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Abstract

The generalized location routing problem with profits is a new routing problem class that
combines the vehicle routing problem with profits, depot or base selection, and the notion of
strategies and route tactics to be employed at selected bases. The problem simultaneously
determines base locations, strategies to use at the bases, sites to visit, and routes to carry
out the visits, to maximize the sum of profits that can be obtained by visiting sites, un-
der resource consumption constraints. The problem arises in exploration of planetary bodies
where strategies correspond to different technologies. A description of the generalized location
routing problem with profits and its mathematical formulation as an integer program are pro-
vided. Two solution methodologies to solve the problem - branch-and-price and a three-phase
heuristic method combined with a generalized randomized adaptive search procedure - are
proposed. Numerical experiments for the two solution methodologies are carried out. Their
performance in terms of computation time and optimality gap are analyzed and compared to
establish the problem characteristics, indicating which method is more advantageous.

1 Introduction

During exploration of planetary bodies, NASA first identifies a set of potential surface locations

to serve as exploration bases. At each base various strategies can be used. Among all strategies,

exactly one has to be employed at each selected base. Each base can have its own strategies

and they do not have to be the same for all bases. For example, the standard strategy might

imply that once an exploration vehicle leaves the base, the route length must not exceed its fuel

capacity. On the other hand, under the orbiting depot strategy, a depot might orbit around the

planetary body and it can provide additional fuel to the exploration vehicles. If this strategy is

employed at a base, routes can be longer. The selected strategy at a base implies a set of resource

constraints on the routes originating at the base.

Exploration sites are potential locations on the surface to be explored by NASA scientists

and astronauts. All sites are not required to be visited, however, exploring a site yields a given
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profit (scientific value). A selected site must be explored from exactly one route originating and

finishing at the same base (and complying to the selected strategy at the base).

All site explorations must be performed within a predefined budget, which captures resource

consumption on routes and the direct cost associated by using a strategy. NASA is faced with a

daunting task to simultaneously determine base (depot) locations, strategies to use at the bases,

sites to visit, and routes to carry out the visits, to maximize the sum of the profits that can

be obtained by visiting sites, under resource consumption constraints. This problem also arises

during military surface operations, and recruiting situations where constraints do not allow to

visit all sites of interest.

In a more traditional logistics setting, the problem is to select several depots from potential

locations. At each depot, there are potential modes of transportation to be employed. A selected

mode at a depot implies resource constraints on routes originating at the depot (e.g., vehicle

capacity, travel times between two customers, etc.). Not all customers are required to be visited,

however, each visited customer yields a certain profit and thus the problem is to maximize the

total profit. On the other hand, deploying a mode of transportation at a depot requires a certain

cost. A solution must select strategies that are within a predefined budget.

The location routing problem (LRP), one of the existing routing problem classes, is closest

to the problem discussed in this paper. The LRP determines depot (base, facility) locations

out of a candidate set and feasible vehicle routes to visit sites (customer locations) associated

with the selected depots, to minimize the sum of costs related to depot selection and/or total

travel distance. In the classic LRP each site must be visited exactly once and some side con-

straints (vehicle capacity, route length, visiting time windows) are typically imposed. The LRP

is a very complex problem where various heuristic methods (e.g., Srivastava and Benton (1990),

Tuzun and Burke (1999), Duhamel et al. (2010)) and exact methods (e.g., Laporte et al. (1988,

1989), Berger et al. (2007), Karaoglan et al. (2011)) are proposed. Min et al. (1998) provide a

survey and explore promising research opportunities. Nagy and Salhi (2007) is a more recent

survey that classifies LRP papers based on hierarchical structure, type of input data, planning

period, solution method, etc.

While conventional routing problems (the traveling salesman problem (TSP), the vehicle rout-

ing problem (VRP), and the LRP) impose a restriction that each site must be visited exactly once,

there are situations in which all sites cannot be visited because of constraints. These problems

must be treated differently. Let us assume it is possible to quantify the profit that can be obtained

by visiting each site. Instead of visiting every site, this restriction is relaxed and visits to only se-

lected sites are admissible. The problem is to optimize an objective function reflecting the profits

obtained by the visits, under resource constraints. There are some studies on the extensions of

the TSP and VRP corresponding to this relaxation (e.g., Tsiligirides (1984), Kataoka and Morito

(1988), Balas (1989), Laporte and Martello (1990), Butt and Cavalier (1994), Dell’Amico et al.

(1988), Chao et al. (1996), Butt and Ryan (1999), Gueguen (1999), Tang and Miller-Hooks (2005),

Feillet et al. (2005), Bérubé et al. (2009)). While there are several different versions of this ex-

tension, the most relevant problems are those generated by an extension from the TSP known as
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the traveling salesman problem with profits (TSPP) and those by an extension of the VRP called

the vehicle routing problem with profits (VRPP). A well studied subclass of VRPP is the team

orienteering problem (TOP), where the goal is to determine a given number of paths, each limited

by a given resource upper bound, that maximize the total profits collected. Vansteenwegen et al.

(2011) is a recent survey on the orienteering problem (a subclass of TSPP) and TOP, and dif-

ferent heuristics are proposed to solve such problems (e.g., Souffriau et al. (2011), Archetti et al.

(2011)).

Figure 1 presents a lineage tree of the routing problem family. The classical TSP, which is

the simplest routing problem, is located in the top-left part of the tree. We can see two types of

evolutions in the tree - vertical and horizontal evolutions. The vertical evolution in the lineage

tree makes the problem more and more complex by allowing multiple routes, multiple bases, and

base location selection. The horizontal evolution relaxes the restriction that each site must be

visited.

Figure 1: Lineage Tree of the Routing Problem Family

The problem presented in this paper combines the LRP and routing problem with profits

(horizontal evolution from LRP) and adds a new feature - strategies for selected bases (vertical

evolution). We refer to the problem as the generalized location routing problem with profits

(GLRPP). The GLRPP is a new problem class which arose in the context of NASA planetary
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surface exploration (NASA and other space agencies (2007)). Beyond surface exploration cam-

paigns, Ahn et al. (2008) discusses other applications such as college football recruiting of an NFL

team, drilling of exploration wells in the oil/gas industry, and military operations over multiple

locations as potential applications of the GLRPP framework.

We model the GLRPP as a large-scale mixed integer program (IP). Due to an excessive

number of variables, delayed column generation is employed for solving LP relaxations. To find

integral solutions, a branch-and-price algorithm is applied. By using diving, we either stop upon

finding the first integral solution or detecting infeasibility of the LP relaxation. In either case, at

the end we solve an IP by considering all the columns generated during the entire branch-and-

price procedure. This will guarantee feasibility since visiting none of the sites by using no route is

obviously a feasible solution. We also design a simpler but novel heuristic based on decomposition,

randomized greedy local search, and integer programming. We first decompose the network into

clusters. Next we apply a greedy randomized adaptive search procedure (GRASP) to select a

subset of considered bases and strategies for each cluster. Then we compute the optimal routes

based on selected strategies, bases, and cluster by price-and-branch. Finally, a budget feasible

set of strategies is selected by solving an auxiliary IP.

The main contributions of our work are:

1. introduction and modeling of a new routing problem with a novel application in space

exploration, which include the notion of strategies employed at bases; the model generalizes

and combines two separate threads in vehicle routing,

2. a heuristic branch-and-price algorithm, relying on tailored branching,

3. a novel heuristic combining price-and-branch, GRASP, and integer programming,

4. the study of a real-world case encountered in space exploration.

This paper is structured as follows. Section 2 develops a mathematical formulation of the

GLRPP. Section 3 discusses the two solution methodologies to solve the GLRPP. Results of

numerical experiments, including the comparison of the methods, are presented in Section 4.

Finally, Section 5 provides concluding remarks. The nomenclature is provided in Appendix A.

2 Mathematical Formulation of the GLRPP

In this section, a brief description and mathematical formulation of the GLRPP are provided.

Since our primary application is in space exploration, we use the related terms instead of tradi-

tional logistics terms (see the introduction for further discussions). Consider a complete graph

G = (N ,A), where N = B ∪E is the index set of nodes and A = {(i, j)|i ∈ N , j ∈ N} is the set

of all arcs. Set B = {1, . . . , nB} is the index set of potential bases (nB is the number of potential

bases) and set E = {nB + 1, . . . , nB + nE} is the index set of sites (nE is the number of sites).

Typically nE is larger than nB . For each potential site i ∈ E, two values vi and ti are assigned;

vi represents the profit that can be obtained by visiting site i, and ti is the time required to
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collect the profit. Cost (typically a function of distance) associated with each arc is expressed as

a matrix C = [cij ] where cij represents the cost of the arc from i to j (i ∈ N , j ∈ N ). We assume

that the triangle inequality holds for C.

A route related to a potential base b ∈ B is a sequence of nodes representing the transportation

among nodes. Potential base b starts the route, it is followed by some sites from E, and it again

ends the route. A mission associated with base b is a set of routes related to b. A campaign is

a set of all missions, which are defined over graph G and are collectively pursuing an objective.

A mission associated with base b must also specify a unique strategy, which bears a certain cost.

With each strategy at a base, a set of routing tactics must be selected, one for each route assigned

to the base. A routing tactic determines feasibility of the underlying route.

Example. Hereafter we consider a possible exploration case of Mars, which comes from NASA.

Potential landing locations (bases) and exploration sites on the Mars surface are pre-determined.

Once the astronauts land on Mars, they build a base at the landing site and visit scientifically

interesting sites to gather scientific information using surface exploration vehicles. The profit

assigned to a site is the scientific return that can be achieved by visiting the site. A route to

visit a subset of sites starts from and terminates at the base. Based on the existing technologies,

there are two available strategies.

Standard strategy: Under the standard strategy, astronauts explore the Mars surface using a

surface exploration vehicle. Loading capacity of a surface exploration vehicle is limited and

a vehicle has to return to the base before it runs out of fuel.

Orbiting depot strategy: There is an alternative possible strategy called the orbiting depot

strategy. If this strategy is employed at the base, an orbiting fuel depot circulates around

Mars and provides additional fuel to the exploration vehicles. For each route, there are two

tactics to consider based on fueling. The standard tactic is to take all of the fuel with the

vehicle and thus it has identical restriction as the routes under the standard strategy. An

alternative is to consider the depot-assisted tactic at a route. In the depot-assisted tactic,

a supply unit from the orbiting depot circulating around Mars provides additional fuel,

which effectively doubles the fuel capacity of the vehicle. In turn, the vehicle can double

the traveling distance. Thus bases with the orbiting depot strategy have one more option

regarding routes.

Figure 2 depicts the strategies and underlying route tactics.

Given a base and set of sites belonging to a route, only a minimum distance path that can be

obtained by solving the TSP is considered as a viable route; we do not consider inefficient routes.

Thus the total number of routes related to a base, regardless of the feasibility of routes, equals

the total number of subsets of site set E, i.e., 2nE . We define J = {0, . . . , 2nE − 1} as the index

set of subsets of site set E.

Let S be the set of all possible mission strategies. Each mission strategy implies a set of

routing tactics that govern route feasibilities and resource consumptions along the routes. Each
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Figure 2: The Two Strategies and the Corresponding Tactics

selected base can have its own mission strategy. Routing tactic k ∈ Ts, where Ts = {1, 2, . . . , ts}

is the index set of routing tactics available for mission strategy s ∈ S, characterizes a route by

specifying single-route constraints and a maximum number of routes. Single-route constraints

are expressed by resource types, resource consumption coefficient vectors (cs,k, c̄s,k, c̃s,k), and a

resource consumption limit vector us,k for the constraining resources. The first coefficient cs,k is

the fixed usage of the resource, the second one specifies the per-arc cost resource usage, and c̃s,k

the per-node time usage. The maximum number of routes ns,k limits the number of routes using

tactic k ∈ Ts included in a mission.

Example. We have S = {standard, orbiting} and Tstandard = {standard}, Torbiting = {standard,

orbit-assisted}. In our case c̃s,k is the same for both strategies and routing tactics, however

uorbiting,orbit-assisted = 2 · ustandard,standard = 2 · uorbiting,standard.

Under the standard tactic, we can have an unlimited number of routes since bringing fuel

on the surface is not an issue. On the other hand, technological limitations restrict at most 4

orbiting supply units and thus for each base the maximum number of routes with orbit-assisted

tactic is 4.

Set Jb,s,k ⊂ J is the index set of feasible routes related to base b with respect to routing tactic
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k of mission strategy s and is defined as follows:

Jb,s,k = {j ∈ J | cs,k
︸︷︷︸

per−route

+ TSPb
j · c̄

s,k

︸ ︷︷ ︸

on−arc

+ (
∑

i∈Rj

ti) · c̃
s,k

︸ ︷︷ ︸

on−site

≤ us,k}, (1)

where Rj is the corresponding set of sites on route j and TSPb
j is the travel distance of the TSP

solution on nodes {b} ∪ Rj .

Mission strategy s ∈ S characterizes a mission by specifying a set of available routing tactics

Ts, collective constraints, and mission cost Cs. Collective constraints are expressed by resource

types, resource consumption coefficient vectors (ds, d̄s, d̃s), and a resource consumption limit

vector ūs for the constraining resources. Each route consumes a fixed amount ds, the travel

distance weighted by d̄s, and the time spent to collect profit weighted by d̃s.

Example. The cost associated with a strategy is measured by the total mass that should be sent

to the Mars surface when the strategy is used. The cost for the orbiting depot strategy is larger

than that of the standard strategy. The difference results from the mass of additional supply

units.

Each vehicle has a limited life span. A vehicle has to return to the Earth after a certain

amount of time. This implies collective constraints with time being the resource. Coefficients d̃s

and d̄s encode the time spent at a site and the travel time between two locations. A possible

fixed time to prepare the vehicle for exploration is captured by ds. The collective coefficient ūs

imposes the time limit a vehicle can spend on the surface over all of its routes. In our example

we have ūstandard = ūorbiting since the lifespan of the two vehicles is the same.

We assume all missions in a single campaign are funded under the same budget source. There

is a budget constraint on the cost sum for all missions in a campaign; the cost sum cannot

exceed a pre-determined budget M . Figure 3 shows the hierarchical structure of decisions and

parameters for the GLRPP.

The objective of the campaign is to maximize the sum of profits that can be obtained during

the campaign. Decision variables are selection of bases that are used, mission strategies for

the selected bases, selection of routes to visit sites from each of the selected bases, and routing

tactics for the selected routes. The solution of the problem should satisfy single-route constraints

(as listed in (1)), maximum route number constraints, collective constraints, and the campaign

budget constraint. A constraint that a single site cannot be visited multiple times should also be

satisfied.

Figure 4 presents a sample GLRPP instance. Potential bases and sites are expressed as squares

and circles, respectively. The profit that can be obtained by visiting each site is proportional

to the diameter of the circle representing the site, and is also presented as the number beside

the circle. Out of three potential bases, one base is used with strategy 1 (orbiting) that has two

routing tactics (orbit-assisted and standard), another base is used with strategy 2 (standard)

that has only one routing tactic (standard), and the last potential base is unused. The solution
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Figure 3: Decision and Parameter Hierarchy for the GLRPP

satisfies all resource constraints imposed on every single route, mission, and the whole campaign,

which have not been explicitly exhibited in the figure.

Next we formulate the GLRPP as an IP. The model GLRPP reads as follows.

max
x

b,s,k
j ,yb,s

∑

b∈B

∑

s∈S

∑

k∈Ts

∑

j∈Jb,s,k

fj · x
b,s,k
j (2)

∑

b∈B

∑

s∈S

∑

k∈Ts

∑

j∈Jb,s,k

Aj · x
b,s,k
j ≤ 1nE

(3)

∑

k∈Ts

∑

j∈Jb,s,k

hb,s
j · xb,s,k

j ≤ ūs · yb,s b ∈ B, s ∈ S (4)

∑

j∈Jb,s,k

xb,s,k
j ≤ ns,kyb,s b ∈ B, s ∈ S, k ∈ Ts (5)

∑

s∈S

yb,s ≤ 1 b ∈ B (6)

∑

b∈B

∑

s∈S

Csyb,s ≤ M (7)

xb,s,k
j ∈ {0, 1} b ∈ B, s ∈ S, t ∈ Ts, j ∈ Jb,s,k (8)

yb,s ∈ {0, 1} b ∈ B, s ∈ S (9)
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Figure 4: Sample GLRPP Instance and Solution

Here 1k denotes the k-dimensional vector with all 1’s. The decision variables are xb,s,k
j and

yb,s. Variable xb,s,k
j is 1 if the route determined by base b and site subset Rj using routing tactic k

and mission strategy s is included in the solution, and is 0 otherwise. Variable yb,s is 1 if mission

strategy s is selected by base b, and is 0 otherwise. Profit fj is the sum of profits for all sites

belonging to Rj and equals
∑

i∈Rj
vi. Constraint (3) requires that each site is visited no more than

once. Entry aij of Aj is 1 if site i ∈ E is in Rj and 0 otherwise. Collective constraints (4) impose

that the resource sum for routes in a mission is bounded. Vector hb,s
j represents consumption of

constraining resource types for collective constraints specified by mission strategy s on the route

determined by base b and site subset Rj and is defined as follows:

hb,s
j = ds

︸︷︷︸

per−route

+ TSPb
j · d̄

s

︸ ︷︷ ︸

on−arc

+ (
∑

i∈Rj

ti) · d̃
s

︸ ︷︷ ︸

on−site

. (10)

Constraints (5) require that for each base, the number of routes using routing tactic k of mission

strategy s be at most ns,k. Constraints (6) impose that no more than one strategy is selected

at a base. If no strategy is selected for base b (yb,s = 0 for all s ∈ S), then base b is not used.

Constraint (7) imposes that the sum of costs for all missions in a campaign does not exceed

budget M .
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The matrix version formulation of the GLRPP is written as

max
x,y

rx

Ax ≤ 1n1
(11)

Hx− Ly ≤ 0n2
(12)

E1x− Ny ≤ 0n3
(13)

E2y ≤ 1n4
(14)

cy ≤ M (15)

x,y binary.

Vectors x and y are decision variable vectors for the GLRPP, which are composed of decision

variables in (8) and (9). Matrices A, H, L, E1, N, E2, and vectors r, c are created from

the coefficients in constraints (3)-(7). Values n1, n2, n3, and n4 represent the numbers of rows

in constraints (11), (12), (13), and (14): n1 = nE equals the number of sites; n2 = nB · |S|

represents the total number of collective constraints for all potential bases using all possible

mission strategies; n3 = nB ·
∑

s∈S |Ts| is the total number of routing tactics for all potential

bases using all possible mission strategies; and n4 = nB is the total number of potential bases.

3 Solution Methodologies

Two different solution methodologies for the GLRPP - a heuristic branch-and-price algorithm

and a heuristic three-phase method - are proposed in this section. We first discuss the branch-

and-price approach.

3.1 Branch-and-Price

Branch-and-price is a branch-and-bound algorithm where LP relaxations are solved by delayed

column generation. Usually problem specific branching strategies are employed. Due to compu-

tational time restrictions, we do not exploit the entire branch-and-bound tree. Instead we dive

along a single branch of the tree.

In the remainder of the section we present details for solving the root node LP relaxation

using column generation and obtaining a near-optimal solution.
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3.1.1 The Dual Problem

The dual GLRPPLRD of the LP relaxation of GLRPP reads

min
p1,p2,p3,p4,p5

p′
11n1

+ p′
41n4

+ p5 · M

p′
1A + p′

2H + p′
3E1 ≥ r (16)

−p′
2L − p′

3N + p′
4E2 + p5c ≥ 0 (17)

p1 ≥ 0,p2 ≥ 0,p3 ≥ 0,p4 ≥ 0,p5 ≥ 0.

Vectors p1, p2, p3, p4, and value p5 are dual variables associated with constraints (11)-(15),

respectively. Constraints (16) and (17) are related to x and y, respectively. Next, we discuss the

column generation method to solve the LP relaxation of the GLRPP.

3.1.2 Solving the LP Relaxation by Column Generation

Although binary requirements imposed on the decision variables for the GLRPP are relaxed in the

LP relaxation, it is still prohibitively difficult to solve it because of the large number of decision

variables. The column generation method is used to solve it without enumerating all columns

(Barnhart et al. (1998), Desaulniers et al. (2005)).

In every iteration of the column generation procedure, we create an LP, called the restricted

master problem, using columns that have been identified so far. We obtain optimal values of the

primal and dual variables for the restricted master problem. Using these optimal dual values,

we identify new columns that are added to the current set of columns in the restricted master

problem. After the new restricted master problem is created, it is again solved and the procedure

is repeated. We stop iterating when we can no longer identify a column that would improve the

objective value.

Since the number of y variables is polynomial, they are always included in the restricted

master problem. As a result, the dual solution to the restricted master problem always satisfies

(17). The reduced cost of variable xb,s,k
j corresponding to (16) reads

rb,s,k
j =

∑

i∈Rj

(

(p′1)i + (p′2)
b,s · d̃s · ti − vi

)

+ (p′3)
b,s,k + (p′2)

b,s · ds + TSPb
j · (p

′
2)

b,s · d̄s.

The pricing problem, which is to find variables to add to the restricted master problem, is the

following optimization problem:

min
b∈B,s∈S

k∈Ts,j∈Jb,s,k

rb,s,k
j . (18)

For a fixed b, s, k, this problem resembles the prize-collecting TSP, but it is more general since

the objective function includes both node and edge weights. The latter are hidden within TSPb
j .

A common way to solve (18) is by elementary constrained shortest path. The underlying

graph can have negative cost cycles and thus only elementary paths should be considered. Such

algorithms are very complex and hard to implement. For these reasons and since the anticipated
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routes should not include too many nodes, we chose to adapt the approach from Butt and Ryan

(1999).

Butt and Ryan (1999) present a pricing algorithm for a special case of (18) where b, s, k are

not present and the reduced cost does not include TSPb
j . The latter requires a modification of

their pricing scheme, which is presented next.

We start by outlining the algorithm from Butt and Ryan (1999) under the assumption that

b, s, k are fixed and there is no TSPb
j in the reduced cost. For every i we define qb,s

i = (p′1)i +

(p′2)
b,s · d̃s · ti − vi. Since the pricing problem is a minimization problem, sites with low qb,s

i are

desirable to be included in a route. It is easy to see that due to the triangle inequality each

site i with qb,s
i ≥ 0 is not going to be included in a route and thus we can neglect such sites.

Without loss of generality let us assume that qb,s
1 ≤ qb,s

2 ≤ · · · ≤ qb,s

Qb,s < 0 for Qb,s ≤ nE, and

for each remaining site i we have qb,s
i ≥ 0. The algorithm greedily constructs a subset of sites to

visit based on this order. For the incumbent subset of sites, its reduced cost is computed. If it

is negative, then the TSP problem is solved on the underlying subset. If the resource constraint

based on the TSP tour is not violated, the corresponding variable is selected for inclusion in

the restricted master problem and the next site based on the order is added to the current set.

If either the reduced cost is nonnegative or the TSP tour violates the resource constraint, we

backtrack by removing the site added last to the subset.

The algorithm can also be described by using the notion of the lexicographical order where

we consider subsets of sites as binary characteristic vectors with Qb,s coordinates. If vector Z

corresponds to the current subset (its binary encoding), then adding a new site is equivalent to

setting Z to the next vector in the lexicographical order. When removing the last site added

from the set and adding the next one, we simply set Z to be the maximum vector Z̄ smaller than

Z based on the lexicographical order with |Z̄| ≤ |Z| (|Z| is the number of sites in the underlying

set, or, in other words, the number of bits at 1).

We now present the necessary changes to solve (18). We first provide the following lower

bound on the reduced cost. For i ∈ N let ui = mini1 ci,i1 and let

lb,s,kj =
∑

i∈Rj

(

(p′1)i + (p′2)
b,s · d̃s · ti − vi + (p′2)

b,s · d̄s · ui

)

+ (p′3)
b,s,k + (p′2)

b,s ·ds + ub · (p
′
2)

b,s · d̄s .

Then it is easy to see that rb,s,k
j ≥ lb,s,kj . This follows from TSPb

j ≥
∑

i∈Rj
ui + ub.

The complete algorithm is detailed in Algorithm 1. Every Z encodes a route j and thus, for

example, the quantity rb,s,k
Z represents the reduced cost of the route associated with the binary

encoding Z. It is easy to see that due to the triangle inequality any site i with nonnegative qb,s
i

is not going to be included in the lowest reduced cost subset. Thus we retain the same definition

of qb,s
i and Qb,s. In our case we need to first loop over all bases b and strategies s since the

order depends on them. This minimizes the number of TSP evaluations in step 7. Note that if

lb,s,kZ ≥ 0 for all k, then the resulting reduced cost of the route corresponding to Z is also going

to be nonnegative. Thus in step 6 we check this condition and solve the underlying TSP only if

the reduced cost could be negative.
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1: for all b do
2: for all s do
3: Sort qb,s

i and obtain Qb,s.

4: Z = (0, 0, . . . , 0) ∈ {0, 1}Qb,s

.
5: while Z 6= (1, 0, . . . , 0) do

6: if mink lb,s,kZ < 0 then
7: Compute TSPb

Z .
8: for all k do
9: if resource constraint (1) is satisfied for b, s, k and rb,s,k

Z < 0 then
10: Select the column corresponding to Z, b, s, k.
11: end if
12: end for
13: end if
14: if at least one column has been selected in the above for loop then
15: Set Z to be the next lexicographically larger vector.
16: else
17: Set Z to be the maximum vector Z̄ smaller than Z with |Z̄| ≤ |Z|.
18: end if
19: end while
20: end for
21: end for

Algorithm 1: The pricing algorithm

A possible improvement of the algorithm hinges on rewriting the reduced cost as

rb,s,k
j =

∑

i∈Rj

((p′1)i − vi) +
∑

i∈Rj

(p′2)
b,s · d̃s · ti + (p′3)

b,s,k + (p′2)
b,s · ds + TSPb

j · (p
′
2)

b,s · d̄s.

and defining qi = (p′1)i − vi. Since the remaining terms are nonnegative, it still holds that any

site i with qi ≥ 0 will not be part of the subset with the minimum reduced cost. We can now

assume without loss of generality that q1 ≤ q2 ≤ . . . qQ < 0 for Q ≤ nE and qi ≥ 0 for all other

sites i. An advantage in this case is that this order no longer depends on s and b. The adjusted

algorithm is presented in Algorithm 2.

Algorithm 1 scans the lexicographical order for each b and s, while Algorithm 2 performs a

scan only for each b. From this perspective it seems that the second algorithm might be more

efficient. However, from qi ≤ qb,s
i , it follows that Q ≥ Qb,s, and thus there are fewer coordinates

to consider in Z in Algorithm 1. We conclude that it is not clear a-priori which of the two

algorithms is more efficient.

3.1.3 Branching

The main strategy is to follow a single branch promising to lead to a high quality solution,

without exploring the entire branch-and-bound tree. The heuristic procedure is to dive without

backtracking. Each LP relaxation on the chosen branch is solved by column generation. The

procedure stops when either an integer solution is found or the LP relaxation becomes infeasible.
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1: Sort qi and obtain Q.
2: Z = (0, 0, . . . , 0) ∈ {0, 1}Q.
3: while Z 6= (1, 0, . . . , 0) do
4: for all b do
5: Compute TSPb

Z .
6: for all s do
7: for all k do
8: if resource constraint (1) is satisfied for b, s, k and rb,s,k

Z < 0 then
9: Select the column corresponding to Z, b, s, k.

10: end if
11: end for
12: end for
13: if at least one column has been selected in the above loop then
14: Set Z to be the next lexicographically larger vector.
15: else
16: Set Z to be the maximum vector Z̄ smaller than Z with |Z̄| ≤ |Z|.
17: end if
18: end for
19: end while

Algorithm 2: The modified pricing algorithm

At the end the resulting IP is solved using all of the generated columns as a post-processing step.

The mechanisms used in our branching are rounding heuristics and ideas from local branching

(Fischetti and Lodi (2003)). To obtain an integer solution, fixing a fractional value to an integer

value is commonly used, however, to allow more flexibility, we may not want to directly fix a

single variable, but instead to add to the LP relaxation a linear soft-fixing constraint, which by

definition must cut off the current fractional solution while allowing flexibility such as imposing

that a single variable in a set is 1.

In our case we have three decisions, even though there are only two types of variables. De-

cisions pertaining to y are of higher value and importance, and thus these variables should be

fixed first. The next decision is which sites to visit. There are no explicit variables reflecting

this, however, we can branch on constraints (3). Once all strategies, bases, and sites to visit are

selected, it remains to find the actual routes, i.e., fixing x variables. The framework of branching

consists of three general rules:

Rule 1. branching on a base and its strategy (i.e., yb,s variables),

Rule 2. branching on the exploration sites (i.e., the left-hand side of constraints (3)),

Rule 3. branching on routes (i.e., xb,s,k
j variables).

Rule 1 is based on a standard single variable strategy. First, all variables at 1 in the incumbent

LP relaxation are fixed to 1. Next the value of the largest fractional variable is found. If this

value is larger than 0.5, the underlying variable is fixed to 1 and we dive. Otherwise, we fix the

variable with the smallest fractional value to 0 and dive. Each time before fixing a variable to 1,

we check if budget constraint (7) is satisfied. If it is, we fix the variable, otherwise we skip it.
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To implement Rule 2, we temporarily introduce

∑

b∈B

∑

s∈S

∑

k∈Ts

∑

j∈Jb,s,k

Aj · x
b,s,k
j = en1

, 0n1
≤ en1

≤ 1n1
.

For site i in an integer solution, ei is binary, while it might be fractional in the LP relaxation.

Algorithm 3 describes the underlying approach for branching on e′s, where ē denotes the values in

the incumbent LP relaxation. As we go deeper and deeper in the tree, the likelihood of infeasibility

increases. For this reason, in step 8 we employ soft variable fixing to increase flexibility.

The same procedure is applied in Rule 3 of branching with respect to route variables x. It

can be seen that for Rule 3, Algorithm 3 may result in an infeasible LP since it is possible that

not all of the sites required to be visited by Rule 2 can be reachable under constraints (4) and

(5), in which case we stop diving deeper along the branch and turn into the post-processing step.

1: Fix all of the variables with value 1 to 1.
2: Let B̄ denote the set of all unfixed variables.
3: Let ∆ =

∑

i∈B̄ ēi.
4: if (∆ is integer) or (∆ − ⌊∆⌋) < 0.5 and ∆ > 1) then
5: Fix a single variable in B̄ using the single variable strategy.
6: end if
7: if ∆ − ⌊∆⌋ ≥ 0.5 then
8: Add constraint

∑

i∈B̄ ei ≥ ⌈∆⌉.
9: if the resulting LP is infeasible then

10: Delete the newly added constraint.
11: Fix a single variable in B̄ using the single variable strategy.
12: end if
13: else
14: Fix ei with the smallest fractional value ēi to 0.
15: end if

Algorithm 3: Branching strategy for Rule 2 and 3

3.1.4 Post-processing Step

To obtain the final integer solution and potentially improve the solution quality, we solve the IP

with all of the columns generated, as a post-processing step. The optimality gap

Gopt =
R∗

LP − R∗
IP

R∗
IP

, (19)

where R∗
IP is the value of the solution obtained and R∗

LP is the value of the root node LP

relaxation, measures the relative quality of the solution.

3.2 Three-Phase Method

Consider the case when decision vector y for the GLRPP is fixed. In this case, bases and associated

mission strategies are selected by y, and the GLRPP becomes the following problem. The problem
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is to decide routes and routing tactics corresponding to each selected base to maximize the profit

subject to the constraints on resource consumption for routes and missions. We refer to this

problem as the multi-depot vehicle routing problem with profits (MDVRPP). This is still not a

classical problem due to the existence of routing tactics, multiple depots, and profits on sites.

The MDVRPP is easier to solve than the GLRPP because the only decision vector is x.

The three-phase method is composed of the divide phase, which is basically a preprocessing

step, the conquer phase, and the synthesize phase. In the divide phase, the entire node set is

divided into multiple groups, each of which is referred to as a cluster. A cluster can have several

bases. For each cluster we consider base/mission strategy combinations, and each combination is

referred to as a cluster strategy. Cluster strategies are enumerated if possible or selected randomly

based on assigned scores. In the conquer phase, we solve the MDVRPP for each cluster and for

each cluster strategy included in the cluster (given y). The MDVRPP is solved by price-and-

branch, which is very similar to the one used for the GLRPP. In price-and-branch, the root

node LP relaxation is solved by column generation and then the IP is solved with the columns

generated at the root node (no branching is employed except by the IP solver). Finally, the

synthesize phase collects the MDVRPP results for all cluster strategies and solves an auxiliary

IP that selects one cluster strategy for each cluster, maximizing the total profit sum for the

campaign subject to the budget constraint. The entire algorithm is presented in Algorithm 4.

Individual steps are discussed next.

1: Construct the clusters {m̄ is a parameter}
2: loop
3: for all clusters l do
4: if the number of bases in cluster l is small enough (5 or less) then
5: for all base/strategy pairs do
6: Solve the corresponding MDVRPP.
7: end for
8: else
9: for g = 1 to m̄ do

10: Generate random budget bl.
11: Generate a random cluster strategy for cluster l.
12: Solve the corresponding MDVRPP.
13: end for
14: end if
15: end for
16: Solve the synthesis integer program. If a better solution is obtained, we store it.
17: if gap less than acceptable tolerance or run time limit is reached then
18: Exit.
19: end if
20: end loop

Algorithm 4: The outline of the three-phase algorithm
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3.2.1 Phase I - Divide

The objective of the divide phase is to partition the node set N into clusters such that the solution

space is restricted to include only the routes that visit nodes belonging to the same cluster. We

start the divide phase with identification of sites that can be visited from each base.

Definition 1 (Reachable). For base b ∈ B and site i ∈ E, i is reachable from b if there exist

mission strategy s ∈ S and routing tactic k ∈ Ts such that the direct round trip between b and i

is feasible for routing tactic k. Formally, i is reachable from b if there exist s ∈ S, k ∈ Ts such

that cs,k + (cbi + cib) · c̄
s,k + ti · c̃

s,k ≤ us,k.

Note that a base from which no site is reachable or a site which is not reachable from any base

is not relevant to the problem and can be deleted from the problem instance. In the remainder

of the paper, it is assumed that every considered base has at least one site reachable from the

base and every potential site is reachable from at least one base.

Definition 2 (Proximity Set). For each base b ∈ B, the proximity set Pb is defined as the union

of {b} and the set of sites reachable from b.

The divide phase generates a partition of the whole node set N . This partition is re-

ferred to as clustering and a member of the partition is referred to as a cluster. Collection

Γ = {C1, · · · ,Cl, · · · ,CnC
} is a clustering of N and Cl for l = 1, . . . , nC is a cluster of N if Γ

is a partition of N , each proximity set is completely included in a cluster, and all proximity sets

within a cluster have a nonempty intersection. Cluster base set Bl and cluster site set El are

defined as Bl = Cl ∩ B,El = Cl ∩ E, respectively.

To find a clustering, consider an auxiliary graph whose nodes correspond to proximity sets,

i.e., there are nB nodes. There is an edge between two nodes in the auxiliary graph if and only

if the corresponding proximity sets have a non-empty intersection. It is now easy to see that

clusters correspond to connected components in this auxiliary graph.

To summarize, in the divide phase we find a clustering by detecting connected components

in the auxiliary graph. This is step 1 in Algorithm 4.

3.2.2 Phase II - Conquer

The goal of the conquer phase is to first identify a set of bases and strategy combinations for

every cluster. This is equivalent to selecting a subset of possible y vectors. Then, the MDVRPP

is solved for each identified mission strategy and base combination (cluster strategy). Both a

solution and the upper bound of the maximum profit are recorded to be used in the next phase.

The key step in this phase is the selection of cluster strategies. If the number of bases in

the cluster is small enough, all base/strategy pairs are enumerated. However, if enumerating

all cluster strategies is too time-consuming, they are selected randomly based on scores, which

are greedy estimates. Heuristics with such a feature are known as GRASP. The procedure is

performed in two steps. In the first step a random proportion of budget M is assigned to each

cluster based on the profit it generates. In the second step bases and strategies are greedily
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selected with randomness until the allocated budget is exceeded. Let p̄l =
∑

i∈El
vi be the

maximum attainable profit of cluster l.

Intuitively, the more site profit can be generated from a cluster, the larger portion of the

budget should be assigned to such a cluster. Thus we define pl = p̄l/
∑

i∈E vi to be the proportion

of the total profit attributed to cluster l. Let ǫ be a predetermined parameter. For each cluster l

we randomly select a value from [(1 − ǫ)plM, (1 + ǫ)plM ] based on the uniform distribution. The

generated value is denoted by bl and it represents the targeted budget for cluster l (step 10 in

Algorithm 4). Note that although the sum of the allocated budget may be bigger than M , it

is unlikely that the synthesis phase later would become infeasible because usually some cluster

strategies do not exhaust the allocated budget.

We now describe how to generate bases and the corresponding strategies within a cluster.

Consider a base b and strategy s. Based on the objective function (2), it is desirable to select

a base that can potentially yield substantial profit. To this end, we consider the corresponding

proximity set and sum the profit of the sites included in it,
∑

i∈Pb
vi. On the other hand, based

on (7) it is desirable to select a strategy s with low Cs. We combine these two quantities in

scoreb,s =

∑

i∈Pb
vi

Cs
.

We would like to select bases and strategies with high scores.

Consider a cluster l. Let

probb,s
l =

scoreb,s

∑

b̄∈Bl,s̄∈S scoreb̄,s̄

be the probability of selecting base b and strategy s from cluster l. Based on this probability

we randomly generate base/strategy pairs. We stop if the summation of Cs of selected pairs

exceeds bl (the last selected base/strategy pair can either be deleted or retained, each with 50%

probability). Every time a base is selected, we recalculate the probabilities to reflect the fact that

a base can be selected at most once. This corresponds to step 11 in Algorithm 4.

This procedure is repeated (|S| + 1)|Bl| times, if the condition in step 4 holds, or m̄ times, if

the condition in step 4 does not hold for each cluster. At the end of each iteration, each cluster

has a cluster strategy. A cluster strategy encodes the corresponding y vector within the cluster.

In the next step, for each cluster we solve the underlying MDVRPP by price-and-branch.

For the generated cluster strategy g of cluster l, we record the obtained feasible profit sum

(V ∗
IP )l,g, and upper bound (V ∗

LP )l,g of optimal profit obtained through the root node LP relaxation

of the MDVRPP.

At the end, for each cluster l we obtain the set of ml values {(V ∗
IP )l,g}ml

g=1, with ml = (|S| +

1)|Bl| for the clusters that can be enumerated and ml = m̄ for the clusters that are too big to

enumerate. In the synthesize phase all of these values are combined to obtain a feasible solution.
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3.2.3 Phase III - Synthesize

The synthesize phase solves the problem of assigning one cluster strategy to each cluster to

maximize the total profit sum for the entire problem while ensuring that the selected set of

strategies satisfies the budget constraint. This is accomplished by solving the following IP:

max
zl,g

nC∑

l=1

ml∑

g=1

(V ∗
IP )l,g · zl,g (20)

ml∑

g=1

zl,g = 1 l ∈ {1, . . . , nC} (21)

nC∑

l=1

ml∑

g=1

cl,g · zl,g ≤ M (22)

zl,g ∈ {0, 1} l ∈ {1, . . . , nC}, g ∈ {1, . . . ,ml} , (23)

where cl,g is the sum of the total cost used by cluster strategy g in cluster l. Value cl,g is readily

available from the divide phase. Variable zl,g is 1 if cluster strategy g is selected for cluster l, and

0 otherwise. Constraints (21) require that exactly one cluster strategy is assigned to each cluster

l. Constraint (22) imposes the budget limit.

When the cluster strategies can be enumerated for all clusters, we run the outer “loop” only

once. Let K∗h
IP be the optimal value of this IP at iteration h of the loop in steps 2-20 of Algorithm

4. The optimal value returned by the algorithm is maxh K∗h
IP .

When the cluster strategies can be enumerated for all clusters and the objective coefficients

in (20) are replaced by (V ∗
LP )l,g, we denote the resulting objective value by K∗

LP . Note that in

this case there is a single iteration in Algorithm 4. The following can be easily established.

Proposition 1. If all cluster strategies are enumerated for all clusters, then R∗
opt ≤ K∗

LP ≤ R∗
LP ,

where R∗
opt is the optimal value for GLRPP. Thus the gap is established by

Ḡopt =
K∗

LP − K∗1
IP

K∗1
IP

. (24)

If cluster strategies are not enumerated for each cluster, then we still have K∗h
LP ≤ R∗

LP , where

K∗h
LP is the value obtained by replacing the coefficients in (20) in iteration h by (V ∗

LP )l,g. Unfortu-

nately, it can happen that K∗h
LP < R∗

opt and thus minh K∗h
LP cannot be used in gap computations.

In this case the gap is defined by

Gopt =
R∗

LP − maxh K∗h
IP

maxh K∗h
IP

. (25)

4 Numerical Experiments

Numerical experiments for solving GLRPP instances using the two solution methodologies in-

troduced earlier are carried out. In addition, we also evaluate the standard price-and-branch
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algorithm, which applies column generation at the root node and then solves the IP over all

columns generated. Two metrics are used to evaluate and compare the performance of the so-

lution methodologies. The first metric is the computation time (Tcal) representing the efficiency

of a solution method and the second metric is the optimality gap (Gopt,Ḡopt) representing the

effectiveness of a solution method. We consider two types of instances: (1) randomly generated

instances, and (2) an instance based on a NASA study.1 The former are required due to the

limited number of NASA based instances.

We first discuss the instance generation procedure. Potential bases are randomly generated

inside a circular region from a uniform spatial distribution. The sites are uniformly distributed

in the reachable area from a base. The distance is defined as the shortest path distance in the

network and thus the constructed distance matrix satisfies the triangular inequality. The number

of bases nB and sites nE are also randomly selected from a uniform distribution. The profits are

selected uniformly at random from the interval [1, 10], which denote the scientific value of the

sites. The time (in hours) required to obtain profits at each site is uniformly distributed from the

interval [16, 32]. Based on the assumption that it costs more to deliver a larger amount of mass to

the planetary surface, the mass delivered on planetary surface (MT) is used as a proxy metric for

the cost associated with a strategy. We introduce a parameter referred to as the budget tightness

(fB), which is defined as the ratio of the campaign budget M to the maximum possible budget

nB · maxs∈S Cs. The campaign budget for each problem instance is expressed as follows:

M = fB · nB · max
s∈S

Cs. (26)

Tables 1 and 2 summarize the characteristics of the generated GLRPP instances. These instances

closely reflect the setting encountered in space exploration (Greeley and Thomas (1995)). The

coefficients in Table 1 are determined from the actual study for Mars rover design whose results

are available in Ahn et al. (2008) and Hong (2007).

All experiments were carried out on an Intel Xeon 2.79 GHz CPU with 15GB of RAM under

Windows Server 2003 operating system. All solution methodologies are implemented in C (Visual

Studio 2008 IDE). The CPLEX 12.3 callable library is used to solve the LPs and IPs that are

encountered during the solution procedure.

4.1 Estimating Performance Metrics

Basic statistics of the numerical experiments are summarized in Table 3. Among the 100 randomly

generated instances, for 47 of them we were able to enumerate all strategies in the three-phase

algorithm (we regard 5 or fewer bases in a cluster to be enumerable) and thus gap expression (24)

applies. For the remaining 53 instances gap expression (19) has to be used. Since K∗h
LP ≤ R∗

LP ,

we call the former instances “Tighter Bound” instances and the remaining instances “General

Bound” instances. The mean values indicate that price-and-branch is the best algorithm in terms

of the computation time. For the three-phase method, the instances yield only a few proximity

1
Test instances and results are available at http://www.4shared.com/zip/q3SmK3pP/GLRPP_instances.html
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Table 1: Characteristics of Instances for Numerical Experiments

Standard Strategy Orbiting Depot Strategy

Collective Constraint
Constraining Resource Exploration Time Exploration Time
Coefficients d1 = 0 [h] d2 = 0 [h]

d̄1 = 0.2 [h/km] d̄2 = 0.2 [h/km]

d̃1 = 3 [−] d̃2 = 3 [−]
Consumption Limit l̄1 = 2,100 [h] l̄2 = 2,100 [h]

Routing Tactics

Tactic 1 Standard Standard
Single-Route Constraint
Resource Fuel Fuel
Coefficients c1,1 = 0 [kg] c2,1 = 0 [kg]

c̄1,1 = 1.1 [kg/km] c̄2,1 = 1.1 [kg/km]
c̃1,1 = 5.4 [kg/h] c̃2,1 = 5.4 [kg/h]

Limit l1,1 = 700 [kg] l2,1 = 700 [kg]
Max. Number of Routes n1,1 = ∞ [−] n2,1 = ∞ [−]

Tactic 2 Depot-Assisted
Single-Route Constraint
Resource Fuel
Coefficients c2,2 = 0 [kg]

c̄2,2 = 1.1 [kg/km]
c̃2,2 = 5.4 [kg/h]

Limit l2,2 = 1,330 [kg]
Max. Number of Routes n2,2 = 4 [−]

Cost C1 = 15 [MT ] C2 = 17 [MT ]

Campaign Budget fB · nB · maxs∈S Cs [MT ]

sets within clusters, but the number of clusters vary substantially. Under such circumstances,

the underlying MDVRPP problems have to be solved many times by column generation. Even

though each MDVRPP does not include many sites, it still requires moderate computational

time. For instances with many clusters the overall running time of the three-phase heuristic

increases substantially. This is the main cause of the relatively high standard deviation in time.

For the branch-and-price method, since we only follow one branch without backtracking, the

optimal solution is not necessarily obtained. After fixing a variable, it may happen that either

all variables become integral or additional fractional variables appear, thus the computational

time may vary significantly (there are other factors which we analyze later). With respect to

the optimality gap, the improvement of branch-and-price over price-and-branch is not significant,

since on average the number of new columns generated is small and the later added columns tend

to have a diminished effect on the objective. However, branch-and-price method should always

be no worse than price-and-branch method since the columns generated by the latter are included
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Table 2: Instance Generation for Numerical Experiments

Potential Bases and Sites
Radius of the Region (R) 3410 [km]
Number of Potential Bases (nB) ∼ U(50, 150)
Number of Potential Sites (nE) ∼ U(500, 1500)
Aerial Distribution of Locations Uniform over all region

Budget Constraint
Budget Tightness Parameter (fB) 2u/25 (u ∼ U(0, 5))

Number of Experiments
No. of Instances 100

in the columns generated by the former.

Table 4 shows that in general branch-and-price performs better than the three-phase method.

The second column shows the average improvement in the objective value, which is calculated as

(R∗
IP −maxh K∗h

IP )/maxh K∗h
IP . There are 25 instances where the three-phase method outperforms

branch-and-price by an average of 0.99%. On the other hand, for 37 instances branch-and-price

is the winner with an average improvement of 0.70%. For the remaining 38 instances, the two

algorithms produce the same objective value. The third column is the number of instances

where cluster strategies can be enumerated for each cluster under the three-phase method. For

enumerable instances, the three-phase method tends to perform better since within each cluster,

all base/strategy combinations are enumerated. For non-enumerable instances, branch-and-price

tends to outperform.

Estimators for the computational time and optimality gap using the three methodologies are

proposed next.

4.1.1 Computation Time

Estimators for the price-and-branch (T̂cal,p), branch-and-price (T̂cal,b) and three-phase (T̂cal,t)

computational time (T̂cal,t) are proposed as follows:

ln T̂cal,p = Kp+ αp · nBfB + βp · nE + γp · nc,max, (27)

ln T̂cal,b = Kb+ αb · nBfB + βb · nE + γb · nc,max, (28)

ln T̂cal,t = Kt+ αt · nB,max + βt · nE,max + γt · nc,max, (29)

where nB,max, nE,max are the maximum numbers of bases, sites in proximity sets comprising a

cluster, respectively. We next describe nc,max (see (30)).

Let us denote hs,k
i = cs,k + (cbi + cib) · c̄

s,k + ti · c̃
s,k. It is very likely that the computational

complexity of an instance depends on the number of feasible routes within proximity sets. Given

strategy s and routing tactic k we would like to approximate the number of routes using less than

or equal to us,k units of the resource. The resources consumed by the direct route from base b to
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Table 3: Basic Statistics of the Numerical Results

Computation Time for All Instances (Tcal [sec])

mean std min max
Price-and-Branch 9 14 0 113
Branch-and-Price 376 665 2 3,343
Three-Phase 90 120 1 974

Optimality Gap for General Bound Instances (Gopt [%])

mean std min max
Price-and-Branch 28.18 28.90 0.13 117.54
Branch-and-Price 27.02 27.68 0.13 116.04
Three-Phase 27.27 27.27 0.16 119.06

Optimality Gap for Tighter Bound Instances (Ḡopt [%])

mean std min max
Price-and-Branch 1.34 1.81 0 9.39
Branch-and-Price 0.85 1.27 0 8.82
Three-Phase 0.55 0.43 0 1.68

Number of Routes (Columns) Generated

mean std min max
Price-and-Branch 1,883 1,038 388 5,266
Branch-and-Price 1,990 1,104 395 5,411

Table 4: Comparing Branch-and-Price with Three-Phase for all 100 Instances

Instances Imp[%] Enumerable Non-enumerable

Three-phase outperforms 25 -0.99 15 10
Branch-and-price outperforms 37 0.70 6 31
Total 100 0.01 47 53

site i equal to hs,k
i . If this value equals us,k, then only direct routes are possible. On the other

hand, if hs,k
i is much smaller than us,k, then many other routes are possible. As a result we use

the sum of the ratios us,k

h
s,k
i

over all sites i in a proximity set as an approximation to the complexity

of the proximity set. Parameter nc,max called the geometric complexity parameter is defined as

nc,max = max
b∈B

∑

i∈Pb, i6=b

max
s∈S,k∈Ts

us,k

hs,k
i

. (30)

Note that for each i ∈ Pb, by definition of Pb, we have maxs∈S,k∈Ts
us,k

h
s,k
i

≥ 1.

Parameters for the estimations are identified from the results of the numerical experiments

using the least-squares method. Identified parameters and R2
adj values (adjusted coefficients of

multiple determination) of the estimators are presented in Table 5. For branch-and-price and
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price-and-branch methodologies, we choose nB · fB, nE , and nc,max as predictors. When nB · fB

is large, according to (26), more y variables are likely to have value one in the root node LP

relaxation, which influences the size of the branch-and-bound tree. Large nE and nc,max tend to

increase the number of feasible routes and thus the running time. For the three-phase method,

since the whole graph is partitioned into clusters and the budget is allocated to each cluster, we

choose nB,max, nE,max, nc,max as predictors. They tend to increase the number of feasible routes

in a cluster and thus the running time.

Table 5: Parameters for the Computational Time

Price-and-Branch Branch-and-Price Three-Phase

Parameter Value Parameter Value Parameter Value
Kp -1.525 Kb 0.188 Kt 0.855
αp -0.023 αb -0.045 αt 0.148
βp 0.005 βb 0.009 βt 0.019
γp 0.102 γb 0.121 γt 0.006

R2
p 0.797 R2

b 0.831 R2
t 0.618

4.1.2 Optimality Gap

Estimators for the optimality gap under the general bound from the root node LP relaxation

with price-and-branch, branch-and-price and three-phase method are proposed considering the

observation that the optimality gap increases as the budget tightness factor fB decreases. With

tight budget there are more fractional y values in the LP relaxation solution, which leads to

larger optimality gaps.

It is also expected that the changes in Gopt are larger for smaller fB. Estimator Ĝopt,p for

price-and-branch, Ĝopt,b for branch-and-price, and Ĝopt,t for the three-phase method are proposed

as follows:

Ĝopt,p = K0,p + K1,p · fB + K2,p ·
1

fB

(31)

Ĝopt,b = K0,b + K1,b · fB + K2,b ·
1

fB

(32)

Ĝopt,t = K0,t + K1,t · fB + K2,t ·
1

fB

. (33)

The parameters are identified using the least-squares method and presented in Figure 5,

Figure 6, and Figure 7.

4.2 NASA Case

Here we present computational results for a true NASA instance. The parameters given in Table

1 closely reflect the setting for Mars explorations and the budget is set to 700 (Ahn et al. (2008)).
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The longitude and latitude of the 153 exploration sites are obtained from Greeley and Thomas

(1995). Bases are also chosen from the 153 sites. The instance generated is non-enumerable for

the three-phase method. Since running time is not a major concern, we ran both the branch-

and-price and three-phase method, which gave solution values of 127 within 31 seconds and 126

within 55 seconds, respectively.

We report the solution by branch-and-price in Figure 8, which shows the most site-intensive

part on Mars. Sites are indexed by numbers. The locations in rectangles are the selected bases

and the locations in ovals denote the sites served by the corresponding base. On the entire Mars’

surface overall 11 bases are selected of which 10 bases (index 32, 17, 88, 120, 25, 72, 125, 128,

104, 30) adopted the orbiting depot strategy and a single base (index 102) adopted the standard

strategy. Totally 62 sites are visited by 54 generated routes, of which 33 routes use the depot-

assisted tactic under the orbiting depot strategy, 18 routes use the standard strategy under the

orbiting depot strategy, and 3 routes use the standard tactic under the standard strategy.

5 Summary and Future Work

This paper deals with a new routing problem class referred to as the generalized location routing

problem with profits. Given locations of potential bases and sites, and profit values assigned

to the sites, the GLRPP maximizes the sum of profit obtained over a campaign by making

decisions on selection of bases to use, selection of strategies for the missions using the bases,

selection of sites and routes to visit the sites, and selection of routing tactics, with constraints

imposed on each route, each mission, and the overall campaign. A mathematical formulation

for the problem is provided and two solution methodologies to find an approximate solution are

proposed. Performance analysis of the two solution methods indicates that if solution quality is

the only concern, to choose a proper method, we should first carry out the divide phase of the

three-phase method. If all the resulting clusters have a small number of bases such that cluster
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strategies can be enumerated, then the three-phase method should be applied. Otherwise, the

branch-and-price algorithm should be the choice.

Two applications using the GLRPP framework - planetary surface exploration and college

football recruiting - have already been studied (Ahn et al. (2008)). Military surface operation

and gas extraction problems can be also formulated and solved using this framework, which is

suggested as future work. A limitation of the GLRPP framework is the way it deals with “profits.”

Under the current framework, profit value to visit a site is one dimensional. Sometimes there are

multiple stakeholder groups interested in visiting sites and obtaining profits. Valuations of a site

from different stakeholder groups will likely be different. It means that the value of visiting a site

should be considered as a vector, not a scalar. A revision of the current framework such that it

can deal with the profit vector for each site is also suggested as future work. One possible way

would be to maximize the profit sum of the least satisfied stakeholder.
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doctoral dissertation, École Centrale Paris.
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A Nomenclature

B index set of potential bases

C distance matrix

E index set of potential exploration sites

Jb,s,k index set of subsets which, combined with base b, make feasible routes

with respect to routing tactic k of strategy s

Rj subset of potential exploration sites on route j

S index set of mission strategies

Ts index set of routing tactics for mission strategy s

xb,s,k
j decision variable, which is 1 if route determined by base b

and site subset Rj using routing tactic k and mission strategy s

is selected, and 0 otherwise

yb,s decision variable, which is 1 if mission strategy s is selected by base b,

and is 0 otherwise

fj profit sum of potential exploration sites on route j

ti time required to obtain profits at potential exploration site i

vi profit value assigned to potential exploration site i

cs,k single-route constraint per-route resource consumption coefficient vector

(tactic k and strategy s)

c̄s,k single-route constraint on-arc resource consumption coefficient vector

(tactic k and strategy s)

c̃s,k single-route constraint on-site resource consumption coefficient vector

(tactic k and strategy s)

ds collective constraint per-route resource consumption coefficient vector

(strategy s)

d̄s collective constraint on-arc resource consumption coefficient vector

(strategy s)

d̃s collective constraint on-site resource consumption coefficient vector

(strategy s)
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us,k single-route constraint resource consumption limit vector

(tactic k and strategy s)

ūs collective constraint resource consumption limit vector

(strategy s)

ns maximum number of routes vector (strategy s)
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Figure 8: An Illustration of Bases and Sites Selection for Western Sites on Mars
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