
Multiple Machine Continuous Setup Lotsizing with

Sequence-dependent Setups

Bernardo Almada-Loboa∗ Diego Klabjanb Maria Antónia Carravillaa,c

José F. Oliveiraa,c

a Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal

b Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois

c Instituto de Engenharia de Sistemas e Computadores do Porto Campus da FEUP, Rua Dr. Roberto Frias 378, Porto 4200-465, Portugal

Abstract

We address the short-term production planning and scheduling problem coming from the glass
container industry. A furnace melts the glass that is distributed to a set of parallel molding
machines. Both furnace and machine idleness are not allowed. The resulting multi-machine
multi-item continuous setup lotsizing problem with a common resource has sequence-dependent
setup times and costs. Production losses are penalized in the objective function since we deal
with a capital intensive industry. We present two mixed integer programming formulations for
this problem, which are reduced to a network flow type problem. The two formulations are
improved by adding valid inequalities that lead to good lower bounds. We rely on a Lagrangian
decomposition based heuristic for generating good feasible solutions. We report computational
experiments for randomly generated instances and for real-life data on the aforementioned prob-
lem, as well as on a discrete lotsizing and scheduling version.

Keywords: continuous setup lotsizing, sequence-dependent setup, integer programming, Lagrangian de-

composition, heuristics

1 Introduction

Process industries are capital intensive leading to a strong focus on improving efficiencies and
reducing costs to remain competitive. It is imperative that demand is satisfied in the most cost-
effective manner. The main operational driver is to maximize the facilities throughput by means
of a specialization of processes to decrease downtimes. We deal with the short term production
planning problem faced by a glass container manufacturing company. The reader is referred to
Almada-Lobo et al. [2008] for an overview of the long-term planning problem. Glass containers
are intermediary in nature, and can be considered as almost a commodity. It is a semi-continuous
manufacturing process, where a common resource (furnace) produces the glass to be distributed
to a set of parallel machines that will form the containers. Significant machine setup times and
costs are incurred for switchovers from one product to another. The problem is to find production
∗Corresponding author. E-mail address: almada.lobo@fe.up.pt; tel: +351225082133

1



orders that maximize the “good tonnage” produced, while meeting a deterministic demand without
backlogging. Thus, one has to minimize the production losses due to machine switchovers and
furnace under capacity utilization, as well as holding costs. Additional complicate requirements
are taken into account, such as minimum lot-sizes, machine balancing and furnace idleness. The
resulting lotsizing and scheduling problem is an extension of the standard continuous setup lotsizing
problem (CSLP). The glass container industry works under the make-to-stock, serving dynamic
markets. The make-to-stock policy is not only driven by demand seasonality, but also by the
requirements to meet customers’ needs until the next production run of the desired glass containers.
The level of stock of containers held by this industry is of significant importance in considering
the economics of manufacturing, and fluctuates with changes in demand. In order to meet peak
demand requirements, stock is increased when demand is low. The number of months of demand
that are covered from stock ranges from two to three. Although new furnaces cost millions of euros,
the strategy of pulling the maximum amount of glass out of the furnace does not come from the
need to decrease marginal costs linked to this furnace sunk (fixed) cost, but from the need to be
competitive operationally and increase the gross margin (related to variable costs). Moreover, due
to economies of scale in natural gas consumption (the main industrial cost of this process) and
to other technical constraints, it is imperative that furnaces are run near their capacity. Hence,
production losses are not only triggered by setups (as usually considered), but also from not using
the maximum furnace capacity.

There is a wide variety of lotsizing and scheduling models, involving different features and as-
sumptions. The models that integrate lotsizing and scheduling are discussed in Drexl and Kimms
[1997]. Typically, the planning horizon is divided into a finite number of periods. In large-bucket
problems several products, setups may be produced, performed per period, respectively. The capac-
itated multi-item lotsizing problem (CLSP) is a typical example of a large-bucket model (Almada-
Lobo et al. [2007]). On the other hand, in small time bucket models, at most one setup may be
executed per period and, therefore, they are applicable for developing short-term production sched-
ules. This is the case for the discrete lotsizing and scheduling problem (DLSP), where a discrete
production policy is assumed, in which at most one product is produced at full capacity, known as
the “all-or-nothing” assumption (Fleischmann [1994]). Dematta and Guignard [1994a] study the
multi-machine DLSP arising at a tile manufacturing company, without considering setup times.
In the subsequent work, Dematta and Guignard [1994b] analyze the same problem but incorpo-
rate sequence-dependent setup times that reflect production losses. An exact solution method for
DLSP with sequence-dependent setup costs and times is proposed in Salomon et al. [1997]. Jans
and Degraeve [2004] address several specific industrial extensions of the multi-machine DLSP with
sequence-independent setup costs motivated by a real world production planning problem arising
at a tire manufacturer. CSLP relaxes the “all-or-nothing” requirement, as production can take
any value up to the capacity. Karmarkar and Schrage Karmarkar and Schrage [1985] present the
single-machine version of this problem without setup costs and label it the production cycling prob-
lem. The authors apply a Lagrangian relaxation approach to decouple the problem that provides
lower bounds used in a branch-and-bound algorithm. Karmarkar et al. [1987] study the single
item version of CSLP, for both uncapacitated and capacitated cases. Sandbothe Sandbothe [1996]
tackles single-machine multi-item CSLP with sequence independent setup costs and no setup times
with a three-step heuristic. Hindi Hindi [1995] develops a tabu-search procedure to the single-item
CSLP with startup costs. Wolsey Wolsey [1997] surveys work that can be used to strengthen the
formulations of the single-machine multi-item CSLP with both sequence independent and sequence
dependent changeovers. Vanderbeck Vanderbeck [1998] solves the single-machine multi-item CSLP

2



with sequence independent setups using an integer programming column generation algorithm and
develops a dynamic programming procedure for the single-item subproblem. Constantino Con-
stantino [2000] derives valid inequalities for the single-machine multi-item CSLP with sequence
independent setups and implements a branch-and-cut algorithm. The reader is referred to Jans
and Degraeve [2007] for an up-to-date overview of the existing algorithms for solving dynamic
lotsizing problems, focusing specially on meta-heuristics.

All the aforementioned manuscripts address the single-machine CSLP. It is well known that
solving CSLP is at least as hard as solving the associated DSLP. Vanderbeck [1998] questions
whether the decomposition approach is practical for the generalization of CSLP to the case of
multiple machines. In our problem, the total amount of the renewable, continuous resource (molten
glass) available at any time is limited. Since the production rate of a product on a machine depends
on the amount of the continuous resource allotted to it at a time, machines may have to produce
below their own capacity. Thus, the production environment at stake does not allow an extension
of DSLP and, consequently, we focus on the difficult CSLP. Dematta and Guignard [1995] also
deal with multi-machine CSLP, but changeover time (and production losses) are assumed to be
negligible. Productivity losses from making too many small batches are usual in lotsizing models.
To the best of our knowledge, this is the first work to address the production losses of not using
all of a resource, which is critical in some process industries.

We solve a mixed integer programming formulation of an extension of CSLP that appears in
short-term glass container production planning and scheduling. We employ a Lagrangian decompo-
sition approach to decouple the problem into more manageable pieces. The Lagrangian relaxation
problem is modeled as a network flow type problem. We use the solution of the decomposition to
develop a model-based Lagrangian heuristic by means of an efficient subgradient optimization pro-
cedure for solving the Lagrangian dual and a simple primal heuristic for yielding feasible solutions.
On top of this, we implement valid inequalities that enable us to considerably improve the quality
of lower bounds.

The main contributions of our work are as follows. To the best of our knowledge, this is the first
work on multi-machine CSLP with sequence dependent setup times and costs and production loss
costs. We solve a relevant industrial problem of a major competitive capital intensive industry. A
novel Lagrangian relaxation of a proposed formulation is designed in such a way that it results in an
easily solvable subproblem. In order to achieve this we relax the original formulation. We stress that
a straightforward application of Lagrangian does not produce satisfactory results (these experiments
are not shown here). Another major contribution of our work is a set of valid inequalities to improve
the quality of the lower bounds. An excellent feature of these inequalities is the fact that their
impact increases as the number of products and periods increases. Finally, we validate our approach
with both real-life data and random instances. The random instance generator is designed in such
a way that some settings reflect the features of CSLP instances, and others reflect those of DLSP
instances.

The reminder of the paper is organized as follows. In Section 2 we describe the underlying
production planning problem and present a mathematical model of an exact formulation. Section 3
reduces it into a simplified model, which is an extension of CSLP. The same section is also dedicated
to a reduction of these models into network flow problems by means of a Lagrangian relaxation of
the problem. The overall algorithm underlying the heuristic based on the Lagrangian approach is
presented in Section 4. Computational results are given in Section 5.

3



2 The problem statement and model

The glass container manufacturing process begins with the mixture of raw materials that is trans-
ported into the furnace where it is melted at around 1500◦C. Since the batch material takes about
24 hours to pass through the melting stage, the furnace capacity is measured in melted tons per
day. Natural gas is the energy source used in this process. The glass paste is cut into gobs and dis-
tributed by the feeders to a set (typically ranging from 2 to 6) of parallel independent section (IS)
glass molding machines that shape the finished product at 600◦C. The formed containers are then
passed sequentially through conditioning, surface treatment, automatic inspection, and packaging
procedures.

There is enough capacity downstream of the molding machines to process all the work coming
from upstream. Even if some problems arise at the end of the production line (the packaging area),
the conveyor belt has buffer areas to temporarily stock intermediate products, avoiding molding
machines to stop. Since the production scheduling is only constrained by the glass production and
the containers forming, this process can be considered to be single level; the transformation of the
molten glass into a finished product.

Due to high sequence dependent setup times involved in a color changeover, the color of glass
melted on each furnace is likely to remain constant in short or medium term. The long-term
production planning output schedules color campaigns on the furnaces of several sites and assigns
product orders to the furnaces. Given this output, the objective of short-term planning is to assign
(and sequence) products to machines on a daily basis within each color campaign (the analysis is
conducted furnace by furnace) that ensures the satisfaction of customers’ due dates and maximizes
the productivity, i.e., minimizes the loss of production due to changeovers and unused capacity of
the furnace, as well as holding costs.

2.1 The main requirements

Since only one color of glass is produced at a time in each furnace, machines served by the same
furnace always form containers of the same color. Furnaces are operated continuously (except when
they are being repaired) and machine lines operate on a 24 hour seven days a week basis. Therefore,
there is little flexibility for varying output to match fluctuations in demand. Due to economies of
scale in natural gas consumption and to structural constraints, machine idleness is not allowed.
This machine balancing constraint forces machines fed by the same furnace to operate the same
amount of time. Each machine can only run one product at a time.

Each molding machine has four main characteristics: the number of individual sections (con-
tainer making units assembled side by side, ranging from 6 to 12), the number of mold cavities per
section, i.e., the number of gobs to be formed in parallel (ranging from 1 to 3: in a double-gob
machine two gobs are shaped at the same time within a section), the center distance, i.e., the dis-
tance between the molds in a double-gob or triple-gob machine (either 41/4 inches, 5 inches, 51/2
inches or 61/4 inches) and the type of the manufacturing process (“blow-blow”, “press and-blow”,
and “narrow-neck press-and-blow” techniques). The first two features determine the maximum
throughput of the machine, while the last two restrict the set of products that can be allocated to
a machine. Figure 1 schematizes a double-gob machine of eight sections.

The processing time of each product per mold cavity of each machine is constant (in the glass
terminology, the cavity rate is referred to as the number of containers formed per minute in a mold
cavity). Hence, the production rate of a product on a machine depends on the respective cavity

4



Figure 1: Double-gob IS machine of eight sections

rate and on the total number of active mold cavities (number of active sections × the number of
gobs formed in parallel). One major advantage of IS machines is the possibility to independently
stop some sections. Moreover, some flexible machines may operate different gob configurations
(e.g., the same machine may run either a double or a triple gob setting).

Due to the semi-continuous nature of this manufacturing process, the daily throughput of the
furnace is determined by the daily output of its associated machines. If the product mix on the
adjacent machines (that are fed by the same furnace) processing at full speed demands too much
from the furnace output (above its daily capacity), it may be necessary to stop some machine
sections and/or change (if possible) the number of gobs to be formed in parallel. On the other
hand, if the mix of products at a certain day pulls too little molten glass from the furnace (usually
happens when the products are lightweight), the natural gas consumption economies of scale are
minimal and may lead to prohibitive industrial costs.

During a product changeover on a machine, the furnace keeps feeding the machine, however,
the gobs are discarded and melted down again in the furnace. Hence, sequence-dependent setups
consume part of the furnace capacity. This operation is performed by specialized workers in the
first shift of the day. As a result, the minimum time slot considered by the planner is a day (i.e.,
a machine can only be assigned a product per day).

In summary, the most important requirements are:

• each product can be carried over to the next time period,

• at most one product can be produced on a machine in any time period,

• active mold cavities are reconfigurable at the end of each time period, but the number must
be within a certain range,

• the furnace can be idle,

• a product changeover at a machine uses the capacity of the furnace and therefore there is a
corresponding cost, and

5



• a machine can only be idle at the tail of the planning horizon (they cannot be restarted during
the horizon).

2.2 The comprehensive formulation

Throughout the exposition, t denotes time periods, which range from 1 to T , i and j index products,
which are labeled from 1 to N , and k denotes machines, which range from 1 to K. In general,
we denote by [M ] the set {1, 2, . . . ,M}, and by ν(·) optimal values of underlying optimization
problems.

We are given the following data:

dit demand for product i at the end of period t (expressed in tons)
nik the maximum number of mold cavities of machine k in which product i can be produced
nik the minimum number of mold cavities of machine k in which product i can be produced
pik quantity of product i produced per mold cavity of machine k in a period (tons)
sijk setup time of a changeover from product i to product j, j 6= i on machine k

(tons)
cijk cost incurred to set up machine k from product i to product j, j 6= i
hi holding cost of carrying one ton of product i from one period to the next
C melting capacity of the furnace in a period (tons).

As discussed earlier, during changeover, gobs, which are measured in tons, are returned back to
the furnace. We call this the setup time even though it is measured in tons. We denote by ω the
conversion factor between the idle time of the furnace and the unit of cost (usually the monetary
unit).

We use the following decision variables:

Y k
it =

{
1 if product i is assigned to machine k in period t
0 otherwise

Qt =
{

1 if the furnace is active in period t
0 otherwise

Zkijt =


1 if product j is scheduled in period t and product i in period (t− 1),

both on machine k
0 otherwise

Nk
it = number of active mold cavities of machine k dedicated to product i in period t

Iit = stock of product i at the end of period t (tons)
Idt = idle capacity of the furnace in period t (tons).

We assume that Ii0 denotes the initial inventory of product i. The short term scheduling problem
is modeled as the following MILP formulation, denoted by F1.

ν(F1) = min
∑
i,j,k,t

cijk · Zkijt + ω ·
∑
t

Idt +
∑
i,t

hi · Iit (1)

6



Iit + dit − Ii(t−1) =
∑
k

pik ·Nk
it −

∑
j

sjik · Zkjit

 i ∈ [N ], t ∈ [T ] (2)

∑
i,k

pik ·Nk
it + Idt =C ·Qt t ∈ [T ] (3)

Nk
it ≤nik · Y k

it i ∈ [N ], k ∈ [K], t ∈ [T ] (4)

Nk
it ≥nik · Y k

it i ∈ [N ], k ∈ [K], t ∈ [T ] (5)∑
i

Y k
it ≤1 k ∈ [K], t ∈ [T ] (6)∑

i

Y k
it ≥

∑
i

Y k
i(t+1) k ∈ [K], t ∈ [T − 1] (7)

Qt =
∑
i

Y k
it k ∈ [K], t ∈ [T ] (8)

Y k
jt + Y k

i(t−1) ≤Z
k
ijt + 1 i ∈ [N ], j ∈ [N ] \ {i}, k ∈ [K], t ∈ [T ] (9)

(Iit, Idt, Qt) ≥ 0, Nk
it integer, (Y k

it , Z
k
ijt) binary.

The objective function (1) aims at minimizing the sum of sequence dependent changeover, and
holding and furnace idleness costs. Idleness is an opportunity cost for not pulling the maximum out
of the furnace. Constraints (2) balance the inventory flow for two consecutive periods and together
with Iit ≥ 0 ensure that demand is met without backlogging. Note that the parameter pik (“good”
tonnage of product i produced per mold cavity of machine k in a day) is given by

pik = CRik · wi · 24 · 60 · ηk,

where CRik denotes the cavity rate of product i on machine k, wi the weight of product i and ηk
the efficiency of machine k .

Constraints (3) restrict the furnace melted tonnage per period to its capacity and define its
idleness (Idt). In constraints (4), Y k

it is forced to be one if a production occurs for product i on
machine k in period t and the number of active mold sections (Nk

it) is limited by the respective pair
machine/product capacity. The technological constraints, such as product i not able to be processed
on machine k, are reflected in the parameter nik that would equal to zero in such circumstances.
In case of a production, constraints (5) activate a minimum number of mold cavities on a machine.
Nonzero nik implies a manager’s decision based on an intrinsic restriction from the underlying
production process. Constraints (6) prevent a machine from processing simultaneously more than
one product. Intermittent machine idleness is not allowed by constraints (7), forcing idle periods
to be placed at the end of the planning horizon (after an idle period, the machine remains idle
until the end of the planning horizon). Machines fed by the same furnace must be active in the
same periods of time, which is ensured by (8). Constraints (9) guarantee the coherency between
variables Y k

it and Zkijt. Finally, (10) represent the integrality and non-negativity constraints. Note
that the integrality condition of Qt is not necessary.

In addition, the short-term planning process must also respect management rules of the different
production sites like, for instance, the changing of a lot on a machine being possible only on working

7



days and on some predefined shifts (since it is undertaken by teams of highly skilled workers), or
the number of changes per week limited per facility. The number of available mold equipments may
also limit the number of machines on which a product can be allocated simultaneously. Therefore,
job splitting may not be allowed. All such restrictions are easy to incorporate in the model by
using the existing variables.

3 The solution methodology

Clearly, formulation F1 is very hard to solve. This model is simplified by relaxing the integrality
of Nk

it and introducing continuous variables Xk
it to capture the approximate quantity (expressed in

tons) of product i produced on machine k in period t, and by assuming null initial inventory for
every product.

Let Mik = nik · pik be an upper bound on the quantity of product i to be produced on machine
k per time period and let mik = nik · pik be a lower bound on the same quantity. The model F2

reads

ν(F2) = minω · C ·
∑
t

Qt − ω ·
∑
i,k,t

Xk
it +

∑
i,j,k,t

(cijk − ω · sijk) · Zkijt

+
∑
i,t

hi ·

(∑
k

t∑
s=1

Xk
is −

t∑
s=1

dis

)
(10)

∑
k

t∑
s=1

Xk
is −

t∑
s=1

dis ≥0 i ∈ [N ], t ∈ [T ] (11)∑
i,k

Xk
it +

∑
i,j,k

sijk · Zkijt ≤C ·Qt t ∈ [T ] (12)

Xk
it +

∑
j

sjik · Zkjit ≤Mik · Y k
it i ∈ [N ], k ∈ [K], t ∈ [T ] (13)

Xk
it +

∑
j

sjik · Zkjit ≥mik · Y k
it i ∈ [N ], k ∈ [K], t ∈ [T ] (14)

constraints (6)− (9)

(Xk
it, Qt) ≥ 0, (Y k

it , Z
k
ijt) ∈ {0, 1}. (15)

This model is an extension of the standard CSLP, which is computationally NP-hard. Clearly,
there is no known polynomial algorithm to check feasibility a priori. We first argue that F2 is a
relaxation of F1.

Proposition 1. We have ν(F1) ≥ ν(F2).

8



Proof. Let us define Xk
it as

Xk
it = pik ·Nk

it −
∑
j

sjik · Zkjit i ∈ [N ], k ∈ [K], t ∈ [T ]. (16)

We can remove inventory variables from model F1 assuming, without loss of generality, null initial
inventory level for every product (i.e., Ii0 = 0 for every i). This fact, together with (16), allows us
to replace (2) by (11). These constraints state that the cumulative production for item i is at least
equal to the cumulative demand up to each period t. In addition, incorporating (16) into (4) and
(5) yields constraints (13) and (14). We can argue that constraints (12) hold as follows:

C ·Qt =
∑
i,k

pik ·Nk
it + Idt ≥

∑
i,k

pik ·Nk
it =

∑
i,k

Xk
it +

∑
i,j,k

sijk · Zkijt.

We note that both furnace capacity and setup times are expressed in tons. Thus, variable Idt in F1

represents the unused tonnage of the furnace in an active period t. By using (3) and considering
(16), we derive the objective function (10). Clearly, from (16), X’s only take integer values in F1

since N and Z are integer and binary variables, respectively. On the other hand, X’s are continuous
variables in F2. If S and R are the feasible regions of polytopes F1 and F2, respectively, then we
have just established that S ⊆ R. This clearly shows that ν(F2) ≤ ν(F1).

3.1 A network reformulation

We now reduce F2 to a network-flow type problem. We first observe that the following constraints
are an alternative formulation to constraints (7) and (9):∑

j

Zkjit ≥
∑
j

Zkij(t+1) i ∈ [N ], k ∈ [K], t ∈ [T − 1]. (17)

Contrarily to formulation F2, here it is mandatory that Zkiit equals to one when machine k is set
up for product i from period t − 1 to period t (a phantom setup) and siik = 0. Thus we define
siik = ciik = 0 and we also use Zkiit. Constraints (17) ensure a balanced network flow of each
machine configuration state and carry the setup state of the machine into the next period (as done
by constraints (9)). They impose an output setup performed in period t + 1 for product i to be
preceded by an input setup in period t for the same product. Moreover, these constraints force idle
periods to be placed at the end of the planning horizon. In case production stops in period t− 1,
period t contains no setups (idle period), i.e.

∑
i,j Z

k
ijt = 0 and, by constraints (17),

∑
i,j Z

k
ijs = 0

for every s > t. As a result, constraints (17) also replace constraints (7). We also observe that

Y k
it =

∑
j

Zkjit, (18)

i.e., we conclude that product i is only assigned to machine k in period t if an input setup is
performed for product i. Variables Y k

it can be eliminated from model F2. After dividing objective
function (10) by ω, we reduce model F2 to the following network formulation P :

ν(P ) = minC ·
∑
t

Qt −
∑
i,k,t

Xk
it +

∑
i,j,k,t

(cijk
ω
− sijk

)
· Zkijt +

∑
i,t

hi
w
·

(∑
k

t∑
s=1

Xk
is −

t∑
s=1

dis

)

9



constraints (11) and (12)

Xk
it +

∑
j

sjik · Zkjit ≤Mik ·
∑
j

Zkjit i ∈ [N ], t ∈ [T ], k ∈ [K] (19)

Xk
it +

∑
j

sjik · Zkjit ≥mik ·
∑
j

Zkjit i ∈ [N ], t ∈ [T ], k ∈ [K] (20)

∑
i,j

Zkijt ≤1 t ∈ [T ], k ∈ [K] (21)

∑
j

Zkjit ≥
∑
j

Zkij(t+1) i ∈ [N ], t ∈ [T − 1], k ∈ [K] (22)

Qt =
∑
i,j

Zkijt t ∈ [T ], k ∈ [K] (23)

Xk
it ≥ 0, (Zkijt, Qt) ∈ {0, 1}. (24)

By the aforementioned arguments this is an equivalent formulation to F2. The only constraints
that link the parallel machines together are (11) and (12). If we dualize these constraints by
multiplying them by non-negative vectors of dual multipliers λit and πt, respectively, the Lagrangian
problem PLD is stated as

ν(PLD) = min
X,Q,Z

C ·
∑
t

Qt −
∑
i,k,t

Xk
it +

∑
i,j,k,t

(cijk
ω
− sijk

)
· Zkijt +

∑
i,t

hi
w
·

(∑
k

t∑
s=1

Xk
is −

t∑
s=1

dis

)

+
∑
i,t

λit ·

(
t∑

s=1

dis −
∑
k

t∑
s=1

Xk
is

)
+
∑
t

πt

∑
i,k

Xk
it +

∑
i,j,k

sijk · Zkijt − C ·Qt


subject to (19)− (24).

Reorganizing the terms of the objective function yields

ν(PLD) = min
∑
i,k,t

(
πt − 1−

T∑
s=t

(λis −
hi
w

)

)
·Xk

it + C ·
∑
t

(1− πt) ·Qt

+
∑
i,j,k,t

(
sijk · (πt − 1) +

cijk
ω

)
· Zkijt +

∑
i,t

dit ·
T∑
s=t

(λis −
hi
w

).

Due to the machine balancing constraints, any feasible solution satisfies Q1 = . . . = Ql = 1 and
Ql+1 = . . . = QT = 0, for a particular l. Given a fixed l, ν(PLD) decouples by machine into a set
of single machine models PLDl

k as follows:

ν(PLD) = min
l

[
C ·

l∑
t=1

(1− πt) +
∑
k

ν(PLDl
k)

]
+
∑
i,t

dit ·
T∑
s=t

(λis −
hi
w

),

10



where

ν(PLDl
k) = min

X,Z

∑
i,t

(
πt − 1−

T∑
s=t

(λis −
hi
w

)

)
·Xk

it +
∑
i,j,k,t

(
sijk · (πt − 1) +

cijk
ω

)
· Zkijt,

subject to (19), (20), (22)∑
i,j

Zkijt =
{

1, t ∈ [l], k ∈ [K]
0, t ∈ [T ] \ [l], k ∈ [K]

(25)

Xk
it ≥ 0, Zkijt binary.

If we consider the production of product i on machine k in period t, then
∑

j Z
k
jit = 1,

∑
j Z

k
ji′t = 0

for i′ ∈ [N ] \ {i} and Qt = 1. Given this condition, we can calculate Xk
it by solving the following

problem:

θ(i, j, k, t, λ, π) = max
X

Xk
it ·

(
1− πt +

T∑
s=t

(λis −
hi
w

)

)
subject to Xk

it ≤Mik − sjik
Xk
it ≥ mik − sjik

Xk
it ≥ 0.

Note that if 1−πt+
∑T

s=t(λis−hi/w) ≥ 0, then Xk
it = [Mik− sjik]+, otherwise Xk

it = [mik− sjik]+.
Clearly, the amount of product i to be produced in period t results from a tradeoff between multipli-
ers λit and πt, i.e., a tradeoff between an eventual stockout of product i in period t (constraint (11) is
violated) and an excess of furnace production in period t (violation of constraint (12)). Given multi-
pliers λ’s and π’s, in each Lagrangian iteration we solve N2TK problems of the form θ(i, j, k, t, λ, π)
to determine a priori the production amounts of each assigned product.

We have established that PLDl
k reduces to

ν(PLDl
k) = min

Z

∑
i,j,t

(
−θ(i, j, k, t, λ, π) + sjik · (πt − 1) +

cjik
ω

)
· Zkjit

subject to (22), (25)

Zkijt binary.

Note that (25) depend on l.
Consider machine k and given multipliers λ’s and π’s let

wkijt =
{
−θ(i, j, k, t, λ, π) + sjik · (πt − 1) + cjik

ω if i ∈ [N ]
∞ otherwise.

11



Next we show how to efficiently solve PLDl
k. Let us define an acyclic graph Gl with V =

[N ] × [l], A = [N ] × [N ] × [l] for each machine k, where each node (i, t) represents the product i
to be produced in period t on machine k, and each arc a : (i, t) → (j, t + 1) corresponds to the
setup from product i to product j at the beginning of period t + 1 on machine k. Each of these
arcs has weight wkijt. Next we define a new network G0

l = (V 0, A0) by adding source node (s, 0)
and arcs (s, 0)→ (j, 1) for every j with weight wksj1, where s is the product produced in period 0,
and a target node (v, l + 1) and arcs (i, l) → (v, l + 1) for every i with zero weight. This network
is illustrated in Figure 2.

Figure 2: Network representation of problem PLDl
k.

We solve PLDl
k by finding a shortest path on the acyclic graph from node (s, 0) to node (v, l+1).

We refer the reader to the O(m) reaching algorithm described in Ahuja et al. [1993] for solving the
shortest path problem in acyclic networks. Here m is the number of arcs in the network, which
in our case is O(lN2). The shortest path problem is a special version of the minimum cost flow
problem with zero lower flow bound on each unit capacity arc, which aims to send 1 unit of flow
from node s to node v along the path with the minimum cost. It is well known that in a feasible
and bounded minimum cost flow problem with node supplies and arc flow bounds that are integer,
there exists an optimal integral flow vector (see, e.g., Bertsekas [1998]).

Problem PLDl
k is not directly a minimum cost flow problem, but nevertheless integrality of Z

is automatic, as shown in the following theorem.

Theorem 1. Problem PLDl
k exhibits the integrality property, i.e., its LP relaxation exhibits an

optimal integral solution.

Proof. If we sum (22) over all i we obtain that
∑

i,j Z
k
jit ≥

∑
i,j Z

k
ij(t+1). From (25) it follows that

both sides are 1 if t+ 1 ≤ l. We conclude that in (22) we have equalities, which model that flow in
must equal flow out. Now it is clear that PLDl

k is equivalent to the shortest path problem on the
network in Figure 2.

Let us also consider another relaxation where we relax (11), (12) and (23). The resulting
Lagrangian relaxation is denoted by PLDW (not presented here). Theorem 1 and the well known

12



result from Geoffrion [1974] show that ν(PLDW ) = ν(PLP ), where the LP relaxation of P is
denoted by PLP. We conclude that ν(PLP ) = ν(PLDW ) ≤ ν(PLD) ≤ ν(P ).

We implemented an algorithm based on PLDW , but the results were not satisfactory and are
not presented.

3.2 Valid Inequalities

In this section we present four classes of valid inequalities to tighten the network formulation P .
From (11), (18) and Xk

it ≤Mik · Y k
it , which follows from (13), we obtain that

∑
j,k

t∑
s=1

Mik · Zkjis ≥
t∑

s=1

dis i ∈ [N ], t ∈ [T ] (26)

are valid inequalities. Clearly then every valid inequality for this knapsack type problem is valid
for P . There are many known valid inequalities.

The second class of inequalities exploit the fact that once a furnace is idle, it remains inactive
until the end of the time horizon.

Proposition 2. The following set of inequalities∑
j

Zkjit ≤
∑
j

Zkij(t+1) +Qt −Qt+1 i ∈ [N ], t ∈ [T − 1], k ∈ [K] (27)

are valid for P .

Proof. Let Q,Z be a feasible solution to P and let us fix i, t, k. Clearly, 0 ≤
∑

t(Qt−1 − Qt) ≤ 1
since Qt−1 ≥ Qt for every t.

In case Qs−1 − Qs = 1 for an s, then Q1 = Q2 = . . . = Qs−1 = 1 and Qs = . . . = QT = 0. It
follows that Qs−1 − Qs = 1 and Qt−1 − Qt = 0 for every t 6= s. If

∑
j Z

k
jit = 0, then product i is

not produced in period t and (27) is valid since the right-hand side is nonnegative. If
∑

j Z
k
jit = 1

(product i produced in period t on machine k), then clearly Qt = 1. In this case we distinguish
two further cases: if Qt+1 = 0 (i.e., the production stops in period t), then it follows from (23)
that

∑
i,j Z

k
ij(t+1) = 0 and therefore (27) holds; if Qt+1 = 1, then constraints (22) and (23) imply∑

j Z
k
ij(t+1) = 1, validating (27).

If such an s does not exist, then Q1 = Q2 = . . . = QT = 0 and hence
∑

j Z
k
jit =

∑
j Z

k
ijt = 0 for

every i and t. We conclude that (27) clearly holds.

We note that if Qt = Qt+1, then (27) together with (22) impose
∑

j Z
k
jit =

∑
j Z

k
ij(t+1) and, there-

fore, there is balanced flow through each node.

The third set of inequalities is based on those presented in Pochet and Wolsey [2006].

Proposition 3. The inequalities

∑
j

Zkji(t−1) +
∑
j:j 6=i

Zkjit ≤ 1−
∑
j:j 6=i

Zkjjt i ∈ [N ], t ∈ [T ] \ {1}, k ∈ [K]. (28)

are valid for P .

13



Proof. Let us consider a Z feasible to P and we fix i, t, k. For ease of notation we introduce
W k
jt =

∑
u:u6=j Z

k
ujt, which equal to 1 if start-up occurs for product j on machine k in period t, and

0 otherwise. We can now rewrite (28) as

∑
j

Zkji(t−1) +W k
it ≤ 1−

∑
h:h6=i

∑
j

Zkjht −W k
ht

 i ∈ [N ], t ∈ [T ] \ {1}, k ∈ [K]. (29)

To show (29), we consider three cases.

1) Let us first consider
∑

j Z
k
ji(t−1)+W k

it = 0. Then
∑

h:h6=i

(∑
j Z

k
jht −W k

ht

)
=
∑

h:h6=i Z
k
hht ≤ 1,

where we used (21). This establishes (29).

2) Let now W k
it = 1. It implies that product i is not produced in period t−1 and

∑
j Z

k
ji(t−1) = 0.

Hence the left-hand side of (29) equals 1. Clearly then W k
ht = 0 for every h, h 6= i. We also

have
∑

j Z
k
jht = 0 for every h, h 6= i. We conclude that

∑
h:h6=i

(∑
j Z

k
jht −W k

ht

)
= 0 and thus

the right-hand side in (29) equals 1.

3) Let us now assume that
∑

j Z
k
ji(t−1) = 1. Then product i is produced in period t−1 and hence

no start-up for product i occurs in period t. It means that W k
it = 0 and the left-hand side of

(29) is thus 1. If product i is produced also in period t, then clearly W k
ht =

∑
j Z

k
jht = 0 for

every h, h 6= i. If product i is not produced in period t, then any setup for product h 6= i in
period t must be accompanied by a start-up, i.e.,

∑
j,h:h6=i Z

k
jht =

∑
h:h6=iW

k
ht. We conclude

that the right-hand side of (29) is 1.

From the three cases it follows that
∑

j Z
k
ji(t−1)+W k

it ≤ 1. Thus case 1 covers the case
∑

j Z
k
ji(t−1)+

W k
it = 0, while the remaining two cases cover

∑
j Z

k
ji(t−1) +W k

it = 1. This argument shows that the
three cases cover all possibilities.

For the remaining class of inequalities, let M∗i = max
k

Mik and we define

δt =

N −
 (t− 1) ·K

min
i
d
∑

s dis
M∗i

e




+

.

Proposition 4. The inequalities

δt ≤
∑
i,j,k
j 6=i

T∑
s=t

Zkjis t ∈ [T ] (30)

are valid for P .

Proof. In a feasible solution to P any product has a minimum number of production time slots

given by min
i
d
∑

s dis
M∗i

e. At the end of period t − 1, we might have faced the entire production

14



requirements of at most

 (t−1)·K

min
i
d
∑

s dis
M∗i

e

 products. Thus δt is a lower bound on the number of

start-ups that must be performed in periods t, t + 1, . . . , T . It is easy to see that in period t the
minimum number of start-ups for the remaining planning horizon is given by δt. Thus (30) are
valid for P .

4 The Lagrangian Heuristic

In this section we exploit the problem structure and build a heuristic method to obtain feasible
solutions based on Lagrangian relaxation.

The success of any Lagrangian approach depends upon three features: the tightness of the lower
bound provided by the sub-problem, the ability to produce good primal feasible solutions, and the
efficiency in solving the Lagrangian dual. A successful technique to solve the Lagrangian dual is the
well-known subgradient optimization algorithm (see, e.g., Held et al. [1974]). Let PLD(λm, πm)
denote the dual function at iteration m. In order to compose a search direction to update the
multipliers, let us define two subgradients of PLD(λm, πm) based on

ζmt =
∑
i,k

(Xk
it)
m +

∑
i,j,k

sijk · (Z
k
ijt)

m − C · (Qt)m t ∈ [T ] and (31)

Ωm
it =

t∑
s=1

dis −
∑
k

t∑
s=1

(Xk
is)

m i ∈ [N ], t ∈ [T ], (32)

where X,Z,Q denote an optimal solution to PLD(λm, πm). Lagrangian multipliers are updated
according to the recursions

πm+1
t = [πmt + ϕm · ζmt ]+ and λm+1

it = [λmit + τm · Ωm
it ]

+,

where ϕm and τm are the step sizes in iteration m and [·]+ ensures their projection onto the
nonnegative orthant. A suitable step size is crucial for fast convergence of the subgradient method.
Let µm be a parameter satisfying 0 < µm ≤ 2, UB an upper value on the dual function PLD and
‖ · ‖ the Euclidean norm. We use the following stepsizes:

ϕm = µm · UB − ν (PLD(λm, πm))
‖ ζm ‖2

and τm = µm · UB − ν (PLD(λm, πm))
‖ Ωm ‖2

.

The main advantage of this relaxation is that it yields a simple sub-problem, since solving each
PLDk is equivalent to finding a shortest path on an acyclic graph for each l. This property enables
a large number of subgradient iterations in order to solve the Lagrangian dual.

In our implementation, we chose µ1 = 1.1 as an initial value, and if no improvement of the
lower bound is obtained in 10 successive iterations, we set µm = 0.5 · µm−1 and reset µm back to
1.1 whenever we get an improved solution. This algorithm is stopped when the gap between the
known upper bound and the Lagrangian bound is less than 0.15%, or after 30 iterations without a
lower bound improvement.

An important component of the Lagrangian solution is deriving feasible solutions to F2. A
solution to F2 is characterized by the setup pattern Zkijt and the production quantities Xk

it that

15



are assigned according to this setup pattern. We fix the setup variables of F2 with the values from
the underlying PLD solution, and solve the remaining linear program to optimality to obtain the
production amounts.

5 Computational Results

Computational experiments were performed on an ASUS personal computer with 3.0 GHz CPU
and 2GB of random access memory. CPLEX 10.1 from ILOG was used as the mixed integer
programming solver and the Lagrangian approach was coded in OPL version 5.1 also from ILOG.

Test problems were generated using the following generator. The number of machines K equals
to three, the number of products N were 5, 10, and 15 and the number of periods T were 30 and
45. External demand occurs at the end of each fifth period for all products (time between orders
equals 5 time periods) and it is drawn from uniform distribution U(400, 1000). Let Cut denote the
(approximate) furnace capacity utilization. We consider medium capacitated problems (Cut = 0.6)
and high capacitated problems (Cut = 0.8). Furnace daily capacity C is given by

∑
i,t

dit/(T ·Cut).

Setup times (sijk) were generated based on U [0.10 · CK , 0.20 · CK ] for every i 6= j, and are zero for
i = j. If we assume that the cost cijk captures the wasted tonnage, then they are measured in
tons and cijk = sijk and the weighting factor ω equals to 1. Since the glass containers are almost
considered as a commodity, holding costs (hi) are the same for all products and they are 0.20.

Regarding the upper and lower bounds, two different settings are analyzed. The first setting
S1 considers upper bounds on the production of product i on machine k (Mik) obtained from a
normal distribution with an expected value of C/K and a coefficient of variation of 0.1, while the
respective lower bound (mik) is derived based on the expression U [0.4, 0.8] · Mik. This setting
reflects the unique properties of the glass container industry. The second setting S2 considers
Mik = mik = C/K and reflects the features of DLSP instances (as the discrete production policy
takes place), and is used for comparison purposes. We note that the parameters of this generator
were based on our case study data. For instance, the coefficients of the uniform distribution that
randomly generates mik followed from the fact that some machines can stop at most 20% of their
sections, while other can stop almost 60% of them.

For each quadruplet N , T , Cut and S (with K = 3), ten different instances were generated. In
addition, for K = 4, Cut = 0.8 and S1, ten instances were generated for each pair (N,T ). Hereafter
we present for each instance type the average of the values obtained across the 10 instances. Figure 3
illustrates a feasible solution for an instance of type K = 3/S1/Cut = 0.8/N = 10/T = 30. Here,
the furnace is active throughout the entire planning horizon, and it is heavily loaded in the last
third of the plan. Capacity is clearly tight, therefore the furnace (and the associated machines)
could not be stopped beforehand.

An instance of type K = 3, S1, N = 15, T = 45 produces an IP in formulation F2 with 6, 330
rows, 32, 418 columns and 194, 895 nonzeros, while K = 4, S1, N = 15, T = 30 contains 5, 372 rows,
26, 562 columns and 156, 619 nonzeros. These are fairly large IPs that are very hard to solve to
optimality in reasonable time.

We first compare the LP relaxation of models F2 and F2 strengthened by the four sets of
valid inequalities described in Section 3. The optimal value of the LP relaxation of F2 is denoted
by ν(F2LP ) and after adding the valid inequalities by ν(F ?2LP ). Tables 1 and 2 present the gaps
ν(F ?

2LP )−ν(F2LP )

ν(F2LP ) for settings S1 and S2, respectively. The impact of the valid inequalities is larger

16



Figure 3: Solution example for the instance K = 3/S1/Cut = 0.8/N = 10/T = 30

for instances with medium capacity utilization than for instances with high capacity utilization.
Moreover, it is clear that this impact is more pronounced for setting S2 than for S1, and tends to
increase as the number of products and periods increase.

Table 1: Comparison (%) of F ?2LP and F2LP for setting S1, K = 3
Cut = 0.6 Cut = 0.8

N T = 30 T = 45 T = 30 T = 45
5 2.2% 2.6% 0.1% 0.0%
10 2.9% 3.4% 0.4% 0.2%
15 2.5% 3.6% 1.0% 0.3%

Table 2: Comparison (%) of F ?2LP and F2LP for setting S2, K = 3
Cut = 0.6 Cut = 0.8

N T = 30 T = 45 T = 30 T = 45
5 6.3% 8.8% 2.3% 3.0%
10 7.1% 9.4% 2.4% 2.9%
15 8.3% 11.1% 2.5% 2.9%

Tables 3 and 4 display the minimum, average, and the maximum gap of the heuristic solution
from the lower bound for settings S1 and S2, respectively. The heuristic finds a feasible solution
for all problem instances, excepting the two most tightly capacitated instance: S1, Cut = 0.8/N =
15, T = 30 and S1, Cut = 0.8, N = 15, T = 45. The results indicate that for both S1 and S2

the heuristic performance deteriorates as the number of products increases. This situation is
pronounced when the discrete production policy is relaxed and the furnace may run up to capacity
(setting S1). Regarding the number of periods, it seems that the performance of the heuristic
behaves differently from S1 to S2. For setting S1 its performance worsens as the number of products
increases, whereas for S2 the gap between the lower and the upper bound either tends to decrease

17



as T increases (Cut = 0.6) or it is almost not influenced by T (Cut = 0.8). It is clear that the
algorithm performs very well on S2 since the largest gap is less than 10%. The performance on S1

is not that encouraging. The total computational times and the number of iterations in each run
are given in Table 5 for S1, Cut = 0.8. We note that for all instances the total running time never
exceeded 1 hour.

Table 3: Gap (%) between the lower and upper bounds for setting S1, K = 3
Cut = 0.6 Cut = 0.8

N T = 30 T = 45 T = 30 T = 45
5 4.0/5.7/7.4 5.9/8.0/12.3 8.9/12.5/17.5 19.4/22.8/26.9
10 7.3/11.9/19.0 11.8/23.9/30.8 20.7/24.8/28.7 30.8/47.6/53.1
15 13.4/22.0/29.9 29.1/37.4/47.3 29.2/38.5/49.2

minimum / average / maximum gap (%)

Table 4: Gap (%) between the lower and upper bounds for setting S2, K = 3
Cut = 0.6 Cut = 0.8

N T = 30 T = 45 T = 30 T = 45
5 1.3/2.5/3.7 0.6/1.0/1.4 0.9/1.2/1.9 0.6/1.3/4.0
10 2.8/5.6/9.9 2.4/3.4/5.2 1.1/1.7/2.7 0.7/2.4/6.2
15 4.5/6.8/8.5 3.3/5.2/6.9 1.3/3.0/5.0

minimum / average / maximum gap (%)

Table 5: Average running times for Cut = 0.8 and setting S1, K = 3
T = 30 T = 45

N # Iterations CPU time (secs) # Iterations CPU time (secs)
5 32 63 37 134
10 55 655 59 1, 174
15 76 1, 864 81 2, 976

Table 6 presents the average number of branch-and-bound nodes and the optimality gap (%)
obtained by CPLEX 10.1 for the same instances as those presented in Table 3 within a one hour
time limit on formulation F2 strengthened by all the cuts developed in Section 3.2. An empty
field means that CPLEX 10.1 was not able to generate any feasible solutions within the time limit.
There was even an instance for T = 45, N = 15, Cut = 0.6 where CPLEX 10.1 was not able to
find a solution. This instance was discarded and it was not included in the reported average. As
the size of the instance gets bigger our results clearly outperform those obtained by CPLEX. Only
for N = 5, 10 and T = 30, 45 with Cut = 0.6 and N = 5, T = 30, 45 with Cut = 0.8 CPLEX 10.1
outperforms our Lagrangian approach. In all other cases we produce substantially better gaps (and
also lower running times). It is also clear from the substantially lower number of branch-and-bound
nodes as N increases that LP relaxations become much more difficult. This is another advantage
of our Lagrangian approach since we do not solve LP relaxations and thus our algorithm is more
scalable.

18



Table 6: CPLEX 10.1 optimality gap (%) and nodes within the one hour time limit
Cut = 0.6 Cut = 0.8

T = 30 T = 45 T = 30 T = 45
N Nodes Gap Nodes Gap Nodes Gap Nodes Gap
5 215, 701 0.7% 116, 900 1.7% 61, 201 1.4% 38, 563 4.5%
10 26, 712 8.3% 7, 205 12.7% 10, 481 4, 183
15 5, 932 28.1% 1, 268 58.7% 2, 367 859

Table 7 displays the same statistics as Table 3 for larger instances, made up of four machines
for Cut = 0.8. Comparing the results in Tables 3 and 7 it is clear that the gap improves as the
number of machines increases. Here again, the algorithm failed to find feasible solutions for hardiest
instance (K = 4, S1, N = 15, T = 45). We note that CPLEX 10.1 runs out of memory for instances
N = 15, T = 45, Cut = 0.8 without finding any upper bound.

Table 7: Gap (%) between the lower and upper bounds for setting S1, K = 4
Cut = 0.8

N T = 30 T = 45
5 4.8/5.7/6.8 7.4/10.9/15.2
10 12.9/19.5/25.9 32.2/44.8/53.0
15 18.5/26.9/38.2

minimum / average / maximum gap (%)

Figure 4 shows the trend of the gap between the lower and upper bound in the Lagrangian
approach for an instance of the type K = 3, S1, Cut = 0.8, N = 5, T = 30. After approximately 25
iterations with a lower bound improvement, the gap appears to stabilize.

Figure 4: Solution example for the instance K = 3, S1, Cut = 0.8, N = 10, T = 30

Finally, Table 8 gives the solution gap (%) and the main characteristics of different real-world

19



instances of our problem. The results for these instances outperform considerably those obtained
previously for randomly generated instances. Two main reasons that make the problem slightly
easier for real-world instances are as follows. First, in real-world instances technology constraints
do not allow products to be assigned to some machines, which reduces the number of variables.
Second, the demand is not observed every fifth period for every product but it is more sparse
(e.g., two orders of the same product may lag more than 10 time periods). It can be seen, despite
the small sample dimension, that the gap increases with the number of time periods, and as the
instances become more highly capacitated.

Table 8: Gap (%) between the lower and upper bounds for various real-life instances
N T K Cut mik/Mik Gap(%)
7 35 3 0.83 0.64 10.5
4 24 3 0.71 0.74 1.4
7 13 3 0.77 0.67 4.1
6 32 3 0.81 0.63 1.8
14 19 3 0.84 0.65 5.9
14 16 5 0.63 0.69 4.9
8 13 4 0.50 0.74 3.7
7 23 4 0.80 0.74 3.9
11 16 4 0.60 0.75 5.2
9 15 3 0.80 0.64 4.9
8 18 5 0.80 0.68 4.6
12 21 3 0.71 0.67 5.1

6 Conclusions

In this paper, we address the short-term production planning and scheduling problem faced by a
glass container company, where a limited renewable, continuous resource is distributed to a set of
parallel molding machines. After developing an exact formulation, we simplify it into an extension
of the standard continuous lotsizing problem (CSLP). Computationally, the problem corresponding
to this model is NP-hard. We then reduce it to a network flow type model, which is decoupled by
machine through a Lagrangian relaxation scheme. Since the subproblems are easily solvable, we are
able to run a large number of iterations in a short period of time. Feasible solutions are generated
with a model-based Lagrangian heuristic. We carry out a set of computational experiments on
relatively large real-world and randomly generated instances.

The contributions of this research are fourfold. First, we solve a relevant industrial problem
within a very competitive industry. Second, we are not aware of any research tackling CSLP with
multiple-machines with the presence of production losses (due to setups and capacity surplus).
Due to its inherent complexity, the research community has overlooked multi-machine CSLP with
sequence dependent setups. Third, we have employed an efficient Lagrangian based heuristic for this
problem. Finally, we have implemented valid inequalities that enable us to reduce the integrality
gap.

CSLP has been neglected by researchers due to its computational challenges. This study fur-
ther suggests that this problem (clearly useful in practice) is a challenging area for future research.

20



Additionally, opportunity costs for not pulling the most out of a resource are critical in capital
intensive industries. Though our computational results are very encouraging, there is room for
improvements. We need to study under what conditions the presented valid inequalities are strong
(define facets), since it seems that their impact on the improvement of the lower bound is depen-
dent upon the instance type. Another important research question is to find valid inequalities to be
added to (19)-(23) in order that its LP relaxation has no integrality gap (that provide a complete
description of the respective polyhedron). Additionally, it is clearly important to find strategies
to combine even stronger valid inequalities based on the polyhedral structure of this problem with
tighter reformulations. These inequalities should take into account the furnace capacity constraints.
Lagrangian relaxation appears to be very suitable for determining feasible solutions. An improve-
ment heuristic may be developed to even further close the gap between the lower and upper bound.

References

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applica-
tions. Prentice-Hall, Englewood Cliffs, NJ, 1993.

B. Almada-Lobo, D. Klabjan, M. A. Carravilla, and J. F. Oliveira. Single machine multi-product
capacitated lotsizing with sequence-dependent setups. International Journal of Production Re-
search, 45:4873–4894, 2007.

B. Almada-Lobo, J. F. Oliveira, and M. A. Carravilla. Production planning and scheduling in the
glass container industry: A VNS approach. International Journal of Production Economics, 114:
363–375, 2008.

D. Bertsekas. Network optimization: continuous and discrete models. Athena Scientific, Belmont,
MA, 1998.

M. Constantino. A polyhedral approach to a production planning problem. Annals of Operations
Research, 96:75–95, 2000.

R. Dematta and M. Guignard. Dynamic production scheduling for a process industry. Operations
Research, 42:492–503, 1994a.

R. Dematta and M. Guignard. Studying the effects of production loss due to setup in dynamic
production scheduling. European Journal of Operational Research, 72:62–73, 1994b.

R. Dematta and M. Guignard. The performance of rolling production schedules in a process
industry. IIE Transactions, 27:564–573, 1995.

A. Drexl and A. Kimms. Lot sizing and scheduling - survey and extensions. European Journal of
Operational Research, 99:221–235, 1997.

B. Fleischmann. The discrete lot-sizing and scheduling problem with sequence-dependent setup
costs. European Journal of Operational Research, 75:395–404, 1994.

A. Geoffrion. Lagrangian relaxation for integer programming. Mathematical Programming Study,
2:82–114, 1974.

21



M. Held, P. Wolfe, and H. Crowder. Validation of subgradient optimization. Mathematical Pro-
gramming, 6:62–88, 1974.

K. S. Hindi. Solving the single-item, capacitated dynamic lot-sizing problem with startup and
reservation costs by tabu search. Computers and Industrial Engineering, 28:701–707, 1995.

R. Jans and Z. Degraeve. An industrial extension of the discrete lot-sizing and scheduling problem.
IIE Transactions, 36:47–58, 2004.

R. Jans and Z. Degraeve. Meta-heuristics for dynamic lot sizing: A review and comparison of
solution approaches. European Journal of Operational Research, 177:1855–1875, 2007.

U. Karmarkar and L. Schrage. The deterministic dynamic product cycling problem. Operations
Research, 33:326–45, 1985.

U. S. Karmarkar, S. Kekre, and S. Kekre. The dynamic lot-sizing problem with startup and
reservation costs. Operations Research, 35:389–398, 1987.

Y. Pochet and L. A. Wolsey. Production Planning by Mixed Integer Programming. Springer Series
in Operations Research and Financial Engineering. Springer, New York, 2006.

M. Salomon, M. M. Solomon, L. N. Van Wassenhove, Y. Dumas, and S. Dauzere-Peres. Solving
the discrete lotsizing and scheduling problem with sequence dependent set-up costs and set-up
times using the travelling salesman problem with time windows. European Journal of Operational
Research, 100:494–513, 1997.

R. A. Sandbothe. A user interactive heuristic procedure for solving the multiple product cycling
problem. Computers and Operations Research, 23:897–907, 1996.

F. Vanderbeck. Lot-sizing with start-up times. Management Science, 44:1409–1425, 1998.

L. A. Wolsey. MIP modelling of changeovers in production planning and scheduling problems.
European Journal of Operational Research, 99:154–165, 1997.

22


