
INFORMS Journal on Computing
Vol. 24, No. 1, Winter 2012, pp. 148–164
ISSN 1091-9856 (print) � ISSN 1526-5528 (online) http://dx.doi.org/10.1287/ijoc.1100.0433

© 2012 INFORMS

Computing Near-Optimal Policies in
Generalized Joint Replenishment

Daniel Adelman
Booth School of Business, University of Chicago, Chicago, Illinois 60637,

dan.adelman@chicagobooth.edu

Diego Klabjan
Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208,

d-klabjan@northwestern.edu

We provide a practical methodology for solving the generalized joint replenishment (GJR) problem, based
on a mathematical programming approach to approximate dynamic programming. We show how to

automatically generate a value function approximation basis built upon piecewise-linear ridge functions by
developing and exploiting a theoretical connection with the problem of finding optimal cyclic schedules. We
provide a variant of the algorithm that is effective in practice, and we exploit the special structure of the GJR
problem to provide a coherent, implementable framework.

Key words : approximate dynamic programming; piecewise-linear ridge functions; generalized joint
replenishment

History : Accepted by Karen Aardal, Area Editor for Design and Analysis of Algorithms; received July 2009;
revised July 2010; accepted August 2010. Published online in Articles in Advance February 2, 2011.

1. Introduction
In the generalized joint replenishment (GJR) problem,
a controller continuously monitors inventories for a
finite set of items I. An item may represent a prod-
uct, a single-item location, or a product–location pair.
The inventory of each item i ∈ I is infinitely divis-
ible, is consumed at a constant deterministic rate of
0 < �i < �, and costs the firm 0 ≤ hi < � per unit
per time to hold. It also cannot exceed a maximum
allowable inventory level of 0 < ±Xi ≤ �. For each i, to
avoid degenerate cases, we assume that either hi > 0
or ±Xi <� (or both). As inventories continuously
deplete, the controller may at any time replenish
a subset I ⊆I of items, which incurs an ordering
cost of 0 < CI < � and is completed instantaneously.
Without loss of generality, we assume CI1

≤ CI2
if

I1 ⊆ I2, because otherwise the controller can replen-
ish I1 by executing I2 without replenishing items I2\I1.
Although we can accommodate different item sizes,
we assume for simplicity that all demands and inven-
tories are measured in the same units, e.g., liters, and
that no more than 0 < Ā≤ � total units can be replen-
ished across all items in a single replenishment. The
controller’s problem is to minimize the long-run time
average cost, subject to allowing no stockouts.

To help us motivate and illustrate ideas, we carry
the following numerical example throughout the
paper.

Example 1. Consider an instance of the determin-
istic inventory routing problem with two customers,

labeled A and B. They are geographically distributed
at distances as shown in Figure 1, relative to the stor-
age depot from which all deliveries commence. There
are three possible replenishment subsets with costs
C8A9 = 50, C8B9 = 50, and C8AB9 = 85. Customers A and
B have storage limits of ±XA = 2 and ±XB = 3, respec-
tively, and demand rates of �A = �B = 1. There are
no holding costs. Delivery vehicles have a storage
limit of Ā= 5, which is effectively infinite because
±XA + ±XB ≤ Ā.

We can immediately identify three schedules,
although there are uncountably infinite others.

• Direct shipment: Whenever a customer stocks
out, replenish them with a vehicle that visits only
that one customer and fills them up. Under this
schedule, customer A will receive replenishments at
rate �A/±XA = 1/2 with an average cost rate of 50/2.
Likewise, customer B will receive replenishments at
rate �B/±XB = 1/3 with an average cost rate of 50/3.
Therefore, the total cost rate of this schedule equals
50/2 + 50/3 ≈ 410667.

• Universal shipment: Synchronize replenish-
ments so that both customers A and B always stock
out at the same time and are replenished together
with the same vehicle. The cheapest such schedule
replenishes two units to each customer and generates
a cost rate of 425 + 35 + 255/2 = 85/2 = 4205. Hence,
this schedule is less desirable than direct shipment.

• Four-step cyclic schedule: Consider the follow-
ing sequence of replenishments, starting from state

148

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Adelman and Klabjan: Computing Near-Optimal Policies in Generalized Joint Replenishment
INFORMS Journal on Computing 24(1), pp. 148–164, © 2012 INFORMS 149

BA

Depot

25

35

25

Figure 1 Numerical Example Based on the Deterministic Inventory
Routing Problem

vector x = �010� denoting both customers are stocked
out. The first replenishment delivers quantity 2 to
customer A and quantity 3 to customer B, which
we denote by A2B3. This instantaneously brings the
inventories up to level �213�, and then customer A
stocks out again after two time units when customer B
has inventory level 1; i.e., the next state is �011�. Now
fill customer A up to his maximum inventory level.
Continuing in this manner, we produce the follow-
ing cyclic schedule having time length 6 and which
eventually leads again to state vector x = �010�:

�010�
A2B3
−→ �011�

A2
−→ �110�

B3
−→ �012�

A2
−→ �010�0

The cost rate of this cyclic schedule is 485 + 50 + 50 +

505/6 ≈ 390167. This beats the other two policies by 6%.

Is the above four-step cyclic schedule optimal?
Until now, there has not existed a general, practical
method for either constructing this schedule, or even
proving that it is optimal. That is the main purpose
of this paper.

GJR can be modeled as an infinite-dimensional lin-
ear program. Klabjan and Adelman (2007) devised a
theoretical solution algorithm and proved that it con-
verges. This algorithm is based on making a value
function approximation using piecewise-linear ridge
functions, which are shown to be dense in the space
of all Borel measurable bounded functions, except
on a set of measure zero, and are therefore able to
approximate nearly any function arbitrarily closely.
Such functions are superpositions of linear functionals
and piecewise-linear functions. The algorithm solves
the problem by automatically generating new basis
functions as part of the overall value function approx-
imation. This is the first and only known algorithm
in approximate dynamic programming to do this, and
it is the first to even provide a theoretical viewpoint
to dynamically generate basis functions. Rather than
blindly refining a discrete lattice, or mesh, for state-
action spaces to approximate the dynamic program-
ming problem, we show how to judiciously add

breakpoints to our functional approximation using
duality theory. However, the algorithm’s convergence
is based on solving a hard nonlinear integer program-
ming problem, termed in this document as the 4r1 b5-
generation problem, to optimality; in fact, there is no
practical way of solving this problem optimally. Fur-
thermore, even if this problem could be solved to
optimality, we lack an analysis of the convergence rate
in terms of number of the breakpoints and ridge vec-
tors needed to achieve a given optimality tolerance.

In the present paper, we provide a practical approx-
imate algorithm that generates a feasible solution to
the 4r1 b5-generation problem. We prove that it is
guaranteed to improve the value function approxima-
tion by cutting off the current solution to the semi-
infinite linear program that arises under the ridge
function approximation, thereby improving the result-
ing lower bound. We do this by providing new theory
that connects the underlying optimization problems
to the problem of finding an optimal cyclic sched-
ule. Based on extensive numerical experience, we then
modify this basic algorithm to one that works well in
practice for GJR. To our knowledge, this is the first
practical algorithm for constructing provably optimal
schedules for GJR.

In principle, our ideas can be applied to any deter-
ministic semi-Markov decision process (SMDP) on
continuous spaces. We present many ideas in this gen-
erality and discuss their broader applicability in the
conclusion section. In the special case of the GJR prob-
lem, we provide mixed-integer programming formu-
lations of the control policy and separation problems.
We pull the various components together to formulate
a single algorithmic approach for computing near-
optimal control policies. We demonstrate numerical
performance on several problem instances of the GJR
problem and show superiority relative to an optimal
fixed-partition policy as well as near optimality rel-
ative to the best lower bound obtained. The fixed
partitioning policy a priori partitions the customers
into clusters and replenishes all customers in a cluster
with a single dispatch.

We provide the first practical algorithm for the gen-
eralized joint replenishment problem that produces
solutions that are either provably optimal or have
a performance guarantee below 2%. Another contri-
bution of our work is the generality of the stud-
ied problem and algorithm. Most of the prior work
either assumes holding cost or storage/replenishment
constraints, but not both. In addition, much of the
past work assumes so-called major/minor fixed costs.
We can handle arbitrary costs not requiring standard
properties such as submodularity or the major/minor
structure on subsets of items to replenish. In design-
ing the algorithm, we also provide a few results per-
taining to cyclic schedules that repeat states in a

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Adelman and Klabjan: Computing Near-Optimal Policies in Generalized Joint Replenishment
150 INFORMS Journal on Computing 24(1), pp. 148–164, © 2012 INFORMS

cyclical form, which build an intuitive understanding
of how to cut off noncyclic solutions (solutions that
never repeat a state) through additional breakpoints
in piecewise-linear functions. These results are inter-
esting in their own right.

To make this paper as self-contained as possible,
we review in §2 the basic models and value function
approximation taken from previous work. In §3 we
present specialized models of the separation and pol-
icy subproblems for GJR and specify the algorithm
for policy simulation. In §4 we make theoretical con-
nections between the problem of finding (near) opti-
mal cyclic schedules and 4r1 b5-generation. We use this
theory to help motivate a practical algorithm, pre-
sented in §5. Last, we present numerical results in §6.
We conclude the introduction with a literature review.

1.1. Literature Review
Theoretical and algorithmic approaches to deter-
ministic inventory control problems, based on a
mathematical programming approach to approximate
dynamic programming, originated in Adelman (2003).
Adelman considers the special case of the deter-
ministic inventory routing problem without hold-
ing costs (see Dror 2005 for a recent review of the
inventory routing literature). It makes several novel
contributions that include formulating the problem
as a semi-Markov decision process and studying
the theoretical structure and algorithmic performance
that arise under an affine value function approxi-
mation. Although policy performance was shown to
be good in numerical instances, in some instances
there still remained a significant gap between the pol-
icy performance and lower bound. The work lacks a
methodology for closing this gap, and it also does not
model holding costs. We provide such a methodol-
ogy in this paper, and our numerical results demon-
strate that usually it is the affine lower bound that is
weak rather than the affine policy. This is important
because the affine value function approximation case
is numerically efficient and scalable.

Other work on approximate dynamic programming
includes Powell (2007), who considers a simulation-
based approach for updating value function approx-
imations using policy gradients. Schweitzer and
Seidmann (1985) were the first to consider the
linear programming approach to computing func-
tional approximations to the dynamic programming
value function. This was more recently considered in
de Farias and Van Roy (2003).

Until recently, no one had even proven the existence
of an optimal policy for GJR. Adelman and Klabjan
(2005) formulate the problem with holding costs and
use new theory developed in Klabjan and Adelman
(2006) to prove existence. This new theory establishes
the existence of a solution (almost everywhere) to

the dynamic programming optimality equation using
infinite-dimensional linear programming. This was
needed to overcome technical problems that arose
as a result of having a deterministic transition ker-
nel and continuous state and action spaces. Adelman
and Klabjan (2005) also characterize the relationship
between these infinite-dimensional linear programs
and cyclic schedules. They prove that cyclic schedules
are �-optimal although not necessarily optimal.

2. Preliminaries
2.1. Basic Models
In this section we present the general dynamic
programming formulation and associated infinite-
dimensional linear programs, which appear in previ-
ous works.

2.1.1. Semi-Markov Decision Process. Consider a
deterministic SMDP defined on a state space X and
action space A, both assumed to be Borel spaces. For
each x ∈ X, let A4x5 ⊆ A be a nonempty Borel sub-
set that specifies the set of admissible actions from
state x. We denote the collection of state-action pairs
as K = 84x1 a52 x ∈X1a ∈A4x59, assumed to be a Borel
subset of X × A. Upon taking action a in state x,
a cost c4x1 a5 is incurred, and then the system tran-
sitions to some state s4x1 a5 after a time duration of
length �4x1a5, all with probability one. We assume
that c2 K → �, s2 K → X, and �2 K → 601�5 are
measurable on K. Let 8xn1 an1 tn9n=0111000 ∈ 4K× 601�55�

denote any infinite sequence of state-action pairs and
transition times. Suppose f 2 X → A is a measurable
decision function that specifies for every x ∈ X some
action a ∈ A4x5. Define the long-run average cost of
the system under control f , starting from an initial
state x0 ∈X, as

J 4f 1 x05= lim sup
N→�

∑N
n=0 c4xn1 f 4xn55
∑N

n=0 tn
0

The problem

J 4x05= inf
f 2X→A

J 4f 1 x05 (1)

finds an optimal decision rule f ∗ from starting
state x0. Adelman and Klabjan (2005) provide condi-
tions satisfied for the generalized joint replenishment
problem and that we assume hold throughout this
paper, under which there exists an f ∗ such that � =

J 4f ∗1x05= J 4x05 for every x0 ∈X. Such a decision rule
is said to be long-run time average optimal in the class
of stationary deterministic decision rules from every
starting state.

The generalized joint replenishment problem can be
formulated within this framework as a special case.
Define the state space as the Borel space

X = 8x ∈��I�

+ 2 there exists j ∈I with xj = 01x ≤ ±X91

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Adelman and Klabjan: Computing Near-Optimal Policies in Generalized Joint Replenishment
INFORMS Journal on Computing 24(1), pp. 148–164, © 2012 INFORMS 151

where ��I�

+ is the nonnegative orthant, and given a
finite set S, we denote by �S� its cardinality. It is easy
to see that we replenish only if at least one item stocks
out. (If all items have positive inventory, we can post-
pone the replenishment to a later time, and this would
not increase the overall cost.) For every state x ∈ X,
the action space is the nonempty Borel subset of A=

8a ∈��I�

+ 2
∑

i∈I ai ≤ Ā9 defined by

A4x5=

{

a ∈��I�

+ 2
∑

i∈I

ai ≤ Ā1 x+ a≤ ±X

}

0

For all 4x1 a5 ∈ K, the cost of taking action a in state
x is c4x1 a5 given by the sum of fixed ordering costs
and holding costs; i.e.,

c4x1 a5=Csupp4a5 +
∑

i∈I

hi

2�i

42aixi + a2
i 51 (2)

where we denote by supp4a5 the support set of a. The
first term in the holding cost expression accounts for
cost accrued by a replenishment of quantity ai while
the existing inventory xi of item i depletes. For every
4x1 a5 ∈K, define the transition time by

�4x1a5= min
i∈I

{

xi + ai
�i

}

1 (3)

which may equal 0 if not all stocked-out items are
replenished. In addition, in the context of dispatch-
ing items to customers, this allows a customer to be
served several times in the same time instant; how-
ever, from the modeling perspective such a case corre-
sponds to two distinct actions and cost accruals. The
next inventory state is then given by the function

s4x1 a5= x+ a−��4x1a50

The average cost optimality equation is

u4x5 = inf
a∈A4x5

8c4x1 a5−��4x1a5+u4s4x1 a559

for every x ∈X1 (4)

where � ∈� and u ∈�4X5. The constant � defined ear-
lier is the optimal loss, whereas u4x5 is the bias func-
tion and reflects transient costs starting from state x.

2.1.2. Infinite Linear Programming. Let q = �I�.
Given a Borel space Z, we denote by �4Z5 the set of
all measurable functions on Z. The set of all measures
on Z is denoted by 4Z5. Both of these sets can be
equipped with a norm and become Banach spaces.
Let also B4X5 be the Borel �-algebra in X.

The optimality equation (4) can be solved almost
everywhere through an infinite-dimensional linear
program. The primal problem (P) is

inf
∫

K
c4x1 a5�4d4x1a551 (5a)

∫

K
�4x1a5�4d4x1a55= 11 (5b)

�44B×A5∩K5−�484x1a5 ∈K2 s4x1 a5 ∈ B95= 0

for every B ∈B4X51 (5c)

�≥ 01 � ∈4K53 (5d)

and the corresponding dual problem (D) reads

sup�

�4x1a5�+u4x5−u4s4x1 a55≤ c4x1 a5

for every 4x1 a5 ∈K� ∈�1 u ∈�4X50

(6)

Dual problem (D) results by relaxing (4) into less-than
or equal-to inequalities and considering the fact that
a value is less than or equal to the infimum over a
set if the value is less than or equal to every element
in the set. The decision variables of the primal prob-
lem are measures. The objective function (5a) captures
the objective function in a spirit similar to more tradi-
tional finite linear programs. Constraints (5c) can be
interpreted as flow conservation. They state that for
each set B the measure of all state-action pairs that
transition to a state in B must be equal to the measure
of the set “itself”—B × A. The remaining constraint
(5b) has a normalizing effect.

We denote by min4P5 and max4D5 the optimal val-
ues of the primal and dual programs, respectively.
Adelman and Klabjan (2005) prove that strong duality
holds between these programs.

2.2. Value Function Approximation
Because we cannot solve (P ) exactly, we next describe
a general class of value function approximations.
What makes this class special is that it is dense, mean-
ing that it has sufficient fidelity to approximate any
bounded measurable function on a compact domain
arbitrarily closely.

2.2.1. Ridge Functions. Piecewise-linear func-
tions are attractive from a computational standpoint.
Single-variate functions are also easy to encode.
However, how do we efficiently encode piecewise-
linear functions on a high-dimensional domain?
Suppose we are given a collection of n continuous
piecewise-linear functions f j 2 �→�. Let us associate
with each function f j a ridge vector r j ∈ �q , so that
for any x ∈ X and j ∈ 6J 7 = 81121 0 0 0 1 J 9 we can
evaluate each function f j at r jx. In a more general
context, ridge functions in mathematics are defined as
f 4g4x55, where g is a functional and f a single-variate
function.

Let � ∈ � and v ∈ �q . Then, we approximate the
bias function u with an affine function of state plus
piecewise-linear ridge functions; i.e.,

u4x5≈ �− vx−
∑

j∈6J 7

f j4r jx5 x ∈X1

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Adelman and Klabjan: Computing Near-Optimal Policies in Generalized Joint Replenishment
152 INFORMS Journal on Computing 24(1), pp. 148–164, © 2012 INFORMS

1

Hi
j

Hi+1
j

bi–1
j bi+1

j bi+2
jbi

j

Figure 2 H j
i and H j

i+1 Functions

where the second term adds piecewise-linear func-
tions, each of which is evaluated at a different scalar
product. We subtract terms from the constant � to
facilitate interpretation, because intuitively greater
inventory levels should decrease the bias because
replenishment costs become less imminent.

We also express the loss as

�=
∑

i∈I

�ivi + �̂0 (7)

This produces a decomposition of the loss into a
marginal value vi for each item i, which has manage-
rial meaning. Here, �̂ has an identical interpretation
as � except that it refers to the approximate setting,
and it is offset by marginal value contributions v.

Rather than work with the functions f j directly, it
is convenient to decompose them into linear combi-
nations of what are called hat functions, or B-splines
of degree 1. Let b

j
0 < b

j
1 < · · · < b

j
mj

< b
j
mj+1 for j ∈ 6J 7 be

real numbers in an interval 6−ì1ì7, except that bj0 <
−ì and b

j
mj+1 >ì. Each such ordered set of numbers

is denoted by bj , and this is the set of breakpoints in
function f j . For each j ∈ 6J 7 and i ∈ 6mj 7, let the hat
function H

j
i 2 6−ì1ì7→� be defined as

H
j
i 4z5=











































z− b
j
i−1

b
j
i − b

j
i−1

b
j
i−1 ≤ z≤ b

j
i 1

b
j
i+1 − z

b
j
i+1 − b

j
i

b
j
i ≤ z≤ b

j
i+11

0 otherwise.

Note that H
j
i 4b

j
i 5 = 1 and supp4H j

i 5 = 4b
j
i−11 b

j
i+15; see

Figure 2. As the following proposition shows, we can
then express

f j4r jx5=

mj
∑

i=1

w
j
iH

j
i 4r

jx51 x ∈X1

for some set of weights w
j
i ∈�, j ∈ 6J 7, i ∈ 6mj 7.

Proposition 1 (Klabjan and Adelman 2007). The
following properties hold for every j ∈ 6J 7 and i ∈ 6mj 7:
1. f j is continuous piecewise linear with breakpoints bji

and f j4b
j
i 5=w

j
i .

2. The slope of f j in 6b
j
i 1 b

j
i+17 is

w
j
i+1 −w

j
i

b
j
i+1 − b

j
i

0

3. If z ∈ 6b
j
i 1 b

j
i+17, then

f j4z5 = w
j
iH

j
i 4z5+w

j
i+1H

j
i+14z5

= w
j
i

b
j
i+1 − z

b
j
i+1 − b

j
i

+w
j
i+1

z− b
j
i

b
j
i+1 − b

j
i

0

Using hat functions for a fixed collection of ridge
vectors and breakpoints, our approximation to the
bias function becomes

u4x5≈ �− vx−

J
∑

j=1

mj
∑

i=1

w
j
iH

j
i 4r

jx5 x ∈X1 (8)

where �, v, and w are unknowns. Without loss of gen-
erality, we assume that all ridge vectors are nonzero.
Because hat functions encode piecewise-linear func-
tions, we implement them using mixed-integer pro-
gramming (Croxton et al. 2003). We suppress this
in what follows whenever we write f j . See Klabjan
and Adelman (2007) for more discussion on ridge
functions.

2.2.2. Semi-Infinite Linear Programs. By plug-
ging approximations (7) and (8) into (D), we obtain
the problem of finding weights w and values �, v
that give the largest dual objective value. It is a linear
semi-infinite program, which we denote by (DW).

sup
∑

i∈I

�ivi + �̂1 (9a)

�4x1a5�̂+
∑

i∈I

aivi +

J
∑

j=1

mj
∑

i=1

w
j
i 6H

j
i 4r

js4x1 a55−H
j
i 4r

jx57

≤ c4x1 a5 for every 4x1 a5 ∈K1 (9b)

�̂ ∈�1v ∈�q1w unrestricted. (9c)

The parameter � cancels out. The dual (PW) of (DW),
which we consider the “primal problem,” is

inf
∑

4x1a5∈T

c4x1 a5zx1a1 (10a)

∑

4x1 a5∈T

�4x1a5zx1a = 11 (10b)

∑

4x1 a5∈T

aizx1a = �i i ∈I1 (10c)

∑

4x1 a5∈T

H
j
i 4r

js4x1 a55zx1a −
∑

4x1 a5∈T

H
j
i 4r

jx5zx1a = 0

j ∈ 6J 71 i ∈ 6mj 71 (10d)

z≥ 01 supp4z5= T 1 �T �<�0 (10e)

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Adelman and Klabjan: Computing Near-Optimal Policies in Generalized Joint Replenishment
INFORMS Journal on Computing 24(1), pp. 148–164, © 2012 INFORMS 153

The decision variable zx1a represents the state-action
frequency for pair x1a. Requirement (10b) corresponds
with the �̂ variable, (10c) corresponds with the v
variables, and (10d) corresponds with the w vari-
ables. Under two additional conditions satisfied by the
generalized joint replenishment problem, and which
we assume in the remainder of this paper, Klabjan
and Adelman (2007) show that strong duality holds
between these programs; i.e., (PW) and (DW) are solv-
able and there is no duality gap. Furthermore, because
we are restricting the feasible dual space, we have

min4PW5= max4DW5≤ max4D5= min4P50

Example 2. Consider the pair (PW)–(DW) with an
affine value function approximation. This means there
are no hat functions, i.e., J = 0, so that the approxima-
tion becomes

u4x5≈ �− vx x ∈X1

�= �v+ �̂0

In our numerical example, an optimal solution sets
� = 0, vA = 25, vB = 110667, and �̂= 0, so that �= 25 +

110667 = 360667 provides a lower bound on the long-
run average cost rate of any policy. A corresponding
dual optimal solution, e.g., to (PW), is

z�010�1 �213� = 1/3 z�011�1 �210� = 1/60

If a schedule can be constructed that corresponds
with this solution (or that has a cost rate of 36.667),
then it is optimal. Figure 3 attempts to construct an
inventory trajectory that implements this z solution.
The positive vertical axis corresponds with the inven-
tory of customer A, whereas the negative axis corre-
sponds with the inventory of customer B. Although
both replenishments can be executed, they lead to
inventory state �110�, for which there is no z variable.
Hence, the z solution is not implementable, and we
can only say that the cost rate of 36.667 is a lower
bound whose tightness is indeterminable.

3. Optimization
Our algorithm relies on solving the primal–dual pair
(DW)–(PW). To this end, in this section we assume
that the breakpoints and ridge functions are given,
and thus we optimize to find the best weights w.
These weights uniquely specify an approximate value
function. Given weights, we check if the correspond-
ing dual solution obtained by (PW) is feasible to the
exact primal problem (P). If it is, the solution is opti-
mal. Otherwise, we use the approximate value func-
tion to construct a greedy policy, which looks ahead
several decision epochs. If the value of this policy is
within a given tolerance to the lower bound, we stop.

1

3

2

2

1

31 2
Time

Item A

Item B

?

Figure 3 Attempted Trajectory to Implement the z Solution

Otherwise, we study the underlying infeasibility, and
based on an infeasible constraint, we either generate
a new breakpoint for an existing ridge vector or find
a new ridge vector. The procedure is then repeated by
again solving (DW)–(PW).

We note that (DW) is solved by row generation
because it is a semi-infinite linear (or quadratic in the
presence of holding costs) program. We next formu-
late the basic optimization problems that need to be
solved. The first one generates rows for solving (DW),
whereas the second one implements the control pol-
icy. As we will see, they are closely related.

3.1. Separation Problem
We can solve (DW) using row generation, by solving
the separation problem. Given �̂1w, we want to find
the most violated constraint (9b) or assert that none
exists. The general separation problem reads as

ê4�̂1w1v5

= min
4x1 a5∈K

(

c4x1 a5− �̂�4x1 a5−
∑

i∈I

viai

−

J
∑

j=1

mj
∑

i=1

w
j
i 6H

j
i 4r

js4x1 a55−H
j
i 4r

jx57

)

0 (11)

When the myopic problem min4x1a5∈K8c4x1 a5 −

�̂�4x1 a59 has a sufficient structure, then the overall
separation problem can be formulated as a mixed-
integer program because the value function approx-
imation terms are piecewise-linear functions. In the
special case of the GJR problem, we can formu-
late this as the following mixed-integer quadratic
program. Let f j4r jx3wj1 bj5 denote the value of
the jth piecewise-linear function evaluated at the
scalar r jx, given weights wj and breakpoints bj . The

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Adelman and Klabjan: Computing Near-Optimal Policies in Generalized Joint Replenishment
154 INFORMS Journal on Computing 24(1), pp. 148–164, © 2012 INFORMS

following model provides a mathematical program
for evaluating ê.

ê4�̂1w1v5= min
t1Y 1R1a1x1 s1U1U ′

∑

I⊆I

CIYI +
∑

i∈I

hi

2�i

4a2
i + 2aixi5

− �̂t −
∑

i∈I

viai +
J
∑

j=1

6f j4r jx3wj1 bj5

− f j4r js3wj1 bj570 (12)

Subset constraints
∑

I⊆I

YI = 11 (13)

Ri =
∑

8I⊆I2 i∈I9

YI i ∈I1 (14)

ai ≤ ±XiRi i ∈I0 (15)

State-action constraints

si = xi + ai −�it i ∈I1 (16)

xi + ai ≤ ±Xi i ∈I1 (17)
∑

i∈I

ai ≤ Ā0 (18)

Just-in-time constraints

xi ≤ ±Xi · 41 −Ui5 i ∈I1 (19)
∑

i∈I

Ui ≥ 11 (20)

si ≤ ±Xi · 41 −U ′

i 5 i ∈I1 (21)
∑

i∈I

U ′

i ≥ 11 (22)

Ui ≤Ri i ∈I0 (23)

Miscellaneous

Y 1R1U1U ′ binary

x1a1 s1 t ≥ 00

We use the binary variable Ri for convenience: it
equals 1 if item i is replenished and 0 otherwise. The
binary decision variables YI represent the decision
of what subset to replenish. With major/minor fixed
costs, we have CI = a +

∑

i∈I bi if I 6= � and C� = 0,
where a is the fixed cost incurred if any item is replen-
ished, and bi is an item-specific fixed cost. In this case,
we only need the Ris and not YIs, which dramatically
reduces the size of the subproblem because it avoids
enumerating the power set. In this case, we replace
(13) with

∑

i∈IRi ≥ 1, which requires that at least one
item be replenished. We also delete (14).

The first set of constraints (13)–(15) models the
selection of a replenishment subset. Constraint (13)
requires that we select exactly one subset of items,
and (14) ensures that Ri is set properly given the YIs.

Constraints (15) force the replenishment quantity for
item i, denoted by decision variable ai, to equal 0 if
item i is not included in the selected subset. Other-
wise, the inequality is implied by (17). If the problem
instance has ±Xi = � for some i, we can use Propo-
sition 1 in Adelman and Klabjan (2005) to make ±Xi

finite without loss of optimality.
The second set of constraints (16)–(18) models fea-

sibility of state-action pairs. The decision variables xi
and si represent the inventory of item i at the cur-
rent and the next decision epoch, respectively. Con-
straints (16) are standard flow balance constraints,
stating that the next inventory state equals the cur-
rent inventory state plus quantities replenished minus
quantities consumed. Constraints (17) and (18) ensure
that the upper bounds on inventory states and total
replenishment quantity, respectively, are obeyed.

The third set of constraints (19)–(23) ensures that
decision epochs are defined by some item stocking
out. The binary decision variable Ui equals 1 if item
i is stocked out in the initial inventory state, and 0
otherwise. If Ui = 1, then constraint (19) ensures that
xi = 0. Constraint (20) requires that at least one item
be stocked out in the initial inventory state. The pair
of constraints (21) and (22) are similar and apply to
the next inventory state represented by the sis. Con-
straints (23) ensure that at least one of the items
replenished is stocked out. Note that (16), (22), and
s ≥ 0 imply that t = mini∈I4xi + ai5/�i, i.e., the time
until the next stockout.

In our implementation, we avoid bringing the
nonconvex quadratic term from (2) into the objective
function (12) by adding the constraints

xi ≤ ±Xi · 41 −Ri5 i ∈I s.t. hi > 01

which model “zero inventory ordering.” These con-
straints force item i to be stocked out when replen-
ished, assuming that the holding cost hi is strictly
positive. Under these constraints, aixi = 0, and thus (2),
becomes convex. The resulting convex quadratic
integer program can be solved using off-the-shelf
software, namely, CPLEX. In this case, the optimal
objective function value of (DW) obtained provides a
lower bound only for policies restricted as such.

3.2. Price-Directed Control Policy
Whereas the optimal objective of (DW) provides a
lower bound on the cost of an optimal policy, we can
compute an upper bound by simulating the control
policy under the resulting ridge function approxima-
tion. In particular, given optimal-dual prices 8�̂1w1v9,
for the current set 8r1 b9 of ridge vectors and corre-
sponding breakpoints, the one-step greedy policy is
the same as the separation problem, except that the
current period’s state x is fixed. Algorithm 1 com-
putes an upper bound by simulating the control pol-
icy through time, up to at most N decision epochs. If

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Adelman and Klabjan: Computing Near-Optimal Policies in Generalized Joint Replenishment
INFORMS Journal on Computing 24(1), pp. 148–164, © 2012 INFORMS 155

a state is reached that has been visited before, at some
strictly earlier time than now, then the algorithm ter-
minates with a cyclic schedule and an exact upper
bound B4u5 based on the value function approxima-
tion u. Otherwise, the algorithm returns the average
cost obtained over N decision epochs as an approxi-
mate upper bound.

Algorithm 1 (Obtaining an upper bound through
policy simulation)

1: Choose an initial state x0.
2: for n= 0 to N do
3: In state xn choose
a∗
n ∈ arg mina∈A4xn5

8c4xn1 a5−��4xn1 a5+u4s4xn1 a5590

4: Set tn = �4xn1 a
∗
n5, xn+1 = s4xn1 a

∗
n5.

5: if xn+1 has been visited before at a step
n′ <n+ 1

6: Break; cyclic schedule found
7: end if
8: end for

9: Return B4u5=

∑n
m=n′ c4xm1 a

∗
m5

∑n
m=n′ tm

1 where n′ is the

first step of the cyclic schedule, or 0 if
one not found.

We find empirically that substantial improvements
in the policy are achieved by looking ahead multi-
ple decision epochs in Step 3, on a rolling horizon
basis. Looking ahead corrects for imperfections in the
value function approximation by explicitly consider-
ing near-term decisions. Let N denote the number of
periods to look ahead, so that N= 1 corresponds with
the ordinary one-step greedy policy. Let xn1 i be the ini-
tial inventory of item i at the start of decision epoch n,
which is fixed. In the general setting, the look-ahead
control policy chooses a∗

n as the optimal first epoch
action obtained by solving

min
an1xn+11an+110001xn+N

n+N−1
∑

n′=n

4c4xn′1an′5−��4xn′1an′55+u4xn+N5

s.t. xn′+1 =s4xn′1an′51 n′
∈8n10001n+N−190

In the special case of the GJR problem, this
becomes (PD):

min
t1Y 1R1a1x1U

n+N−1
∑

n′=n

(

∑

I⊆I

CIYn′1 I +
∑

i∈I

hi ·4a
2
n′1 i+2an′1 ixn′1 i5

2�i

−�̂tn′ −
∑

i∈I

vian′1 i

)

−

J
∑

j=1

f j4r jxn+N3w
j1bj51 (24)

∑

I⊆I

Yn′1 I =1 n′
∈8n10001n+N−191

Rn′1 i =
∑

8I⊆I2 i∈I9

Yn′1 I n′
∈8n10001n+N−191 i∈I1

an′1 i ≤
±XiRn′1 i n′

∈8n10001n+N−191 i∈I1

xn′+11 i =xn′1 i+an′1 i−�itn′

n′
∈8n10001n+N−191 i∈I1

xn′1 i+an′1 i ≤
±Xi n′

∈8n10001n+N−191 i∈I1
∑

i∈I

an′1 i ≤Ā n′
∈8n10001n+N−191

xn′1 i ≤
±Xi ·41−Un′1 i5 n′

∈8n10001n+N91 i∈I1
∑

i∈I

Un′1 i ≥1 n′
∈8n10001n+N91

Un′1 i ≤Rn′1 i n′
∈8n10001n+N−191 i∈I1

Y 1R1U binary1

x1a1t≥01

xn fixed0

Because the initial inventories xn1 i are fixed, the
nonconvex term for the current period n in the cost
function (2) becomes linear in the objective func-
tion (24). Because we only implement the first deci-
sion an, the resulting policy is permitted to replenish
items that are not currently stocked out. We can elimi-
nate the nonconvex terms in all other decision epochs
by adding the constraints

xn′1 i ≤
±Xi · 41 −Rn′1 i5 n′

∈ 8n+ 11 0 0 0 1n+N− 191

i ∈I s.t. hi > 00

This imposes the requirement that items replenished
in the future are stocked out. The objective function
leaves off the initial value

∑J
j=1 f

j4r jxn3w
j1 bj5, and

because we unwind the recursion in decision epochs
n1n+ 11 0 0 0 1n+N, the value function approximation
only comes into play for the terminal inventories.
Otherwise, the formulation is the multiperiod gener-
alization of the separation problem with xn fixed and
can be solved using CPLEX.

4. Basis Generation
The key to generating a new 4r1 b5 is to exploit the
connection between (P) and the problem that opti-
mizes over cyclic schedules.

4.1. Cyclic Schedules
We first provide a general definition of a cyclic
schedule.

Definition 1. A sequence C = 84xn1 an59n=01 0001N−1
of N <� state-action pairs is called a cyclic schedule if

xn =







s4xN−11 aN−15 for n= 01

s4xn−11 an−15 for n= 11 0 0 0 1N − 10

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Adelman and Klabjan: Computing Near-Optimal Policies in Generalized Joint Replenishment
156 INFORMS Journal on Computing 24(1), pp. 148–164, © 2012 INFORMS

The primal problem optimizing over all cyclic
schedules (PC) is defined by

inf
z

∑

4x1 a5∈T

c4x1 a5zx1a1 (25a)

∑

4x1a5∈T

�4x1a5zx1a = 11 (25b)

∑

a2 4x1a5∈T

zx1a −
∑

4x̄1 ā5∈T
s4x̄1 ā5=x

zx̄1 ā = 0 for every x ∈X1 (25c)

z≥ 01 supp4z5= T 1 �T �<�0 (25d)

This model restricts (P) to a measure � with finite
support, denoted here by z. A cyclic schedule C
induces a feasible solution to (PC) by defining zx1a =

1/
∑

4x′1 a′5∈C �4x′1 a′5 for every 4x1 a5 ∈ C and 0 other-
wise. We call such feasible solutions to (PC) cyclic
schedule solutions. See Adelman and Klabjan (2005) for
a theory on cyclic schedules. The next proposition
states that there are other feasible solutions to (PC)
that decompose into multiple cyclic schedule solu-
tions. However, they are dominated by cyclic sched-
ule solutions containing a single cycle.

Proposition 2. If z is a feasible solution to (PC), then
there exists a cyclic schedule solution z̄ with supp4z̄5 ⊆

supp4z5 and with a cost that is not larger.

Proof. With respect to z, we define the following
network N . The nodes of N correspond to states x ∈X
with the property that there exists an action a ∈ A4x5
with zx1a > 0. There is an arc 4x1y5 from node (state) x
to node (state) y if there exists an action a ∈A4x5 such
that s4x1 a5 = y. Because � supp4z5 � < �, N is a finite
network.

Because of (25c), the values of z induce a circu-
lation in N . Every circulation can be decomposed
into directed cycles; see, e.g., Ahuja et al. (1993).
Let C11 0 0 0 1Ck be the cycle decomposition of z. By
definition, there exist values K11 0 0 0 1Kk such that
zx1a =

∑

8j∈6k72 4x1 a5∈Cj 9
Kj for every 4x1 a5 ∈ Cj and for

every j = 1121 0 0 0 1 k. Let �̄j =
∑

4x1 a5∈Cj
�4x1 a5 and

c̄j =
∑

4x1 a5∈Cj
c4x1 a5 for j = 1121 0 0 0 1 k. From (25b)

we obtain
∑k

j=1 �̄jKj = 1. The objective value of z is
∑k

j=1 Kj c̄j .
Consider now the LP:

min
k
∑

j=1

c̄j tj

k
∑

j=1

�̄j tj = 11

t ≥ 00

By the above observations, tj = Kj for j = 1121 0 0 0 1 k
is a feasible solution to this LP. Let t∗

j̄
= 1/�̄j̄ and t∗j =

0 for all j 6= j̄ be an optimal basic solution for some
index j̄ . Then, clearly, cj̄ t∗j̄ ≤

∑k
j=1 Kj c̄j .

The cyclic schedule solution defined by z̄x1a = 1/�̄j̄
for every 4x1 a5 ∈Cj̄ , and 0 otherwise, has the desired
property. �

By the above proposition, (PC) is the problem of
finding the minimum cost cyclic schedule. Let inf4PC5
denote the optimal value of (PC). Note that this value
might not be attainable; i.e., (PC), in general, is not
solvable. Because cyclic schedules in the GJR problem
are �-optimal to (P) and (PC) for every � > 0, we know
that inf4PC5 = min4P5 = max4D5; e.g., see Adelman
and Klabjan (2005). We call constraints (5c) and (25c)
the flow balance constraints.

Next, we establish the relationship between (PC)
and (PW). We later prove a variant of the converse
statement.

Proposition 3. If z is a cyclic schedule solution to
(PC), then z is feasible to (PW) for any set of ridge vectors
and breakpoints.

Proof. Let z be a cyclic schedule solution to (PC)
and denote its support set by T . Because of the flow
balance constraints, we have zx1a = 1/

∑

4x′1 a′5∈T �4x
′1 a′5

for every 4x1 a5 ∈ T . Note that for every j ∈ 6n71 i ∈ 6mj 7
and 4r j1 bj5, we have

84x1 a5 ∈ T 2 b
j
i ≤ r js4x1 a5≤ b

j
i+19

= 84x1 a5 ∈ T 2 b
j
i ≤ r jx ≤ b

j
i+190

These two facts easily show that z satisfies (10d). To
check (10c), note that

∑

4x1 a5∈T

aizx1a =
1

∑

4x1 a5∈T �4x1a5

∑

4x1 a5∈T

ai = �i0

This completes the proof. �
This proposition implies that we can solve (PW)

by column generation, starting with an initial feasible
solution z that corresponds with any cyclic schedule.

Example 3. The universal shipment schedule in
Example 1 corresponds with a feasible solution
z�010�1 �212� = 1/2 to (PW). The four-step cyclic schedule
corresponds with the feasible solution to (PW) that
sets each of z�010�1 �213�, z�011�1 �210�, z�110�1 �013�, z�012�1 �210�

equal to 1/6.

4.2. 4r1 b5 Generation
Suppose z is an optimal solution to (PW) that cor-
responds with a cyclic schedule. This implies it is
an optimal solution to (PC), because it is feasible to
(PC) and min4PW5 ≤ inf4PC5. Furthermore, because
inf4PC5= min4P5,

�4K5=
∑

84x1 a5∈K2 zx1a>09

zx1a K ∈�4K5

is a feasible optimal solution to (P).

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Adelman and Klabjan: Computing Near-Optimal Policies in Generalized Joint Replenishment
INFORMS Journal on Computing 24(1), pp. 148–164, © 2012 INFORMS 157

On the other hand, if z does not correspond with a
cyclic schedule, then we hope to find a new hat func-
tion that, when corresponding constraints are added
to (PW), makes the solution z infeasible. Thus we
wish to cut off the solution z by restricting the pri-
mal feasible space. We call this 4r1 b5-generation, or
basis generation, because we seek a new hat function
as part of the basis.

We first define a function that measures the magni-
tude of the flow imbalance given in (10d) for any hat
function. For any z2 K → � with supp4z5 < �, r ∈ �q ,
and b̄ = 4b̄11 b̄21 b̄35 with b̄1 < b̄2 < b̄3, let

g4z1 r1 b̄5 =

∣

∣

∣

∣

∑

4x1 a5∈supp4z5
b̄1≤rx≤b̄3

Hb̄4rx5zx1a

−
∑

4x1 a5∈supp4z5
b̄1≤rs4x1 a5≤b̄3

Hb̄4rs4x1 a55zx1a

∣

∣

∣

∣

0

Here, we denote by Hb̄ the hat function with
breakpoints b̄11 b̄21 b̄3.

It suffices to consider ridge vectors with the infinity
norm of 1. Therefore for every x ∈X and every ridge
vector r with �r�� ≤ 1, we have by Cauchy–Schwartz

�rx� ≤ �r�2 · �x�2 ≤
√
q · diam4X51

where diam4X5 < � is the diameter of X. Therefore
we can select ì =

√
q · diam4X5 (see §2.2.1 for the

role of ì). We denote by −ì≤ b̄ ≤ì the requirement
−ì≤ b̄1 < b̄2 < b̄3 ≤ì.

In full generality, given a solution z to (PW), we can
formulate the 4r1 b5-generation problem as

max
�r��≤1

−ì≤b̄≤ì

g4z1 r1 b̄50 (26)

The idea is to find a new 4r1 b̄5 such that the corre-
sponding constraint (10d), if it were to be added to
(PW), is maximally violated under the solution z. In
general, this is a hard nonlinear integer programming
problem. However, for cutting off the solution z, it
suffices merely to find an 4r1 b̄5 such that g4z1 r1 b̄5 > 0.
We next show that this is indeed always possible
whenever z is not a cyclic schedule solution.

We denote T = supp4z5. Let Q denote the states
“visited” by an optimal solution z to (PW):

Q =
⋃

4x1 a5∈T

48x9∪ 8s4x1 a5950

We include both the starting and ending states be-
cause the current z solution may violate flow balance,
i.e., may not correspond with a cyclic schedule. If

max
x′∈Q

∣

∣

∣

∣

∑

a2 4x′1 a5∈T

zx′1 a −
∑

4x̄1 ā5∈T
s4x̄1 ā5=x′

zx̄1 ā

∣

∣

∣

∣

> 01

then some flow balance constraint of (PC) is violated.
Let x̃ be a most offending state, assuming that the
above maximum is positive.

Definition 2. The mapping rx̃, for x̃ ∈Q, is unique
if no other states in Q map to the same value;
i.e., rx̃ 6= rx for every x ∈Q\8x̃9.

Suppose there exists a j such that r j x̃ is unique
and not already a breakpoint in bj . Let i ∈ 6mj 7 ∪ 809
index the closest breakpoint to the left of r j x̃, where
by construction breakpoint b

j
0 is guaranteed to exist.

Let �= max8r jx � x ∈Q1r jx < r j x̃9. If � is not defined,
then we set � = −ì. In addition, let � = min8r jx � x ∈

Q1r jx > r j x̃9. If � is not defined, then we set � = ì.
Let us select at most three new breakpoints as b̄

j
1 =

max8�1 bji 91 b̄
j
2 = r j x̃1 b̄

j
3 = min8�1 bji+19; see Figure 4.

The new constraint (10d) associated with breakpoint
b̄
j
2 reads as

0 =
∑

4x1 a5∈T

H
j
i 4r

js4x1 a55zx1a −
∑

4x1 a5∈T

H
j
i 4r

jx5zx1a

=
∑

4x1 a5∈T 2 s4x1 a5=x̃

H
j
i 4r

js4x1 a55zx1a −
∑

4x1 a5∈T 2 x=x̃

H
j
i 4r

jx5zx1a

=
∑

4x̄1 ā5∈T
s4x̄1 ā5=x̃

zx̄1 ā −
∑

a2 4x̃1 a5∈T

zx̃1 a1

which is the corresponding flow balance con-
straint (25c) of (PC). The second equality holds
because we constructed the new hat function H

j
i

so that the only state for which r jx evaluates to a
nonzero value is x̃. The third equality holds because
the hat function is centered about r j x̃, i.e., equals one
there. Because this constraint is violated by z, this
proves that the new constraint in (10d) cuts off the
solution z.

Suppose for all j that r j x̃ is already a breakpoint
in bj . If it is unique for some j , then at least one
of b̄

j
1 and b̄

j
3 must be new, thereby producing a new

hat function that cuts off z. Otherwise, the con-
straint (10d) corresponding with the hat function Hb̄

j
bi

The remaining r jx, x ⊂ Q

The remaining r jx, x ⊂ Q

�

r jx

j

b1
j–

b3
j–

b2
j–

bi+1

~

�

Figure 4 Adding New Breakpoints

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Adelman and Klabjan: Computing Near-Optimal Policies in Generalized Joint Replenishment
158 INFORMS Journal on Computing 24(1), pp. 148–164, © 2012 INFORMS

must already exist, but be violated, contradicting the
feasibility of z.

Finally, we consider the case in which for all j ∈ 6J 7
the mapping r j x̃ is not unique. In this case we have
to introduce a new ridge vector. We want to find a
vector r = r J+1 such that the mapping rx̃ is unique.
We construct it iteratively as follows. Suppose that
we have such an r for a subset L ⊂ Q and let x̄ ∈

Q\4L∪8x̃95. If rx̃ 6= rx̄, then we simply keep the same r
and set L = L ∪ 8x̄9. Now let rx̄ = rx̃. There exists an
index l ∈ 6q7 such that x̄l 6= x̃l. Let

� = 1 + max
x∈L
xl 6=x̃l

∣

∣

∣

∣

rx̃− rx

xl − x̃l

∣

∣

∣

∣

0

By definition, � ≥ 1. We claim that r = r +�el has the
desired property.

We need to show that 4r + �el5x 6= 4r + �el5x̃ for
every x ∈ L ∪ 8x̄9. If x = x̄, then this holds because
rx̄ = rx̃ by definition of l. Now let x ∈ L. If xl = x̃l, then
the claim holds because of rx̃ 6= rx′ for every x′ ∈ L.
Now let xl 6= x̃l, and let us assume that 4r + �el5x =

4r +�el5x̃. Then

rx̃− rx

xl − x̃l
=� ≥ 1 +

∣

∣

∣

∣

rx̃− rx

xl − x̃l

∣

∣

∣

∣

1

which is a contradiction.
At the end, we scale the resulting r to have the

infinity norm of 1. Because the mapping rx̃ is unique,
we can implement the above breakpoint generation
procedure to produce three breakpoints defining a
violated constraint (10d) that is equivalent to the flow
balance constraint (25c) for x̃. The above analysis
proves the following theorem.

Theorem 1. Consider an optimal solution z to (PW). If
it corresponds with a cyclic schedule, then it is optimal to
GJR. Otherwise, we can construct an 4r1 b̄5, which cuts off
z when the corresponding hat function is added to (PW).

Note that after adding the new hat function the
breakpoints of the existing hat functions are adjusted
accordingly, so that b

j
i is strictly increasing in i.

Another way of stating this theorem is that if z
is feasible to (PW) for a set of ridge vectors and
breakpoints, and g4z1 r1 b̄5= 0 for every r and b̄, then
z is optimal to (PC). This is a variant of the converse
of Proposition 3, establishing in essence an equiva-
lence between (PC) and the problem of finding the
supremum of min4PW5 over all collections 84r j1 bj59j .

Example 4. Under the affine value function
approximation, an optimal solution to (PW) given
previously is

z�010�1 �213� = 1/31 z�011�1 �210� = 1/60

In this case, Q = 8�010�1 �110�1 �011�9, and we can cal-
culate the left-hand sides of (25c) for each x ∈ Q as
follows: for state �010� we have 1/3, for state �110�

we have −1/6, and for state �011� we have 1/6−1/3 =

−1/2. The latter is the largest, and hence x̃ = �011� is
the most offending state. We now search for a ridge
vector r such that rx̃ is a unique mapping.

Suppose that the unit vectors r1 = �110� and r2 =

�011� are already present, with breakpoints b1 =

�−�101212+�� and b2 = �−�101313+�� for any � > 0.
As discussed at the end of §2.2.2, this 4r1 b5 collection
is redundant for (PW)–(DW) beyond the affine term
already present. The set of mappings rx that arise
under the ridge vector r2 = �011� over all x ∈ Q is
80119, and furthermore, only x = x̃ maps into 1, and so
it is a unique mapping. Suppose we add a breakpoint
to b2 at 1 so it becomes b2 = �−�10111313 + ��.
This gives rise to an additional hat function centered
around 1 and in effect a piecewise-linear function
with a single breakpoint at 1. After re-solving (DW),
we obtain a new optimal solution � = 0, vA = 1705,
vB = 210667, w1

1 = 0, w1
2 = −15, w1

3 = −15, to produce
the value function approximation

u4x5 ≈



































−1705xA−60667xB

if 0≤xB ≤11

15−1705xA−210667xB

if 1≤xB ≤31

x=�xA1xB�∈X1

� = 3901670

Because the four-step cyclic schedule given previously
has a cost rate of 390167, it is optimal for this instance
of GJR.

Once a collection 4r1 b5 of ridge vectors and
breakpoints is found that makes max4DW5= max4D5
and min4PW5= inf4PC5= min4P5, this does not guar-
antee that an optimal solution z to (PW) is a cyclic
schedule solution. There may be alternative optimal
solutions that are not cyclic schedule solutions. Addi-
tional breakpoints may still be needed to cut off
these alternative optima. This behavior has impli-
cations for implementation because it indicates that
the z solution may not be relied upon to produce
an optimal cyclic schedule even though the optimal
objective value is tight with min4P5. More generally,
although the 4r1 b5-generation procedure is guaran-
teed to cut off the current z solution, it may do so
without improving the optimal objective value if there
are many alternative optima to (PW). We next illus-
trate these points on our numerical example.

Example 5. After the breakpoint is added, an opti-
mal solution to (PW) is

z�010�1 �213� = 1/61 z�011�1 �210� = 1/31 z�210�1 �013� = 1/60

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Adelman and Klabjan: Computing Near-Optimal Policies in Generalized Joint Replenishment
INFORMS Journal on Computing 24(1), pp. 148–164, © 2012 INFORMS 159

This can be verified by checking feasibility and com-
plementary slackness. Under this solution, we have
Q = 8�010�1 �011�1 �110�1 �210�9 with net flow imbal-
ances of 81/6101−1/311/69, respectively, component-
wise. Observe that flow balance around state �011�

is preserved, thanks to the breakpoint that was just
added. However, the most offending state is now
�110�. A unique mapping is obtained with r1 = �110�;
i.e., state x̃ = �110� is the only x ∈ Q that maps into
1 under ridge function r1. Therefore, we can add a
breakpoint at 1 to b1, which yields b1 = �−�1011121
2 + ��. (DW) then yields an approximation to u4x5
for x = �xA1xB� that decomposes into u4x5≈ f A4xA5+
f B4xB5, pulling the linear terms inside the func-
tions, where

f A4xA5=







−1705xA if 0 ≤ xA ≤ 11

15 − 3205xA if 1 ≤ xA ≤ 21

and

f B4xB5=







−60667xB if 0 ≤ xB ≤ 11

15 − 210667xB if 1 ≤ xB ≤ 30

Once flow balance around state �110� is coerced, the
solver returns as optimal the four-step cyclic sched-
ule solution given in Example 3. This solution is, of
course, an alternative optimal solution to (PW) even
with only the first breakpoint added, but adding the
second breakpoint eliminates the above alternative
optimal solution and coerces the solver to produce a
cyclic z solution.

5. Algorithm
Putting together the above pieces, we obtain Algo-
rithm 2. Counting iterations with index k, we begin
with an initial collection of ridge vectors and associ-
ated breakpoints denoted by S0. Fixing this collection,
we then solve (DW) using row generation, or (PW)
using column generation, to obtain an optimal solu-
tion zk and associated value function approximation
uk according to (8) obtained from optimal-dual prices.
If zk is a cyclic schedule solution, then according to
Theorem 1 it is optimal to GJR. Otherwise, we sim-
ulate the approximate policy using Algorithm 1 to
obtain its cost rate B4uk5, which is exact if a cyclic
schedule is obtained, and approximate otherwise. If
the gap between the upper bound obtained from the
policy and the lower bound min4PW5 is below some
given threshold �, then the algorithm stops with an
optimal or approximate �-optimal schedule. Other-
wise, we cut off the solution zk from (PW) by generat-
ing a new hat function, specified by the ridge vector r ,
and set of three breakpoints b̄. Recall that if the ridge
vector r already exists and equals r j for some j , then

the set of breakpoints bj is re-sorted to incorporate the
breakpoints b̄. We then increase the iteration counter,
and the procedure repeats.

Algorithm 2 (The final algorithm)
1: k = 0. S0 denotes an initial collection 84r j1 bj59j .
2: loop
3: Solve (DW) and (PW) with Sk to obtain a

solution pair 4zk1uk5.
4: if zk is a cyclic schedule solution then
5: Stop. Optimal policy found.
6: end if
7: Simulate by applying Algorithm 1 to

obtain B4uk5.
8: if B4uk5/min4PW5< � then
9: Stop. Optimal or approximate �-optimal

policy found.
10: end if
11: Sk+1 = Sk ∪ 84r1 b̄59 where 4r1 b̄5 cuts zk off

from (PW)
12: k = k+ 1
13: end loop

Whereas the algorithm given in §4.2 is theoretically
guaranteed to cut off the z solution, our numerical
experience suggests that it often will do so with-
out improving the lower bound given by min4PW5.
This is due to the presence of alternative optima, as
illustrated by Example 5. After attempting numer-
ous alternative approaches, it became clear that sev-
eral properties were important for an 4r1 b5-generation
algorithm to be effective.

First, we want to add as few breakpoints as possi-
ble. This is because we need to solve piecewise-linear
optimization problems in the solution and policy
subproblems, and these are instantiated as mixed-
integer programming problems with a quadratic (lin-
ear) objective function. Fewer breakpoints means
smaller, easier-to-solve instances.

Second, adding breakpoints to the unit ridge vec-
tors, which essentially amounts to adding break-
points to the separable piecewise-linear component,
improved the objective function more frequently and
by a larger amount than other ridge vectors. There-
fore, in our final implementation we give preference
to them.

Third, we want breakpoints that regain flow bal-
ance around many states at once. The algorithm
described in §4.2 isolates the most offending state
x̃ ∈Q and cuts off the z solution by adding con-
straints that (loosely) enforce flow balance around x̃.
However, Klabjan and Adelman (2007) prove con-
vergence for an algorithm solving (P) when (26) is
solved to generate a new ridge vector and break-
points. In general, the objective function g will be
maximized by a hat function into and out of which

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Adelman and Klabjan: Computing Near-Optimal Policies in Generalized Joint Replenishment
160 INFORMS Journal on Computing 24(1), pp. 148–164, © 2012 INFORMS

multiple states flow under the z solution. For this rea-
son, and our desire for fewer breakpoints, we only
add the center breakpoints b̄

j
2 and not the other (new)

breakpoints b̄
j
1 and b̄

j
3. Theoretically, it is possible that

adding only the center breakpoint will not cut, if mul-
tiple flow imbalances cancel each other out. Practi-
cally speaking, however, we find it does cut.

We finally settled on the following heuristic
approach, shown in Algorithm 3, with F being a
parameter. It first tries to add a breakpoint to unit
ridge vectors, and if this fails it tries to add a
breakpoint to one of the existing other ridge vectors.
If this fails, then a new ridge vector and associated
breakpoints are generated.

For each x′ ∈Q, let

fx′ =

∣

∣

∣

∣

∑

a2 4x′1 a5∈T

zx′1 a −
∑

4x̄1 ā5∈T
s4x̄1 ā5=x′

zx̄1 ā

∣

∣

∣

∣

denote the flow imbalance of state x′. Also, let
E denote the subset of ridge vector indices 6J 7
corresponding with unit vectors in �I. Let us
assume that fx�1� ≥ fx�2� ≥ · · · ≥ fx��Q�� , where Q =

8x�1�1x�2�1 0 0 0 1 x��Q��9. Last, let

U J̄
d = 8j ∈ J̄ 2 r jx�d� is a unique mapping9

denote the set of ridge vector (indices) under which
x�d� generates a unique mapping, restricted to a subset
J̄ ⊆ 6J 7. These are the ridge vectors eligible for adding
breakpoints.

Algorithm 3 (4r1 b5-Generation algorithm to cut off z
by coercing flow balance among at most F states)

1: Calculate Q, fx for all x ∈Q, and sort Q by
largest fx first.

2: for d = 11 0 0 0 1min8F 1 �Q�9 do
3: if U E

d 6= � then
4: Choose j ∈U E

d uniformly at random.
5: bj ← bj ∪ 8r jx�d�9

6: else if U
6J 7\E
d 6= � then

7: Choose j ∈U
6J 7\E
d uniformly at random.

8: bj ← bj ∪ 8r jx�d�9
9: else

10: Generate a new ridge vector r J+1 and
breakpoints bJ+1 such that r J+1x�d�

is a unique mapping.
11: J ← J + 1
12: end if
13: end for

In Steps 3–5 of Algorithm 3, we try to add a new
breakpoint based on an existing unit vector. Similarly,
if this fails, in Steps 6–8 we attempt to introduce a
new breakpoint to an existing nonunit ridge vector. If
all this fails, then we generate a new ridge vector as

follows. Choose any subset ¶Q ⊆ Q of states to regain
flow balance around. In the context of Algorithm 3, in
Step 10 we set ¶Q = 8x�d�9 for a single d. The idea is to
choose an 4r1 b5 so that breakpoints are as spread out
as possible, indirectly forcing unique mappings when
possible. The following program maximizes the sum
of the minimum distances between mappings rx:

max
r2 ��r ���≤1

∑

x̃∈ ¶Q

min
x∈Q\8x̃9

�rx− rx̃�0

This can be written as a linear complementarity
problem:

max
r1 �1�1�

∑

x̃∈ ¶Q

�x̃

�x̃ ≤ �x1 x̃ +�x1 x̃ x̃ ∈ ¶Q1 x ∈Q\8x̃91

rx− rx̃ = �x1 x̃ −�x1 x̃ x̃ ∈ ¶Q1 x ∈Q\8x̃91

−1 ≤ ri ≤ 1 i ∈I1

�x1 x̃�x1 x̃ = 0x̃ ∈ ¶Q1 x ∈Q\8x̃90

The breakpoints can be taken to be the ones to the
left, center, and right of rx̃, as described in §4.2, for
every x̃ ∈ ¶Q. The algorithm in §4.2 generates a feasi-
ble solution to this program with a positive objective
value, which proves that a ridge vector that is optimal
to this program, together with associated breakpoints,
is guaranteed to cut off the z solution. In practice, we
rarely need to generate new ridge vectors by solving
this complementarity problem; i.e., Steps 10 and 11
are seldom executed. This is because we start with
a large initial collection that includes all unit vec-
tors, and all “pair vectors,” which set all components
of ridge vector r to zero except ri1 = 1/�i1

and ri2 =

−1/�i2
for i11 i2 ∈I such that i1 < i2. This implies that

rx = xi1/�i1
− xi2/�i2

, which calculates the difference in
stockout times between items i1 and i2, given current
inventories.

Given these initial ridge vectors, we initialize break-
points as follows. For each j , we set b

j
1 = minx∈X r

jx,
b
j
2 = maxx∈X r

jx, and mj = 2. Then we choose any
b
j
0 < b

j
1 and any b

j
3 > b

j
2. This corresponds with two

hat functions, one centered at the leftmost point of
the domain and the other centered at the rightmost
point of the domain. Proposition 1 shows that this
corresponds with an affine function, and so it adds
no additional fidelity on top of the affine term �− vx
already in the approximation (8). In this case, the
constraints (10d) are redundant and can be dropped
without any loss. When we add a breakpoint to bj

for some j between b
j
1 and b

j
2, we obtain three hat

functions, but this effectively models a piecewise-
linear function with only one breakpoint in the inte-
rior of the domain. When we report the number of

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Adelman and Klabjan: Computing Near-Optimal Policies in Generalized Joint Replenishment
INFORMS Journal on Computing 24(1), pp. 148–164, © 2012 INFORMS 161

50.0

50.5

51.0

51.5

52.0

0 10 20 30 40 50 60 70 80 90 100

C
os

t

Column generation cycles

Three-item instance: convergence

(PW)
Cyclic schedule cost rate, 51.25
Cyclic schedule cost rate, 51.6667

Figure 5 Numerical Convergence of Upper and Lower Bounds

breakpoints, we provide the number excluding the
two leftmost and two rightmost breakpoints of bj , i.e.,
mj − 2, so that in Example 2 we effectively have only
one breakpoint.

Figure 5 demonstrates how the algorithm typically
converges, on a three-item instance. Every time we
solve the column generation subproblem for (PW), we
report the new objective value of the restricted mas-
ter problem version of (PW) with the new column
added. Whenever the graph reaches the bottom of a
trough, we obtain the optimal objective value of (PW)
with the current ridge vectors and breakpoints. The
curve typically jumps up again once new breakpoints
are added. As can be observed, the lower bounds
given by (PW) improve. Furthermore, the simulation
yields two cyclic schedules, one with value 51.667
and one with value 51.25. The algorithm terminates
with a guarantee that the latter schedule is within
0.5% of the optimal value. In Figure 6 we show how
the maximum flow imbalance across all states visited,
i.e., maxx∈Q �fx�, decreases as breakpoints are added,
on an instance with 10 items.

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 5 10 15 20 25 30 35 40

M
ax

im
um

 a
bs

ol
ut

e 
fl

ow
 im

ba
la

nc
e

Iteration

Ten-item instance

Objective value (PW)

Figure 6 Numerical Convergence of Flow Imbalances

6. Computational Results
We generated two collections of instances. Table 1
depicts results from a collection of 18 problem
instances, designed to mimic the real-world data as
in Adelman (2003). In particular, for item i we take
�i/±Xi to be exponentially distributed and the storage
limits ±Xi to be uniformly distributed, which fit the
real-world data well. After sampling these two distri-
butions, we then compute the implied �i. We gener-
ated instances having 5, 10, and 15 items, with six of
each set. The first three in each set have Ā equal to
the sum of the first two-thirds’ smallest storage lim-
its ±Xi, whereas the last three effectively set Ā = � so
that replenishment capacity is not constraining. We
then vary the holding cost between 0 (none), 1 (small),
and 5 (large). We report results for major/minor fixed
costs, which simplifies computation, with the major
cost equal to 100 and minor costs uniformly dis-
tributed between 0 and 60. We also ran instances with
traveling salesman costs but found that the results
were not materially different.

Table 2 presents additional results for similar
instances, except without holding costs and varying
the structure of item storage capacities. “Random”
means that for each i, ±Xi = 10�iUi +�i, where Ui rep-
resents a sample for item i from the uniform distri-
bution over the real interval 60117. Hence, with an
inventory level of ±Xi, item i will stock out in one
time unit plus a uniformly distributed time interval
between 0 and 10. “Constant” means that ±Xi =

±X for
all i, where the constant ±X =

∑

j∈I �jUj +
∑

j∈I �j/�I�.
“Discrete” means that ±Xi = �i

±X, where �i ∈ 8214189
with probability 1/3 each. Finally, each �i is taken to
be uniformly distributed on the line segment 601107.
All aforementioned random variables are resampled
independently for each of the 42 instances depicted in
this table.

Because the simulation is computationally inten-
sive, we terminate the algorithm when the best sim-
ulated schedule is within 2% of optimal, or after
48 hours, whichever comes sooner. We also set the
look-ahead parameter N to three or four periods. The
column “Total capacity” represents Ā expressed as a
fraction of items’ storage capacities covered. The col-
umn entitled “Initial LB” reports the optimal objec-
tive value given by (PW) with only the affine value
function approximation, which gives a lower bound.
The column entitled “Final LB” reports the optimal
objective value of (PW) when the algorithm termi-
nates. We also report how many instances of (PW)
we solve, along with the number of breakpoints (#b)
added between unit vectors and pair vectors. On
these instances, the algorithm never needed to pro-
duce new ridge vectors, except for instances 1 and
5 in Table 2, in which two and three ridge vectors,
respectively, are generated. We also report the best

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Adelman and Klabjan: Computing Near-Optimal Policies in Generalized Joint Replenishment
162 INFORMS Journal on Computing 24(1), pp. 148–164, © 2012 INFORMS

Table 1 Numerical Results on Instances with Varying Holding Costs

No. of Holding Total Initial Final No. of #b #b Best No. of Opt. LB final
Instance items cost capacity LB LB LPs unit pair UB steps FP FP/UB /initial UB/LB

1 5 0 2/3 14012 14087 2 2 0 14090 220 16040 10101 10054 10002
2 5 1 2/3 260091 260091 1 0 0 262045 2 266071 10016 10000 10006
3 5 5 2/3 325088 325088 1 0 0 326019 2 334041 10025 10000 10001
4 5 0 1 11021 12053 2 4 0 12077 30 13084 10084 10118 10020
5 5 1 1 270085 270085 1 0 0 271073 2 278034 10024 10000 10003
6 5 5 1 255079 255079 1 0 0 255083 2 258015 10009 10000 10000
7 10 0 2/3 24033 25070 32 63 2 26028 11000 33070 10282 10056 10023
8 10 1 2/3 419095 419095 1 0 0 424097 30 440025 10036 10000 10012
9 10 5 2/3 924044 924044 1 0 0 932020 30 968024 10039 10000 10008

10 10 0 1 21043 21062 3 4 0 22001 11000 25087 10176 10009 10018
11 10 1 1 408024 410000 5 8 0 418016 88 436093 10045 10004 10020
12 10 5 1 881058 886072 2 8 0 897074 5 950059 10059 10006 10012
13 15 0 2/3 20057 23043 2 7 1 23065 11000 27056 10165 10139 10009
14 15 1 2/3 472030 472030 1 0 0 474072 12 498098 10051 10000 10005
15 15 5 2/3 11239071 11239071 1 0 0 11283033 48 11313085 10024 10000 10035
16 15 0 1 36077 41026 29 59 0 42012 11000 52031 10242 10122 10021
17 15 0 1 26051 27040 21 43 0 28012 11000 35097 10279 10034 10026
18 15 5 1 11064032 11068087 2 4 0 11129098 397 11137057 10007 10004 10057

Note. #b, number of breakpoints.

upper bound obtained through simulation, including
the number of steps in the corresponding schedule.
We find empirically that a cyclic schedule is produced
by all instances in Table 1 except those reporting 1,000
or more steps and all instances in Table 2 report-
ing under 200 steps. In these cases, the upper-bound
value is exact. In the other instances, the upper-bound
value is approximate because we truncated the simu-
lation when either 1,000 (or 4,000) periods are reached
or based on a convergence criterion that uses running
average cost.

As a reference point, under column “Opt. FP,” we
report the objective value of an optimal fixed-partition
policy (FP) (Rosenblatt and Kaspi 1985, Queyranne
1987, Goyal 1987). We calculate this by solving the
set-partitioning problem

min
∑

I⊆I

gIYI

∑

I⊆I2 i∈I

YI = 1 i ∈I1

YI binary I ⊆I1

where gI is the average cost of the policy that replen-
ishes all items i ∈ I together. This is easy to calculate by
computing the optimal time between replenishments,

t∗I = min
{

√

2 ·CI/
∑

i∈I

hi�i1 Ā/
∑

i∈I

�i1min
i∈I

±Xi/�i

}

1

if
∑

i∈I hi > 0; otherwise, we drop the first term in the
minimum. Then

gI =
CI

t∗I
+ t∗I

∑

i∈I

hi�i

2
0

After reporting the optimal FP value, we then report
the following ratios: “FP/UB” reports the optimal FP
value divided by the value of best simulated pol-
icy, “LB final/initial” reports the improvement in the
lower bound achieved by adding breakpoints and
new ridge vectors, and last “UB/LB” reports the
value of the simulated policy divided by the lower
bound and thus gives an optimality guarantee. (We
solve the lower bound to within 0.1% of optimality,
and so this guarantee is approximate.)

Several observations are in order:
1. The lower bound can be improved up to 14% by

adding breakpoints.
2. Usually the unit vectors suffice for adding

breakpoints, but occasionally the pairs are needed. We
can almost always successfully add a breakpoint to
unit vectors and pairs; i.e., there is rarely a need to
generate additional ridge vectors.

3. We add more than 50 breakpoints on instances
with 15 items and up to 82 breakpoints on instances
with 6 items.

4. We beat the optimal fixed-partition policy con-
sistently and substantially by as much as 28%.

5. Sometimes long cyclic schedules are detected in
the simulation.

6. The best simulated policy usually performs
within 2% of optimality, and usually this is the policy
that is produced by the affine value function approx-
imation, i.e., without any breakpoints. This may be
largely due to looking ahead, because it becomes less
important to fit the true value function exactly when
applied further out in time. It suggests that the main
advantage of ridge generation is in improving the
lower bound but that it is not needed to obtain a

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Adelman and Klabjan: Computing Near-Optimal Policies in Generalized Joint Replenishment
INFORMS Journal on Computing 24(1), pp. 148–164, © 2012 INFORMS 163

Table 2 Numerical Results on Instances Without Holding Costs but Varying Item Storage Capacities

No. of Total Item Initial Final No. of #b #b Best No. of Opt. LB final
Instance items capacity (%) capacities LB LB LPs unit pair UB steps FP FP/UB /initial UB/LB

1 4 50 Random 116031 117028 40 41 37 119048 330 126076 10061 10008 10019
2 4 100 Random 26066 28005 2 1 1 28050 1 28050 10000 10052 10016
3 4 50 Constant 68050 68050 1 0 0 69036 71 72060 10047 10000 10013
4 4 100 Constant 142072 142072 1 0 0 143037 63 160011 10117 10000 10005
5 4 50 Discrete 387043 387088 42 47 35 397069 33 423005 10064 10001 10025
6 4 100 Discrete 102003 108056 2 2 0 109087 13 112063 10025 10064 10012
7 6 33 Random 186088 186088 1 0 0 187066 657 194016 10035 10000 10004
8 6 67 Random 149031 149031 1 0 0 150015 220 189020 10260 10000 10006
9 6 100 Random 65005 70091 4 4 0 72007 3 82009 10139 10090 10016

10 6 33 Constant 188029 188029 42 48 34 200065 408 212052 10059 10000 10066
11 6 67 Constant 102034 102034 3 0 4 119059 28 120056 10008 10000 10169
12 6 100 Constant 99094 99094 1 0 0 101046 9 125050 10237 10000 10015
13 6 33 Discrete 263059 268031 2 2 0 270086 457 278011 10027 10018 10009
14 6 67 Discrete 319096 352069 20 30 8 358035 237 373099 10044 10102 10016
15 6 100 Discrete 128075 143031 7 12 0 145017 20 170092 10177 10113 10013
16 8 25 Random 698096 698096 1 0 0 700001 41000 722032 10032 10000 10002
17 8 50 Random 218008 219044 37 48 26 226083 470 261072 10154 10006 10034
18 8 75 Random 172020 178084 20 33 5 179088 228 222036 10236 10039 10006
19 8 100 Random 178053 186034 20 31 7 188098 20 231090 10227 10044 10014
20 8 25 Constant 114075 114075 28 27 27 117024 480 123087 10057 10000 10022
21 8 50 Constant 63064 63064 5 3 5 69080 169 77066 10113 10000 10097
22 8 75 Constant 69030 71008 13 20 4 72026 24 90073 10256 10026 10017
23 8 100 Constant 95014 107099 9 16 0 108012 80 114014 10056 10135 10001
24 8 25 Discrete 445095 445095 1 0 0 454019 715 468092 10032 10000 10018
25 8 50 Discrete 289051 320002 13 23 1 330034 291 396028 10200 10105 10032
26 8 75 Discrete 131027 134099 5 7 1 137034 210 160071 10170 10028 10017
27 8 100 Discrete 144063 163075 10 13 5 166072 24 197000 10182 10132 10018
28 10 20 Random 703008 703008 1 0 0 703048 41000 703036 10000 10000 10001
29 10 40 Random 278060 278060 1 0 0 279060 41000 294061 10054 10000 10004
30 10 60 Random 159042 159042 26 46 4 163076 236 213012 10301 10000 10027
31 10 80 Random 115071 116059 15 22 6 123085 270 148079 10201 10008 10062
32 10 100 Random 158065 162001 7 11 1 166066 60 191021 10147 10021 10029
33 10 20 Constant 114053 114053 1 0 0 115062 493 119083 10036 10000 10010
34 10 40 Constant 79002 79002 1 0 0 85041 21 88023 10033 10000 10081
35 10 60 Constant 58042 66047 16 25 5 67044 40 77094 10156 10138 10015
36 10 80 Constant 84084 96014 31 44 16 100025 68 104076 10045 10133 10043
37 10 100 Constant 109072 122076 10 16 2 125015 234 145056 10163 10119 10019
38 10 20 Discrete 461066 461066 1 0 0 461057 41000 471023 10021 10000 10000
39 10 40 Discrete 430049 433017 31 54 6 453090 515 474052 10045 10006 10048
40 10 60 Discrete 500036 500036 3 0 4 551013 264 677045 10229 10000 10101
41 10 80 Discrete 251095 258072 3 4 0 263038 222 326067 10240 10027 10018
42 10 100 Discrete 242055 261059 27 47 5 268050 252 341072 10273 10078 10026

Note. #b, number of breakpoints.

strong policy. This is good news for scalability in prac-
tice, because it means that breakpoints can be avoided
if one is only interested in policies and not their per-
formance guarantee. Adelman (2003) solves instances
without holding cost having up to 134 items; this is
done by exploiting a problem structure that could be
investigated in future work for the case with holding
costs.

7. There does not seem to be a discernible pattern
of difference in the performance of the policy nor the
bounds as problem instance parameters change.

In the major/minor cost setting, the partitioning
algorithm is one of the best-known algorithms for
constructing steady-state solutions. Our algorithm
beats this heuristic on a regular basis. Up until this

work, the best-known lower bound was obtained
by linear value function approximation. Again, our
algorithm, by using more general functions, signifi-
cantly improves these lower bounds for most of the
instances. We observed that unit and pairwise ridge
vectors are beneficial, but other ridge vectors are of
limited use. We firmly believe that such more-general
vectors could further improve the algorithm, but they
have to be selected judiciously. Toward this end, the
key is to study alternatives to the complementarity
problem introduced in §5.

7. Concluding Remarks
Although we have not explored the efficacy of our
methodology on problems other than the GJR prob-

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Adelman and Klabjan: Computing Near-Optimal Policies in Generalized Joint Replenishment
164 INFORMS Journal on Computing 24(1), pp. 148–164, © 2012 INFORMS

lem, it is more broadly applicable. As described in
Klabjan and Adelman (2006) and Hernández-Lerma
and Lasserre (1996), the basic infinite-dimensional
math programming framework summarized in §2.1.2
can be applied to any semi-Markov decision process
defined on Borel state and action spaces. This includes
problems with stochasticity in their transition law and
discrete spaces. It also applies to discrete-time prob-
lems by setting the transition times �4x1a5 = 1. The
works cited above provide conditions to check when
verifying strong duality and/or the existence of sta-
tionary optimal policies.

For the linear programming approach to approx-
imate dynamic programming to work fully as
described in this paper, one must be able to solve
the separation problem (11), either heuristically or
optimally. When there is stochasticity, we must com-
pute the expected future value relative to the value
function approximation. The viability of this depends
on problem structure; e.g., Adelman (2004) reports
success on a multi-item stochastic inventory control
problem with discrete state and action spaces. If the
separation problem can be solved, then the policy
problem shown in Algorithm 1 can be solved, because
it is easier as a result of fixing the initial state. In
cases for which the separation problem cannot be
solved, researchers have considered constraint sam-
pling methods (e.g., de Farias and Van Roy 2004).

Our methodology for basis generation is promis-
ing for problems for which good policies exist on a
relatively small set of positive recurrent states, and
especially when they are optimal or �-optimal. For
deterministic problems, such policies correspond with
finite cyclic schedules. However, the methodology
still applies when the kernel is stochastic but permits
transition into a given state only from a finite set of
previous states. For such problems, we are able to
effectively exploit the connection between (PC) and
(PW), as articulated in Proposition 3 and Theorem 1.
In this stochastic case, (PC) has an expectation in (25c)
but is still computable as a finite sum. For any state
x̃ ∈Q that violates flow balance (25c), a new hat func-
tion can be found that isolates this discrete point at
the middle breakpoint and separates the correspond-
ing z solution from the problem (PW). However, if
finding a good policy requires Q to grow infinitely
large, then the number of breakpoints needed would

become unwieldy; if Q approaches a continuous set,
then other states may map arbitrarily closely to the
middle breakpoint. This happens when good poli-
cies require a continuous or infinite set of positive
recurrent states. Further research is needed to iden-
tify other specific problems, such as the GJR problem,
for which underlying finite substructure makes our
methodology effective.

References
Adelman, D. 2003. Price-directed replenishment of subsets:

Methodology and its application to inventory routing. Manu-
facturing Service Oper. Management 5(4) 348–371.

Adelman, D. 2004. A price-directed approach to stochastic inven-
tory/routing. Oper. Res. 52(4) 499–514.

Adelman, D., D. Klabjan. 2005. Duality and existence of optimal
policies in generalized joint replenishment. Math. Oper. Res.
30(1) 28–50.

Ahuja, R. K., T. L. Magnanti, J. B. Orlin. 1993. Network Flows. Pren-
tice Hall, Englewood Cliffs, NJ.

Croxton, K. L., B. Gendron, T. L. Magnanti. 2003. A compar-
ison of mixed-integer programming models for nonconvex
piecewise linear cost minimization problems. Management Sci.
49(9) 1268–1273.

de Farias, D. P., B. Van Roy. 2003. The linear programming
approach to approximate dynamic programming. Oper. Res.
51(6) 850–865.

de Farias, D. P., B. Van Roy. 2004. On constraint sampling in the
linear programming approach to approximate dynamic pro-
gramming. Math. Oper. Res. 29(3) 462–478.

Dror, M. 2005. Routing propane deliveries. A. Langevin, D. Riopel,
eds. Logistics Systems: Design and Optimization. Springer,
New York, 299–322.

Goyal, S. K. 1987. Comment on “A dynamic programming
approach for joint replenishment under general order cost
functions.” Management Sci. 33(1) 133–135.

Hernández-Lerma, O., J. B. Lasserre. 1996. Discrete-Time Markov Con-
trol Processes: Basic Optimality Criteria. Springer-Verlag, Berlin.

Klabjan, D., D. Adelman. 2006. Existence of optimal policies for
semi-Markov decision processes using duality for infinite lin-
ear programming. SIAM J. Control Optim. 44(6) 2104–4122.

Klabjan, D., D. Adelman. 2007. An infinite-dimensional linear pro-
gramming algorithm for deterministic semi-Markov decision
processes on Borel spaces. Math. Oper. Res. 32(3) 528–550.

Powell, W. B. 2007. Approximate Dynamic Programming: Solving the
Curses of Dimensionality. John Wiley & Sons, New York.

Queyranne, M. 1987. Comment on “A dynamic programming algo-
rithm for joint replenishment under general order cost func-
tions.” Management Sci. 33(1) 131–133.

Rosenblatt, M. J., M. Kaspi. 1985. A dynamic programming algo-
rithm for joint replenishment under general order cost func-
tions. Management Sci. 31(3) 369–373.

Schweitzer, P. J., A. Seidmann. 1985. Generalized polynomial
approximations in Markovian decision processes. J. Math. Anal.
Appl. 110(2) 568–582.IN

F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.


