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Abstract

Convolutional neural networks (CNNs) and transformers, which are composed of mul-
tiple processing layers and blocks to learn the representations of data with multiple
abstract levels, are the most successful machine learning models in recent years. How-
ever, millions of parameters and many blocks make them difficult to be trained, and
sometimes several days or weeks are required to find an ideal architecture or tune the
parameters. Within this paper, we propose a new algorithm for boosting Deep Con-
volutional Neural Networks (BoostCNN) to combine the merits of dynamic feature
selection and BoostCNN, and another new family of algorithms combining boosting
and transformers. To learn these new models, we introduce subgrid selection and im-
portance sampling strategies and propose a set of algorithms to incorporate boosting
weights into a deep learning architecture based on a least squares objective function.
These algorithms not only reduce the required manual effort for finding an appropriate
network architecture but also result in superior performance and lower running time.
Experiments show that the proposed methods outperform benchmarks on several fine-
grained classification tasks.
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1 Introduction
Deep convolutional neural networks (CNNs) and transformers such as BERT have had

great recent success in learning image representations for vision tasks and NLP, respectively.
Given the outstanding results produced by these networks, they have been widely applied
in image classification ([19], [40], [27]), object detection ([15], [21], [39]), speech recognition,
([33], [44], [14]), and language translation ([25], [13], [46]). However, an optimal image or text
representation for each task is unique and finding an optimal deep neural network structure is
a challenging problem. There are some approaches (neural architecture search) for designing
these deep networks such as AutoML for Model Compression (AMC) in [20] and LEAF in
[26], however, these methods require weeks of training on thousands of GPUs. Meanwhile,
ensemble methods for classification and regression have gained a lot of attention in recent
years, which perform, both theoretically and empirically, substantially better than single
models in a wide range of tasks, i.e. boosting decision trees [38]. In order to tackle the design
challenge specifically for CNNs, an idea of combining boosting and shallow CNNs is proposed
in [5]. Their idea is to simplify the complicated design process of deep neural networks by
employing the boosting strategy which combines the strengths of multiple CNNs. However,
the memory requirement and running time become challenging when the weak learner is not
extremely simple. Moreover, very limited contribution has been made to the case when the
weak learner is a transformer. Furthermore, no work has been conducted around the idea of
only using partial data with weak learners.

In this paper, we propose a family of boosting algorithms for images, namely subgrid
BoostCNN, and another family of boosting algorithms for sequences, namely BoostTrans-
former, which are both based on boosting, deep CNNs and transformers. We select a subset
of features for each weak learner, where the concepts are borrowed from random forests.
This strategy requires new ideas in order to accommodate unstructured data. Moreover, we
apply the concept of importance sampling, which assigns a probability to each sample, to
the combination of boosting and a transformer.

Subgrid BoostCNN aims to solve the same problem as deep CNNs but provides higher
accuracy with lower running time and memory requirements. Subgrid BoostCNN builds on
the previous boosting Deep Convolutional Neural Networks (BoostCNN) [5]. One impor-
tant new aspect in subgrid BoostCNN is that it does not require a full image for training a
weak learner; instead, it selects only important pixels based on the gradient from each image
combined with the corresponding residual to train the current weak learner. This implies
breaking the original relationship between a pixel and its neighborhood, thus possibly lead-
ing to noisier training, but the subgrid BoostCNN does reduce computation to important
pixels. Another option to reduce the running time is to skip the optimization process for the
original full CNN, which finds the important pixels for the weak learner. Instead, we borrow
the CNN portion from the last weak learner concatenated with the fully connected layer
used in the first iterate to compute the importance value of each pixel, and train the CNN
concatenated with an appropriate fully connected layer. Consequently, subgrid BoostCNN
does the optimization process once in each iteration, which is the same as BoostCNN, while
subgrid BoostCNN has fewer parameters when compared with BoostCNN. This subgrid trick
is essential especially when the training process for the weak learner is computationally de-
manding. Furthermore, we demonstrate subgrid BoostCNN on three different image datasets
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and argue that subgrid BoostCNN outperforms both BoostCNN and deep CNNs. More pre-
cisely, subgrid BoostCNN improves the accuracies by 1.16%, 0.82%, 12.10% on CIFAR-10,
SVHN and ImageNetSub datasets, respectively, when compared to standard CNN models.
In addition, subgrid BoostCNN obtains accuracies 0.34%, 0.50%, 4.19% higher than those
generated by BoostCNN on the aforementioned datasets, respectively.

BoostTransformer is an algorithm which combines the merits of boosting and trans-
formers. BoostTransformer incorporates boosting weights with transformers based on least
squares objective functions. Motivated by the successful combination of BoostCNN and the
subgrid trick, we propose subsequence BoostTransformer, which does not require the full
data for training weak learners. In subsequence BoostTransformer, important tokens, which
are from the input, are selected for each weak learner based on the attention distribution
[43]. Similarly, we might lose the direct connections between consecutive words, while infor-
mative words are retained for learning. Consequently, subsequence BoostTransformer takes
less time to achieve a better accuracy when compared to vanilla BoostTransformer. More-
over, motivated by the phenomenon that overfitting in BoostTransformer appears early, we
propose a new algorithm, namely importance-sampling-based BoostTransformer, which com-
bines the merits of BoostTransformer and importance sampling. Importance-sampling-based
BoostTransformer first computes a probability distribution for all the samples in the dataset;
then in each iteration, it randomly chooses a subset of samples based on the pre-computed
probability distribution; lastly, similar to BoostTransformer, it trains the weak learner on
the selected samples. This algorithm not only delays overfitting, but also improves the ac-
curacy and significantly reduces the running time. We present a complete technical proof
for importance-sampling-based BoostTransformer showing that the optimal probability dis-
tribution is proportional to the norm of the residuals. Lastly, we conduct computational
experiments demonstrating a superior performance of the proposed algorithms. More pre-
cisely, BoostTransformer provides higher accuracy and more stable solutions when compared
to transformers. Moreover, subsequence BoostTransformer and importance-sampling-based
BoostTransformer not only provide better and more robust solutions but also dramatically
reduce the running time when compared to transformers. Compared to standard trans-
formers, BoostTransformer, subsequence BoostTransformer and importance-sampling-based
BoostTransformer provide an average of 0.87%, 0.55%, 0.79% accuracy improvements, respec-
tively, on IMDB, Yelp and Amazon datasets. Furthermore, subsequence BoostTransformer
and importance-sampling-based BoostTransformer take only two thirds and one half of time
transformers need to learn the datasets, respectively.

In summary, we make the following contributions.

• We provide a better boosting method for deep CNNs, i.e. subgrid BoostCNN, which
requires only important pixels from the image dataset where such pixels are selected
dynamically for each weak learner.

• We provide a boosting method for sequences, i.e. BoostTransformer, which combines
the merits of boosting and transformers.

• We provide a better boosting method for transformers, i.e. subsequence BoostTrans-
former, which does not require the full sequences but only important tokens.
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• We provide another enhancement for BoostTransformer, i.e. importance-sampling-
based BoostTransformer, which combines importance sampling and BoostTranformer.
Moreover, we provide a proof showing that the optimal probability distribution for the
samples is proportional to the norm of the residuals.

• We present numerical results showing that subsequence BoostTransformer and importance-
sampling-based BoostTransformer outperform vanilla transformers on select tasks and
datasets.

The rest of the paper is organized as follows. In the next section, we review several re-
lated works in gradient boosting machine, CNN and transformers. In Section 3, we state
the formal optimization problem and provide the exposition of the subgrid BoostCNN.
In the subsequent section, we propose BoostTransformer, subsequence BoostTransformer
and importance-sampling-based BoostTransformer, followed by the analysis of the optimal
probability distribution for importance-sampling-based BoostTransformer. In Section 5, we
present experimental results comparing the different algorithms.

2 Related Work
There are many extensions of Gradient Boosting Machine (GBM) [34], however, a full retro-
spection of this immense literature exceeds the scope of this work. In this section, we mainly
state several kinds of variations of GBM which are most related to our new algorithms,
together with the two add-ons to our optimization algorithms, i.e. subgrid and importance
sampling.

Boosting for CNNs: Deep CNNs, which have recently produced outstanding perfor-
mance in learning image representations, are capable of learning complex features that are
highly invariant and discriminant [16]. The success of deep CNNs in recognizing objects has
encouraged recent works to combine boosting together with deep CNNs. Brahimi & Aoun
[6] propose a new Boosted Convolutional Neural Network architecture, which uses a very
deep convolutional neural network reinforced by adding Boosted Blocks which consist of a
succession of convolutional layers boosted by using a Multi-Bias Nonlinear Activation func-
tion. Nevertheless, the architecture of the proposed Boosted convolutional neural network
is fixed; it can not dynamically change the number of Boosted Blocks for a given dataset.
Another attempt at combining deep CNNs and boosting is boosted sampling [4], which uses
posterior error maps, generated throughout training, to focus sampling on different regions,
resulting in a more informative loss. However, boosted sampling applies boosting on selected
samples and treats deep CNN as a black box to make a prediction. To enrich the usage of the
information generated by deep CNNs, Lee & Chen [24] propose a new BoostCNN structure
which employs a trained deep convolutional neural network model to extract the features
of the images and then use the AdaBoost algorithm to assemble the Softmax classifiers.
However, it remains unclear how to combine different sets of the features extracted and the
computational cost is high when training several deep CNNs at the same time. To tackle
this problem, Han & Meng [17] propose Incremental Boosting CNN (IB-CNN) to integrate
boosting into the CNN via an incremental boosting layer that selects discriminative neurons
from a lower layer and is incrementally updated on successive mini-batches. Different from
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IB-CNN which only involves one deep CNN, BoostCNN [5] incorporates boosting weights
into the neural network architecture based on least squares objective functions, which leads
to the aggregation of several CNNs. However, the computational and memory demand of
BoostCNN is high when the weak learner is not simple. All of the above train the weak
learners on all features.

Boosting for Recurrent Neural Network (RNN) and Transformer: RNN, long
short-term memory (LSTM) and transformers have been firmly established as state of the art
approaches in sequence modeling and transduction problems such as language modeling and
machine translation ([3], [8], [42], [43]). Some efforts have been made to combine boosting
with RNN or LSTM. Chen & Lundberg [7] present feature learning via LSTM networks
and prediction via gradient boosting trees (XGB). More precisely, they generate features
by performing supervised representation learning with an LSTM network, then augment the
original XGB model with these new generated features. However, the selection of the features
from LSTM is not determined by XGB, which leads to a disconnect between LSTM and XGB.
Another attempt at combining boosting and RNN is the boosting algorithm for regression
with RNNs [2]. This algorithm adapts an ensemble method to the problem of predicting
future values of time series using RNNs as base learners, and it is based on the boosting
algorithm where different points of the time series are emphasized during the learning process
by training different base learners on different subsets of time points. However, combing
boosting and transformers has not previously been investigated . Although, analyses of
attention in Transformer have been explored [9], using the attention distribution in token
selection has not been extensively studied.

Given the fact that importance sampling improves the performance by prioritizing train-
ing samples, importance sampling has been well studied, both theoretically and empirically,
in standard stochastic gradient descent settings [35] [45], in deep learning settings [22], and in
minibatches [10]. As stated in these papers, importance sampling theoretically improves the
convergence rate and is experimentally effective in reducing the training time and training
loss. However, no generalization work has been done in a boosting setting.

3 Algorithms for CNN as Weak Learner
In this section, we provide a summary of BoostCNN and propose a new algorithm, subgrid
CNN, which combines BoostCNN and the subgrid trick.

3.1 Background: Standard BoostCNN

We start with a brief overview of multiclass boosting. Given a sample xi ∈ X and its class
label zi ∈ {1, 2, · · · ,M}, multiclass boosting is a method that combines several multiclass pre-
dictors gt : X → Rd to form a strong committee f(x) of classifiers, i.e. f(x) =

∑N
t=1 αtgt(x)

where gt and αt are the weak learner and coefficient selected at the tth boosting iteration.
There are various approaches for multiclass boosting such as [18], [32], [41]; we use the GD-
MCBoost method of [41], [5] herein. For simplicity, in the rest of the paper, we assume that
d = M .
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Standard BoostCNN [5] trains a boosted predictor f(x) by minimizing the risk of classi-
fication

R[f ] = EX,Z [L(z, f(x))] ≈ 1

|D|
∑

(xi,zi)∈D

L(zi, f(xi)), (1)

where D is the set of training samples and

L(z, f(x)) =
M∑

j=1,j 6=z

e
1
2
[〈yz ,f(x)〉−〈yj ,f(x)〉],

given yk = 1k ∈ RM , i.e. the kth unit vector. The minimization is via gradient descent in a
functional space. Standard BoostCNN starts with f(x) = 0 ∈ Rd for every x and iteratively
computes the directional derivative of risk (1), for updating f(x) along the direction of g(x)

δR[f ; g] =
∂R[f + εg]

∂ε

∣∣∣∣
ε=0

= − 1

2 |D|
∑

(xi,zi)∈D

M∑
j=1

gj(xi)wj(xi, zi)

= − 1

2 |D|
∑

(xi,zi)∈D

g(xi)
Tw(xi, zi), (2)

where

wk(x, z) =

{
−e− 1

2
[fz(x)−fk(x)], k 6= z∑M

j=1,j 6=k e
− 1

2
[fz(x)−fj(x)], k = z,

(3)

and gj(xi) computes the directional derivative along 1j. Then, standard BoostCNN selects
a weak learner g∗ that minimizes (2), which essentially measures the similarity between the
boosting weights w(xi, zi) and the function values g(xi). Therefore, the optimal network
output g∗(xi) has to be proportional to the boosting weights, i.e.

g∗(xi) = βw(xi, zi), (4)

for some constant β > 0. Note that the exact value of β is irrelevant since g∗(xi) is scaled
when computing α∗. Consequently, without loss of generality, we assume β = 1 and convert
the problem to finding a network g(x) ∈ RM that minimizes the square error loss

L(w, g) =
∑

(xi,zi)∈D

‖g(xi)− w(xi, zi)‖2 . (5)

After the weak learner is trained, BoostCNN applies a line search to compute the optimal
step size along g∗,

α∗ = argmin
α∈R

R[f + αg∗]. (6)

Finally, the boosted predictor f(x) is updated as f = f + α∗g∗.
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3.2 Subgrid BoostCNN

When considering full-size images, BoostCNN using complex CNNs as weak learners is time-
consuming and memory hungry. Consequently, we would like to reduce the size of the images
to lower the running time and the memory requirement. A straightforward idea would be
downsizing the images directly. A problem of this approach is that the noise would possibly
spread out to later learners since a strong signal could be weakened during the downsize
process. Another candidate for solving the aforementioned problem is randomly selecting
pixels from the original images, however, the fluctuation of the performance of the algorithm
would be significant especially when the images are sharp or have a lot of noise. In this paper,
we apply the subgrid trick to each weak learner in BoostCNN. The remaining question is
how to select a subgrid for each weak learner. Formally, a subgrid is defined by deleting a
subset of rows and columns. Moreover, the processed images may not have the same size
between iterations, which in turn requires that the new BoostCNN should allow each weak
learner to have a at least different dimensions. However, that impedes reusing weak learner
model parameters from one weak learner iterate to next.

In order to address these issues, we first separate a standard deep CNN into two parts.
We call all layers such as convolutional layers and pooling layers, except the last fully-
connected (FC) layers, the feature extractor. In contrast, we call the last FC layers the
classifier. Furthermore, we refer to g0 as the basic weak learner and all the succeeding gt as
the additive weak learners. Subgrid BoostCNN defines an importance index for each pixel
(j, k) in the image as

Ij,k =
1

|D|
∑

(xi,zi)∈D

∑
c∈C

∣∣∣∣∣∂L(w, g)

∂xj,k,ci

∣∣∣∣∣ , (7)

where xj,k,ci denotes pixel (j, k) in channel c from sample i and C represents the set of
all channels. The importance index of a row, column is a summation of the importance
indexes in the row, column divided by the number of columns, rows, respectively. This
importance index is computed based on the residual of the current predictor. Therefore, a
larger importance value means a larger adjustment is needed for this pixel at the current
iterate. The algorithm uses the importance index generated based on the feature extractor
of the incumbent weak learner and the classifier from g0 to conduct subgrid selection. The
selection strategy we apply in the algorithm is deleting less important columns and rows,
which eventually provides the important subgrid. After the subgrid is selected, subgrid
BoostCNN creates a new tensor xti at iterate t, and then feeds it into an appropriate feature
extractor followed by a proper classifier. The modified minimization problem becomes

L(w, g) =
∑

(xi,zi)∈D

∥∥g(xti)− w(xi, zi)
∥∥2 , (8)

where the modified boosting classifier is

f(x) =
N∑
t=1

αtgt(x
t). (9)
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In this way, subgrid BoostCNN dynamically selects important subgrids based on the updated
residuals. Moreover, subgrid BoostCNN is able to deal with inputs of different sizes by
applying different classifiers. Furthermore, we are allowed to pass the feature extractor’s
parameters from the previous weak learner since the feature extractor is not restricted to
the input size. The proposed algorithm (subgrid BoostCNN) is summarized in Algorithm 1.

Algorithm 1 subgrid BoostCNN
1: Inputs:

number of classes M , number of boosting iterations Nb, shrinkage
parameter ν, dataset D = {(x1, z1), · · · , (xn, zn)} where
zi ∈ {1, · · · ,M} is the label of sample xi, and 0 < σ < 1

2: Initialize:
set f(x) = 0 ∈ RM , P0 = {(j, k)|(j, k) is a pixel inxi}

3: compute w(xi, zi) for all (xi, zi), using (3)
4: train a deep CNN g∗0 to optimize (5)
5: f(x) = g∗0
6: for t = 1, 2, · · ·, Nb do
7: update importance index Ij,k for (j, k) ∈ Pt−1, using (7)
8: select the subgrid based on σ fraction of rows and columns with highest importance

index and let Pt be the set of selected pixels; form a new tensor xti for each sample i
9: construct a new proper weak learner architecture

10: compute w(xi, zi) for all i, using (3) and (9)
11: train a deep CNN g∗t to optimize (8)
12: find the optimal coefficient αt, using (6) and (9)
13: f(x) = f(x) + ναtg

∗
t

14: end for

Subgrid BoostCNN starts by initializing f(x) = 0 ∈ RM . The algorithm first generates
a full-size deep CNN as the basic weak learner, which uses the full image in steps 3-4. After
the basic weak learner g∗0 is generated, in each iteration, subgrid BoostCNN first updates
the importance index Ij,k for each pixel (j, k), which has been used in the preceding iterate
at step 7. In order to mimic the loss of the full-size image, although we only update the
importance indexes for the pixels which have been used in the last iterate, we feed the full-
size tensor to the deep CNN g to compute the importance index. The deep CNN g used in
(7) to compute the importance value is constructed by copying the feature extractor from
the preceding weak learner followed by the classifier in the basic weak learner g∗0. Next,
by deleting less important rows and columns based on Ij,k, which contain 1 − σ fraction of
pixels, it finds the most important subgrid having σ fraction of pixels at position Pt based
on the importance index Ij,k, and forms a new tensor xti in step 8. Note that Pt is not
necessary to be a subset of Pt−1 and actually is rarely to be a subset of Pt−1. This only
happens when the highest importance index at iterate t is also the highest score at iterate
t−1. Next, a new additive weak learner is initialized by borrowing the feature extractor from
the preceding weak learner g∗t−1 followed by a randomly initialized FC layer with the proper
size in step 9. Once the additive weak learner is initialized, subgrid BoostCNN computes
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the boosting weights, w(x) ∈ RM according to (3) and (9), trains a network g∗t to minimize
the squared error between the network output and boosting weights using (8), and finds
the boosting coefficient αt by minimizing the boosting loss (6) in steps 10-12. Lastly, the
algorithm adds the network to the ensemble according to f(x) = f(x) + ναtg

∗
t for ν ∈ [0, 1]

in step 13.

4 Algorithms for Transformer as Weak Learner
In this section, we propose three algorithms combining boosting and transformers from
different perspectives. We assume a BERT-like bidirectional transformer classifier [12] [28].
The first token of each sequence is a special classification token, and the corresponding
final hidden state output of this token is used as the aggregated representation for the
classification.

4.1 Standard BoostTransformer

Inspired by BoostCNN, we propose BoostTransformer which combines boosting and trans-
formers (encoder) together. For a sequence classification problem, we are given a sample
xi ∈ X, which contains a sequence of tokens, and its class label zi ∈ {1, 2, · · · ,M}. The
risk function, the functional gradient and the optimal boosting coefficient αt are exactly the
same as those in (1), (2), and (6), respectively. The algorithm follows standard gradient
boosting machine.

4.2 Subsequence BoostTransformer

Combining the subgrid trick and BoostTransformer means applying the subgrid trick to each
weak learner in BoostTransformer. Different from deep CNNs, transformers are able to deal
with sequences of any length, thus, there is no issue when transferring information from
the current weak learner to the succeeding weak learner. Similar to subgrid BoostCNN, we
denote g0 as the basic weak learner, which deals with the whole dataset, and all the succeeding
gt’s as the additive weak learners. Moreover, subsequence BoostTransformer defines an
importance index for each token w in the vocabulary based on the attention distribution.
More precisely, the importance value of token w is computed by adding two parts; the first
part is the importance of the token w itself, and the second part is the importance of token
w to the remaining tokens in the same sample. In an L-layer transformer for a sequence x of
length s (following [12] we assume that the first token in x is a placeholder, which indicates
that the corresponding token in the final layer is used as the embedding for classification),
and positions 1 ≤ i, j ≤ s, and layer k for 1 ≤ k ≤ L, let the attention from position i to
position j between layer k−1 and k be denoted by a(i, j; k;x). We have

∑s
j=1 a(j, i; k;x) = 1

for every i, k, x. Then, given a transformer with L layers, the self-importance of token w in
position p in a sample xi is

IS(w, xi) =

(
L−1∏
k=1

a(p, p; k;xi)

)
· a(p, 1;L;xi) ≈ a(p, 1;L;xi), (10)
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The importance of token w to others is

IR(w, xi) =

[
L−1∏
k=1

max
j,j 6=p

a(pk−1, j; k;xi)

]
· a(pL−1, 1;L;xi), (11)

where pk−1 = argmaxj,j 6=pa(pk−2, j; k − 1;xi) for k = 2, 3, · · · , L − 1, and p0 = p. The first
term computes the product of the maximum attention values through the path which does
not contain p until the second to last layer. For the second term, as it has been shown in
[12], the classification layer only takes the 1st position of the last transformer layer which
is corresponding to the classification token, therefore, the formula in (11) does not check
all possible attention distributions; instead, it counts the attention value from the position
pL−1 to the 1st position in the last transformer layer directly. After the aforementioned
importance values are computed, the importance value of the vocabulary word ŵ is

I(ŵ) =
∑

xi,w ∈ xi
w = ŵ

(
IS(w, xi) + IR(w, xi)

)
. (12)

Then, the algorithm uses the importance index to select the most important tokens. After
the tokens are selected, subsequence BoostTransformer creates a new sample xti at iterate t,
which contains only the important tokens, and is used by the weak learner. The modified
minimization problem and the boosting weak learner are explicitly presented in (8) and (9),
respectively. The proposed algorithm (subsequence BoostTransformer) is summarized in
Algorithm 2.

Different from standard BoostTransformer, subsequence BoostTransformer first reviews
the whole dataset in steps 3-4 and generates the basic weak learner g∗0. Once the basic
weak learner is created, in each iteration, subsequence BoostTransformer first updates the
attention-based importance vector Iw for any w ∈ Vt−1 in step 7, and selects σ fraction
of the tokens to form the vocabulary set Vt, and lastly constructs a new sample xti by
deleting any tokens not in Vt in step 8. After the new sample xti is constructed, subsequence
BoostTransformer initializes the weights of the current transformer by using the weights in
g∗t−1 and trains the transformer with xti to minimize the squared error in (8) in steps 9-10.
Lastly, the algorithm finds the boosting coefficient αt by minimizing (6) in step 11 and adds
the additive weak learner to the ensemble in step 12.
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Algorithm 2 subsequence BoostTransformer
1: Inputs:

number of classes M , number of boosting iterations Nb, shrinkage
parameter ν, dataset D = {(x1, z1), · · · , (xn, zn)} where
zi ∈ {1, · · · ,M} is the label of sample xi, and 0 < σ < 1

2: Initialize:
set f(x) = 0 ∈ RM , V0 = {w|w ∈ xi for some xi}

3: compute w(xi, zi) for all (xi, zi), using (3)
4: train a transformer g∗0 to optimize (5)
5: f(x) = g∗0
6: for t = 1, 2, · · · , Nb do
7: update importance values Iw for w ∈ Vt−1, using (10), (11) and (12)
8: form Vt ⊂ Vt−1 with |Vt|

|Vt−1| ≈ σ and I(w) > I(w′)∀w ∈ Vt,w′ ∈ Vt−1 \ Vt and form a
new sample xti for each sample i

9: compute w(xi, zi) for all i, using (3) and (9)
10: train a transformer g∗t to optimize (8)
11: find the optimal coefficient αt, using (6) and (9)
12: f(x) = f(x) + ναtg

∗
t

13: end for

4.3 Importance-sampling-based BoostTransformer

Importance sampling, a strategy for preferential sampling of more important samples capa-
ble of accelerating the training process, has been well studied in stochastic gradient descent
(SGD) [1]. However, there is virtually no existing work combining the power of importance
sampling with the strength of boosting. Motivated by the phenomenon that overfitting
appears early in standard BoostTransformer, we propose importance-sampling-based Boost-
Transformer, which combines importance sampling and BoostTransformer. Importance-
sampling-based BoostTransformer mimics importance sampling SGD by introducing a new
loss function and computing a probability distribution for drawing samples. Similarly,
importance-sampling-based BoostTransformer computes a probability distribution in each
iteration, and draws a subset of samples to train the weak learner based on the distribution.
The probability distribution is

P (I = i) =
‖w(xi, zi)‖∑

(xj ,zj)∈D ‖w(xj, zj)‖
, (13)

which yields the new loss function for a subset of samples I to be

L̄I(w, g) =
∑

(xi,zi)∈I

1

|D|P (I = i)
‖g(xi)− w(xi, zi)‖2 . (14)

To any minimization algorithm one would typically use.We then apply any optimization
algorithm with respect to (14) (by further using mini-batches or importance sampling).

The entire algorithm is exhibited in Algorithm 3.
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Algorithm 3 importance-sampling-based BoostTransformer
1: Inputs:

number of classes M , number of boosting iterations Nb, shrinkage
parameter ν, dataset D = {(x1, z1), · · · , (xn, zn)} where
zi ∈ {1, · · · ,M} is the label of sample xi, and 0 < σ < 1

2: Initialize:
set f(x) = 0 ∈ RM

3: compute w(xi, zi) for all xi, using (3)
4: train a transformer g∗0 to optimize (5)
5: f(x) = g∗0
6: for t = 1, 2, · · · , Nb do
7: compute probability distribution Pt, using (13)
8: draw independently |It| samples, which is σ fraction of the samples, based on Pt
9: compute w(xi, zi) for (xi, zi) ∈ It, using (3)

10: train a transformer g∗t to optimize (14) on It

11: find the optimal coefficient αt, using (6) on It

12: f(x) = f(x) + ναtg
∗
t

13: end for

Importance-sampling-based BoostTransformer starts with learning the full-size dataset
and training a basic weak learner in steps 3-4. In each iteration, the algorithm first computes
the probability distribution Pt in step 7 and selects a subset It of samples based on the
distribution in step 8. Once the dataset is created, it computes the weights and trains
a transformer by using the unbiased loss function (14), following by finding an optimal
boosting coefficient in steps 9-12.

In the rest of this section, we provide all analysis of the optimal probability distribution
in importance-sampling-based BoostTransformer. Given current aggregated classifier ft−1 =∑t−1

i=1 g
∗
i , let us define the expected training progress attributable to iteration t as

EPt

[
∆(t)

]
= ‖ft−1 − f ∗‖2 − EPt

[
‖ft − f ∗‖2

∣∣Ft−1] .
Here f ∗ denotes the solution to (1), and the expectation is taken over the probability distri-
bution Pt, and Ft−1 contains the whole history of the algorithm up until iterate t − 1. We
assume that gradient sampling is unbiased. Inspired by the work in [45], we prove that the
optimal probability distribution is proportional to the boosting weight at each iteration.

Theorem 1. In maxPt EPt

[
∆(t)

]
, the optimal distribution for importance-sampling-based

BoostTransformer to select each sample i is proportional to its “boosting weight norm:” , i.e.
(13).

Proof. See Appendix A.

Based on the fact that the new loss function with respect to the probability distribution
is unbiased, we discover that maximizing the improvement of the boosting algorithm is
equivalent to minimizing the functional gradient variance. By applying Jensen’s inequality,
the optimal probability distribution is essentially proportional to the boosting weights, which
are easy to obtain, in boosting algorithms.
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5 Experimental Study
In this section, we first compare subgrid BoostCNN with standard BoostCNN and deep
CNNs, next, we compare the standard transformer, BoostTransformer, subsequence Boost-
Transformer and importance-sampling-based BoostTransformer in the second half of the
section. We conduct experiments on three different datasets for both CNN related and
transformer related algorithms. From all of these datasets, we study the performance of the
boosting technique, the subgrid trick and the importance sampling strategy. All the algo-
rithms are implemented in Python with PyTorch [37]. Training is conducted on an NVIDIA
Titan XP GPU.

5.1 Image

In this subsection, we illustrate properties of the proposed subgrid BoostCNN and compare
its performance with other methods on several image classification tasks. In subgrid Boost-
CNN, the risk function (1) we employ is cross entropy, and the input of each weak learner is
an image with 3 channels which can be handled by standard Conv2d functions in PyTorch.
Meanwhile, we implement the subgrid strategy based on (7) with respect to each pixel (j, k).
We delete approximately 10% of the rows and columns, which implies σ = 81% on the total
number of pixels, and fix the shrinkage parameter ν to be 0.02. In each weak learner, we
apply the ADAM algorithm with the learning rate of 0.0001 and weight decay being 0.0001.

We consider CIFAR-10 [23], SVHN [36] and ImageNetSub [11] datasets as shown in Table
1. For the last dataset, since the original ImageNet dataset is large and takes significant
amount of time to train, we select a subset of samples from the original ImageNet dataset.
More precisely, we randomly pick 100 labels and select the corresponding samples from
ImageNet, which consists of 124, 000 images for training and 10, 000 images for testing. We
denote it as ImageNetSub. Data preprocessing consists of three steps: 1. random resizing
and cropping with output size 224× 224, scale uniformly sampled from [0.08, 1.0] and make
the aspect ratio uniformly sampled from [0.75, 1.33]; 2. random horizontal flipping with
flipping probability 0.5; 3. normalization for each channel.

Number of Training/Testing Samples Number of Classes
CIFAR-10 50k/10k 10
SVHN 73k/26k 10
ImageNetSub 124k/10k 100

Table 1: Image Datasets

For training, we employ three different deep CNNs, which are ResNet-18, ResNet-50 and
ResNet-101. For each combination of dataset/CNN, we first train the deep CNN for a certain
number of epochs, and then initialize the weights in the basic weak learner for the boosting
algorithms as the weights in the deep CNN. In the subgrid BoostCNN experiments, we use
10 CNN weak learners. We train each weak learner for 15 epochs. For comparison, we
train BoostCNN, the ensemble method (without boosting weight update and always using
all features) denoted by e-CNN and the subgrid ensemble method named as subgrid e-CNN
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(without boosting weight update in step 10 in Algorithm 1) for 10 iterates as well. Notice
that subgrid e-CNN essentially mimics random forests. We also train the single deep CNN
for 150 epochs to represent approximately the same computational effort as training 10 CNN
weak learners for 15 epochs.

We start by applying ResNet-18 as our weak learner for all different ensemble methods.
Figures 1, 3 and 5 compare the relative performances with respect to single ResNet-18 vs
the running time. The solid lines in green and yellow show the relative performances of
BoostCNN and subgrid BoostCNN, respectively, while the dotted lines in green and yellow
represent the relative performances of e-CNN and subgrid e-CNN, respectively. As shown
in these figures, taking the same amount of time, subgrid BoostCNN outperforms all of the
remaining algorithms. Furthermore, we observe that subgrid BoostCNN outperforms Boost-
CNN, and subgrid e-CNN has the same behavior when compared with e-CNN. In conclusion,
the subgrid technique improves the performance of the boosting algorithm. Moreover, Fig-
ures 2, 4 and 6 depict subgrid BoostCNN and subgrid e-CNN using three different seeds with
respect to their averages. The solid and dotted lines in the same color represent the same
seed used in corresponding subgrid BoostCNN and subgrid e-CNN. As the figures show, the
solid lines are closer to each other than the dotted lines, which indicates that subgrid Boost-
CNN is more robust with respect to the variation of the seed when compared with subgrid
e-CNN. Furthermore, the standard deviations of the accuracy generated by subgrid e-CNN
and subgrid BoostCNN are shown in Table 2. The standard deviations of the accuracy gen-
erated by subgrid e-CNN are significant compared to those of subgrid BoostCNN, which in
turn indicates that subgrid BoostCNN is less sensitive to the choice of the seed. Therefore,
subgrid BoostCNN is more robust than subgrid e-CNN.

subgrid BoostCNN subgrid e-CNN
CIFAR-10 0.478 2.519
SVHN 0.385 0.891
ImageNetSub 2.489 7.915

Table 2: Standard deviation times 103 of the accuracy results by different seeds
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Figure 1: ResNet-18 on CIFAR-10 Figure 2: Different Seeds

Figure 3: ResNet-18 on SVHN Figure 4: Different Seeds

Figure 5: ResNet-18 on ImageNet-
Sub

Figure 6: Different Seeds

Next, we evaluate relative performances of subgrid BoostCNN using ResNet-50 as the
weak learner on CIFAR-10 and ImageNetSub datasets with respect to the single ResNet-
50. We do not evaluate the relative performances on the SVHN dataset since the accuracy

15



of the single ResNet-50 on the SVHN dataset is over 98%. From Figures 7 and 9, we also
observe the benefits of the subgrid technique. Besides, Figures 8 and 10 confirm that subgrid
BoostCNN is more stable than subgrid e-CNN since the solid series are closer to each other
compared with the dotted series. Furthermore, we establish the relative performances of
subgrid BoostCNN using ResNet-50 as the weak learner with respect to the single ResNet-101
in Figure 11. Although single ResNet-101 outperforms single ResNet-50, subgrid BoostCNN
using ResNet-50 as the weak learner outperforms single ResNet-101 significantly in Figure
11, which indicates that subgrid BoostCNN with a simpler CNN is able to exhibit a better
performance than a single deeper CNN. Lastly, we conduct experiments with ResNet-101 on
the ImageNetSub dataset. From Figure 12, we not only discover the superior behaviors of
BoostCNN, e-CNN, subgrid BoostCNN and subgrid e-CNN over ResNet-101 as we expect,
but also observe the benefit of the subgrid technique.
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Figure 7: ResNet-50 on CIRFAR-10 Figure 8: Different Seeds

Figure 9: ResNet-50 on ImageNet-
Sub

Figure 10: Different Seeds

Figure 11: ResNet-50 on Ima-
geNetSub compared to ResNet-101

Figure 12: ResNet-101 on Ima-
geNetSub
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5.2 Text

In this section, we explore properties of the proposed Boost Transformer, subsequence Boost
Transformer and importance-sampling-based Boost Transformer, and compare their perfor-
mances with other methods on several text classification tasks. In the following experiments,
the weak learner used is RoBERTa-based [28] from the HuggingFace library with only word
embeddings to be pre-trained weights. Using transformer based boosting algorithms, we
train an ensemble of 6 transformers each with 5 epochs (these numbers yield good perfor-
mance). In subsequence BoostTransformer, we pick the most important 80% of the tokens
in the vocabulary and reconstruct the dataset based on this new vocabulary. In importance-
sampling-based BoostTransformer, the first flavor, in each iteration, we select 80% of the
samples based on the probability distribution in (13) without further subsequence tech-
nique. In subsequence importance-sampling-based BoostTransformer, we first select 80% of
the samples based on the probability distribution in (13), and then pick the most important
80% of the tokens in the current vocabulary given by the selected 80% samples, after that,
we reconstruct the dataset based on this modified vocabulary. For comparison, we train
the vanilla transformer and subsequence transformer, which randomly removes 20% of the
tokens and trains the network on the dataset for 30 epochs. To train the model, we use
AdamW [29] with learning rate 10−5, weight decay 0.01 and batch size 16. We use linear
learning rate decay with warmup ratio 0.06.

We start by presenting the three public datasets used: IMDB [30], Yelp polarity reviews
and Amazon polarity reviews [31]. The IMDB dataset, which is for binary sentiment clas-
sification, contains a set of 25,000 highly polar movie reviews for training, and 25,000 for
testing. The Yelp polarity reviews dataset, which is a subset of the dataset obtained from
the Yelp Dataset Challenge in 2015, consists of 100, 000 training samples and 38, 000 testing
samples. The classification task for this dataset is predicting a polarity label by consid-
ering stars 1 and 2 negative, and 3 and 4 positive for each review text. The last dataset
we use is the Amazon polarity reviews dataset, which is a subset of the original Amazon
reviews dataset from the Stanford Network Analysis Project (SNAP). Dealing with the same
classification task as the Yelp polarity review dataset, the Amazon polarity reviews dataset
contains 100, 000 training samples and 25, 000 testing samples. The subsampled datasets
are standard, i.e. we did not create our own subsamples. Empirically we found that a weak
learner with 6 heads and 6 layers achieves good robust performance.

Given the architecture of the weak learner, we start by discussing experiments on IMDB.
In Figure 13, we compare the relative performances of the algorithms with respect to the
vanilla transformer. As it shows, all versions of BoostTransformer do not perform as good
as the standard transformer and subsequence transformer in the first few epochs. However,
they catch up quickly and dominate the performance in the remaining training epochs.
Even more, based on Figure 14, which represents each model’s relative improvement with
respect to its initial weights, all versions of BoostTransformer maintain their performances
as the number of epochs increases, while the performances of the standard transformer and
the subsequence transformer start decreasing and fluctuating dramatically after the first
few epochs, which implies that all versions of BoostTransformer are more robust than the
standard and subsequence transformer.

Next, we evaluate relative performances with respect to the vanilla transformer on the
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Yelp and Amazon polarity review datasets. From Figures 15-18, we discover that the superior
and more robust behavior of boosting algorithms over transformer is vigorous.

19



Figure 13: Relative Accuracy on
IMDB

Figure 14: Improvement on IMDB

Figure 15: Relative Accuracy on
Yelp

Figure 16: Improvement on Yelp

Figure 17: Relative Accuracy on
Amazon

Figure 18: Improvement on Ama-
zon

Furthermore, we zoom in on the performances at iterates larger than 2. In Figures 19-21,
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compared with the standard BoostTransformer, we observe that the subsequence Boost-
Transformer, importance-sampling-based BoostTransformer and subsequence importance-
sampling-based BoostTransformer demonstrate a superior performance. Therefore, we con-
clude that the subsequence and importance sampling techniques are beneficial for the boost-
ing algorithms. Moreover, we observe that the importance-sampling-based BoostTransformer
gradually improves its performance and maintains its performance later on, while the sub-
sequence BoostTransformer hits its best accuracy in early epochs and then starts fluctuat-
ing and decaying. The gap between the importance-sampling-based BoostTransformer and
the subsequence BoostTransformer is more significant on the IMDB dataset, which has a
much smaller size than the Yelp and Amazon polarity review datasets. For the subsequence
importance-sampling-based BoostTransformer, compared to the subsequence BoostTrans-
former, although the subsequence importance-sampling-based BoostTransformer does not
fluctuate and decrease as much as the subsequence BoostTransformer, which is more ob-
vious in a small dataset (i.e. the IMDB dataset), its best accuracy is lower than that of
the subsequence BoostTransformer, which is more obvious in larger datasets (i.e. the Yelp
and Amazon datasets). On the other hand, compared to the importance-sampling-based
BoostTransformer, although the subsequence importance-sampling-based BoostTransformer
obtains its best accuracy earlier than the importance-sampling-based BoostTransformer,
its overall performance fluctuates while the importance-sampling-based BoostTransformer
keeps increasing and maintains its high-quality performance in all of the datasets, which im-
plies that the subsequence importance-sampling-based BoostTransformer is less stable than
the importance-sampling-based BoostTransformer. In conclusion, the subsequence Boost-
Transformer fits well for datasets with enough samples and the importance-sampling-based
BoostTransformer is more suitable for datasets with a limited number of samples.
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Figure 19: IMDB

Figure 20: Yelp

Table 3 illustrates the running time of each algorithm on the different datasets in minutes.
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Figure 21: Amazon

As we see in the table, the subsequence technique not only improves the performance of
the boosting algorithms but also reduces the running time. Furthermore, the importance
sampling technique reduces the running time significantly without hurting the performance.

Trans. subsequence
Trans. BT subsequence

BT
importance-sampling
-based BT

subsequence
importance-sampling
-based BT

IMDB 21 14 23 17 13 12
Yelp 76 52 84 66 52 46
Amazon 75 53 79 58 46 41

Table 3: Running time for different algorithms

In conclusion, a subsequence transformer is a good choice if the running time cost is the
most important concern, however, if accuracy performance is as crucial as the running time,
then the subsequence BoostTransformer is the go-to option since it requires a slight increase
in the running time but provides superior and more robust performance when compared to
the subsequence transformer. In addition, if a dataset has a limited number of samples, i.e.,
it is easy to cause overfitting, then the importance-sampling-based BoostTransformer can
outperform.
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6 Appendix

A Proof of Theorem 1

Proof. Given a probability distribution P for dataset (xi, zi), by assumption, the stochastic
gradient of the loss function is unbiased, i.e.

EP
[
∂L̄i(zi, f(xi))

∂f

]
=
∂R

∂f
, (15)

with

R[f ] =
1

|D|
∑

(xi,zi)∈D

L(zi, f(xi)) = EP
[
L̄i(zi, f(xi))

]
and

L̄i(zi, f(xi)) =
1

|D|P (I = i)
L(zi, f(xi)).

At iterate t, in importance-sampling-based Boosting algorithms, given probability distri-
bution Pt and P i

t = Pt(I = i), the current gradient given a subset It of samples is

ḡI
t

t =
1

|It|
∑

(xi,zi)∈It

∂L̄i(zi, ft−1(xi) + εg(xi))

∂g

∣∣∣∣
ε=0

=
1

|It|
∑

(xi,zi)∈It

1

|D|P i
t

∂Li(zi, ft−1(xi) + εg(xi))

∂g
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ε=0

=
1

|It|
∑

(xi,zi)∈It

1

|D|P i
t

git =
1

|It|

|It|∑
k=1

Gk, (16)

where git = ∂Li(zi,ft−1(xi)+εg(xi))
∂g

∣∣∣
ε=0

and Gk is the random variable corresponding to sample
k. Note that

gt =
∂R[ft−1; g]

∂g
=
∂R[ft−1 + εg]

∂g

∣∣∣∣
ε=0

(17)

and

EPt(Gt) = EPt

[
ḡI

t

t

]
= gt, (18)

due to the unbiased gradient in (15). Given ḡIt

t computed on a subset It with probability
distribution Pt, we consider

EPt

[
∆(t)

]
= ‖ft−1 − f ∗‖2 − EPt

[
‖ft − f ∗‖2

∣∣Ft−1]
= ‖ft−1 − f ∗‖2 − EPt

[∥∥∥ft−1 + αtḡ
It

t − f ∗
∥∥∥2∣∣∣∣Ft−1
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= −2αt
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t
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∣∣∣Ft−1
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− α2

tEPt
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]
. (19)
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By inserting (18) into (19), we have

EPt

[
∆(t)

]
= −2αt 〈ft−1 − f ∗, gt〉 − α2

tEPt

[∥∥∥ḡIt

t

∥∥∥2∣∣∣∣Ft−1
]
. (20)

Thus, maximizing EPt

[
∆(t)

]
is equivalent to minimizing the variance of the gradient, i.e.
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. Consequently, consider
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where the last equality holds due to (18). Continuing, we have
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|D|P i
t

git − gt
∥∥∥∥2
∣∣∣∣∣Ft−1

]
+ EPt

 ∑
(i,j)∈It,i 6=j

<
1

|D|P i
t

git − gt,
1

|D|P j
t

gjt − gt >

∣∣∣∣∣∣Ft−1


=
|It|
|It|2

EPt

[
‖G1 − gt‖2

∣∣Ft−1]+
2

|It|2

(
|It|
2

)
< EPt

[
G1 − gt|Ft−1] ,EPt

[
G2 − gt|Ft−1] >

=
1

|It|
EPt

[
‖G1 − gt‖2

∣∣Ft−1]
=

1

|It|
(
EPt

[
‖G1‖2

∣∣Ft−1]− ‖gt‖2) . (22)

The fifth equality holds since Gi and Gj are independent, moreover, the seventh equality is
valid due to (18). Inserting (22) into (21) yields

EPt

[∥∥∥ḡIt

t

∥∥∥2∣∣∣∣Ft−1
]

=
1

|It| |D|2
∑

(xi,zi)∈D

1

P i
t

∥∥git∥∥2 − 1

|It|
‖gt‖2 + ‖gt‖2 . (23)
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As (23) shows, maximizing EPt

[
∆(t)

]
is equivalent to minimizing 1

P i
t
‖git‖

2. By using the
Jensen’s inequality, it follows that

∑
(xi,zi)∈D

1

P i
t

∥∥git∥∥2 =
∑

(xi,zi)∈D

P i
t

(
‖git‖
P i
t

)2

≥

 ∑
(xi,zi)∈D

∥∥git∥∥
2

, (24)

and the equality holds when P i
t = ‖git‖ /

∑
(xj ,zj)∈D

∥∥gjt∥∥. Note that git = ∂L(zi,ft−1(xi)+εg(xi)
∂g

∣∣∣
ε=0

is proportional to the boosting weights wt(xi, zi) of sample (xi, zi) as stated in (4), therefore,
the claim in (13) follows.
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