
1 

Optimization for gate re-assignment 

Dong Zhang (zd.pony@gmail.com) 

Department of Industrial and Manufacturing Systems Engineering 

University of Hong Kong, Hong Kong 

Diego Klabjan (d-klabjan@northwestern.edu) 

Department of Industrial Engineering and Management Sciences  

Northwestern University, Evanston, IL 

Abstract: Disruptions such as adverse weather, flight delays and flight cancellations are a 

frequent occurrence in airport operations. A sophisticated gate assignment plan can be easily 

disrupted and serious consequences might be caused. Therefore, an efficient gate re-assignment 

methodology is of great importance for the airline industry. In this paper, we propose an efficient 

gate re-assignment methodology to deal with the disruptions, in which the objective function is  

to minimize the weighted sum of the total flight delays, the number of gate re-assignment 

operations and the number of missed passenger connections. Two multi-commodity network 

flow models are built for the pure gate re-assignment problem and the gate re-assignment 

problem with connecting passengers. Recognizing the inherent NP hard nature of the gate 

re-assignment problem, two heuristic algorithms are proposed to solve the models efficiently. 

The proposed models and algorithms are tested based on real-world data of a large U.S. carrier 

and computational results reveal that the proposed methodologies can provide high quality 

solutions within a short computational time. 

Key words: gate re-assignment; multi-commodity network flow model; diving heuristic; rolling 

horizon. 

 

1 Introduction 

A good gate assignment plan plays an important role in utilizing gates efficiently and improving 

passengers’ satisfaction. However, disruptions such as adverse weather, flight delays, flight 

cancellations, etc. are a frequent occurrence and a sophisticated gate assignment plan is easily 

disrupted. Serious consequences might be caused if an efficient gate re-assignment plan is not 

available after the disruptions. Therefore, efficient and effective methodologies for the gate 

re-assignment problem after the disruptions are of great importance to maintain high service 

quality. 

In the U.S. airline industry, gates are leased to airlines and thereby the airlines are responsible for 

planning gate operations, which is referred to as an airline-specific gate system [1]. Some Asian 

airports have also adopted the airline-specific gate system. The alternative gate system, used in 

European and some Asian airports, is the airport-specific gate system, where the gates belong to 

airports and the airports are responsible for planning the gate operations. In this study, we are 

focusing on gate operations in the U.S. airline industry, specifically, the gate re-assignment 
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problem in the airline-specific gate system. In the context of the U.S. airline industry, gate 

controllers of the airlines are in charge of the gate re-assignment planning. Inputs to gate 

re-assignment planning are the updated flight schedule and the current gate assignment plan. In 

the updated flight schedule, flights might be delayed or cancelled, which implies that the current 

gate assignment plan might not be feasible. Once infeasibility is detected by the gate controllers, 

a gate re-assignment process is triggered. In current practice, the gate re-assignment process is 

mostly conducted manually by the experienced gate controllers. They adjust the current gate 

assignment plan with some computer aided tools, mostly focusing on visualization.  

Two main objectives are typically taken into consideration: minimizing total flight delays and 

minimizing the number of gate re-assignment operations. Flight delays are incurred due to 

holding either arrival or departure flights of an aircraft. In the gate re-assignment problem, an 

aircraft corresponds to one arrival flight and one departure flight. If an aircraft is held on the 

ground waiting for an available gate, holding time is defined as the delay of the arrival flight. If an 

aircraft is held at a gate to wait for late connecting passengers, holding time is defined as the 

delay of the departure flight. The total flight delays are defined as the summation of all flights’ 

delays. The number of gate re-assignment operations indicates the number of aircraft not 

assigned to their initially planned gate. 

Furthermore, gate related constraints, such as a gate can only accommodate certain aircraft types 

and two large aircraft cannot be assigned to two adjacent gates simultaneously, must be satisfied 

in the gate re-assignment process.  

When the number of aircraft involved is low, the gate controllers can efficiently produce a gate 

re-assignment plan by trying different options. As the number of aircraft involved increases, the 

number of possible combinations is increasing significantly. It becomes hard to produce a gate 

re-assignment solution efficiently. Therefore, the airport gate controllers are in need of 

systematic optimization methodologies to help them efficiently solve the gate re-assignment 

problem. 

In this research, we propose a novel optimization methodology for the gate re-assignment 

problem with four different options considered: (1) Re-assigning an aircraft to an alternative gate 

(including the parking area); (2) Delaying an aircraft’s gate arrival time in parking to wait for an 

available gate; (3) Delaying an aircraft’s push back time to wait for late transfer passengers; (4) 

Towing an aircraft to a parking area if there is a long waiting time between the arrival and 

departure flight. Two multi-commodity network flow models are formulated to consider the pure 

gate re-assignment problem and the gate re-assignment problem with connecting passengers, 

respectively. In addition to the two aforementioned objectives (minimizing total flight delays and 

the number of gate re-assignment operations), minimizing total passenger transfer distance and 

the number of missed passenger connections are included in the objective function. In both 

models, each gate is considered as a commodity and thus corresponds to one network. In each 

gate’s network, a feasible sequence of aircraft assigned to it is defined as a flow in the network.  

The first model can be efficiently solved by a commercial MIP solver, such as CPLEX. However, it is 

very challenging to solve the second model efficiently by a commercial solver due to its size and 

the quick response requirement. Therefore, two heuristic algorithms are proposed to solve the 

second model. The first heuristic algorithm is a guided diving heuristic algorithm based on 

general upper bound branching, in which at each iteration, multiple aircraft are selected and 

each of them is fixed to a gate clique based on the linear relaxation solution. If every aircraft is 
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already assigned to a gate clique, the restricted mixed integer programming (MIP) model is then 

directly solved by a commercial MIP solver. In some situations, the length of the re-assignment 

time window might be very long and the first heuristic algorithm cannot produce a solution 

within the pre-specified timeframe. The second heuristic algorithm, a variable rolling horizon 

algorithm, is then proposed to deal with these situations. It decomposes the whole time window 

into multiple overlapping intervals with each interval corresponding to a problem of smaller size, 

which can be efficiently solved by the guided diving heuristic algorithm. Computational results 

revealed that the proposed algorithms can solve all instances within 5 minutes with the largest 

optimality gap smaller than 13%.   

In literature, there are already several studies focusing on the gate re-assignment problem [2-12]. 

However, few of them considers connecting passengers within their model formulations and 

solution algorithms. In a hub-and-spoke network, there are many passengers connecting at hub 

airports. A gate re-assignment plan ignoring connecting passengers has two negative impacts on 

the connecting passengers: (1) Delay of the arrival flight can make it impossible to catch another 

departure flight; (2) Transfer time for a passenger can increase causing insufficient time for the 

passenger to move from the arrival gate to another departure gate. If a connecting passenger 

misses his or her connection, high cost (compensation cost, passengers’ goodwill loss cost, etc.) is 

incurred for both airports and airlines. Therefore, it is essential to consider connecting 

passengers in the gate re-assignment problem to minimize the number of missed passenger 

connections, and thereby, to minimize the total gate re-assignment cost. To the best of our 

knowledge, Maharjan et al. [7] considered the transfer passengers in their gate re-assignment 

model. However, there are two limitations of their study. First, it only considered minimization of 

the passengers’ transfer distance but ignored probabilities of missed passenger connections. If a 

passenger misses his or her connection, the transfer distance is irrelevant; second, a quadratic 

model was proposed but no algorithm was provided to solve the model. Recognizing the gap 

between practical requirements in the industry and current gate re-assignment methodologies, 

we realize that an efficient methodology for the gate re-assignment problem fully considering 

factors of connecting passengers is highly desired in the industry.  

To fill this gap, we propose a novel methodology for the gate re-assignment problem. Our 

contributions can be summarized as follows: 

(1) A more efficient multi-commodity network flow model is built for the gate re-assignment 

problem; 

(2) An extended multi-commodity network flow model is built where minimizing the passenger 

transfer distance and minimizing the number of missed passenger connections are both 

considered;  

(3) A diving heuristic algorithm and a rolling horizon algorithm are proposed to efficiently solve 

the proposed model. 

The remainder of the paper is organized as follows. In Section 1.1, a literature review related to 

the gate assignment/re-assignment is provided. In Section 2, a general description of the gate 

re-assignment problem is described and two multi-commodity models are built. Two heuristic 

algorithms are proposed in Section 3. In Section 4, extensive computational experiments are 

reported. Finally, conclusions are offered in Section 5. 
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1.1 Literature review 

In literature, the gate assignment problem has been extensively discussed and it is explored in 

two ways: the gate assignment planning problem and the gate re-assignment problem. There are 

abundant solution methodologies proposed for the gate assignment planning problem. We refer 

interested readers to Babic et al. [13], Mangoubi et al. [14], Vanderstraeten et al. [15], Bihr et al. 

[16], Wirasinghe et al. [17], Yan et al. [18], Haghani [19], Balot [20-22], Yan et al. [23-25], Ding [26, 

27], Seker et al. [28], Kim [29], Narciso et al. [30], Castaing et al. [31], Diepen et al. [32], Dorndorf 

et al. [33-35], Guepet et al. [36], Kim et al. [37], Kumar et al. [38], Yu et al. [39] and Ravizza et al. 

[40] for planning gate assignment works. They typically formulate the gate assignment planning 

problem as a linear or binary quadratic integer programming model with the objective function 

as minimization of passengers’ transfer distance, number of off-gate events, gate idle rate, 

expected gate blockages, etc. We refer interested readers to two extensive reviews Dorndorf et al. 

[41] and Bouras et al. [42] for further details. 

Compared to the gate assignment planning problem, the gate re-assignment problem differs in 

four aspects: (1) Flight delay options are considered, i.e., in the gate re-assignment problem, an 

aircraft might be held on the ground to wait for an available gate or late passengers; (2) The 

transfer passengers might miss connections; (In the gate assignment planning problem, enough 

time must be guaranteed for the connecting passengers. However, in the gate re-assignment 

problem, the connecting passengers might miss their connections because of flight delays and/or 

re-assigning aircraft to alternative gates) (3) Minimization of the deviation from the initial gate 

assignment plan is incorporated into the objective function; (4) A short solution computational 

time is required, i.e., a gate re-assignment plan is usually required to be provided within several 

minutes after disruptions. These four differences cause the gate re-assignment problems to be 

far more challenging.   

There are a few methodologies proposed for the gate re-assignment problem. These 

methodologies can be categorized into two groups: (1) Methodologies based on artificial 

intelligence; (2) Methodologies based on mathematical programming. In earlier days, 

optimization theories and computing hardware were highly limited and artificial intelligence was 

a very promising technology for solving the gate re-assignment problem. Gosling [8], Srihari et al. 

[9] and Jo [10] proposed expert systems to deal with the gate re-assignment problem. Su et al. 

[11] proposed a knowledge based advisor to assist gate re-assignment decision making. Cheng 

[12] proposed a knowledge based gate re-assignment system in which mathematical 

programming was integrated. Gu et al. [2] developed a genetic algorithm to solve the gate 

re-assignment problems due to flight delays.  

As the optimization theories and computing hardware advanced, it becomes feasible to solve the 

gate re-assignment problem optimally using mathematical programming techniques. Therefore, 

several methodologies based on the mathematical programming techniques were proposed in 

recent years. Yan et al. [3] considered the airport gate re-assignment problem following 

temporary airport closure and a network flow model was proposed for this problem. In their 

work, re-assigning aircraft to an alternative gate was considered but flight delays were 

overlooked. Tang et al. [6] considered the flight delay option and proposed another MIP model 

for the gate re-assignment problem. They also proposed a dynamic decision process in a practical 
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setting. Tang et al. [5] further extended the model in [6] and proposed a new gate reassignment 

model considering stochastic flight delays. A more practical re-assignment model was proposed 

by Yan et al. [4]. In [4], flights are separated into deterministic and stochastic flights based on the 

time to the anticipated gate arrival. The model is then built to deal with the deterministic flights 

and the stochastic flights separately. Maharjan et al. [7] proposed a gate re-assignment model 

based on the traditional deterministic model to consider connecting passengers. In their work, a 

quadratic integer programming model is formulated and minimizing the passenger’s transfer 

distance was considered in the objective function. No algorithm was proposed to solve the 

model.  

In this study, we propose two novel multi-commodity network flow models for the pure gate 

re-assignment problem and the gate re-assignment problem with connecting passengers, 

respectively. Comparing to previous works, our models have the following advantages: 

(1) Our first proposed model is a significant improvement of Yan et al. [3]. One major advantage 

of such a multi-commodity network flow model is that gate constraints (which account for a large 

percentage of total constraints) can be more concisely formulated and therefore it can be more 

efficiently solved by a commercial MIP solver compared to other MIP models. The benefits have 

also been validated in Section 4.5. Although Yan et al. [3] proposed a similar network flow model, 

the way of formulating flow balance causes the number of decision variables to grow quickly with 

the model size and therefore offsets advantages provided by the multi-commodity network flow 

model.  

(2) It is the first time in the literature that the gate re-assignment problem with connecting 

passengers is formulated as a multi-commodity network flow model, which is expected to be 

much more tractable than the other models considering passenger transfer, i.e., the quadratic 

model proposed in [7].  

2 Gate re-assignment model 

2.1 Problem description 

Prior to building a mathematical model, characteristics of the gate re-assignment problem are 

first explored. We start with definitions of several key elements in the gate re-assignment 

problem. 

(1) Gate re-assignment time window: The gate re-assignment time window defines a time 

interval in which gate re-assignment operations are allowed. The start time of the time window is 

usually set as the first time when the disruptions occur. The length of the time window is set 

based on the severity level of the disruptions. It is desired that at the end of the time window the 

initial gate assignment plan is feasible. If a feasible solution can not be obtained within the time 

window, a large penalty cost is incorporated to minimize the schedule violation after the time 

window. 

(2) Aircraft’s gate arrival time and push-back time: The aircraft gate arrival time is defined as the 

time when the aircraft first arrives at a gate and the aircraft push-back time is defined as time 

when the aircraft is push-backed away from the gate. The example in Figure 1 illustrates an 

aircraft gate arrival and push-back times. The gate is occupied by the aircraft between the gate 
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arrival and push-back time. 

 

Figure.1 Illustration of the aircraft gate arrival and push-back time 

(3) Involved aircraft in the re-assignment problem: If an aircraft gate arrival time is located within 

the re-assignment time window, this aircraft is involved in the re-assignment problem. In the gate 

re-assignment problem, we only consider these involved aircraft. Aircraft with the gate arrival 

time before the time window and the push-back time within/after the time window, retain their 

initial gate assignment plan (made before the time window) and thus they are not involved in the 

re-assignment problem.  

(4) Gate assignment constraints: There are three types of gate assignment constraints, which are 

aircraft constraints, gate constraints and adjacency constraints.  

(a) The aircraft constraints restrict that an aircraft type can only be assigned to certain gates. For 

example, a large aircraft (Boeing 777) cannot be assigned to a gate only for regional jets.  

(b) The gate constraints require that in each time point a gate can be occupied by at most one 

aircraft.  

(c) The adjacency constraints require that a specific aircraft pair of specific types cannot be 

assigned to two adjacent gates simultaneously due to aircraft type characteristics and gate facility 

limitations.  

(5) Apron gate: An apron gate is defined as a virtual gate located in the parking area. In some 

situations, if no gate is available in short time, an aircraft can be assigned to an apron gate in the 

parking area. A shuttle bus can be arranged to transfer passengers between terminals and the 

parking area. Since the apron gate will cause inconvenience for both passengers and airlines, the 

penalty cost should be considered to prevent assigning the aircraft to the apron gate. All of the 

gate assignment constraints are not applied to the apron gate. 

(6) Flight delays: There are two types of flight delays in gate assignment operations. First, if an 

aircraft is held on the ground to wait for an available gate after it lands, then holding time is 

defined as the delay of its corresponding arrival flight. Second, if an aircraft is held at the gate 

after its scheduled push-back time to wait for late passengers, then holding time is regarded as 

the delay of the departure flight. Although the value of the flight delay can be continuous Ideally, 

discretized values of the flight delay are adopted in our study to built network flow models. Each 

flight has several different delay options, such as 10 minutes, 20 minutes, 30 minutes, etc.  

(7) Gate re-assignment operations: In a gate re-assignment solution, an aircraft might not be 

assigned to its initially scheduled gate, but assigned to an alternative gate. Reassigning the 

aircraft to an alternative gate is defined as one gate re-assignment operation. 

(8) Gate violations after the re-assignment time window: It is desirable that there are no gate 

constraint violations after the time window. However, this might not be possible. One such 

example is illustrated in Figure 2. Aircraft 1 is involved in the re-assignment problem and delay of 

the aircraft 1 causes gate violations after the re-assignment time window. 
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Figure.2 Illustration of gate violations after the re-assignment time window 

(9) Connecting passengers: In a hub-and-spoke airline network, many passengers connect at hub 

airports. One connection of a connecting passenger is defined as a pair of arrival and departure 

flights. If the connection time between the arrival and departure time is not sufficient to transfer 

from the gate of the arrival flight to the gate of the departure flight, the passenger’s connection is 

missed.  

(10) Objective: There are four components considered in the objective function of the gate 

re-assignment problem and a weighted sum of them is minimized. The four components are as 

follows: 

(a) The total flight delays; 

(b) The number of gate re-assignment operations; 

(c) The number of missed connections; and 

(d) The conflicts after the re-assignment time window. 

2.2 Multi-commodity network flow model 

In literature, the gate re-assignment problem is typically modeled as an assignment model with 

side constraints [4-6] or a multi-commodity network flow model Yan et al. [3]. The assignment 

model explores an optimal assignment plan, in which each aircraft is assigned to a gate. Side 

constraints are incorporated to force that each gate is occupied by at most one aircraft at each 

time point and adjacency constraints are also satisfied. The multi-commodity network flow 

model explores a feasible flow for each gate wherein each feasible flow represents the aircraft 

sequence assigned to this gate. Similarly, gate occupancy and adjacency constraints should be 

satisfied. Our early computational experiments revealed that either the assignment model or the 

multi-commodity network flow model achieve a tight lower bound at the root node (solving the 

root node LP relaxation), and therefore the efficiency of solving the models mainly depends on 

the efficiency of solving the LP relaxations.  

Comparing to the assignment model, one major difference (advantage) of the multi-commodity 

network flow model is that gate constraints (each gate can only by occupied by at most one 

aircraft at any time point) can be more concisely formulated as feasibilities of flow balances 

automatically satisfy gate constraints, while for the assignment model gate constraints are 

formulated as covering constraints. The number of non-zeros produced by the flow balance 

constraints in the network flow model is much smaller than those produced by the covering 

constraints in the assignment model. As the number of non-zeros in an LP model has a significant 

impact on the efficiency, it implies that the multi-commodity network flow model should be 

more efficient. This is clearly confirmed in Section 4.  

Recognizing the inherent advantage of the multi-commodity network flow model, in this section 
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we propose a novel enhancement to the multi-commodity network flow model for the gate 

re-assignment problem in which a different way of formulating the flow balance is adapted to 

make it much more concise than Yan’s model [3] which is of the same type. Computational 

results produced in Section 4 reveal that our proposed model achieves a much better 

computational performance. 

In our network flow model, each gate is considered as one commodity. The apron gate 

corresponding to parking is considered as a regular gate exempt from all gate constraints. A 

sequence of aircraft assigned to a gate is considered as a flow in the gate’s network. Figure 3 

describes an example of a gate’s network. Possible delays of an aircraft are considered by 

modeling for the aircraft many potential gate arrival and push-back times, e.g. every 5 minutes. 

   

Figure.3 Network flow model and aircraft delay arcs for a gate 

There are five essential components in the network for one gate. 

(1) Activity nodes: An activity node indicates either a gate arrival or push-back activity. Each 

activity node encodes a gate and time. The gate indicates the location where the activity occurs. 

If the activity is the arrival activity, the time is the actual gate arrival time; otherwise, the time is 

the actual push-back time. If two events have the same gate and time, they are regarded as 

identical activity nodes, i.e, two aircraft arriving at the same time generate only one activity node 

corresponding to the arrival time in the gate’s network. In other words, two (aircraft delay) arcs in 

the gate’s network corresponding to these two aircraft connect to the same activity node. 

(2) Aircraft delay arcs: An aircraft delay arc uniquely corresponds to one aircraft and one gate. It 

is defined as a time interval in which the corresponding gate would be occupied by the 

corresponding aircraft. The start time of the aircraft delay arc indicates the actual gate arrival 

time and the end time indicates the actual push-back time. Since each flight has several delay 

options, there are several different options of the gate arrival and push-back times. In a gate’s 

network, an eligible aircraft can create multi flight delay arcs by taking any possible combination 

of the gate arrival and push-back times. An aircraft is feasible at a gate only if the aircraft type can 

park at this gate.  

(3) A source and sink node: The single gate network has exactly one source node and one sink 

node. The source node indicates the start of gate operations while the sink node indicates the 

end of the gate operations. The time of the source node should be earlier than the time of any 

activity node in the network. The time of the sink node should be later than the time of any 

activity node in the network. 

(4) Ground arcs: A ground arc is defined to represent a time interval in which the gate is idle. It 

has three properties: the gate, the start time and the end time. There is a ground arc between 

any two consecutive activity nodes.  
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(5) The wrap-around arc: The wrap-around arc connects the sink and source nodes. The upper 

bound on the flow is one since at most one aircraft can be assigned to the gate at each point in 

time. The purpose of the arc is to keep the flow balance in the gate’s network.  

A feasible flow in a gate’s network consists of a sequence of aircraft delay and ground arcs. One 

selected aircraft delay arc indicates that the gate is occupied by an aircraft and one selected 

ground arc indicates that the gate is idle at the underlying times.  

The cost of an aircraft delay arc consists of four parts: 

(1) The cost of flight delays: An aircraft delay arc corresponds to one arrival and one departure 

flight. The cost of delays depends on the arrival and departure flights. 

(2) The cost of gate re-assignment operations: If the assigned gate of an aircraft is not the initially 

planned one, the cost of re-assignment operations is incurred.  

(3) The cost of gate violations after the re-assignment time window: If the end of an aircraft delay 

arc violates gate operations planned after the time horizon, the extra cost after the 

re-assignment time window is incurred based on the length of the violated period. 

(4) The cost of assigning aircraft to the apron gate: If an aircraft is assigned to an apron gate, the 

passenger service is disrupted. Additional operating cost is incurred to transfer passengers 

between terminals and the parking area. 

In the following, we describe the multi-commodity network flow model (MCGR) for the gate 

re-assignment problem. The notation required to build the model is described in Appendix C. In 

each gate’s network, a feasible flow is maintained. Flow balance of the network is guaranteed by 

keeping the flow balance at each activity node and consistency constraints are incorporated to 

guarantee that each aircraft is assigned to exactly one gate.  

The decision variables used in the model are: 

𝑥𝑒: amount of flow on aircraft delay arc 𝑒 

𝑦𝑔: amount of flow on ground arc 𝑔 

MCGR Model: 

Min ∑ 𝑐𝑒 ∙𝑒∈𝐸 𝑥𝑒 (1) 

Subject to: 

∑ 𝑥𝑒𝑒∈𝐸𝑎
  = 1 𝑎 ∈ 𝐴  (2) 

∑ 𝑥𝑒𝑒∈𝐸(𝜋1,𝜌1,𝑡)∪𝐸(𝜋2,𝜌2,𝑡)
  ≤ 1 𝑡 ∈ 𝛵   

( 𝜋1, 𝜌1 ,  𝜋2, 𝜌2 )  ∈

𝑆  

(3) 

∑ 𝑥𝑒𝑒∈𝐸𝑖𝑛𝑝𝑢𝑡
𝑛 + ∑ 𝑦𝑔𝑔∈𝐺𝑖𝑛𝑝𝑢𝑡

𝑛 − ∑ 𝑥𝑒𝑒∈𝐸𝑜𝑢𝑡𝑝𝑢𝑡
𝑛 − ∑ 𝑦𝑔𝑔∈𝐺𝑜𝑢𝑡𝑝𝑢𝑡

𝑛    
= 0 𝑛 ∈ 𝑁  (4) 

𝑥𝑒 ∈ {0,1}    𝑦𝑔 ∈ {0,1} 

Objective (1) minimizes the total cost of selected aircraft delay arcs. Constraints (2) restrict that 

each aircraft is assigned to exactly one gate and constraints (3) impose the adjacency constraints. 

Finally, constraints (4) restrict the flow balance at each node.  

We finish this part by comparing Yan [3]’s multi-commodity network flow model with ours. To the 

best of our knowledge, only Yan [3] proposed a multi-commodity network flow model for the 

gate re-assignment problem in the literature. As aforementioned, Yan et al. [3]’s model did not 

consider flight delay options, however, it is very easy to extend their model to consider flight 

delay options by incorporating flight delay arcs (similar to our model) for each flight. The two 

models differ in the way the flow balance constraints are built. We create ground arcs to build 
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the flow balance while Yan’s model creates connection arcs to build the flow balance. An example 

reporting the size of the models is illustrated next. Let us suppose there are 200 aircraft and 70 

gates involved in the re-assignment problem. Each aircraft can be assigned to any gate and an 

aircraft can create 7 different aircraft delay arcs in each gate’s network. Based on these 

assumptions, there are 200×7=1,400 aircraft delay arcs and 199×100×7×7=975,100 connection 

arcs created in Yan’s model in the worst case. In total there are 1400×70=98,000 flight delay arcs 

and 975,100×70=68,257,000 connection arcs created by Yan’s model.  

In our model, the number of aircraft delay arcs is the same as in Yan’s model. However, the 

number of ground arcs in our model is significantly smaller than the number of connection arcs in 

Yan’s model. In a single gate’s network, the number of aircraft delay arcs is 1,400 and then there 

are at most 2,800 activity nodes created. Considering the source and sink nodes, the number of 

nodes is 2,802. In total, there are at most 2,802 ground arcs created. Considering all gates, there 

are at most 98,000 flight delay arcs and 2,802×70=196,140 ground arcs in our model. Apparently, 

our model is much more concise. 

Although in Yan’s model, we list an upper bound on the number of decision variables, 

comparisons of scalability for different instances are reported in Section 4. They further reveal 

the advantage of our proposed model. 

2.3 Multi-commodity network flow model with connecting 

passengers 

We next extend the MCGR model to consider passengers. There are three types of passengers: (1) 

departing passengers; (2) arriving passengers, and (3) connecting passengers.  

For the departing and arriving passengers, we only need to consider the time for them from a 

gate to the closest terminal entrance point. The cost of an aircraft delay arc can be easily 

augmented to consider the traveling cost of the departing and arriving passengers.  

It is much trickier to consider connecting passengers. For them, we need to consider both the 

transfer distances and possible missed connections. The transfer distance of a connecting 

passenger is decided by the arrival flight’s gate and the departure flight’s gate. The transfer time 

of a connecting passenger is decided by the gate arrival time of the arrival flight and the 

push-back time of the departure flight. If a connecting passenger cannot transfer from the arrival 

to the departure gate before the push-back time of the departure flight, the connecting 

passenger misses his or her connection.  

The straightforward way to consider the connecting passengers is to model the problem as a 

quadratic 0-1 integer programming model which hinders the requirement of short computational 

times. In this section, we propose a multi-commodity network flow model for the gate 

re-assignment problem in which minimization of passengers’ transfer distance and the number of 

missed passenger connections are considered.  

An airport is typically divided into several different terminals. In the following, 𝛶 indicates the 

set of all terminals and it is indexed as 𝛾. Value 𝐺γ indicates the set of all gates in terminal 𝛾. 

For each terminal 𝛾, we divide gate set 𝐺γ into different gate cliques. A gate clique is defined as 

a group of gates where the transfer time between any two gates is very short (e.g. 5 minutes). 

An example is illustrated in Figure 4. In the terminal, we can divide all gates into three gate 
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cliques based on their physical location.  

 

Figure.4 Illustration of gate cliques 

In order to build the multi-commodity network flow model, we further make following three 

assumptions. 

Assumption 1: The transfer time between any two gates within the same gate clique is assumed 

to be same.  

Assumption 2: For two gate cliques (𝑔1
′ , 𝑔2

′ … 𝑔𝑚
′ ) and (𝑔1

′′, 𝑔2
′′ … 𝑔𝑛

′′), the transfer time between 

any two gates 𝑔𝑖
′ and 𝑔𝑗

′′, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 is assumed to be same.  

Typically, a terminal consists of one or multiple concourses. Gates within one concourse are 

compact and the transfer time between gates within the same concourse is typically very short. 

For this situation, a concourse can be regarded as one gate clique. Any two different concourses 

are connected by a walkway. The transfer time by using the walkway is much longer than the 

transfer time inside a concourse; it is reasonable to make Assumption 2. In some situations, a 

concourse might be large and we can divide it into several gate cliques. 

Assumption 3: The transfer time between any two gate cliques is known in advance. 

Based on these three assumptions, we extend the MCGR model to consider passengers. The 

extended network flow model is named as the MCGRP model. A passenger connection is defined 

as a pair of arrival and departure flights and there are passengers transferring from the arrival 

flight to the departure flight. All connecting passengers with the same arrival and departure 

flights are associated with the same passenger connection. 

In the MCGRP model, each passenger connection is considered as a commodity and each 

identical passenger connection corresponds to one network. An example of the network for a 

passenger connection is illustrated in Figure 5. There are four essential elements in this network. 
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Figure.5 Illustration of the network for one passenger connection 

(1) Passenger de-boarding nodes are indicating passengers’ de-boarding status. A passenger 

de-boarding node is encoded by a gate clique where the passenger de-boards and the earliest 

de-boarding time. An example is illustrated in Figure 5. All of the passenger de-boarding nodes 

are located on the left side. Each rectangle indicates one gate clique. Within each gate clique, 

there are several nodes indicating different options of passengers’ de-boarding time. If the arrival 

flight of a passenger connection can be assigned to a gate clique, one rectangle corresponding to 

this gate clique is created on the left side. Within each rectangle, each delay option of the arrival 

flight creates one de-boarding node. It is noted that the earliest de-boarding time is different 

from the gate arrival time because that after an aircraft arrives at a gate, it still takes several 

minutes for the passengers to de-board. 

(2) Passenger boarding nodes are indicating passengers’ boarding status. Similarly, a passenger 

boarding node contains a gate clique and the latest boarding time. In Figure 5, all of the 

passenger boarding nodes are located on the right side. 

(3) Passenger arcs are represented as dashed lines in Figure 5. There are four types of passenger 

arcs: (a) passenger arcs connecting the source node and passenger de-boarding nodes; (b) 

passenger arcs connecting passenger de-boarding and boarding nodes; (c) passenger arcs 

connecting passenger boarding nodes and the sink node; (d) a wrap-around arc connecting the 

sink and source nodes.  

The type (a) passenger arcs are created between the source node and any passenger de-boarding 

node and selection of a type (a) passenger arc indicates the gate clique and delay option assigned 

to the arrival flight. Similarly, the type (c) passenger arcs are created between any passenger 

boarding node and the sink node and selection of a type (c) passenger arc indicates the gate 

clique and delay option assigned to the departure flight. For any passenger de-boarding node 𝑛𝑑 

and any passenger boarding node 𝑛𝑏, one type (b) passenger arc is created between them only if 

there is enough time for passengers to travel from the gate clique of 𝑛𝑑 to the gate clique of 𝑛𝑏. 

A feasible flow in a passenger connection’s network contains exactly four arcs. The first arc is a 
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type (a) passenger arc followed by a type (b) passenger arc, the third arc is a type (c) passenger 

arc and, finally, the wrap-around arc connects the sink and source nodes. The flow upper bound 

is one. If no feasible flow is selected in the passenger connection’s network, it indicates that the 

passenger connection is missed. 

(4) A source node and a sink node are two virtual nodes denoting the start and end status of the 

passenger connection. 

In the model, we have to link the gate and passenger connection networks. A feasible flow in one 

passenger connection’s network indicates the corresponding arrival and departure flights’ gate 

assignment decision and delay option. It should be consistent with the decisions in the gates’ 

network.  

Let 𝐹𝐷𝑓 represent the set of all possible delay options for flight 𝑓 indexed as 𝑓𝑑. Let 𝐾 

represent the set of all gate cliques indexed as 𝑘. 

Each aircraft delay arc indicates two kinds of information for its arrival and departure flights: (a) 

the gate clique of the arrival and departure flights and, (b) the delay options of the arrival and 

departure flights. For any (𝑓, 𝑓𝑑, 𝑘) pair, let 𝐸(𝑓,𝑓𝑑,𝑘) represent the set of all aircraft delay arcs 

with 𝑒 ∈ 𝐸(𝑓,𝑓𝑑,𝑘) satisfying three conditions: (a) 𝑓 is either the arrival or departure flight of 𝑒; 

(b) the delay option of 𝑓 is 𝑓𝑑; (c) the assigned gate of 𝑒 is located within gate clique 𝑘.  

Each type (a) or type (c) passenger arc indicates the corresponding arrival or departure flight’s 

gate assignment decision and delay option. Let 𝐸(τ,𝑓,𝑓𝑑,𝑘)
𝑝

 represent the set of all passenger arcs 

with 𝑒 ∈ 𝐸(τ,𝑓,𝑓𝑑,𝑘)
𝑝

 satisfying four conditions: (1) 𝑒 is either type (a) or type (c) passenger arc in 

passenger connection 𝜏’s network; (2) flight f is either the arrival flight or departure flight of this 

passenger connection; (3) the delay option of 𝑓 is 𝑓𝑑; (4) the assigned gate clique of 𝑓 in 𝑒 

is 𝑘. 

For every (𝑓, 𝑓𝑑, 𝑘), 𝜔 ∈ 𝐸(τ,𝑓,𝑓𝑑,𝑘)
𝑝

 can be selected only if at least one 𝑒 ∈ 𝐸(𝑓,𝑓𝑑,𝑘) has been 

selected. 

We next present the multi-commodity network flow model for the gate re-assignment problem 

with connecting passengers. The additional notation used in this model is described in Appendix 

C. 

The Model MCGRP is based on the MCGR model. A network is built for each passenger 

connection and a passenger connection consists of a group of passengers with identical arrival 

and departure flights. A feasible flow is explored in each passenger connection’s network. 

Additional constraints are incorporated to build the relationship between the gates’ network and 

passenger connections’ network. 

The model recognized the following additional variables. 

𝑧𝜔: binary variable indicating whether passenger arc 𝜔 is selected 

𝑦τ: binary variable indicating whether passenger connection 𝜏 is missed 

The MCGRP model: 

Min ∑ 𝑐𝑒 ∙e∈𝐸 𝑥𝑒 + ∑ 𝑐𝑎𝑛𝑐𝑒𝑙τ ∙ 𝑦ττ∈Conn + ∑ 𝑐ω
𝑝

∙ 𝑧ωω∈𝐸𝑝  (5) 

Subject to: 

Constraints (2)-(4) 

∑ 𝑧𝜔𝜔∈𝐸𝑖𝑛𝑝𝑢𝑡
𝑝,𝑛 − ∑ 𝑧𝜔𝜔∈𝐸𝑜𝑢𝑡𝑝𝑢𝑡

𝑝,𝑛   = 0 𝑛 ∈ 𝑁𝑝  (6) 

𝑧
𝑒𝜏

𝑐𝑦𝑐𝑙𝑒 + 𝑦𝜏  
= 1 𝜏 ∈ 𝐶𝑜𝑛𝑛  (7) 
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∑ 𝑥𝑒𝑒∈𝐸(𝑓,𝑓𝑑,𝑘)
− ∑ 𝑧𝜔𝜔∈𝐸

(𝜏,𝑓,𝑓𝑑,𝑘)
𝑝   

≥ 0 𝜏 ∈ 𝐶𝑜𝑛𝑛, 𝑓 ∈ 𝐹, 𝑓𝑑 ∈ 𝐹𝐷𝑓 𝑘 ∈ 𝐾  (8) 

𝑥𝑒 ∈ {0,1}    𝜖τ ∈ {0,1}   

Objective (5) is minimizing the summation of aircraft delay arcs cost, missed passenger 

connection cost and passenger transfer cost. Constraints (6) guarantee the flow balance at each 

node in each passenger connection’s network while constraints (7) restrict that each passenger 

connection is either made or missed. Constraints (8) build the relationship between gates’ 

network and passenger connections’ network. 

Finally, we note that model MCGRP can be easily extended to consider crew connections since 

the basic network structure of a crew connection is the same as a passenger connection.  

3 Algorithms 

The MCGR model can be solved by a commercial solver, e.g. CPLEX, in seconds. However, it is not 

tractable to solve the MCGRP model directly by a solver. In this section, we propose two efficient 

algorithms to solve the MCGRP model. The solver used in our experiments is CPLEX. 

3.1 Guided diving heuristic algorithm based on general upper 

bound branching (GDGUB) 

Based on our preliminary computational study, the integrality gap of the LP relaxation is very 

small. In addition, the number of cuts added by CPLEX at the root node of the branch-and-bound 

tree is very small. It is thus expected that a diving heuristic algorithm can solve the MCGRP model 

efficiently. 

Traditionally, a diving heuristic algorithm is implemented in a way that decision variables are 

iteratively fixed [43-46]. In this section, we propose a diving heuristic algorithm in which domains 

of the decision variables are iteratively decreased based on gate cliques. The guided diving 

heuristic is executed as follows.  

Step 1: All the aircraft are sorted by the initial gate arrival time in ascending order.  

Step 2: The linear relaxation of the MCGRP model is solved. The optimal solution indicates the 

fractional value for each aircraft delay arc. An aircraft can create many aircraft delay arcs in all 

gates’ network. Let 𝛱𝑎 represent the set of all aircraft delay arcs created by aircraft 𝑎 with 𝑒 ∈

𝛱𝑎 satisfying the condition that 𝑒 has a positive fractional value in the LP relaxation solution.  

Step 3: Each aircraft is fixed to a gate clique. As we described before, each aircraft delay arc 

uniquely corresponds to one gate clique. For an aircraft a, if all aircraft delay arcs in 𝛱𝑎 belong 

to one gate clique, then aircraft a is fixed to this gate clique; otherwise, aircraft a is fixed to a gate 

clique with the highest cumulative fractional value. The cumulative fractional value of each gate 

clique is calculated in the following way. Initially, the cumulative fractional value of each gate 

clique is set to 0. For every 𝑒 ∈ 𝛱𝑎, if 𝑒 belongs to a gate clique 𝑘, the cumulative fractional 

value of 𝑘 is increased by the value of 𝑒 in the optimal fractional solution. An example is 

illustrated in Figure 6. The aircraft has four aircraft delay arcs with positive fractional value. The 

cumulative fractional value of gate clique 1 is 0.8 while the cumulative fractional value of gate 
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clique 2 is 0.2. The aircraft 1 is therefore fixed to gate clique 1. Fixing an aircraft to a gate clique 

indicates that the aircraft can only be assigned to any gate within this gate clique in subsequent 

steps. 

 

Figure.6 One fractional solution for an Aircraft  

Step 4: To guarantee good solution quality, in each iteration, a limited number of aircraft are fixed 

to gate cliques. Let 𝑛𝑓𝑖𝑥 to be the number of fixed aircraft in this iteration. In the beginning, 

𝑛𝑓𝑖𝑥 is set to 0 and the aircraft are fixed in the pre-defined order specified in Step 1. For an 

aircraft a, if all aircraft delay arcs in 𝛱𝑎 do not belong to one gate clique, 𝑛𝑓𝑖𝑥 is increased by 1. 

If the 𝑛𝑓𝑖𝑥 is larger than a certain limit, this iteration ends. 

Step 5: If each aircraft is fixed to one gate clique, a restricted integer programming model is 

formulated in which aircraft delay arcs violating fixation decisions made in previous steps are 

removed. CPLEX is called to solve the restricted integer programming model; else, we re-start 

with step 1.   

The pseudo-code of the algorithm GDGUB is described in Appendix D. 

3.2 Variable rolling horizon algorithm (VRH) 

If the length of the re-assignment time window is short, such as 3 hours, the GDGUB algorithm 

can efficiently solve the MCGRP model. However, in some situations, gate controllers might set a 

longer length of the time window, such as 9 hours. The GDGUB algorithm cannot provide a 

solution within several minutes for such cases. In this section, we propose a rolling horizon 

algorithm in which the gate re-assignment problem is divided into several sub-problems. The 

model size for each sub problem is small enough so that the GDGUB algorithm can efficiently 

solve it.    

A rolling horizon algorithm is typically designed by dividing the timeline into several intervals. The 

idea of rolling horizon has already been applied to solve various large-scale problems [47-50]. 

One sub problem is formulated for each interval. The length of each interval has a significant 

impact on the solution quality and computational performance. If the length of each interval is 

large, a good solution quality can be achieved since each sub problem can have a good global 

view. However, the computation time might be long since the model size of each sub problem is 

large. A good rolling horizon can better trade-off between the computation time and the solution 

quality.  

In this section, we propose a rolling horizon algorithm (VRH) with variable length of intervals. The 

algorithm is proposed based on following two observations:  

(1) Passenger connections are not uniformly distributed over the timeline. For example, in a 

peaked flight schedule, most of the passenger connections are concentrated in a certain time 

interval. In a de-peaked flight schedule, the passenger connections are more evenly distributed 

across the timeline.  
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(2) In the MCGRP model, the number of decision variables and constraints created in the 

passenger connections’ network is much larger than the number of decision variables and 

constraints created in the gates’ network. Therefore, the number of passenger connections has a 

significant impact on the computational performance.  

In our algorithm, the length of each interval is decided so that the passenger connections are 

uniformly distributed among all of the intervals. One benefit of such a design is that a longer 

length can be set for an interval with relatively fewer passenger connections within it. Compared 

to the design of uniformly dividing the timeline, our design can achieve a better trade-off 

between the solution quality and computation time. To further improve the solution quality, two 

consecutive intervals are overlapped. It indicates that only part of a solution is fixed after one sub 

problem is solved. In our study, the starting time of the next horizon is one hour later than the 

starting time of the current horizon, although the length of each horizon is three hours. 

Figure 7 illustrates how to divide the timeline. The timeline is decomposed to four intervals. The 

number of passenger connections in each interval is roughly the same. Any two consecutive 

iterations are overlapped. The sub problem in each interval is solved by the GDGUB algorithm. 

 
 

Figure.7 Illustration of dividing the timeline 

The pseudo-code of the VRH algorithm is described in Appendix D.  

4. Experiments  

To test the performance of the proposed models and algorithms, we perform several numerical 

experiments based on real world data of a major airline at one of the largest U.S. airports. The 

algorithms are tested on an Intel core X5660 CPU with 32 gigabytes memory. The MIP solver in 

our study is ILOG CPLEX 12.5. 

4.1 Description of data  

The airport has 4 terminals and each terminal has multiple concourses. The airline occupies two 

terminals. For ease of exposition, we call them terminal 1 and terminal 2 in the following context. 

The map of terminal 1 and terminal 2 is illustrated in Figure 8. In concourse B and C, there are 22 

gates and 28 gates assigned to the airline, respectively. In concourse E and F, there are 5 and 27 

gates assigned to the airline, respectively. The airline provided operational data for three days in 
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January of 2015. There are 1101, 1054 and 1064 flights departing and arriving at the airport in 

these three days, respectively. We were also provided with planning data, and all engineering and 

business requirements. 

 
Figure.8 Illustration of the airport map 

In these three days, severe weather caused different disruption scenarios. The airline provided 

several snapshots of the flight schedule and gate assignment plan at different time points over 

these three days. Each snapshot indicates the current flight schedule and gate assignment plan. 

The detailed information of all snapshots is given in Table 8 in Appendix A.  

After consulting with gate controllers, three different options were recommended for the length 

of the re-assignment time window, 3 hours, 6 hours and 9 hours. Although we test these three 

time windows for all instances in our experiments, in practice, the 3 hour-time window is 

typically adopted for small-scale disruptions, the 6 hour-time window for medium-scale 

disruptions and the 9 hour-time window for large-scale events. It is noted that these three 

options are not applicable to each instance. For example, the 7th instance in scenario 1 starts at 

21:20, only the 3h time window is meaningful because it already reaches the end of the day and 

thus very low activity at the airport. All of the applicable time window options are described in 

Table 9 in Appendix A. 

To evaluate the solution quality, several key performance indicators are proposed in Table 1. 

Table 1 Key performance indicators 

KPI Description 

TFD Total flight delays in minutes 

NDF The number of delayed flights 

NGR The number of gate re-assignments  

NKM The number of crew missing connections 

NPM The number of passenger missing connections 

TRC The total re-assignment cost (objective value of the model) 

LOPT The optimal value of the linear relaxation of the MCGRP model 

OPTGAP The gap between TRC and LOPT 

CPU The computation time calculated in seconds 

Detailed settings of all parameters are described in Table 2. If a flight is held on the ground for 
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one hour, increments of the crew salary and flight attendant salary are approximated as 250 USD 

and 150 USD, respectively. The passenger goodwill loss for all passengers associated with the 

same flight is approximated as 800 USD/Hour. The cost of a flight delay consists of the salary 

increment and passenger goodwill loss. Therefore, the cost of each minute of a flight delay is 

approximated as 20 USD. If one crew misses its connection, a reserve crew is utilized. The crew 

salary is increased by 750 USD for a three hours workload increment. In addition, 250 USD 

operating cost is incurred which yields the total of USD 1,000. If a passenger misses a connection, 

the compensation cost is approximated as 100 USD. The goodwill loss is approximated as 100 

USD. In total, the cost of a missed passenger connection is approximated as 200 USD. If a flight is 

assigned to the apron gate, additional operating cost (such as a shuttle bus) is incurred to transfer 

the passengers between the parking area and a terminal. In addition, passengers’ inconvenience 

and goodwill loss are incurred. Therefore, a large cost of USD 2,000 is assigned to prevent 

assigning a flight to the apron gate. If there are gate violations occurring after the re-assignment 

window, high penalty cost is assigned because the future gate assignment plan is disrupted. In 

the experiment, we set the cost of a gate violation after re-assignment to 1,000 USD. 

Table 2 Parameters setting 

Parameters Values 

The cost of each minute of a flight delay   20 USD 

The cost of a missed crew connection 1,000 USD 

The cost of a missed passenger connection 200 USD 

The cost of reassigning a flight 150 USD 

The cost of assigning a flight to the apron gate  2,000 USD 

The cost of a gate violation after the re-assignment window 1,000 USD 

The cost of a gate re-assignment is a step function. If a flight close to the beginning of the time 

window is re-assigned, the larger cost is set since more passenger inconvenience is caused. The 

cost consists of two parts: the basic operating cost and the inconvenience cost to all passengers 

traveling on the corresponding flight. The basic operating cost is estimated at 40 USD. The 

passenger inconvenience cost is only applicable for departure flights due to a gate change. Table 

3 lists five cost values. The lead time indicates the gap between the start of the re-assignment 

time window and the flight’s departure time.  

Table 3 Passenger inconvenience cost for departure flights 

Lead time 1h 2h 3h 4h 5h 6h 

The passenger inconvenience cost (USD) 260 160 120 80 40 0 

4.2 Computational results 

The data provided by the airline contains crew information, however due to sensitivity, no 

information on passenger transfer traffic was provided. For this reason, we simulate passenger 

connections. Two different scenarios of passenger connections are simulated. The first scenario is 

based on a peaked flight schedule while the second is based on a de-peaked flight schedule. In a 

peaked schedule, flight arrivals typically occur first, followed by a brief period of aircraft inactivity 

and then flight departures occur. The period of aircraft inactivity between arrival and departure 

banks allows transfer passenger to connect. The peaked scenario is illustrated in Figure 13 in 
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Appendix B. In a de-peaked flight schedule, the set of incoming and outgoing flights are 

interspersed, which is illustrated in Figure 14 in Appendix B. The connection time of all of the 

passenger connections is between 20 and 80 minutes (assuming longer connection while 

occurring, they are not time sensitive). Among all instances, the maximum number of involved 

aircraft is 688, the maximum number of passenger connections is 1,558 and the maximum 

number of crew connections is 163.  

Based on the architecture of terminals 1 and 2, three gate cliques are defined. The concourses B 

and C are defined as two gate cliques. The concourses E and F are much close together and they 

are combined into one gate clique. 

All instances are solved using the VRH algorithm. The parameters of the VRH are 𝑙𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =

60 𝑀𝑖𝑛𝑢𝑡𝑒𝑠  and 𝑁𝑡 = 600. The solution by our model and the operations solution are 

compared to evaluate our solution. The latter reflects the gate reassignments produced by gate 

controllers. They are very experienced and use sophisticated visualization techniques combined 

with trial-and-error to design reassignments.   

Figures 9 shows comparisons between our solution and the operations solution. In Figure 9, 

there are three box-plots with each one representing the gap for one key performance indicator. 

The gap is 
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑜𝑢𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
. A positive gap value indicates our method is better 

than the operations method. The box plot is based on the different instances for each scenario. 

All instances are abbreviated as t=y or dt=y, where d represents a de-peaked flight schedule and 

t=y represents the length of the time window is y. All computational results are described in 

Tables 10-15 in Appendix E.  

In general, our solution has the absolute advantage compared to the operations solution with 

respect to the three most important key performance indicators. Here are the key findings. 

(1) For TFD, the average gap between our solution and the operations solution increases as the 

length of the time window increases. This is expected since the problem scale is not very large 

when the length of the time window is 3 hours, and thus a good solution can be explored by 

manually adjusting the initial gate assignment plan. When the length of the time window 

increases, our method can still provide a high quality solution due to strong exploration capability 

embedded in our method. However, the solution quality of the operations method deteriorates 

since it is hard to find a good solution purely by experienced gate controllers. 

(2) The average gap of NPM increases as the length of the time window increases. As the length 

of the time window increases, it is hard for gate controllers to consider all of the objectives. 

Assigning each aircraft to a gate has a higher priority and passenger considerations are neglected 

to some extent. Therefore, more passenger connections might be missed as the length of time 

window increases.  

(3) The average gap of NGR decreases as the length of the time window increases. One possible 

reason is as follows. As the length of time window increases, our method explores solutions with 

more reassigning operations to decrease total flight delays and the number of missed passenger 

connections. While, for the operations method, the value of NGR has roughly linear relationship 

with the length of the time window. In most instances, the number of NGR of our solution is 

smaller than the value of the operations solution. Therefore, the gap of NGR decreases as the 

length of time window increases. 

(4) The trend of TRC is similar to the trend of NGR as the total re-assignment cost depends on the 
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number of re-assignment operations. More re-assignment operations indicate a higher total 

re-assignment cost. 

 

      

                 (a) TFD                                 (b) NPM 

 

(c) NGR 

 Figure.9 Comparison between our method and the operations method  

Computational performances of our method are summarized in Table 4. For the scenarios in 

which passenger connections are simulated in the peaked flight schedule, the performance of 

our algorithm is very good when the length of the re-assignment time window is 3 hours. Among 

21 instances, our algorithm can get an optimal solution in 15 instances. The largest gap is 6.34% 

and the average gap is 0.7%. The longest computing time is 22.16 seconds. When the length of 

the time window is 6 hours, the largest gap is 8.57% and the average gap is 3.91%. The longest 

computing time is 88.83 seconds. When the length of the time window is 9 hours, the largest gap 

is 12.02% and the average gap is 7.00%. The longest computing time is 232.57 seconds. The 

results are consistent with our intuition. As the length of time window increases, the algorithm’s 

performance deteriorates since more sub-problems are solved in the VRH algorithm. For the 

de-peaked flight schedule, the trend is similar.  

Note that Maharjan et al. [7] proposed a quadratic 0-1 model to solve the gate re-assignment 

problem with connecting passengers. It is well known that quadratic 0-1 models are very difficult 

to solve. For a large-scale problem, it is nearly impossible to provide a solution within 1 hour. Our 

methodology has an obvious advantage over quadratic 0-1 models due to all instances being 

solved within minutes. For this reason we do not present comparative results between our 

method and the quadratic 0-1 model.   

Table 4 Summary of computational results 

  Average CPU seconds Maximum CPU seconds Average Gap Maximum Gap 

peaked  scenario 1 9.15 22.16 1.06% 6.34% 
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 t=3h scenario 2 8.74 12.76 0.56% 3.17% 

scenario 3 5.42 10.50 0.57% 4.14% 

peaked  

t=6h 

scenario 1 54.20 78.10 3.87% 6.97% 

scenario 2 60.03 88.83 4.84% 8.57% 

scenario 3 32.67 77.21 3.00% 7.31% 

peaked  

t=9h 

scenario 1 175.67 232.57 6.57% 7.27% 

scenario 2 125.30 216.69 7.25% 12.02% 

scenario 3 81.04 139.20 6.89% 9.82% 

de-peaked  

t=3h 

scenario 1 9.37 17.10 1.58% 5.34% 

scenario 2 9.30 11.74 0.14% 0.50% 

scenario 3 5.71 9.85 0.40% 1.95% 

de-peaked  

t=6h 

scenario 1 57.28 67.65 3.05% 5.03% 

scenario 2 65.06 92.22 4.94% 7.65% 

scenario 3 27.61 50.55 2.10% 7.59% 

de-peaked  

t=9h 

scenario 1 101.03 103.54 8.48% 8.81% 

scenario 2 217.05 287.12 6.64% 12.61% 

scenario 3 127.73 266.32 7.20% 11.24% 

4.3 Setting parameters’ value 

In Section 4.2, values of the parameters, in particular cost values, are set based on 

approximations. Likewise, in practice, the gate controllers might not be very sure about how to 

set parameter values. In this section, we propose a method based on the Data Envelop Analysis 

(DEA) to help the gate controllers select several potential parameter value settings. There are two 

inputs of this method: (1) several typical instances; and (2) several possible values for each 

parameter.  

Let 𝑃 represent the set of all the parameters which is indexed as 𝑝. Let 𝐼 represent the set of 

all key performance indicators which is indexed as 𝑖. The method is conducted as follows. 

(1) Let 𝛩 represent the set of all possible reasonable parameters’ value settings. For every 𝜃 ∈

𝛩, we solve the MCGRP model and the key performance indicators of the solution is denoted as 

𝑠θ.  

(2) For every 𝜃 ∈ 𝛩, a linear programming model is built to calculate the efficient coefficient of 

𝜃. Model DEA is the standard DEA model. 

Model DEA: 

Min 𝑡θ0
   (9) 

s.t. 

∑ 𝜆𝜃𝜃∈𝛩∕𝜃0
∙ 𝑠𝜃 − 𝑡𝜃0

∙ 𝑠𝜃0  ≥  0 (10) 

∑ 𝜆𝜃𝜃∈𝛩∕𝜃0
∙ 𝜃 − 𝜃0  ≤  0 (11) 

𝜆θ ≥ 0,  𝑡θ0
 unconstrained 

(3) All of the value settings are sorted by the efficient coefficient value 𝑡θ0
 in ascending order. 

Several value settings at the front of the list are recommended to the gate controllers. Once a 

disruption scenario occurs in the future, the gate controllers can try these value settings and 

choose a solution based on the situation at hand. Table 5 illustrates the results of the DEA model 
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for one scenario. The first 10 best parameters value settings can be selected by choosing 10 

parameters value settings with the smallest efficient coefficient value. Based on these parameter 

value settings, several promising solutions can be produced. 

Table 5 Results of DEA model 

Efficient 

coefficient 

value 

Unit reassignment 

cost (USD)  

Flight delay 

cost/Minute 

(USD) 

Gate violation 

cost after window 

(USD) 

Unit crew miss 

connection cost 

(USD) 

Unit passenger miss 

connection cost 

(USD) 

0.6284 150 20 2000 1000 200 

0.6315 150 20 3000 1000 300 

0.6322 100 30 2000 1200 200 

0.6322 150 30 2000 1200 300 

0.6409 150 20 2000 1200 200 

0.6468 100 30 3000 1200 200 

0.6469 150 20 3000 1200 200 

0.6523 150 20 2000 1200 300 

0.6529 150 20 3000 1200 300 

0.6534 100 20 3000 1200 300 

4.4 Sensitivity analysis 

To explore the impact of different parameter values on the solution, sensitivity analysis studies 

are conducted. We conduct three experiments. In the first experiment, three different values of 

the cost of each minute of a flight delay are tested. All other parameter values are fixed. The 

trend of solutions is illustrated in Figure 10. It is obvious that the total flight delays decrease as 

the unit flight delay cost increases. However, more gate re-assignment operations are required to 

accommodate all the aircraft within the recovery time window. In addition, more transfer 

passenger connections are missed because of insufficient connection time. 

 

Figure.10 Illustration of sensitivity analysis 1 

In the second sensitivity analysis, we try to explore the impact of the cost of a unit gate 



23 

re-assignment operation on solutions. The cost of the unit gate re-assignment operation is 

defined as a step function. Notation 0.5X indicates the cost of unit gate re-assignment operation 

is set as 0.5 times the original cost. The trend of solutions is illustrated in Figure 11. The number 

of gate re-assignment operations decreases as the cost of a unit gate re-assignment operation 

increases. In the meanwhile, the total flight delays increase to accommodate more aircraft. We 

also observe that the number of passenger connections missed slightly decreases. 

 

Figure.11 Illustration of sensitivity analysis 2 

In the third sensitivity analysis, we try to explore the impact of the unit cost of missed passenger 

connections on solutions. As illustrated in Figure 12, the trend is similar to the previous two 

experiments. As the cost increases, the total number of missed passenger connection decreases 

while the values of other indicators increase on average. 

 

Figure.12 Illustration of sensitivity analysis 3 
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4.5 Comparison between the MCGR model and recent studies 

In literature, the gate re-assignment problem is typically modeled as an assignment model with 

side constraints [4-6] or a multi-commodity network model [3]. In this section, experimental 

results with respect to model performance are illustrated. We set the time limit as 5 minutes 

based on the gate re-assignment requirement in practice. No passengers are included since they 

require quadratic constraints. All models are directly solved by CPLEX to optimality. Experimental 

results reveal that the optimal solution cannot be achieved within five minutes by solving the 

YModel from Yan et al. [3] except for one instance. However, an optimal solution can be achieved 

within one minute by solving our model. Table 6 illustrates comparisons with respect to the 

number of columns and rows. It clearly reveals that the model size of the YModel is much larger 

than our MCGR model. For a model of a such large scale, it is virtually impossible to get the 

optimal solution within minutes. 

In this section, we also compare the MCGR model with the assignment model [4-6]. The 

assignment model proposed in [4-6] is represented as TModel. Experimental results reveal that 

the optimal solution for all instances can be achived within 5 minutes by solving either our model 

or Tmodel. Therefore, we will compare them from a computational perspective. Four indices are 

used to evaluate these two models’ computational efficiency: no. of columns, no. of rows, no. of 

non-zeros in decision variables and CPU seconds. For each index 𝑖, MCGR𝑖 indicates the value 

of index i for the solution of the model MCGR. Similarly, we define TModel i for the TModel 

model. Value 
(TModel 𝑖−MCGR𝑖)

TModel 𝑖
 defines the gap. If it is a positive value, it indicates the model 

MCGR has a smaller value of index i.  

The comparison between the two models is illustrated in Table 7. The average difference 

between two models in each scenario is illustrated in each row. The results reveal that the 

number of decision variables and constraints in the MCGR model are slightly greater than the 

number in TModel. However, the number of non-zeros in the MCGR model is much smaller than 

the number in TModel. The computational efficiency of a model is highly dependent on the 

number of non-zeros, therefore, the MCGR model achieves on average 71.39% CPU seconds 

improvement compared to the TModel model. 

Table 6 Comparison between the MCGR and YModel models 

  No. of columns No. of rows CPU seconds 

  MCGR YModel MCGR YModel MCGR YModel 

  Average Average Average Average Max Average Max Average 

t=3h Scenario 1 86,734 6,493,902 16,892 127,205 3.82 2.22 >300 >300 

Scenario 2 89,245 7,271,012 18,997 144,220 4.53 2.88 >300 >300 

Scenario 3 90,039 6,706,343 18,965 124,996 3.89 2.56 >300 >300 

t=6h Scenario 1 251,157 100,054,813 36,716 256,814 17.00 12.43 >300 >300 

Scenario 2 247,893 173,799,700 39,243 427,186 16.46 12.20 >300 >300 

Scenario 3 234,622 96,246,346 37,691 289,056 35.87 15.70 >300 >300 

t=9h Scenario 1 425,326 232,090,070 54,668 346,245 45.79 31.70 >300 >300 

Scenario 2 402,889 623,738,361 58,811 702,495 34.72 26.63 >300 >300 

Scenario 3 375,833 237,026,175 55,049 394,990 45.95 38.59 >300 >300 
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Table 7 Comparison between the MCGR and TModel models  

  No. of Cols No. of Rows No. of Non-zeros CPU improvement 

  

t=3h 

scenario 1 -23.65% -1.02% 86.75% 74.95% 

scenario 2 -20.47% -0.88% 86.10% 78.11% 

scenario 3 -21.45% -0.90% 85.43% 78.71% 

 

t=6h 

scenario 1 -12.42% -0.46% 84.00% 71.08% 

scenario 2 -13.27% -0.43% 84.76% 75.88% 

scenario 3 -14.13% -0.45% 83.99% 69.67% 

 

t=9h 

scenario 1 -10.29% -0.31% 83.43% 64.89% 

scenario 2 -11.98% -0.28% 83.32% 72.24% 

scenario 3 -12.13% -0.30% 83.25% 56.97% 

 

5 Conclusions 

In this study, we first build a more efficient multi-commodity network flow model for the gate 

re-assignment problem. Based on this model, we further propose a novel multi-commodity 

network flow model in which passengers are considered. To the best of our knowledge, this is the 

first multi-commodity network flow model for the gate re-assignment problem considering 

connecting passengers. To efficiently solve the models, a guided diving heuristic algorithm and a 

rolling horizon algorithm are proposed. The models and algorithms are tested based on the 

operational data from a large U.S. airline at a big airport. We simulate two different scenarios of 

transfer passenger connections. Several instances with difference length of the re-assignment 

time window are tested. Experimental results reveal that our algorithm can achieve a very good 

performance when the length of the time window is 3 hours. When the length of the time 

window increases, the optimality gap deteriorates. However, the average optimal gap is still less 

than 8%. The solution quality is very good for all time windows with respect to the operations 

solutions.  

Four possible extensions can make this research more interesting. First, in the current research, 

we are considering the gate re-assignment problem for the U.S. airline industry. The gate 

re-assignment problem in the European or Asian airline industry is quite different because gate 

operations are planned by airports. It indicates that the problem scope becomes much larger. 

More efficient algorithms are needed to efficiently solve the gate re-assignment problem in the 

European or Asian airline industry. Second, it is possible to extend our models to solve the gate 

assignment planning problem considering passenger’s transfer distance. Traditionally, the gate 

assignment planning problem considering passenger’s transfer distance is built as a quadratic 0-1 

integer programming model. Our research provides a possible way to model this problem as a 

multi-commodity network flow model. Third, in the current research, we only consider the gate 

re-assignment problem. It might be beneficial to consider the airport ground traffic control 

and/or runway sequencing problems simultaneously with the gate re-assignment problem. 

Fourth, since the objective of the current model is a weighted sum of several components, it is 

possible to propose alternative multi-objective optimization methods to achieve a better 
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trade-off between the different objectives.    
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Appendix A: 

Table 8 Description of snapshots 

Scenario  Time points of snapshots 

Scenario 1 12:20, 13:50, 16:20, 17:50, 19:50, 20:20, 21:20 

Scenario 2  10:50, 11:50, 12:50, 13:50, 14:50, 16:20 

Scenario 3  11:20, 12:50, 13:20, 14:50, 16:20, 17:50, 19:50. 20:50 

 

Table 9 Description of recovery time windows in each instance 

  start time Length of the re-assignment time window 

scenario 1 instance 1 12:20 3h, 6h, 9h 

instance 2 13:50 3h, 6h, 9h 

instance 3 16:20 3h, 6h 

instance 4 17:50 3h, 6h 

instance 5 19:50 3h 

instance 6 20:20 3h 

instance 7 21:20 3h 
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scenario 2 instance 1 10:50 3h, 6h, 9h 

instance 2 11:50 3h, 6h, 9h 

instance 3 12:50 3h, 6h, 9h 

instance 4 13:50 3h, 6h, 9h 

instance 5 14:50 3h, 6h, 9h 

instance 6 16:20 3h, 6h 

scenario 3 instance 1 11:20 3h, 6h, 9h 

instance 2 12:50 3h, 6h, 9h 

instance 3 13:20 3h, 6h, 9h 

instance 4 14:50 3h, 6h, 9h 

instance 5 16:20 3h, 6h 

instance 6 17:50 3h, 6h 

instance 7 19:50 3h 

instance 8 20:50 3h 

Appendix B: 

 

Figure.13 Distribution of passenger connections in the peaked flight schedule  

 

Figure.14 Distribution of passenger connections in the de-peaked flight schedule 
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Appendix C: 

Notations for MCGR: 

𝛱: set of all aircraft equipment types indexed as 𝜋 

𝛲: set of all gates indexed as 𝜌 

A: set of all aircraft indexed as 𝑎 

E: set of all aircraft delay arcs indexed as 𝑒 

𝐸𝑎: set of all aircraft delay arcs corresponding to aircraft 𝑎 

𝑁: set of all nodes (including activity, source and sink nodes) indexed as 𝑛 

𝐺: set of all ground arcs (including wrap-around arcs) indexed as 𝑔 

𝐸𝑖𝑛𝑝𝑢𝑡
𝑛 : set of all aircraft delay arcs with node 𝑛 as tail 

𝐸𝑜𝑢𝑡𝑝𝑢𝑡
𝑛 : set of all aircraft delay arcs with node 𝑛 as head 

𝐺𝑖𝑛𝑝𝑢𝑡
𝑛 : set of all ground arcs with node 𝑛 as tail  

𝐺𝑜𝑢𝑡𝑝𝑢𝑡
𝑛 : set of all ground arcs with node 𝑛 as head  

𝑆: set of all adjacency constraints indexed as 𝑠  

Each adjacency constraint s is represented as (𝜋1, 𝜌1, 𝜋2, 𝜌2). It indicates that two aircraft of 

equipment types 𝜋1 and 𝜋2 cannot be assigned to gates 𝜌1 and 𝜌2 simultaneously. 

𝛵: set of all time points indexed as 𝑡 

𝐸(π,ρ,t): set of all aircraft delay arcs in gate 𝜌’s network pertaining to aircraft of type 𝜋 and 

including time 𝑡.  

𝑐𝑒: cost of aircraft delay arc e  

Notations for MCGRP: 

𝐹: set of all flights indexed as 𝑓 

𝐶𝑜𝑛𝑛: set of all passenger connections indexed as 𝜏 

𝑁𝑝: set of all nodes (including all the passenger de-boarding nodes and boarding nodes, the 

source and sink nodes) indexed as 𝑛 

𝐸𝑝: set of all passenger arcs indexed as 𝜔 

𝐾: set of all gate cliques indexed as 𝑘 

𝐹𝐷𝑓: set of all delay options for flight f indexed as 𝑓𝑑 

𝐸𝑖𝑛𝑝𝑢𝑡
𝑝,𝑛

 : set of all input passenger arcs of node 𝑛 

𝐸𝑖𝑛𝑝𝑢𝑡
𝑝,𝑛

 : set of all output passenger arcs of node 𝑛 

𝐸(τ,𝑓,𝑓𝑑,𝑘)
𝑝

: set of all passenger delay arcs corresponding to pair (𝜏, 𝑓, 𝑓𝑑, 𝑘)  

𝐸(𝑓,𝑓𝑑,𝑘): set of all aircraft delay arcs corresponding to pair (𝑓, 𝑓𝑑, 𝑘) 

𝑐ω
𝑝

: cost of passenger arc 𝜔 

𝑐𝑎𝑛𝑐𝑒𝑙τ: cancellation cost of passenger connection 𝜏 (there may be many passengers involved 

in connection 𝜏; 𝑐𝑎𝑛𝑐𝑒𝑙τ is the summation of the cancellation cost of all these passengers). 

𝑒𝜏
𝑐𝑦𝑐𝑙𝑒

: wrap-around arc in the passenger connection 𝜏’s network 

Appendix D: 

The pseudo-code of the algorithm CGGUB is described as follows. 

Algorithm GDGUB 

Parameters: 
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𝑛𝑓𝑖𝑥: the number of fixed aircraft in each iteration  

𝐿𝑖𝑚𝑖𝑡𝑓𝑖𝑥: the limit of fixed aircraft in each iteration  

Initialization:  

1:  Set the fixed gate clique of each aircraft as null   

2:  Sort all aircraft by the gate arrival time in ascending order 

Loop: 

3:  𝑛𝑓𝑖𝑥 = 0  

4:  Solve the linear relaxation of the MCGRP model 

5:  For each aircraft a, calculate the cumulative fractional value of each gate clique.   

6:    If a gate clique k has the cumulative fractional value of 1 

7:      Fix aircraft a to gate clique k 

8:    else 

9:      Fix aircraft a to gate clique k with the largest cumulative fractional value 

10:     𝑛𝑓𝑖𝑥 = 𝑛𝑓𝑖𝑥 + 1  

11:   end If 

12:   If 𝑛𝑓𝑖𝑥 > 𝐿𝑖𝑚𝑖𝑡𝑓𝑖𝑥 

13:     break the for loop. 

14:   end If 

15:  End For 

16:  For each aircraft 

17:    Remove all aircraft delay arcs violating fixing decisions     

18:  End For 

19:  If each aircraft is assigned to one gate clique 

20:    Solve the restricted integer programming model by CPLEX 

21:  else  

22:    Go to step 3. 

23:  End If 

The pseudo-code of the algorithm VRH is described as follows.  

Algorithm VRH  

Parameters: 

𝑙𝑜𝑣𝑒𝑟𝑙𝑎𝑝 : the overlapped length between two consecutive intervals 

𝑁𝑡: the limit of passenger connections in each interval 

𝑡𝑠: the start time of the current interval 

𝑡𝑒: the end time of the current interval 

TC: it indicates whether the termination condition is satisfied  

Initialization: 

1:  Set 𝑡𝑠 as the start time of the re-assignment time window 

2:  TC = false 

Loop: 

3:  While TC is false 

4:    Set 𝑡𝑒 as the latest time so the number of passenger connections in [𝑡𝑠, 𝑡𝑒] is less then 

𝑁𝑡  

5:    Solve the sub-problem in the interval [𝑡𝑠, 𝑡𝑒] using the GDGUB algorithm 

6:    Update the status of aircraft and gate based on the solution of the sub problem 
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7:    If 𝑡𝑒 is the end time of the re-assignment time window 

8:      TC =true 

9:    Else 

10:     𝑡𝑠 = 𝑡𝑠 + 𝑙𝑜𝑣𝑒𝑟𝑙𝑎𝑝 

11:   End If 

12:  End While 

Appendix E: 

Tables 10-15 describe detailed comparison results. Columns TFD, NDF, NGR, DAR, NKM, NPM and 

TRC show gaps between our and operations solutions for these key performance indicators. The 

gap is calculated as 
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑜𝑢𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
. The column CPU shows the computation 

time in seconds of our solutions. The column OPTGAP shows the optimality gaps of our solutions. 

For all key performance indicators, positive values reflect that our solution is better. The negative 

values are in gray. 

Table 10 Computational results in the peaked schedule (length of time window = 3 hours) 

  TFD NDF  NGR  DAR NKM NPM TRC CPU OPTGAP 

Scenario 1 Instance 1 47.86% 19.57% -1.79% 97.83% 0.00% 100.00% 65.84% 22.164 6.34% 

Instance 2 57.30% 18.97% 56.36% 100.00% 0.00% 100.00% 84.40% 8.746 0.00% 

Instance 3 30.63% 10.61% 46.75% 100.00% 0.00% 60.00% 60.31% 17.049 1.09% 

Instance 4 14.44% -20.45% 65.79% 100.00% 0.00% 100.00% 76.62% 8.768 0.00% 

Instance 5 2.50% -420.00% 85.07% 0.00% 0.00% 0.00% 21.86% 3.847 0.00% 

Instance 6 11.43% -220.00% 86.89% 0.00% 0.00% 0.00% 8.32% 2.308 0.00% 

Instance 7 35.71% -100.00% 84.85% 0.00% 0.00% 0.00% 44.94% 1.149 0.00% 

 Average 28.55% -101.62% 60.56% 56.83% 0.00% 51.43% 51.76% 9.147 1.06% 

Scenario 2 Instance 1 31.79% 15.79% 50.75% 0.00% 0.00% 100.00% 36.15% 12.76 0.00% 

Instance 2 36.07% 10.14% 44.29% 100.00% 0.00% 27.78% 83.69% 9.668 0.00% 

Instance 3 21.47% -6.06% 39.06% 100.00% 0.00% 80.52% 76.05% 6.123 3.17% 

Instance 4 42.01% 17.81% 38.10% 100.00% 0.00% 85.71% 75.00% 9.662 0.00% 

Instance 5 12.32% -1.45% 51.79% 100.00% 0.00% 50.00% 65.91% 9.988 0.19% 

Instance 6 -15.52% -44.44% 66.04% 100.00% 0.00% 100.00% 72.81% 4.217 0.00% 

 Average 21.36% -1.37% 48.34% 83.33% 0.00% 74.00% 68.27% 8.736 0.56% 

Scenario 3 Instance 1 43.35% 25.84% 69.44% 0.00% 0.00% 60.00% 41.73% 9.421 0.00% 

Instance 2 18.26% 7.55% 80.83% 0.00% 0.00% 100.00% 13.87% 7.049 0.00% 

Instance 3 29.01% 7.46% 66.67% 100.00% 0.00% 81.82% 25.97% 10.497 4.14% 

Instance 4 85.92% 81.48% 66.91% 100.00% 0.00% 100.00% 45.81% 5.601 0.00% 

Instance 5 49.02% 50.00% 80.74% 0.00% 100.00% 0.00% 35.07% 4.81 0.45% 

Instance 6 42.86% 48.28% 88.14% 100.00% 66.67% 0.00% 53.65% 3.106 0.00% 

Instance 7 71.88% 53.85% 76.74% 0.00% 100.00% 0.00% 57.14% 2.177 0.00% 

Instance 8 53.57% 64.29% 76.71% 0.00% 0.00% 0.00% 28.99% 0.679 0.00% 

 Average 49.23% 42.34% 75.77% 37.50% 33.33% 42.73% 37.78% 5.417 0.57% 

Total average 34.38% -18.13% 62.86% 57.04% 12.70% 54.56% 51.15% 7.609 0.73% 
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Table 11 Computational results in the peaked schedule (length of time window = 6 hours) 

  TFD NDF  NGR  DAR NKM NPM TRC CPU OPTGAP 

Scenario 

1 

Instance 1 43.02% 24.14% 23.90% 0.00% 0.00% 92.31% 32.15% 78.10  3.29% 

Instance 2 36.91% 15.97% 37.02% 0.00% 0.00% 100.00% 34.86% 58.62  6.97% 

Instance 3 25.90% 0.00% 49.76% 0.00% 0.00% 100.00% 27.01% 62.66  4.01% 

Instance 4 5.21% -32.65% 64.88% 0.00% 0.00% 100.00% 18.06% 17.42  1.21% 

 Average 27.76% 1.86% 43.89% 0.00% 0.00% 98.08% 28.02% 54.198 3.87% 

Scenario 

2 

Instance 1 34.92% 17.11% 16.89% 0.00% 100.00% 76.92% 30.92% 71.22  7.13% 

Instance 2 37.76% 15.58% 13.61% 0.00% 0.00% 75.00% 32.09% 74.97  8.57% 

Instance 3 30.63% -1.53% 3.57% 0.00% 100.00% 55.56% 21.89% 88.83  8.39% 

Instance 4 31.60% 10.38% 24.11% 0.00% 0.00% 55.56% 14.61% 44.25  3.72% 

Instance 5 18.97% -14.12% 26.76% 0.00% 0.00% 40.00% 12.84% 52.96  0.87% 

Instance 6 -30.65% -61.76% 56.85% 0.00% 100.00% 0.00% 0.88% 27.95  0.35% 

 Average 20.54% -5.72% 23.63% 0.00% 50.00% 50.51% 18.87% 60.031 4.84% 

Scenario 

3 

Instance 1 47.59% 21.43% 50.00% 100.00% 0.00% 45.45% 44.83% 59.35  4.60% 

Instance 2 35.59% 14.17% 60.15% 100.00% 100.00% 100.00% 53.20% 29.85  7.31% 

Instance 3 41.77% 24.14% 52.79% 0.00% 0.00% 93.33% 42.27% 77.21  5.67% 

Instance 4 92.25% 92.31% 72.62% 0.00% 100.00% 100.00% 80.97% 13.41  0.00% 

Instance 5 87.21% 81.36% 77.57% 0.00% 60.00% 0.00% 70.18% 10.80  0.42% 

Instance 6 70.97% 69.39% 90.36% 0.00% 80.00% 0.00% 71.00% 5.37  0.00% 

 Average 62.56% 50.46% 67.25% 33.33% 56.67% 56.46% 60.41% 32.662 3.00% 

Total average 38.10% 17.24% 45.05% 12.50% 40.00% 64.63% 36.74% 48.310 3.91% 

Table 12 Computational results in the peaked schedule (length of time window = 9 hours) 

  TFD NDF  NGR  DAR NKM NPM TRC CPU OPTGAP 

Scenario 1 Instance 1 39.59% 22.06% 35.52% 0.00% 33.33% 100.00% 40.79% 232.57  7.27% 

Instance 2 41.95% 21.99% 43.55% 0.00% 100.00% 100.00% 46.26% 118.76  5.86% 

 Average 40.77% 22.02% 39.53% 0.00% 66.67% 100.00% 43.52% 175.665 6.57% 

Scenario 2 Instance 1 35.01% 5.85% 5.56% 0.00% 100.00% 80.00% 30.09% 216.69  12.02% 

Instance 2 40.00% 10.12% 21.61% 100.00% 0.00% 0.00% 30.96% 64.54  11.91% 

Instance 3 39.21% 4.67% 21.09% 0.00% 100.00% 33.33% 29.41% 165.06  7.44% 

Instance 4 47.25% 22.05% 41.89% 0.00% 0.00% 55.56% 42.85% 85.36  3.66% 

Instance 5 38.96% 15.65% 52.48% 0.00% 0.00% 100.00% 43.01% 94.85  1.23% 

 Average 40.09% 11.67% 28.53% 20.00% 40.00% 53.78% 35.26% 125.300 7.25% 

Scenario 3 Instance 1 -93.58% -175.44% 38.87% 0.00% 100.00% 99.16% 59.06% 139.20  9.79% 

Instance 2 41.01% 28.08% 58.99% 0.00% 100.00% 100.00% 52.01% 55.77  7.94% 

Instance 3 40.63% 25.00% 51.62% 0.00% 0.00% 94.29% 46.46% 112.76  9.82% 

Instance 4 91.45% 91.59% 75.35% 0.00% 100.00% 100.00% 81.01% 16.44  0.00% 

 Average 19.88% -7.69% 56.21% 0.00% 75.00% 98.36% 59.64% 81.042 6.89% 

Total average 32.86% 6.51% 40.59% 9.09% 57.58% 78.39% 45.63% 118.363 7.00% 

Table 13 Computational results in the de-peaked schedule (length of time window = 3 hours) 

  TFD NDF  NGR  DAR NKM NPM TRC CPU OPTGAP 

Scenario 1 Instance 1 45.79% 26.60% 12.50% 66.67% 0.00% 100.00% 37.64% 14.92  0.91% 

Instance 2 30.43% 10.64% 54.55% 100.00% 0.00% 0.00% 6.17% 8.08  1.12% 

Instance 3 35.84% 21.62% 46.75% 100.00% 0.00% 40.00% 30.20% 17.10  5.34% 
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Instance 4 19.67% 10.45% 63.16% 0.00% 0.00% 100.00% 24.92% 14.50  1.60% 

Instance 5 22.78% 6.98% 73.13% 0.00% 0.00% 100.00% 24.63% 6.07  2.09% 

Instance 6 17.39% 8.33% 81.97% 0.00% 0.00% 100.00% 16.16% 3.28  0.00% 

Instance 7 25.93% -25.00% 66.67% 0.00% 0.00% 0.00% 22.70% 1.65  0.00% 

 Average 28.26% 8.52% 56.96% 38.10% 0.00% 62.86% 23.20% 9.369 1.58% 

Scenario 2 Instance 1 24.03% 15.94% 46.27% 0.00% 0.00% 100.00% 25.30% 10.57  0.15% 

Instance 2 42.50% 17.65% 57.14% 0.00% 0.00% 85.71% 35.31% 10.63  0.18% 

Instance 3 29.81% 12.50% 50.00% 100.00% 0.00% -27.27% 16.74% 6.85  0.00% 

Instance 4 34.21% 18.06% 53.97% 0.00% 0.00% 71.43% 26.25% 11.74  0.50% 

Instance 5 19.58% -2.90% 32.14% 0.00% 0.00% 70.00% 13.92% 9.75  0.00% 

Instance 6 17.78% -2.50% 66.04% 100.00% 0.00% 100.00% 28.34% 6.27  0.00% 

 Average 27.99% 9.79% 50.93% 33.33% 0.00% 66.65% 24.31% 9.302 0.14% 

Scenario 3 Instance 1 34.69% 20.48% 68.52% 0.00% 0.00% 14.29% 33.46% 8.31  1.95% 

Instance 2 35.83% 21.43% 77.50% 0.00% 0.00% 100.00% 22.55% 7.06  0.00% 

Instance 3 34.67% 13.85% 65.04% 100.00% 0.00% 100.00% 30.28% 9.85  0.83% 

Instance 4 85.51% 82.14% 66.91% 100.00% 0.00% 100.00% 47.39% 6.81  0.00% 

Instance 5 57.38% 55.17% 80.74% 0.00% 100.00% 0.00% 40.03% 5.63  0.45% 

Instance 6 1.59% -10.34% 80.51% 100.00% 66.67% 0.00% 30.48% 4.75  0.00% 

Instance 7 79.37% 75.00% 76.74% 0.00% 100.00% 0.00% 64.64% 2.42  0.00% 

Instance 8 60.61% 68.75% 76.71% 0.00% 0.00% 100.00% 35.04% 0.82  0.00% 

 Average 48.70% 40.81% 74.08% 37.50% 33.33% 51.79% 37.98% 5.707 0.40% 

Total average 35.97% 21.18% 61.76% 36.51% 12.70% 59.72% 29.15% 7.955 0.72% 

Table 14 Computational results in the de-peaked schedule (length of time window = 6 hours) 

  TFD NDF  NGR  DAR NKM NPM TRC CPU OPTGAP 

Scenario 1 Instance 1 46.78% 28.16% 30.24% 0.00% 0.00% 84.85% 35.77% 66.09  3.76% 

Instance 2 45.68% 29.46% 42.79% 0.00% 0.00% 90.91% 43.60% 55.42  3.10% 

Instance 3 49.48% 38.36% 48.31% 0.00% 0.00% 75.00% 45.60% 67.65  5.03% 

Instance 4 36.08% 21.57% 62.50% 0.00% 0.00% 100.00% 35.36% 39.95  0.32% 

 Average 44.51% 29.39% 45.96% 0.00% 0.00% 87.69% 40.08% 57.277 3.05% 

Scenario 2 Instance 1 46.31% 25.47% 12.16% 0.00% 0.00% 100.00% 38.76% 92.22  7.65% 

Instance 2 53.67% 27.33% 16.33% 0.00% 0.00% 100.00% 47.09% 58.09  5.57% 

Instance 3 42.77% 18.87% 13.57% 100.00% 100.00% 84.62% 37.35% 62.27  7.29% 

Instance 4 48.75% 23.61% 20.57% 0.00% 0.00% 77.78% 34.09% 67.43  4.43% 

Instance 5 40.84% 12.33% 20.42% 0.00% 0.00% 100.00% 34.43% 64.28  4.18% 

Instance 6 37.19% 20.21% 50.00% 0.00% 100.00% 66.67% 35.46% 46.09  0.51% 

 Average 44.92% 21.30% 22.18% 16.67% 33.33% 88.18% 37.86% 65.061 4.94% 

Scenario 3 Instance 1 42.07% 19.05% 56.91% 100.00% 0.00% 65.22% 44.48% 50.55  0.90% 

Instance 2 51.71% 28.99% 60.54% 100.00% 100.00% 100.00% 61.95% 43.57  3.71% 

Instance 3 55.37% 35.23% 51.67% 0.00% 0.00% 94.34% 53.32% 39.69  7.59% 

Instance 4 92.17% 92.73% 72.62% 100.00% 100.00% 100.00% 84.21% 14.54  0.00% 

Instance 5 86.59% 81.36% 77.57% 0.00% 66.67% 0.00% 69.37% 11.43  0.42% 

Instance 6 36.73% 25.58% 84.94% 0.00% 80.00% 0.00% 46.90% 5.90  0.00% 

 Average 60.77% 47.15% 67.38% 50.00% 57.78% 59.93% 60.04% 27.614 2.10% 

Total average 50.76% 33.02% 45.07% 25.00% 34.17% 77.46% 46.73% 49.072 3.40% 
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Table 15 Computational results in the de-peaked schedule (length of time window = 9 hours) 

  TFD NDF  NGR  DAR NKM NPM TRC CPU OPTGAP 

Scenario 1 Instance 1 47.74% 30.92% 25.14% 0.00% 33.33% 96.30% 46.62% 98.51  8.81% 

Instance 2 49.53% 32.96% 35.16% 0.00% 100.00% 95.45% 52.71% 103.54  8.14% 

 Average 48.64% 31.94% 30.15% 0.00% 66.67% 95.88% 49.66% 101.025 8.48% 

Scenario 2 Instance 1 46.60% 25.00% 3.17% 100.00% 100.00% 100.00% 42.47% 268.24  12.61% 

Instance 2 51.68% 25.11% 9.52% 0.00% 0.00% 89.47% 43.77% 182.89  7.74% 

Instance 3 50.00% 23.94% 22.91% 0.00% 100.00% 87.50% 44.17% 287.12  4.21% 

Instance 4 58.93% 35.57% 36.15% 0.00% 0.00% 83.33% 53.70% 226.54  3.65% 

Instance 5 51.72% 28.89% 45.04% 0.00% 0.00% 100.00% 51.01% 120.45  5.01% 

 Average 51.79% 27.70% 23.36% 20.00% 40.00% 92.06% 47.02% 217.046 6.64% 

Scenario 3 Instance 1 -123.76% -220.75% 41.29% 0.00% 100.00% 98.39% 52.74% 127.06  6.75% 

Instance 2 55.40% 34.52% 48.31% 0.00% 100.00% 100.00% 60.09% 100.45  10.81% 

Instance 3 55.36% 37.96% 41.30% 0.00% 0.00% 100.00% 56.21% 266.32  11.24% 

Instance 4 92.46% 92.56% 75.35% 0.00% 100.00% 100.00% 85.33% 17.08  0.00% 

 Average 19.87% -13.93% 51.56% 0.00% 75.00% 99.60% 63.59% 127.726 7.20% 

Total average 39.61% 13.33% 34.85% 9.09% 57.58% 95.49% 53.53% 163.471 7.18% 

 


