no FPTAS is known for this model. A proof of the following theorem is provided in Appendix C.

Theorem A.2. The single-resource revenue management problem is #P-hard.

Let us define zt(It) as the optimal expected total revenue in periods t, . . . , T , given that It bookings have
already been made in previous time periods. The problem can be formulated as a DP with recurrence relation

zt(It) = max
xt=0,...,C−It

EDt

{
rtmin{xt, Dt}+ zt+1(It +min{xt, Dt})

}
, (26)

for It = 0, . . . , C. The boundary condition is zT+1(IT+1) = 0 for 0 ≤ IT+1 ≤ C, and the optimal solution
value is z1(0).

We now show that the above DP with recurrence relation (26) is a maximization nonincreasing DP that
fits into our framework. Define T = n, gT+1 ≡ 0, and ST+1 = [0, . . . , C]. For t = 1, . . . , T , we define St =
[0, . . . , C], At(It) = [0, . . . , C − It], gt(It, xt, Dt) = rtmin{xt, Dt}, and ft(It, xt, Dt) = It +min{xt, Dt}. Note
that ST+1, St, and At(It) are all contiguous intervals for any It ∈ St and t = 1, . . . , T , and that the logarithm
of any nonzero element in ST+1, St, and At(It) is bounded from above by log(C + 1). Thus, Condition 1
holds. Because the functions ft, gt are given explicitly, Condition 2 also holds. As for Condition 4(ii), we
notice that for t = 1, . . . , T , function ft is nondecreasing in It and xt, and function gt is nondecreasing in xt
and nonincreasing in It. Furthermore, At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≥ I ′. Therefore, Condition 4(ii)
is also satisfied.

Exogenous cancellations can also be handled by using random vectors as explained in Section 10.2. To
this end, let Wt be a random variable modeling the number of cancellations in time period t. Then, we have

ft(It, xt, (Dt,Wt)) = It −min{It,Wt}+min{xt, Dt},

where we assume that in each period cancellations are recorded before sales.
Unfortunately, the addition of overbookings to the model does not fit our framework. Such a modification

would require negative terminal costs.

A.8 Lifetime consumption of risky capital

Consider the following problem studied in Phelps [1962]: There is an individual who manages her capital
in discrete time periods. In each time period, she can consume some of her capital, and utility is derived
from her consumption based on an underlying utility function. The remaining capital in the period yields a
return at a stochastic rate. In addition, she receives a deterministic income at the end of the period. The
problem is to find an optimal consumption strategy which maximizes her expected total utility throughout
the time horizon.

To formalize this problem, let T be the number of time periods, and let It be the amount of capital on
hand at the beginning of period t. In period t, the individual selects an amount of capital xt to consume. The
utility ut of consuming xt units is a nonnegative, nondecreasing, and rational-valued concave function. The
unconsumed capital, It − xt, grows according to an exogenous stochastic process specifying the growth rate
and defined by discrete rational random variable Dt with support Dt as described in Section 3. In addition

46

to this stochastic growth, the individual receives an amount yt ≥ 0 units of nonwealth income at the end
of period t. She would like to maximize her expected total utility in periods 1, . . . , T by making dynamic
consumption decisions x1, . . . , xt; that is, her objective is

max
x1,...,xT

E

T∑
t=1

ut(xt),

subject to the system dynamics
It+1 = (1 +Dt)(It − xt) + yt

for t = 1, . . . , T .
Phelps [1962] considered a stationary growth rate distribution D, a stationary income y, and a discounted

utility function of the form ut(xt) = αt−1u(xt), where α ∈ (0, 1] is the discount rate, and u is a stationary
(nonnegative, nondecreasing, and concave) utility function. Here, we consider a more general model with a
time-dependent growth rate distribution Dt, a time-varying income yt, and a general time-dependent utility
function ut that need not be concave (see McKenzie [1976] and Frederick et al. [2002] for discussions of
time-dependent utility functions).

We assume that the utility function ut is rational-valued, and that the binary size of any of its function
values is polynomially bounded by the (binary) input size. We assume that I1, yt, and xt are integer-valued.
Recall that Dt = {dt,1, . . . , dt,nt}. For t = 1, . . . , T and i = 1, . . . , nt, because dt,i is rational, we can express
it as dt,i = rt,i/qt,i, where rt,i, qt,i ∈ N. The input data for the problem consists of (i) the number of time
periods T , (ii) the initial capital I1, (iii) the income yt for all t, (iv) rt,i and qt,i for all t and i, and (v) an
oracle that computes the utility function ut (for each time period t). No FPTAS is known for this problem.
A proof of the following theorem is provided in Appendix C.

Theorem A.3. The problem of lifetime consumption of risky capital is #P-hard when Dt and ut are time-
dependent.

We now cast our problem as a maximization nondecreasing DP. To convert the problem into a DP with
integer state spaces, we let Lt =

∏T
j=t

∏nj

i=1 qj,i for t = 1, . . . , T , and let LT+1 = 1. We multiply I1 and
yt by L1 (so now I1 and yt become multiples of L1) and restrict the xt value to be a multiple of Lt (for
t = 1, . . . , T). Thus, It must be a multiple of Lt for every t. This ensures that I2, . . . , IT+1 are all integers.

We define gT+1 ≡ 0. For t = 1, . . . , T + 1, we define St = {0, Lt, 2Lt, . . . , (1 + |d1,n1 |)(1 + |d2,n2 |) · · · (1 +
|dt−1,nt−1 |)(I1+y1+· · ·+yt−1)}. For t = 1, . . . , T , we defineAt(It) = {0, Lt, 2Lt, . . . , It}, gt(It, xt, dt) = ut(xt),
and ft(It, xt, dt) = (1 + dt)(It − xt) + yt. Let ymax = maxt=1,...,T {yt}. Note that the kth largest element in
ST+1, St, and At(It) can be identified in constant time for any 1 ≤ k ≤ |At(It)|, It ∈ St, and t = 1, . . . , T .
Furthermore, the logarithm of any nonzero element in ST+1, St, and At(It) is bounded from above by
T log(1 +D∗) + log(I1 + Tymax) = T log(1 +D∗) + log(Ĩ1 + T ỹmax) +

∑T
j=1

∑nj

i=1 log qj,i, where Ĩ1 and ỹmax

are the values of I1 and ymax, respectively, before they are multiplied by L1. Thus, Condition 1 holds. Note
that the assumption on the utility function ut implies that Condition 2 also holds. As for Condition 4(i),
we notice that for t = 1, . . . , T , function ft is nondecreasing in It and nonincreasing in xt, and function gt is
nondecreasing in It and xt. Furthermore, At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≤ I ′. Hence, Condition 4(i)
is also satisfied.

A.9 Stochastic growth model

This is a variant of “lifetime consumption of risky capital” proposed by Adda and Cooper [2003, chap. 5].
In each time period, a household decides how much of its capital to consume, and utility is derived from its
consumption based on an underlying utility function. The rest of the capital can be used to produce output
(and generate more capital) via a production process. There is a constant depreciation rate of capital, and

47

there are fluctuations in capital created by random shocks to the production process. The objective is to
maximize the expected total utility throughout the time horizon.

Adda and Cooper [2003, chap. 5] considered two versions of this growth model, namely, the deterministic
version with no random shocks, and the stochastic version in which the random shock is a random variable
following a first-order Markov process. They assume that the time horizon is infinite. They use a discounted
utility function of the form ut(xt) = αt−1u(xt), where α ∈ (0, 1] is the discount rate, and u is a stationary,
nonnegative, strictly increasing, concave function.

Here, we consider the problem in a slightly different setting. Namely, the time horizon is finite; the utility
function ut is a general time-dependent, nonnegative, nondecreasing function which is not necessarily concave;
and the random shock is defined by positive discrete random variable Dt with support Dt as described in
Section 3, which is independent of the random shock in other time periods.

To formalize our problem, let T be the number of time periods, ∆ be the depreciation rate, It be the
amount of capital on hand at the beginning of period t, and xt be the amount of capital consumed in period
t. The household’s objective is

max
x1,...,xT

E
T∑
t=1

ut(xt),

and the system dynamics are
It+1 = Dtpt(It) + (1−∆)It − xt

for t = 1, . . . , T , where pt is a nondecreasing concave production function. We assume that in each period t,
the realization of Dt takes place after the value of xt has been decided, and xt is no greater than dt,1pt(It)+
(1−∆)It.

We assume that the utility function ut is rational-valued and the production function pt is integer-valued,
and that the binary size of any of their function values is polynomially bounded by the (binary) input size.
(We do not assume concavity of ut and pt.) We assume that I1 and xt are integer-valued, and ∆ is rational-
valued. For t = 1, . . . , T and i = 1, . . . , nt, because dt,i is rational, we can express it as dt,i = rt,i/qt,i, where
rt,i, qt,i ∈ N. Similarly, we can express ∆ as ∆ = α/β, where α, β ∈ N. The input data for the problem
consists of (i) the number of time periods T , (ii) the initial capital I1, (iii) α and β, (iv) rt,i and qt,i for all
t and i, (v) an oracle that computes the utility function ut (for each time period t), and (vi) an oracle that
computes the production function pt (for each time period t). No FPTAS is known for this problem. A proof
of the following theorem is provided in Appendix C.

Theorem A.4. The stochastic growth model is #P-hard.

We now cast our problem as a maximization nondecreasing DP. To convert the problem into a DP with
integer state spaces, we let Lt = βT−t+1

∏T
j=t

∏nj

i=1 qj,i for t = 1, . . . , T , and let LT+1 = 1. We multiply I1 by
L1, and we scale the elements in the domain and range of pt by a factor of Lt (so now I1 and pt(It) become
multiples of L1 and Lt, respectively). We also restrict the xt value to be a multiple of Lt (for t = 1, . . . , T).
Thus, It must be a multiple of Lt for every t. This ensures that I2, . . . , IT+1 are all integers.

We define gT+1 ≡ 0. For t = 1, . . . , T + 1, we define the state space recursively as follows: S1 =
{0, L1, 2L1, . . . , I1}; and St = {0, Lt, 2Lt, . . . , d1,n1d2,n2 · · · dt−1,nt−1pt−1(Īt−1) + (1 − ∆)Īt−1}, where Īt−1 is
the largest element in St−1. For t = 1, . . . , T , we define At(It) = {0, Lt, 2Lt, . . . , dt,1pt(It) + (1 − ∆)It},
gt(It, xt, dt) = ut(xt), and ft(It, xt, dt) = dtpt(It) + (1 − ∆)It − xt. Note that the kth largest element in
ST+1, St, and At(It) can be identified in constant time for any 1 ≤ k ≤ |At(It)|, It ∈ St, and t = 1, . . . , T .
Furthermore, for t = 2, . . . , T + 1, log Īt is bounded from above by T logD∗ + log pt−1(Īt−1) + log Īt−1. This
implies that the logarithm of any nonzero element in ST+1, St, and At(It) is bounded from above by the
(binary) input size. Thus, Condition 1 holds. Note that the assumptions on the utility function ut and
the production function pt implies that Condition 2 also holds. As for Condition 4(i), we notice that for

48

t = 1, . . . , T , function ft is nondecreasing in It and nonincreasing in xt, and function gt is nondecreasing in
It and xt. Furthermore, At(I) ⊆ At(I

′) for all I, I ′ ∈ St with I ≤ I ′. Hence, Condition 4(i) is also satisfied.

A.10 Cash management problem

Consider the following cash management problem stated in [Dreyfus and Law, 1977, pp. 154–155] (with some
changes in notation). A mutual fund would like to decide how much cash it should keep in its bank account
for each of the next T time periods. At the beginning of each period, the cash balance can be increased by
selling stocks (at a cost of s ∈ Q+ per $1 value of stocks), decreased by buying stocks (at a cost of b ∈ Q+ per
$1 value of stocks), or left constant. We assume that the amount of time required to implement the decision
is negligible. During the period (after implementing the decision), the mutual fund receives demands for
cash from customers redeeming their mutual fund shares and cash inflows from customers buying the mutual
fund shares. Let Dt be a discrete integer random variable describing the net amount of cash withdrawal
made by customers during period t, where the distribution of Dt is given in Section 3. Note that Dt may be
positive or negative, where the latter case means that there is a net deposit of cash into the mutual fund. If
the cash balance falls below zero during a period, the bank will automatically lend the fund the additional
amount. However, the fund must pay the bank an interest charge of k ∈ Q+ per $1 value of loan per period.
Conversely, if the fund has a positive cash balance at the end of a period, it will incur a cost of ℓ ∈ Q+

per $1 excessive cash per period, since the fund’s money could have been invested elsewhere. The given
cash balance at the beginning of period 1 is I1. We assume that there is a constant discount factor α ∈ Q
(0 < α ≤ 1), and there are no terminal costs. We would like to determine the cash balance in each period so
as to minimize the expected total discounted cost for operating the fund.

Let It be the cash balance at the beginning of period t. Let yt be the cash balance after the buying/selling
of stocks in period t has taken place and before the realization of Dt. Thus, the system dynamics are
It+1 = yt −Dt. Let Lt(yt) denote the single-period cost of having a cash balance of yt immediately before
the realization of Dt. Then, the objective can be written as

min
y1,...,yT

EDt

T∑
t=1

αt−1
[
s(yt − It)+ + b(It − yt)+ + Lt(yt)

]
,

where
EDtLt(yt) =

∑
dt,i∈Dt| dt,i≤yt

ℓ(yt − dt,i)pt,i +
∑

dt,i∈Dt| dt,i>yt
k(dt,i − yt)pt,i.

Dreyfus and Law [1977, p. 272] have provided a pseudo-polynomial time DP formulation for this problem.
Elton and Gruber [1974] have studied a similar problem with continuous and stationary demand distribution.
Other classical models closely related to this problem include Eppen and Fama [1969] and Whisler [1967].
Recently, Nascimento and Powell [2010] have studied a similar cash balance problem with a fairly general
setting, which includes a Markovian demand process and time-dependent costs on positive and negative cash
levels. Their model assumes that the per-unit stock selling cost s and the per-unit stock buying cost b are
equal. They have proposed a convergent approximate DP algorithm for their problem. To the best of our
knowledge, no FPTAS is known for our problem.

Let D∗ be the maximal aggregated positive demand change throughout the time horizon, and assume
without loss of generality that D∗ is greater than or equal to the absolute value of the minimal aggregated
negative demand change throughout the time horizon, and that −D∗ ≤ I1 ≤ D∗. A DP formulation of our
problem is given as follows (note: this DP formulation is different from the one in Dreyfus and Law [1977,
p. 272]): Let zt(It) be the minimum expected total discounted cost for periods t through T , given that there
is a cash balance of It at the beginning of period t. Define c : Z → Q+ such that c(x) = bx if x ≥ 0 and
that c(x) = −sx if x < 0. Define h : Z → Q+ such that h(I) = ℓI if I ≥ 0 and that h(I) = −kI if I < 0.

49

Note that functions c and h are V-shaped (see definition in Section 10.4) and thus convex. The recurrence
relation is

zt(It) = min
xt=It−D∗,...,It+D∗

ED

{
αt−1

[
c(xt) + h(It − xt −Dt)

]
+ zt+1(It − xt −Dt)

}
, (27)

where xt represents the amount of cash holding reduction in period t. The boundary condition is zT+1(IT+1) =
0 for any IT+1 ∈ Z. The optimal solution value of our problem is z1(I1).

Next, we cast problem (27) as a convex DP. Define gT+1 ≡ 0 and ST+1 = [−D∗, . . . , D∗]. For t = 1, . . . , T ,
we define St = [−D∗, . . . , D∗], At(It) = [It −D∗, . . . , It +D∗], gt(It, xt, Dt) = αt−1[c(xt) + h(It − xt −Dt)],
and ft(It, xt, Dt) = It − xt −Dt. Note that ST+1, St, and At(It) are all contiguous intervals for any It ∈ St
and t = 1, . . . , T , and that the logarithm of the absolute value of any nonzero element in ST+1, St, and At(It)
is bounded from above by log(2D∗+1). Hence, Condition 1 holds. Note also that the functions c(·) and h(·)
are given explicitly. Hence, Condition 2 also holds. As for Condition 3(iii), we have

St ⊗At =
{
(−D∗,−2D∗), . . . , (−D∗, 0); (−D∗ + 1,−2D∗ + 1), . . . , (−D∗ + 1, 1); . . . ;

(−1,−D∗ − 1), . . . , (−1, D∗ − 1); (0,−D∗), . . . , (0, D∗); (1,−D∗ + 1), . . . , (1, D∗ + 1); . . . ;

(D∗ − 1,−1), . . . , (D∗ − 1, 2D∗ − 1); (D∗, 0), . . . , (D∗, 2D∗)
}
,

which is an integrally convex set. Let gIt ≡ 0, gxt (·, d) = αt−1c(·), and ut = αt−1h. Then, function gt
can be expressed as gt(I, x, d) = gIt (I, d) + gxt (x, d) + ut(ft(I, x, d)), where gIt (·, d), gxt (·, d) and ut(·) are
univariate convex functions. Let a = 1, b = −1, and c(d) = −d. Then, function ft can be expressed as
ft(I, x, d) = aI + bx+ c(d). Therefore, Condition 3(iii) is also satisfied.

The above analysis implies that our problem can be casted as a convex DP (and thus an FPTAS exists).
It remains an open question of whether our problem is NP-hard. It is easy to check that problem (27) remains
a convex DP if we generalize our model to allow the cost parameters s, b, k, and ℓ to be time-varying (denoted
st, bt, kt, and ℓt, respectively). A proof of the following theorem is provided in Appendix C.

Theorem A.5. The generalized cash management problem with time-varying cost parameters st, bt, kt, and
ℓt is #P-hard.

B Proofs of propositions in Sections 4, 5, 6, and 10

B.1 Proposition 4.5

Proof. We first consider the case where x∗ = Dmin. In this case, φ is nondecreasing, and function φ̂ can be
rewritten as

φ̂(x) =

{
φ(x), if x ∈W ;
φ(next(x,W)), otherwise.

(28)

Note that if x∗W ̸= x∗, then φ (as well as φ̂) is constant over D ∩ [x∗, . . . , x∗W]. Note also that

φ(x) ≤ φ(next(x,W)), ∀x ∈ D \W. (29)

To prove property 1, consider any x ∈ D. If x ∈W , then φ̂(x) = φ(x), which implies that φ(x) ≤ φ̂(x) ≤
Kφ(x). If x /∈ W , then φ̂(x) = max{φ(prev(x,W)), φ(next(x,W))} ≤ Kφ(x), where the inequality is due
to the locality of K-approximation sets. Furthermore, because φ is nondecreasing over W and due to (29),
φ̂(x) = max{φ(prev(x,W)), φ(next(x,W))} = φ(next(x,W)) ≥ φ(x). Thus, φ̂ is a K-approximation of φ.
If φ is stored in a sorted array {(x, φ(x)) | x ∈W}, then for any x ∈ D, we can determine the value of φ̂(x)
in O(log |W |) time using binary search.

50

To prove property 2, we first show that W is a K-approximation set of φ̂. Condition 1 of Definition 4.2
is satisfied because φ and φ̂ share the same domain. Condition 2 is satisfied because φ(x) = φ̂(x) for all
x ∈W . By Proposition 4.3, condition 3 is also satisfied. Next, we show that W ∪W+ is a 1-approximation
set of φ̂. Denote W ′ =W ∪W+. (i) Because Dmin, Dmax ∈W , we have Dmin, Dmax ∈W ′. (ii) Consider any
x ∈ W ′ \ {Dmax} such that next(x,D) /∈ W ′. Then, next(x,D) /∈ W+, which implies that x /∈ W . Thus,
y /∈W for any y ∈ D that satisfies x ≤ y < next(x,W). By (28),

φ̂(y) = φ(next(x,W)), ∀y ∈ D s.t. x ≤ y ≤ next(x,W). (30)

Applying (30) with y = x, we have φ̂(x) = φ(next(x,W)). Note that next(x,W ′) ≤ next(x,W). Hence, ap-
plying (30) with y = next(x,W ′), we have φ̂(next(x,W ′)) = φ(next(x,W)). Thus, max{φ̂(x), φ̂(next(x,W ′))}
= min{φ̂(x), φ̂(next(x,W ′))}. Therefore, W ′ satisfies condition 2 of Definition 4.2. (iii) By Proposition 4.3,
W ′ also satisfies condition 3.

To prove property 3, consider any x ∈ D \ {Dmax}, we divide the analysis into four different cases, and
we apply equation (28) to each case. Case 1: x ∈ W and next(x,D) ∈ W . In this case, φ̂(x) = φ(x) ≤
φ(next(x,D)) = φ̂(next(x,D)), where the inequality follows from the fact that φ is nondecreasing over W .
Case 2: x ∈W and next(x,D) /∈W . In this case, φ̂(x) = φ(x) ≤ φ(next(x,W)) = φ(next(next(x,D),W)) =
φ̂(next(x,D)), where the inequality follows from the fact that φ is nondecreasing overW . Case 3: x /∈W and
next(x,D) ∈ W . In this case, φ̂(x) = φ(next(x,W)) = φ(next(x,D)) = φ̂(next(x,D)). Case 4: x /∈ W and
next(x,D) /∈W . In this case, φ̂(x) = φ(next(x,W)) = φ(next(next(x,D),W)) = φ̂(next(x,D)). Combining
these four cases, we conclude that φ̂(x) ≤ φ̂(next(x,D)). Hence, φ̂ is nondecreasing over D. Next, suppose
that φ is convex over D. Let ψ be the convex extension of φ̂ induced by W . Because φ̂ is nondecreasing,
ψ is also nondecreasing. Thus, it is minimized at x∗. Note that φ is a convex function whose values are
no larger than those of φ̂, while ψ is the greatest convex function whose values at the elements of W are
no larger than those of φ̂. Hence, φ(x) ≤ ψ(x) for every x ∈ D, and ψ(x) ≤ φ̂(x) for every x ∈ W . This
implies that ψ(x) ≤ φ̂(x) for every x ∈ D (by definition of φ̂ and the fact that ψ is convex). Because φ̂ is
a K-approximation of φ, we have φ̂(x) ≤ Kφ(x) for every x ∈ D. Thus, φ(x) ≤ ψ(x) ≤ φ̂(x) ≤ Kφ(x)
for every x ∈ D. Therefore, ψ is a convex K-approximation of φ. Note that if x∗W ̸= x∗, then because φ̂ is
constant over D ∩ [x∗, . . . , x∗W], so is ψ. Hence, ψ is minimized at x∗W .

The proof of the case where x∗ = Dmax is similar and is therefore omitted. For the case where
x∗ /∈ {Dmin, Dmax}, we note that φ must be either nonincreasing over the domain D ∩ [Dmin, . . . , x∗W]
or nondecreasing over D ∩ [x∗W , . . . , D

max] (or both). Suppose, without loss of generality, that φ is non-
increasing over D ∩ [Dmin, . . . , x∗W]. We then apply the proof of the case “x∗ = Dmax” to the domain
D ∩ [Dmin, . . . , x∗W]. Consider the domain D ∩ [x∗W , . . . , D

max]. Note that x∗ ≥ x∗W and φ is nondecreasing
over W ∩ [x∗W , . . . , Dmax]. Note also that φ(x) ≤ φ(next(x,W)) for all x ∈ (D ∩ [x∗W , . . . , Dmax]) \W . Thus,
(28)–(29) hold. Since the proof of the case “x∗ = Dmin” relies on the facts that φ is nondecreasing over W
and that (28)–(29) hold (and does not requite the monotonicity of φ over D), we can apply it to the domain
D ∩ [x∗W , . . . , D

max]. This completes the proof of the proposition.

B.2 Proposition 4.6

Proof. Let x∗ be a minimizer of function φ. We first consider the case where x∗ = Dmin. In this case, φ is
nondecreasing, and function φ̂ can be rewritten as (28). Note that when x∗ = Dmin, step 5 of Algorithm 1
is executed in each iteration of the while-loop (and step 6 is not executed). We can perform this step via
binary search in O(log |D|tφ) time. Let x(1), . . . , x(k) denote the sequence of x values that are included into
W in the while-loop. We observe that Kφ(x(i+2)) < φ(x(i)) for i = 1, . . . , k − 2. Thus, the while-loop
repeats at most O(1 + logK

φmax

φmin) times. Moreover, for i = 1, . . . , k − 1, if x(i+1) ̸= prev(x(i), D), then

Kφ(x(i+1)) ≥ φ(x(i)). Hence, for any x ∈ W \ {Dmax}, if next(x,D) /∈ W , then Kφ(x) ≥ φ(next(x,W)),
or equivalently, Kmin{φ(x), φ(next(x,W))} ≥ max{φ(x), φ(next(x,W))}. Thus, the set W returned by

51

ApxSet satisfies condition 2 of Definition 4.2. Clearly, condition 1 is satisfied. By Proposition 4.3, condition 3
is also satisfied. Therefore, W is a K-approximation set of φ.

The proof of the case where x∗ = Dmax is similar and is therefore omitted. For the case where x∗ /∈
{Dmin, Dmax}, we note that x∗ is included in the set W returned by the algorithm. Therefore we apply the
proof of the case “x∗ = Dmax” to the domain D∩ [Dmin, . . . , x∗] and apply the proof of the case “x∗ = Dmin”
to the domain D ∩ [x∗, . . . , Dmax]. This completes the proof of the proposition.

B.3 Proposition 4.7

Proof. We start by considering the cardinality of W̄ and the running time of the algorithm. We execute Step 4
of Algorithm 2 as follows: We determine x′ by performing binary search over the domain D. In the first
iteration of the search, the scope isD1 = D∩{y ∈ D | y ≤ x}, and the condition of the while-loop implies that
Kφ̄(Dmin

1) < φ̄(x). In addition, Kφ̄(Dmax
1) ≥ φ̄(x) (since Dmax

1 = x). We choose a middle element m ∈ D1

(i.e., m is the ⌈|D1|/2⌉-th largest element of D1). We consider two different cases. Case 1: Kφ̄(m) < φ̄(x).
In this case, we set m′ ← next(m,D1). If Kφ̄(m′) ≥ φ̄(x), then the search is completed by assigning
x ← m. Otherwise, we set the new (reduced) scope of the search to D2 = D1 ∩ {y ∈ D | y ≥ m′}. Case 2:
Kφ̄(m) ≥ φ̄(x). In this case, we set m′ ← prev(m,D). If Kφ̄(m′) < φ̄(x), then the search is completed by
assigning x← m′. Otherwise, we set the new (reduced) scope of the search to D2 = D1 ∩ {y ∈ D | y ≤ m′}.
In both cases, if the search is not completed, then we get a new scope D2 which is at most half of the size of
D1, and it satisfies Kφ̄(Dmin

2) < φ̄(x) and Kφ̄(Dmax
2) ≥ φ̄(x). We continue the search this way. Clearly, the

search can be completed in O(log |D|) steps. Let x(1), next(x(1), D), x(2), next(x(2), D), . . . denote the sequence
of x values that are included into W̄ in the while-loop. We observe that Kφ̄(x(i+1)) < φ̄(x(i)) for i = 1, 2,
Thus, the while-loop repeats at most O(1 + logK

φmax

φmin) times and therefore |W̄ | = O(1 + logK
φmax

φmin). The

computational time required in each iteration of the loop is O(tφ̄ log |D|), so the claimed running time of the
algorithm follows. We note in passing that

φ̄(next(x,W)) ≤ Kφ̄(x), ∀x ∈W \ {Dmax} such that next(x,D) /∈W. (31)

We now prove that W̄ is a K-approximation set of φ̃. Consider any x ∈ W̄t \ {Dmax} such that next(x,D) /∈
W̄ . We divide the analysis into two cases. Case 1: φ̃(x) < φ̄(x). In this case, φ̃ differs from φ̄ on x. Since
φ̃ is a maximal nondecreasing function bounded from above by φ̄ over W̄ , we have φ̃(x) = φ̃(next(x, W̄)).
Case 2: φ̃(x) = φ̄(x). In this case, applying (31), we have φ̄(next(x, W̄)) ≤ Kφ̄(x) = Kφ̃(x). By definition
of φ̃, we have φ̃(next(x, W̄)) ≤ φ̄(next(x, W̄)). Thus, φ̃(next(x, W̄)) ≤ Kφ̃(x). Combining Cases 1 and 2,
we conclude that φ̃(next(x, W̄)) ≤ Kφ̃(x) for any x ∈ W̄ \ {Dmax} that satisfies next(x,D) /∈ W̄ . Note that
Dmin, Dmax ∈ W̄ . Hence, by Proposition 4.3, W̄ is a K-approximation set of φ̃.

We next prove that φ̃ is a nondecreasing KL-approximation step function of φ. By definition of φ̃, we
have φ̃(x) ≤ φ̄(x) for any x ∈ W̄ . This, together with the fact that φ̄ is an L-approximation of φ, implies
that

φ̃(x) ≤ Lφ(x), ∀x ∈ W̄ .

On the other hand, for any x ∈ W̄ , there exists y ∈ W̄ such that y ≥ x and φ̃(x) = φ̄(y). Because φ̄ is an
L-approximation of φ, we have φ̄(y) ≥ φ(y). Thus,

φ̃(x) = φ̄(y) ≥ φ(y) ≥ φ(x), ∀x ∈ W̄ ,

where the second inequality is due to the monotonicity of φ. Hence, φ̃ is a nondecreasing L-approximation
step function of the restriction of φ over W̄ . Applying approximation of approximation sets (Proposition 6.2)
with φ1 = φ̃, φ2 = φ, K1 = K, K2 = L, and W1 = W̄ , we get that ˆ̃φ is a nondecreasing KL-approximation
step function of φ. Note that since φ̃ is a nondecreasing step function, we get that ˆ̃φ ≡ φ̃. Therefore, φ̃ is a
nondecreasing KL-approximation step function of φ.

52

B.4 Proposition 5.2

Proof. By summation of approximation and composition of approximation (i.e., properties 3 and 4 of Propo-
sition 5.1),

∑n
i=1 φ̃i(ψi) is a max{K1, . . . ,Kn}-approximation function of

∑n
i=1 φi(ψi). Consider any fixed

x ∈ D. The quantity
∑n

i=1 φ̃i(ψi(x, y)) is a max{K1, . . . ,Kn}-approximation value of
∑n

i=1 φi(ψi(x, y)) for
all y ∈ C(x). By minimization of approximation (i.e., property 6 of Proposition 5.1), this implies that φ̃(x)
is a max{K1, . . . ,Kn}-approximation value of φ(x). Hence, φ̃ is a max{K1, . . . ,Kn}-approximation function
of φ.

B.5 Proposition 5.3

Proof. Consider any fixed x ∈ D. Let y@ ∈
∪m

i=1Wi(x) be a realizer of φ̃(x); that is, φ̃(x) =
∑n

i=1 φ̃i(ψi(x, y
@)).

By composition of approximation (Proposition 5.1), φ̃i(ψi(x, ·)) is an Li-approximation of φi(ψi(x, ·)) for
i = 1, . . . , n, and therefore,

φ(x) = min
y∈C(x)

{
n∑

i=1

φi(ψi(x, y))

}
≤

n∑
i=1

φi(ψi(x, y
@)) ≤

n∑
i=1

φ̃i(ψi(x, y
@)) = φ̃(x).

Let y∗ be the smallest realizer of φ(x).
We first consider the scenario where m ̸= n and divide the analysis into two cases. Case 1: φ̃1(ψ1(x, ·)) is

nondecreasing, and φ̃n(ψn(x, ·)) is nonincreasing. In this case, for i = 1, . . . ,m, define y′i = y∗ if y∗ ∈Wi(x),
and define y′i = next(y∗,Wi(x)) if y∗ /∈ Wi(x). Because Wi(x) is a Ki-approximation set of φ̃i(ψi(x, ·)),
we have φ̃i(ψi(x, y

′
i)) ≤ Kiφ̃i(ψi(x, y

∗)) for i = 1, . . . ,m. Let y′ = mini=1,...,m{y′i}. For i = 1, . . . ,m, since
φ̃i(ψi(x, ·)) is nondecreasing, we have

φ̃i(ψi(x, y
′)) ≤ φ̃i(ψi(x, y

′
i)) ≤ Kiφ̃i(ψi(x, y

∗)) ≤ KiLiφi(ψi(x, y
∗)), (32)

where the last inequality follows from the fact that φ̃i(ψi(x, ·)) is an Li-approximation of φi(ψi(x, ·)). For
i = m+ 1, . . . , n, since φ̃i(ψi(x, ·)) is nonincreasing and y′ ≥ y∗, we have φ̃i(ψi(x, y

′)) ≤ φ̃i(ψi(x, y
∗)). This,

together with the fact that φ̃i(ψi(x, ·)) is an Li-approximation of φi(ψi(x, ·)), we have

φ̃i(ψi(x, y
′)) ≤ Liφi(ψi(x, y

∗)) (33)

for i = m+ 1, . . . , n. Because y′ ∈
∪m

i=1Wi(x), we have

φ̃(x) ≤
n∑

i=1

φ̃i(ψi(x, y
′)). (34)

From (32), (33), and (34), we have

φ̃(x) ≤
m∑
i=1

φ̃i(ψi(x, y
′)) +

n∑
i=m+1

φ̃i(ψi(x, y
′)) ≤

m∑
i=1

KiLiφi(ψi(x, y
∗)) +

n∑
i=m+1

Liφi(ψi(x, y
∗))

≤ max{K1L1, . . . ,KmLm, Lm+1, . . . , Ln}φ(x). (35)

Case 2: φ̃1(ψ1(x, ·)) is nonincreasing, and φ̃n(ψn(x, ·)) is nondecreasing. In this case, for i = 1, . . . ,m, define
y′i = y∗ if y∗ ∈ Wi(x), and define y′i = prev(y∗,Wi(x)) if y

∗ /∈ Wi(x). Letting y
′ = maxi=1,...,m{y′i} ≤ y∗ and

following the same argument as in Case 1, it is easy to verify that inequality (35) holds.
Next, we consider the scenario where m = n. If φ̃i(ψi(x, ·)) is nondecreasing for i = 1, . . . , n, then

inequality (32) holds for i = 1, . . . , n, and therefore (35) remains valid. On the other hand, if φ̃i(ψi(x, ·))
is nonincreasing for i = 1, . . . , n, then inequality (33) holds for i = 1, . . . , n, which implies that φ̃(x) ≤∑n

i=1 φ̃i(ψi(x, y
′)) ≤

∑n
i=1 Liφi(ψi(x, y

∗)) ≤ max{L1, . . . , Ln}φi(x) ≤ max{K1L1, . . . ,KnLn}φi(x). This
completes the proof of the proposition.

53

B.6 Proposition 6.1

Proof. Properties 1 and 4 follow directly from the definitions ofK-approximation sets and functions, and their
proofs are therefore omitted. A proof for monotonicity of approximation sets, composition of approximation
sets, and maximization of approximation sets is given below.

Monotonicity of Approximation Sets: Clearly, Dmin, Dmax ∈ W1 ⊆ W ′. Thus, the first condition in
Definition 4.2 is satisfied.

To prove the boundedness of W ′, consider any x ∈ W ′ \ {Dmax} such that next(x,D) /∈ W ′. We will
show that

max{φ1(x), φ1(next(x,W
′))} ≤ K1min{φ1(x), φ1(next(x,W

′))}. (36)

Note that prev(x,W1) ≤ x < next(x,W ′) ≤ next(x,W1) (if x = Dmin we slightly abuse notation by defining
prev(Dmin,W1) = Dmin). Hence, by the unimodality of φ1,

max{φ1(x), φ1(next(x,W
′))} ≤ max{φ1(prev(x,W1)), φ1(next(x,W1))}. (37)

We consider four different cases. Case 1: x ∈ W1 and next(x,W ′) ∈ W1. In this case, next(x,W ′) =
next(x,W1). Hence, (36) holds due to the boundedness of W1. Case 2: x /∈ W1 and next(x,W ′) ∈ W1. In
this case, by the locality of W1, we have max{φ1(prev(x,W1)), φ1(next(x,W1))} ≤ K1φ1(x). In addition,
because prev(x,W1) ∈ W1 \ {Dmax} and next(prev(x,W1), D) /∈ W1, by the boundedness of W1, we have
max{φ1(prev(x,W1)), φ1(next(x,W1))} ≤ K1φ1(next(x,W1)). Hence,

max{φ1(prev(x,W1)), φ1(next(x,W1))} ≤ K1min{φ1(x), φ1(next(x,W1))}.

This, together with (37) and the fact that next(x,W ′) = next(x,W1), implies the validity of (36). Case 3:
x /∈ W1 and next(x,W ′) /∈ W1. By the locality of W1, we have max{φ1(prev(x,W1)), φ1(next(x,W1))} ≤
K1φ1(x). Because next(x,W ′) ∈ D \W1, by the locality of W1, we have max{φ1(prev(next(x,W

′),W1)),
φ1(next(next(x,W

′),W1))} ≤ K1φ1(next(x,W
′)); that is, max{φ1(prev(x,W1)), φ1(next(x,W1))} ≤

K1φ1(next(x,W
′)). Hence,

max{φ1(prev(x,W1)), φ1(next(x,W1))} ≤ K1min{φ1(x), φ1(next(x,W
′))}.

This, together with (37), implies the validity of (36). Case 4: x ∈ W1 and next(x,W ′) /∈ W1. In
this case, next(x,D) /∈ W1. Thus, by the boundedness of W1, we have max{φ1(x), φ1(next(x,W1))} ≤
K1φ1(x). Because next(x,W ′) ∈ D \W1, by the locality of W1, we have max{φ1(prev(next(x,W

′),W1)),
φ1(next(next(x,W

′),W1))} ≤ K1φ1(next(x,W
′)); that is, max{φ1(x), φ1(next(x,W1))} ≤ K1φ1(next(x,W

′)).
Hence,

max{φ1(x), φ1(next(x,W1))} ≤ K1min{φ1(x), φ1(next(x,W
′))}.

This, together with the fact that φ1(next(x,W
′)) ≤ max{φ1(x), φ1(next(x,W1))} (by the unimodality of

φ1), implies the validity of (36).
To show the locality of W ′, consider any x ∈ D \W ′. We have

max{φ1(prev(x,W
′)), φ1(next(x,W

′))} ≤ max{φ1(prev(x,W1)), φ1(next(x,W1))} ≤ K1φ1(x),

where the first inequality is due to the unimodality of φ1 and the second inequality is due to the locality of
W1. This completes the proof of the monotonicity of approximation sets.

Composition of Approximation Sets: We give a proof for the case where ψ is nondecreasing. The
proof for the case with nonincreasing ψ is similar. Note that φ1(ψ) is a unimodal function, and hence a
K-approximation set of it is well-defined. Because ψ(x) ≥ Dmin for all x ∈ D′, we have min{x | ψ(x) ≥

54

Dmin} = D′min. This, together with the fact that Dmin ∈ W1, implies that D′min ∈ ψ−1(W1). Because
ψ(x) ≤ Dmax for all x ∈ D′, we have max{x | ψ(x) ≤ Dmax} = D′max. This, together with the fact that
Dmax ∈W1, implies that D′max ∈ ψ−1(W1). Therefore, the first condition in Definition 4.2 is satisfied.

To prove the boundedness of ψ−1(W1), consider any x ∈ ψ−1(W1) \ {D′max} such that next(x,D′) /∈
ψ−1(W1). We will show that

φ1(ψ(next(x, ψ
−1(W1)))) ≤ K1φ1(ψ(x)) (38)

and
φ1(ψ(x)) ≤ K1φ1(ψ(next(x, ψ

−1(W1)))). (39)

Suppose, to the contrary, that there exists y ∈ W1 such that ψ(x) < y < ψ(next(x, ψ−1(W1))). Then,
y ̸= ψ(x′) for any x′ ∈ D′ (otherwise, by definition of ψ−1(W1), y = ψ(x̄) for some x̄ ∈ ψ−1(W1), implying that
x < x̄ < next(x, ψ−1(W1)) for some x̄ ∈ ψ−1(W1), which is impossible). Thus, x = max{u ∈ D′ | ψ(u) ≤ y}
and next(x, ψ−1(W1)) = min{u ∈ D′ | ψ(u) ≥ y}. This implies that next(x, ψ−1(W1)) = next(x,D′), which
contradicts that next(x,D′) /∈ ψ−1(W1). Hence, there does not exist any y ∈ W1 such that ψ(x) < y <
ψ(next(x, ψ−1(W1))). This implies that

ψ(x) ≤ ψ(next(x, ψ−1(W1))) ≤ next(ψ(x),W1).

By the unimodality of φ1, we have

φ1(ψ(next(x, ψ
−1(W1)))) ≤ max

{
φ1(ψ(x)), φ1(next(ψ(x),W1))

}
. (40)

Furthermore, if ψ(x) ∈W1, then

prev(ψ(next(x, ψ−1(W1))),W1) = ψ(x). (41)

We consider three different cases.
Case 1: ψ(x) ∈W1 and next(ψ(x), D) /∈W1. In this case, by the boundedness of W1,

max{φ1(ψ(x)), φ1(next(ψ(x),W1))} ≤ K1φ1(ψ(x)).

This, together with (40), implies the validity of (38). We now prove inequality (39). If ψ(next(x, ψ−1(W1))) /∈
W1, then by the locality of W1, φ1(prev(ψ(next(x, ψ

−1(W1))),W1)) ≤ K1φ1(ψ(next(x, ψ
−1(W1)))). By (41),

φ1(prev(ψ(next(x, ψ
−1(W1))),W1)) = φ1(ψ(x)). Hence, (39) is valid. If ψ(next(x, ψ−1(W1))) ∈ W1, then

ψ(next(x, ψ−1(W1))) = next(ψ(x),W1). Because next(ψ(x), D) /∈ W1, by the boundedness of W1, we have
φ1(ψ(x)) ≤ K1φ1(next(ψ(x),W1)), which implies the validity of (39).

Case 2: ψ(x) ∈ W1 and next(ψ(x), D) ∈ W1. In this case, either ψ(next(x, ψ−1(W1))) = ψ(x) or
ψ(next(x, ψ−1(W1))) = next(ψ(x), D). Suppose, to the contrary, that ψ(next(x, ψ−1(W1))) = next(ψ(x), D).
Because next(x,D′) /∈ ψ−1(W1), there exists x̄ ∈ D′ such that x < x̄ < next(x, ψ−1(W1)). Then, ψ(x) ≤
ψ(x̄) ≤ ψ(next(x, ψ−1(W1))). In other words, either ψ(x̄) = ψ(x) or ψ(x̄) = next(ψ(x), D). If ψ(x̄) = ψ(x),
then let x′ be the largest element in D′ such that ψ(x′) = ψ(x). Clearly, x < x′ < next(x, ψ−1(W1)). By
definition of ψ−1(W1), we have x′ ∈ ψ−1(W1), which is a contradiction. If ψ(x̄) = next(ψ(x), D), then let x′′

be the smallest element in D′ such that ψ(x′′) = next(ψ(x), D). Clearly, x < x′′ < next(x, ψ−1(W1)). By def-
inition of ψ−1(W1), we have x

′′ ∈ ψ−1(W1), which is also a contradiction. Therefore, ψ(next(x, ψ−1(W1))) =
ψ(x), which implies the validity of both (38) and (39).

Case 3: ψ(x) /∈W1. In this case, by the locality of W1,

φ1(next(ψ(x),W1)) ≤ K1φ1(ψ(x)).

This, together with (40), implies the validity of (38). We now prove inequality (39). If ψ(next(x, ψ−1(W1))) /∈
W1, then by the locality of W1, φ1(prev(ψ(next(x, ψ

−1(W1))),W1)) ≤ K1φ1(ψ(next(x, ψ
−1(W1)))). By (41),

55

φ1(prev(ψ(next(x, ψ
−1(W1))),W1)) = φ1(ψ(x)). Hence, (39) is valid. If ψ(next(x, ψ−1(W1))) ∈ W1, then

ψ(next(x, ψ−1(W1))) = next(ψ(x),W1). Because ψ(x) /∈ W1, we have next(prev(ψ(x),W1), D) /∈ W1. Thus,
by the boundedness of W1,

max
{
φ1(prev(ψ(x),W1)), φ1(next(prev(ψ(x),W1),W1))

}
≤ K1φ1(next(prev(ψ(x),W1),W1)). (42)

By the unimodality of φ1, we have

φ1(ψ(x)) ≤ max
{
φ1(prev(ψ(x),W1)), φ1(next(prev(ψ(x),W1),W1))

}
.

This, together with (42), implies that

φ1(ψ(x)) ≤ K1φ1(next(prev(ψ(x),W1),W1)) = K1φ1(ψ(next(x, ψ
−1(W1))),

where the equality is due the fact that there is no y ∈W1 such that ψ(x) < y < ψ(next(x, ψ−1(W1))). This
implies the validity of (39).

To prove the locality of ψ−1(W1), consider any x ∈ D′ \ ψ−1(W1). We will show that

max
{
φ1(ψ(prev(x, ψ

−1(W1)))), φ1(ψ(next(x, ψ
−1(W1))))

}
≤ K1φ1(ψ(x)). (43)

By the same argument as in the proof of the boundedness of ψ−1(W1), there does not exist any y ∈ W1

such that ψ(prev(x, ψ−1(W1))) < y < ψ(next(x, ψ−1(W1))). Hence, either ψ(prev(x, ψ−1(W1))) = ψ(x) =
ψ(next(x, ψ−1(W1))) or ψ(x) /∈ W1. If ψ(prev(x, ψ−1(W1))) = ψ(x) = ψ(next(x, ψ−1(W1))), then clearly,
inequality (43) is valid. If ψ(x) /∈W1, then by the locality of W1,

max
{
φ1(prev(ψ(x),W1)), φ1(next(ψ(x),W1))

}
≤ K1φ1(ψ(x)). (44)

Note that prev(ψ(x),W1) ≤ ψ(prev(x, ψ−1(W1))) ≤ ψ(next(x, ψ−1(W1))) ≤ next(ψ(x),W1). Thus, by the
unimodality of φ1,

max
{
φ1(ψ(prev(x, ψ

−1(W1)))), φ1(ψ(next(x, ψ
−1(W1))))

}
≤ max

{
φ1(prev(ψ(x),W1)), φ1(next(ψ(x),W1))

}
.

This, together with (44), implies the validity of (43).

Maximization of Approximation Sets: Let φmax(x) = max{φ1(x), φ2(x)} for all x ∈ D. Note that
unimodality is closed under maximization. Thus, φmax is a unimodal function, and a K-approximation set
of it is well-defined. Denote W12 = W1 ∪W2. Clearly, Dmin, Dmax ∈ W12. Therefore, the first condition in
Definition 4.2 is satisfied.

To prove the boundedness ofW12 (with respect to function φmax), consider any x ∈W12\{Dmax} such that
next(x,D) /∈ W12. By the monotonicity of approximation sets, W12 is a Ki-approximation set of φi for i =
1, 2. Hence, by the boundedness ofW12 (with respect to function φi), we have max{φi(x), φi(next(x,W12))} ≤
Kimin{φi(x), φi(next(x,W12))} for i = 1, 2. This implies that

φi(x) ≤ max{K1,K2}min{φmax(x), φmax(next(x,W12))}

and
φi(next(x,W12)) ≤ max{K1,K2}min{φmax(x), φmax(next(x,W12))}

for i = 1, 2. Therefore,

max{φmax(x), φmax(next(x,W12))} ≤ max{K1,K2}min{φmax(x), φmax(next(x,W12))},

and the boundedness of W12 (with respect to function φmax) follows.

56

To show the locality ofW12, consider any x ∈ D\W12. For i = 1, 2, because prev(x,Wi) ≤ prev(x,W12) <
x, by the unimodality of φi, we have φi(prev(x,W12)) ≤ max{φi(prev(x,Wi)), φi(x)}. By the locality of Wi,
we have φi(prev(x,Wi)) ≤ Kiφi(x). Thus,

φi(prev(x,W12)) ≤ max{Kiφi(x), φi(x)} ≤ max{K1,K2}φmax(x). (45)

Because x < next(x,W12) ≤ next(x,Wi), by the unimodality of φi, we have φi(next(x,W12)) ≤ max{φi(x),
φi(next(x,Wi))}. By the locality of Wi, we have φi(next(x,Wi)) ≤ Kiφi(x). Thus,

φi(next(x,W12)) ≤ max{φi(x),Kiφi(x)} ≤ max{K1,K2}φmax(x). (46)

From (45) and (46),

max{φmax(prev(x,W12)), φmax(next(x,W12))} ≤ max{K1,K2}φmax(x),

and the locality of W12 follows. This completes the proof of the maximization of approximation sets.

B.7 Proposition 6.2

Proof. Denote W12 = W1 ∪ W2. We give a proof for the case where φ1 and φ2 are both nondecreasing.
The proof for the case with nonincreasing φ1 and φ2 is similar. We first prove the summation of approx-
imation sets. Let φsum(x) = φ1(x) + φ2(x) for all x ∈ D. Note that φsum is nondecreasing, and hence
a K-approximation set of it is well-defined. Clearly, Dmin, Dmax ∈ W12. Thus, the first condition of Def-
inition 4.2 is satisfied. To prove the boundedness of W12 (with respect to function φsum), consider any
x ∈ W12 \ {Dmax} such that next(x,D) /∈ W12. By the monotonicity of approximation sets, W12 is a Ki-
approximation set of φi for i = 1, 2. Hence, by the boundedness of W12 (with respect to function φi), we
have max{φi(x), φi(next(x,W12))} ≤ Kimin{φi(x), φi(next(x,W12))} for i = 1, 2. This, together with the
fact that φsum is nondecreasing, implies that

max{φsum(x), φsum(next(x,W12))} = φsum(next(x,W12)) =
∑2

i=1 φi(next(x,W12))

≤
∑2

i=1Kiφi(x) ≤ max{K1,K2}φsum(x) = max{K1,K2}min{φsum(x), φsum(next(x,W12))},

and the boundedness of W12 (with respect to function φsum) follows. The locality of W12 follows directly
from Proposition 4.3.

Next, we prove the minimization of approximation sets. Let φmin(x) = min{φ1(x), φ2(x)} for all x ∈ D.
Note that φmin is nondecreasing and hence, aK-approximation set of it is well-defined. Clearly, Dmin, Dmax ∈
W12. Thus, the first condition of Definition 4.2 is satisfied. To prove the boundedness of W12 (with respect
to function φmin), consider any x ∈ W12 \ {Dmax} such that next(x,D) /∈ W12. As mentioned above,
max{φi(x), φi(next(x,W12))} ≤ Kimin{φi(x), φi(next(x,W12))} for i = 1, 2. This, together with the fact
that φmin is nondecreasing, implies that

max{φmin(x), φmin(next(x,W12))} = φmin(next(x,W12)) = mini=1,2 φi(next(x,W12))

≤ mini=1,2Kiφi(x) ≤ max{K1,K2}φmin(x) = max{K1,K2}min{φmin(x), φmin(next(x,W12))},

and the boundedness of W12 (with respect to function φmin) follows. The locality of W12 follows directly
from Proposition 4.3.

Finally, we prove the approximation of approximation sets. The condition “φ1 is a K2-approximation of
the restriction of φ2 over W1” is equivalent to

φ2(x) ≤ φ1(x) ≤ K2φ2(x), ∀x ∈W1. (47)

57

This implies that
φ2(x) ≤ φ̂1(x) ≤ K2φ2(x), ∀x ∈W1. (48)

Note that
φ̂1(x) = φ1(next(x,W1)) ≥ φ2(next(x,W1)) ≥ φ2(x), ∀x ∈ D \W1, (49)

where the equality follows from the definition of approximation induced by an approximation set, the first
inequality follows from (47), and the second inequality holds because φ2 is nondecreasing. Note also that

φ̂1(x) = φ1(next(x,W1)) = φ1(next(prev(x,W1),W1))

≤ K1φ1(prev(x,W1)) ≤ K1K2φ2(prev(x,W1)) ≤ K1K2φ2(x), ∀x ∈ D \W1, (50)

where the first inequality is due to the boundedness of W1, the second inequality follows from (47), and
the last inequality holds because φ2 is nondecreasing. From (48)–(50), we conclude that φ̂1 is a K1K2-
approximation of φ2 over D.

B.8 Proposition 6.3

Proof. LetW12 =W1∪W2 and φsum(x) = φ1(x)+φ2(x) for all x ∈ D. Note that the sum of two convex func-
tions is a convex function. Thus, φsum is a convex function, and a K-approximation set of it is well-defined.
Clearly, Dmin, Dmax ∈ W12. Thus, the first condition of Definition 4.2 is satisfied. To prove the bound-
edness of W12 (with respect to function φsum), consider any x ∈ W12 \ {Dmax} such that next(x,D) /∈
W12. By the monotonicity of approximation sets, W12 is a Ki-approximation set of φi for i = 1, 2.
Hence, by the boundedness of W12 (with respect to function φi), we have max{φi(x), φi(next(x,W12))} ≤
Kimin{φi(x), φi(next(x,W12))} for i = 1, 2. If φsum(x) ≤ φsum(next(x,W12)), then

max{φsum(x), φsum(next(x,W12))} = φsum(next(x,W12)) =
∑2

i=1 φi(next(x,W12))

≤
∑2

i=1Kiφi(x) ≤ max{K1,K2}φsum(x) = max{K1,K2}min{φsum(x), φsum(next(x,W12))}.

If φsum(x) > φsum(next(x,W12)), then

max{φsum(x), φsum(next(x,W12))} = φsum(x) =
∑2

i=1 φi(x) ≤
∑2

i=1Kiφi(next(x,W12))

≤ max{K1,K2}φsum(next(x,W12)) = max{K1,K2}min{φsum(x), φsum(next(x,W12))}.

Therefore, the boundedness of W12 (with respect to function φsum) follows. To prove the locality of W12,
consider any x ∈ D \W12. By the locality of W12 (with respect to φi), we have

max{φi(prev(x,W12)), φi(next(x,W12))} ≤ Kiφi(x)

for i = 1, 2. Thus,

max{φsum(prev(x,W12)), φsum(next(x,W12))}
= max{φ1(prev(x,W12)) + φ2(prev(x,W12)), φ1(next(x,W12)) + φ2(next(x,W12))}
≤ max{φ1(prev(x,W12)), φ1(next(x,W12))}+max{φ2(prev(x,W12)), φ2(next(x,W12))}
≤

∑2
i=1Kiφi(x) ≤ max{K1,K2}φsum(x).

Therefore, the locality of W12 (with respect to function φsum) follows.

58

B.9 Proposition 10.3

Proof. Consider any fixed t. For ease of exposition, we refer to the state It as inventory level and the action
xt as production/disposal quantity (“production” for positive values of xt and “disposal” for negative values
of xt). Due to Condition 3(iii), and because |a| = |b|, the coefficients |a| and |b| are either −1, 0, or 1. From
equation (6), and by the linearity of expectation, the optimal policy chooses x∗t that minimizes

EDtgt(It, ·, Dt) + EDtzt+1(ft(It, ·, Dt)). (51)

The Convex Invariant (Proposition 9.1) implies that zt+1 is convex. Since ft(It, ·, Dt) is linear in its second
variable, zt+1(ft(It, ·, Dt)) is also convex. Since a convex combination of convex functions is convex, the
expression in (51) is also convex. Let

αt(xt) = EDtvt(xt, Dt) and βt(It, xt) = EDtut(ft(It, xt, Dt), Dt) + EDtzt+1(ft(It, xt, Dt)).

Then,
zt(It) = min

xt∈At(It)
{αt(xt) + βt(It, xt)} ,

where αt is V-shaped, and βt(It, ·) is convex for every fixed It. Let α
−
t and α+

t be the slope of αt on negative
and positive xt’s, respectively.

Case 1: Both coefficients of It and xt in function ft are 0. In this case, ft(·, ·, Dt) is indifferent to the
action xt, and so is βt. Thus, the best strategy is to minimize the V-shaped function αt (i.e., do nothing).
Hence, in this case rt = −∞ and st =∞.

Case 2: Both coefficients of It and xt in function ft are 1. In this case, βt(I, x) = βt(I
′, x′) for any

I, I ′, x, x′ such that I +x = I ′ +x′. Note that it is beneficial to move from inventory level I − 1 to inventory
level I by producing one unit when

αt(1) + βt(I − 1, 1) < αt(0) + βt(I − 1, 0);

that is, when
βt(0, I − 1)− βt(0, I) > α+

t .

Let Rt = {I ∈ Z | βt(0, I−1)−βt(0, I) > α+
t } be all the inventory levels at which the production of one unit

is beneficial. Similarly, let St = {I ∈ Z | βt(0, I + 1) − βt(0, I) > |α−
t |} be all the inventory levels at which

the disposal of one unit is beneficial. Let

rt = maxRt and st = minSt

(note: in case a set is empty, we define its maximum and minimum to be −∞ and ∞, respectively). The
convexity of function βt(0, ·) implies that the sets Rt and St are connected over Z. Thus, if the current
inventory level is It ∈ Rt, then it is beneficial to produce rt − It units. Similarly, if the current inventory is
It ∈ St, then it is beneficial to dispose of It − st units. Hence, rt and st are the threshold levels of a limit
policy.

Case 3: The coefficients of It and xt in function ft are 1 and −1, respectively. Then, a negative xt
represents production, and a positive x represents disposal. In this case, βt(I, x) = βt(I

′, x′) for any I, I ′, x, x′

such that I − x = I ′ − x′. Note that it is beneficial to move from inventory level I − 1 to inventory level I
by producing one unit (i.e., by setting x = −1) when

αt(−1) + βt(I − 1,−1) < αt(0) + βt(I − 1, 0);

that is, when
βt(0, 1− I)− βt(0,−I) > |α−

t |.

59

Let R′
t = {I ∈ Z | βt(0, 1− I)− βt(0,−I) > |α−

t |} be all the inventory levels at which the production of one
unit is beneficial. Similarly, let S′

t = {I ∈ Z | βt(0,−I − 1) − βt(0,−I) > α+
t } be all the inventory levels at

which the disposal of one unit is beneficial. Let rt = maxR′
t and st = minS′

t. The convexity of function
βt(0, ·) implies that the sets R′

t and S
′
t are connected over Z. Thus, if the current inventory level is It ∈ R′

t,
then it is beneficial to produce rt− It units. Similarly, if the current inventory is It ∈ S′

t, then it is beneficial
to dispose of It − st units. Hence, rt and st are the threshold levels of a limit policy.

Case 4: Both coefficients of It and xt in function ft are −1. This case is analogue to Case 2, and the
proof is therefore omitted.

Case 5: The coefficients of It and xt in function ft are −1 and 1, respectively. This case is analogue to
Case 3, and the proof is therefore omitted.

C Hardness results

In this appendix, some #P-hardness and approximation hardness proofs are presented. These proofs make
transformations from the following problems:

Problem: Partition
Instance: Finite set V = {v1, . . . , vn} of positive integers.
Question: Is there a subset V ′ ⊆ V such that

∑
v∈V ′ v =

∑
v∈V \V ′ v?

Note: Partition is NP-hard [Garey and Johnson, 1979, p. 223].

Problem: Evaluating the CDF of Convolution of Discrete Random Variables (CDF)
Instance: Discrete random variables X1, . . . , Xn and probabilities pi,j = Prob(Xi = ai,j), where ai,j ∈ Z+,
for i = 1, . . . , n and j = 1, . . . ,m. Values Γ ∈ Z+ and γ ∈ Q+, where 0 < γ ≤ 1.
Question: Is Prob(

∑n
i=1Xi ≤ Γ) ≥ γ?

Note: CDF is #P-hard even when m = 2, pi,j =
1
2 , ∀i, j, and ai,2 = 0, ∀i [Halman et al., 2009a].

Problem: Max k-Cover (MkC)
Instance: A set S = {1, . . . ,m}, ℓ distinct subsets S1, . . . , Sℓ ⊂ S, and a positive integer k ≤ ℓ.
Question: What is the maximum number of elements of S that can be covered by k subsets?
Note: MkC is known not to be approximated within a factor of 1− 1

e , unless P = NP [Feige, 1998].

C.1 Theorem 9.2

Proof. Let K ≥ 1 be a fixed desired approximation ratio. We will transform any given arbitrary instance of
the Partition problem to a convex DP except that one of the conditions stated in the theorem is not satisfied.
Let M = 1

2

∑
v∈V v. Without loss of generality, we assume M is a positive integer (otherwise the problem is

trivially solved).
We first consider the case where S ⊗A is not integrally convex. We consider the following deterministic

DP with T = 2 time periods (for simplicity, we slightly abuse the notation by omitting the random variable
Dt from the functions): In the first time period, we set S1 = [0], A1(0) = [0, . . . , 2n − 1], g1(0, x1) = 0, and
f1(0, x1) = x1. The meaning of action x1 is that we choose the ith element of V if and only if the ith bit of
x1 is 1. In the second time period, we set S2 = [0, . . . , 2n − 1], A2(I2) = {δval(I2)=M}, g2(I2, x2) = 1 − x2,
f2(I2, x2) = 0, where val(I2) =

∑n
i=1 viδthe ith bit of I2 is 1. Here, function val decodes the value of the state.

We let the terminal cost function be g3(I3) = 0 and the terminal state be S3 = {0}. For every time period,
the state space is a contiguous interval, and the logarithm of its maximal element is polynomially bounded
by the (binary) input size. The action space in period 1 is a contiguous interval for every state I1, and the
logarithm of its maximal element is polynomially bounded by the (binary) input size. The action space in

60

time period 2 is a singleton for every state I2, and the value of this singleton is computed in polynomial time.
Thus, Condition 1 holds. Clearly, Condition 2 also holds. Note that this is a convex DP, except that S2⊗A2

is not necessarily an integrally convex set when there exists a partition V ′ ⊆ V such that
∑

v∈V ′ v =M .
In this DP, z1(0) = 0 if there exists V ′ ⊆ V such that

∑
v∈V ′ v =M , and z1(0) = 1 otherwise. Therefore,

unless P = NP , there is no polynomial-time K-approximation algorithm for this DP.
Next, we consider the case where b is not restricted to −1, 0, or 1. We consider a deterministic DP with

T = n time periods, initial state M in period 1, and the following parameter setting: St = [−M, . . . ,M] for
t = 1, . . . , T + 1; At(It) = {0, 1}, gt(It, xt) = vtxt, and ft(It, xt) = It − vtxt for any It ∈ St and t = 1, . . . , T ;
and gT+1(IT+1) = KM |IT+1| for any IT+1 ∈ ST+1. Clearly, this is a convex DP, except that the coefficient
of the second variable of ft is not restricted to −1, 0, or 1.

In this DP, z1(M) = M if there exists V ′ ⊆ V such that
∑

v∈V ′ v = M , and z1(M) > KM otherwise.
Hence, we can distinguish whether or not V ′ exists such that

∑
v∈V ′ v =M by calculating aK-approximation

for z1(M). Therefore, unless P = NP , there is no polynomial-time K-approximation algorithm for this DP.

C.2 Theorem 10.1

Proof. Given an arbitrary instance of MkC, we denote σj = |Sj | and Sj = {sj,1, . . . , sj,σj} for j = 1, . . . , ℓ,
and we construct the following instance of the stochastic ordered adaptive knapsack problem with non-
independent item volumes (SKP):

• Number of items, n = ℓ+ 2m.

• Knapsack capacity, B = 2nℓk + (2n − 1)k.

• Profit of item t,

πt =

{
0, for t = 1, . . . , ℓ;
1, for t = ℓ+ 1, . . . , ℓ+ 2m.

• For j = 1, . . . ,m, define a random variable Y (j) with Prob(Y (j) = 0) = Prob(Y (j) = 1) = 1
2 .

• Volume of item t,

vt =


20Y (st,1) + 21Y (st,2) + · · ·+ 2σt−1Y (st,σt) + 2nℓ, for t = 1, . . . , ℓ;
M · Y (t− ℓ), for t = ℓ+ 1, . . . , ℓ+m;
M [1− Y (t− ℓ−m)], for t = ℓ+m+ 1, . . . , ℓ+ 2m;

where M = B + 1.

Clearly, this construction can be done in polynomial time. Note that random variables Y (1), . . . , Y (m)
introduce dependencies among the item volumes.

To solve SKP, we can first select certain items among items 1, . . . , ℓ. Although these items have zero
profit, they help to reveal which of the items ℓ+1, . . . , ℓ+2m have volume 0 and which of them have volume
M (those items have volumeM will overflow the knapsack). More specifically, for t = 1, . . . , ℓ, we can express
vt as a binary number. If the jth last digit of this binary number is 1, then Y (st,j) = 1, which implies that
item ℓ + st,j has volume M and item ℓ +m + st,j has volume 0. If the jth last digit is 0, then Y (st,j) = 0,
which implies that item ℓ+ st,j has volume 0 and item ℓ+m+ st,j has volume M .

Suppose a maximum of q elements of S can be covered by k subsets. Then, the optimal solution to SKP
should have an expected total profit of at least q but less than q + 1. To see this, let Sr1 , . . . , Srk be those
subsets by which the q elements are covered. We put items r1, . . . , rk into the knapsack. These items help
us identify q out of the items ℓ+1, . . . , ℓ+2m with zero volume. These q items have a total profit of q. Note
that among items 1, . . . , ℓ, we can put at most k items into the knapsack (otherwise the knapsack capacity
will be exceeded), and selecting these k items allows us to reveal at most q items with zero volume. The other

61

2m− q items can only be chosen randomly. The total expected profit obtained from items ℓ+ 1, . . . , ℓ+ 2m
via random selection is less than 1 (since each item has a 0.5 probability of overflowing the knapsack, the
expected number of items that are chosen successfully is less than 1).

The above analysis implies that if we know the optimal solution value of SKP is within [q, q + 1), then
in the given instance of MkC, a maximum of q elements of S can be covered by k subsets. Now, suppose
we have a polynomial-time algorithm which can approximate SKP within a factor of r = 3(e−1)

2e ≈ 0.948.
Then, given any instance of MkC, we apply this r-approximation algorithm to the corresponding SKP. If this
r-approximation algorithm generates a solution with an expected total profit less than 3, then the optimal
solution value of SKP is less than 2e

e−1 < 4, implying that the number of elements of S that can be covered
by k subsets is at most 3. In such a case, k ≤ 3 and σj ≤ 3 for j = 1, . . . , ℓ. Thus, the number of choices of k

distinct subsets among S1, . . . , Sℓ is
(
ℓ
k

)
≤ ℓ3. Hence, we can obtain in polynomial time an optimal solution to

the given instance of MkC by enumerating all possible solutions. (Note that a more careful algorithm would
find an optimal solution in time linear in ℓ.) On the other hand, if the r-approximation algorithm generates
a solution with an expected total profit of z ≥ 3, then the optimal solution value of SKP is at most z

r ,
implying that the number of elements of S which can be covered by k subsets must be within [⌊z⌋, . . . , ⌊ zr ⌋].
It is easy to check that z−1

z/r ≥ 1 − 1
e . Hence, ⌊z⌋/⌊ zr ⌋ ≥ 1 − 1

e , which implies that the solution to the given

instance of MkC is approximated within a factor of 1 − 1
e . This is impossible unless P = NP . Therefore,

unless P = NP , there is no polynomial-time algorithm which can approximate SKP within a factor of r.

C.3 Theorem A.1

Proof. Consider an arbitrary instance of the special case of CDF with m = 2, and pi,j = 1
2 for all i, j, and

ai,2 = 0 for all i. We denote M = 2
∑n

i=1 ai,1 + 1 and construct the following instance of the single-item
stochastic batch dispatch problem:

• Number of time periods, T = n+ 1 time periods.

• Vehicle capacity, Q =
∑n

i=1 ai,1.

• Initial amount of goods in the dispatch station, I1 = Q.

• Amount of goods arriving in period t (t = 1, . . . , n),

Dt = Xt =

{
at,1 with probability 1

2 ;

0 with probability 1
2 .

• Amount of goods arriving in period n+ 1, Dn+1 = 0 with probability 1.

• Fixed cost of dispatching the vehicle in period t,

Kt =

{
0, for t = 1 and n+ 1;
M, for t = 2, . . . , n.

• Unit cost of dispatching the goods in period t,

ct =

{
1− γ, for t = 1;
0, for t = 2, . . . , n+ 1.

• Unit holding cost in period t,

ht =

{
0, for t = 1, . . . , n;
1, for t = n+ 1.

Clearly, this construction can be done in polynomial time.
Note that in the optimal solution of this constructed instance, there must be no dispatching of goods in

periods 2, . . . , n (because dispatching a vehicle in any of these periods costs M , which exceeds the total cost

62

of the trivial feasible solution of never dispatching any vehicle). Denote X =
∑n

t=1Dt. Let x1 be the amount
of goods dispatched in period 1. Clearly, once the value of x1 is chosen, the optimal decision is to dispatch
min{Q − x1 + X,Q} units (at zero cost) in period n + 1, and the holding cost incurred in period n + 2 is
(X − x1)+. Thus, choosing the optimal value of x1 is a newsvendor problem, in which the cost of ordering
one unit too many is 1 − γ, and the cost of ordering one unit too few is γ. Hence, the optimal decision is
to select the smallest x1 ∈ Z such that Prob(X ≤ x1) ≥ γ

γ+(1−γ) = γ (see, e.g., Simchi-Levi et al. [2014],

Section 9.2.1). Therefore, if there exists a polynomial-time algorithm for solving the single-item stochastic
batch dispatch problem, then this algorithm can be used for “Evaluating the CDF of Convolution of Discrete
Random Variables.” This implies that the single-item stochastic batch dispatch problem with time-varying
costs is #P-hard.

C.4 Theorem A.2

Proof. Consider an arbitrary instance of the special case of CDF with m = 2, and pi,j = 1
2 for all i, j, and

ai,2 = 0 for all i. We construct the following instance of the single-resource revenue management problem:

• Number of customer classes, T = n+ 1.

• Available capacity, C =
∑n

i=1 ai,1.

• Number of class 1 customers, D1 = C with probability 1.

• Number of class t customers (t = 2, . . . , n+ 1),

Dt = Xt−1 =

{
at−1,1 with probability 1

2 ;

0 with probability 1
2 .

• Revenue contribution per arrival of class t customer,

rt =

{
1− γ, for t = 1;
1, for t = 2, . . . , n+ 1.

Clearly, this construction can be done in polynomial time.
Let xt be the upper limit on the number of accepted bookings in period t. Obviously, it is optimal to set

x2 = · · · = xn+1 = C (as r2, . . . , rn+1 are the same). Thus, choosing the optimal value of x1 is a newsvendor
problem, where the cost of ordering one unit too many (i.e., setting x1 too low) is 1 − γ, and the cost of
ordering one unit too few (i.e., setting x1 too high) is γ. The rest of the proof follows the same argument as
in the proof of Theorem A.1.

C.5 Theorem A.3

Proof. Consider an arbitrary instance of the special case of CDF with m = 2, and pi,j = 1
2 for all i, j, and

ai,2 = 0 for all i. In this instance of CDF, Prob(
∑n

i=1Xi ≤ Γ) must be a multiple of 1
2n regardless of what

Γ is. Hence, we may assume that γ is a multiple of 1
2n .

We define āi = ai,1 +
1
2i

(i = 1, . . . , n) and Γ̄ = Γ + 1− 1
2n . Because Γ, ai,1, . . . , ai,n ∈ Z+,∑

i∈U
ai,1 ≤ Γ if and only if

∑
i∈U

āi ≤ Γ̄, ∀ U ⊆ {1, . . . , n}. (52)

Thus, the given CDF problem is equivalent to the problem of determining whether Prob(
∑n

i=1 Yi ≤ Γ̄) ≥ γ,
where Y1, . . . , Yn are random variables with Prob(Yi = āi) = Prob(Yi = 0) = 1

2 for i = 1, . . . , n. Let
āmax = max{ā1, . . . , ān} and M = 22n+1ā2max. It is easy to check that for any U ⊆ {1, . . . , n},

1 +

∑
i∈U āi

M
≤

∏
i∈U

(
1 +

āi
M

)
≤ 1 +

∑
i∈U āi

M
+

2nā2max

M2
= 1 +

∑
i∈U āi

M
+

1

2n+1M
.

63

Let Γ̂ = 1 + Γ̄
M + 1

2n+1M
. Hence, for any U ⊆ {1, . . . , n},

∑
i∈U āi ≤ Γ̄ if and only if

∏
i∈U (1 +

āi
M) ≤ Γ̂ (note

that if
∏

i∈U (1+
āi
M) ≤ Γ̂, then

∑
i∈U āi ≤ Γ̄+ 1

2n+1 , which implies that
∑

i∈U āi ≤ Γ̄ because Γ̄, ā1, . . . , ān are

all multiples of 1
2n). Therefore, by (52), for any U ⊆ {1, . . . , n},

∑
i∈U ai,1 ≤ Γ if and only if

∏
i∈U (1+

āi
M) ≤ Γ̂.

We now construct the following instance of lifetime consumption of risky capital:

• Number of time periods, T = n+ 1.

• Initial capital, I1 =M .

• Income received by the individual at the end of period t, yt = 0.

• Utility function ut(xt) =


xt, if t = 1;

0, if t = 2, . . . , n;

min
{
xt
γ , M

}
, if t = n+ 1.

• Prob(Dt = 0) = Prob(Dt =
āt
M) = 1

2 for t = 1, . . . , n, and Prob(Dn+1 = 0) = 1.

Obviously, this construction can be done in polynomial time.
Let (H − 1)× 100% denote the total percentage growth of capital between period 1 and period T , where

H is a random variable. Since the utility is zero in periods 2, . . . , T − 1, the optimal decision is to make
consumption in periods 1 and T only and set xT = IT . Thus, the only decision is to select a consumption
amount x1 in period 1. Let x∗1 ∈ Z+ denote the optimal value of x1. Let S = {t | Dt = 1+ āt

M ; 1 ≤ t ≤ T −1},
which is a random subset of time periods. Then, H =

∏
t∈S

(
1 + āt

M

)
. Note that

H ≤
(
1 + 1

4n

)n ≤ [
1 + 1

(n+1)2n

]n
= 1 + n

(n+1)2n +
(
n
2

)
1

(n+1)222n
+

(
n
3

)
1

(n+1)323n
+ · · ·+

(
n
n

)
1

(n+1)n2n·n

≤ 1 + n
(n+1)2n +

[(
n
2

)
+

(
n
3

)
+ · · ·+

(
n
n

)]
1

(n+1)22n
≤ 1 + n

(n+1)2n + 1
(n+1)2n = 1 + 1

2n .

Hence,

1 ≤ H ≤ 1 +
1

2n
. (53)

If x1 is less than I1 − γM
H , then xT = IT = (I1 − x1)H > γM , and therefore the utility in period T is M ,

regardless of how much x1 is below I1 − γM
H . Thus, the unit cost of setting x1 too low is 1 (i.e., the utility

of consuming one unit in period 1). If x1 is greater than I1 − γM
H , then xT = IT = (I1 − x1)H < γM , and

therefore the utility in period T is 1
γ (I1 − x1)H. Thus, the unit cost of setting x1 too high is 1

γH − 1. By

(53), this unit cost is at least 1
γ − 1 and at most 1

γ − 1 + 1
2nγ .

Define problem PH to be the same as the constructed instance, except that the unit cost of setting x1
too high is replaced by 1

γ − 1. We let x̄∗1 denote the optimal value of x1 in this problem. Define problem PL

to be the same as the constructed instance, except that the unit cost of setting x1 too high is replaced by
1
γ − 1 + 1

2nγ . We let x∗1 denote the optimal value of x1 in this problem. Clearly, x∗1 ≤ x∗1 ≤ x̄∗1.
The optimal solution to PH can be obtained by first solving a newsvendor problem, in which the decision

is to select the smallest value of x ∈ R+, denoted as x′, such that

Prob

(
H ≤ γM

I1 − x

)
≥ 1

1 + (1γ − 1)
= γ,

and then setting x̄∗1 to either ⌊x′⌋ or ⌈x′⌉, whichever yields a higher expected total utility. The optimal
solution to PL can also be obtained by first solving a newsvendor problem, in which the decision is to select
the smallest value of x ∈ R+, denoted as x′′, such that

Prob

(
H ≤ γM

I1 − x

)
≥ 1

1 + (1γ − 1 + 1
2nγ)

=

(
1− 1

2n + 1

)
γ, (54)

64

and then setting x∗1 to either ⌊x′′⌋ or ⌈x′′⌉, whichever yields a higher expected total utility. Note that by our
assumption γ is a multiple of 1

2n , Prob(H ≤ Γ′) is a multiple of 1
2n for any Γ′ ∈ R, and γ− 1

2n < (1− 1
2n+1)γ <

γ. Thus, (54) can be rewritten as

Prob

(
H ≤ γM

I1 − x

)
≥ γ.

Hence, x′ = x′′, which implies that x∗1 = x∗1 = x̄∗1.
We conclude that the constructed instance is reduced to the problem of selecting the smallest value

x ∈ R+ such that Prob(H ≤ γM
I1−x) ≥ γ; that is, selecting the smallest Γ̂ such that Prob(

∏
t∈S(1 + āt

M) ≤
Γ̂) ≥ γ. This is equivalent to selecting the smallest Γ such that Prob(

∑
i∈U ai,1 ≤ Γ) ≥ γ, or equivalently,

Prob(
∑n

i=1Xi ≤ Γ) ≥ γ. Therefore, if there exists a polynomial-time algorithm for solving our problem, this
algorithm can be used for “Evaluating the CDF of Convolution of Discrete Random Variables.” This implies
that “lifetime consumption of risky capital” is #P-hard.

C.6 Theorem A.4

Proof. The proof is similar to the one of Theorem A.3. Let āj andM be defined as in the proof of Theorem A.3.
Consider an arbitrary instance of the special case of CDF with m = 2, and pi,j =

1
2 for all i, j, and ai,2 = 0

for all i. We transform it into the following instance of our problem:

• Number of time periods, T = n+ 2.

• Initial capital, I1 =M .

• Production function, pt(It) = It, for It ≥ 0 and t = 1, . . . , n+ 2.

• Depreciation rate, ∆ = 1.

• Utility function ut(xt) =


xt, if t = 1;

0, if t = 2, . . . , n+ 1;

min
{
xt
γ , M

}
, if t = n+ 2.

• Prob(Dt = 1) = Prob(Dt = 1+ āt−1

M) = 1
2 for t = 2, . . . , n+1, and Prob(D1 = 1) = Prob(Dn+2 = 1) = 1.

The rest of the proof follows the same argument as in the proof of Theorem A.3.

C.7 Theorem A.5

Proof. Consider an arbitrary instance of the special case of CDF with m = 2, and pi,j = 1
2 for all i, j, and

ai,2 = 0 for all i. We denote M =
∑n

i=1 ai,1 + 1, and we construct the following instance of the generalized
cash management problem:

• Number of time periods, T = n.

• Net amount of cash withdrawal made by customers in period t (t = 1, . . . , n),

Dt = Xt =

{
at,1 with probability 1

2 ;

0 with probability 1
2 .

• Cost of selling $1 value of stock in period t,

st =

{
1− γ, for t = 1;
M, for t = 2, . . . , n.

• Cost of buying $1 value of stock in period t (t = 1, . . . , n), bt =M .

65

• Cost of having $1 value of shortage in cash at the end of period t,

kt =

{
0, for t = 1, . . . , n− 1;
1, for t = n.

• Cost of holding $1 value of excessive cash at the end of period t (t = 1, . . . , n), ℓt = 0.

• Initial cash balance, I1 = 0.

• Discount factor, α = 1.

Clearly, this construction can be done in polynomial time.
Let xt be the amount of cash holding reduction in period t. Note that D1, . . . , Dn are all integers, and

therefore it suffices to consider solutions with integer xt values. Obviously, it is optimal to set x1 ≤ 0 and
x2 = · · · = xn = 0 (because M is greater than the total cost of the trivial feasible solution of never buying
or selling any stock). Thus, choosing the optimal value of x1 is a newsvendor problem, in which the cost of
ordering one unit too many (i.e., setting x1 too low or, equivalently, raising too much cash in period 1) is
1 − γ, and the cost of ordering one unit too few (i.e., setting x1 too high or, equivalently, raising too little
cash in period 1) is γ. The rest of the proof follows the same argument as in the proof of Theorem A.1.

66

