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Abstract

In this paper, we present hierarchical relation-based
latent Dirichlet allocation (hrLDA), a data-driven hierar-
chical topic model for extracting terminological ontologies
from a large number of heterogeneous documents. In con-
trast to traditional topic models, hrLDA relies on noun
phrases instead of unigrams, considers syntax and docu-
ment structures, and enriches topic hierarchies with topic
relations. Through a series of experiments, we demonstrate
the superiority of hrLDA over existing topic models, espe-
cially for building hierarchies. Furthermore, we illustrate
the robustness of hrLDA in the settings of noisy data sets,
which are likely to occur in many practical scenarios. Our
ontology evaluation results show that ontologies extracted
from hrLDA are very competitive with the ontologies cre-
ated by domain experts.

1 Introduction

Although researchers have made significant progress on
knowledge acquisition and have proposed many ontolo-
gies, for instance, WordNet [22], DBpedia [3], YAGO [30],
Freebase, [8] Nell [9], DeepDive [26], Domain Cartridge
[24], Knowledge Vault [12], INS-ES [33], iDLER [10], and
TransE-NMM [25], current ontology construction methods
still rely heavily on manual parsing and existing knowl-
edge bases. This raises challenges for learning ontologies
in new domains. While a strong ontology parser is effective
in small-scale corpora, an unsupervised model is beneficial
for learning new entities and their relations from new data
sources, and is likely to perform better on larger corpora.

In this paper, we focus on unsupervised terminological
ontology learning and formalize a terminological ontology
as a hierarchical structure of subject-verb-object triplets.
We divide a terminological ontology into two components:
topic hierarchies and topic relations. Topics are presented
in a tree structure where each node is a topic label (noun
phrase), the root node represents the most general topic,

the leaf nodes represent the most specific topics, and ev-
ery topic is composed of its topic label and its descendant
topic labels. Topic hierarchies are preserved in topic paths,
and a topic path connects a list of topics labels from the
root to a leaf. Topic relations are semantic relationships
between any two topics or properties used to describe one
topic. Figure 1 depicts an example of a terminological on-
tology learned from a corpus about European cities. We
extract terminological ontologies by applying unsupervised
hierarchical topic modeling and relation extraction to plain
text.

Figure 1: A representation of a terminological ontology.
(Left: topic hierarchies) Topic city is composed of most
populous city, capital, London, Berlin, etc. City →
capital→ London and city→ capital→ Berlin are two
topic paths. (Right: topic relations) Every topic label has
relations to itself and/or with other labels. Be the capital
city of Germany is one relation/property of topicBerlin.
Be on the north of is one relation of topic Berlin to
London.

Topic modeling was originally used for topic extraction
and document clustering. The classical topic model, latent
Dirichlet allocation (LDA) [7], simplifies a document as a
bag of its words and describes a topic as a distribution of
words. Prior research [27, 32, 34, 17, 29, 11, 23, 16] has
shown that LDA-based approaches are adequate for (termi-
nological) ontology learning. However, these models are
deficient in that they still need human supervision to decide
the number of topics, and to pick meaningful topic labels
usually from a list of unigrams. Among models not using



unigrams, LDA-based Global Similarity Hierarchy Learn-
ing (LDA+GSHL) [32] only extracts a subset of relations:
“broader” and “related” relations. In addition, the topic
hierarchies of KB-LDA [23] rely on hypernym-hyponym
pairs capturing only a subset of hierarchies.

Considering the shortcomings of the existing methods,
the main objectives of applying topic modeling to ontology
learning are threefold.

1. In topic models, a topic is usually represented with
a list of unigrams. In a terminological ontology, a
topic/entity needs to be represented with a more de-
scriptive identifier (i.e., noun phrase). Currently, the
number of topics is usually a fixed parameter, which
restricts the number of classes an ontology could have.
For instance, it is difficult to add a new species to an
animal ontology.

2. Both relations among different noun phrases and rela-
tions/properties (see the relations in Figure 1) for de-
scribing single noun phrases should be captured during
the topic generation process.

3. Hierarchies need to be built on topical affiliations. If
topicB is a sub-topic of topicA,B has a more specific
meaning than A. The depth of each topic path should
be determined by a data-driven method.

To achieve the first objective, we extract noun phrases
and then propose a sampling method to estimate the number
of topics. For the second objective, we use language pars-
ing and relation extraction to learn relations for the noun
phrases. Regarding the third objective, we adapt and im-
prove the hierarchical latent Dirichlet allocation (hLDA)
model [6, 5]. hLDA is not ideal for ontology learning be-
cause it builds topics from unigrams (which are not descrip-
tive enough to serve as entities in ontologies) and the topics
may contain words from multiple domains when input data
have documents from many domains (see Section 2 and Fig-
ure 9). Our model, hrLDA, overcomes these deficiencies. In
particular, hrLDA represents topics with noun phrases, uses
syntax and document structures such as paragraph inden-
tations and item lists, assigns multiple topic paths for every
document, and allows topic trees to grow vertically and hor-
izontally.

The primary contributions of this work can be specified
as follows.

• We develop a hierarchical topic model, hrLDA, that
does not require one to set the topic number at every
level of a topic tree or to set the topic path lengths from
the root to leaves.

• We integrate relation extraction into topic modeling
leading to lower perplexity.

• We propose a multiple topic path drawing strategy,
which is an improvement over the simple topic path
drawing method proposed in hLDA.

• We present automatic extraction of terminological on-
tologies via hrLDA.

2 Background

In this section, we introduce our main baseline model,
hierarchical latent Dirichlet allocation (hLDA), and some
of its extensions. We start from the components of hLDA
- latent Dirichlet allocation (LDA) and the Chinese Restau-
rant Process (CRP)- and then explain why hLDA needs im-
provements in both building hierarchies and drawing topic
paths.

LDA is a three-level Bayesian model in which each doc-
ument is a composite of multiple topics, and every topic is
a distribution over words. Due to the lack of determina-
tive information, LDA is unable to distinguish different in-
stances containing the same content words, (e.g. “I trimmed
my polished nails” and “I have just hammered many rusty
nails”). In addition, in LDA all words are probabilistically
independent and equally important. This is problematic be-
cause different words and sentence elements should have
different contributions to topic generation. For instance, ar-
ticles contribute little compared to nouns, and sentence sub-
jects normally contain the main topics of a document.

Introduced in hLDA, CRP partitions words into several
topics by mimicking a process in which customers sit down
in a Chinese restaurant with an infinite number of tables and
an infinite number of seats per table. Customers enter one
by one, with a new customer choosing to sit at an occupied
table or a new table. The probability of a new customer sit-
ting at the table with the largest number of customers is the
highest. In reality, customers do not always join the largest
table but prefer to dine with their acquaintances. The the-
ory of distance-dependent CRP was formerly proposed by
David Blei [4]. We provide later in Section 3.3 an explicit
formula for topic partition given that adjacent words and
sentences tend to deal with the same topics.

hLDA combines LDA with CRP by setting one topic
path with fixed depth L for each document. The hierar-
chical relationships among nodes in the same path depend
on an L dimensional Dirichlet distribution that actually ar-
ranges the probabilities of topics being on different topic
levels. Despite the fact that the single path was changed
to multiple paths in some extensions of hLDA - the nested
Chinese restaurant franchise processes [1] and the nested
hierarchical Dirichlet Processes [28], - this topic path draw-
ing strategy puts words from different domains into one
topic when input data are mixed with topics from multiple
domains. This means that if a corpus contains documents



in four different domains, hLDA is likely to include words
from the four domains in every topic (see Figure 9).

In light of the various inadequacies discussed above, we
propose a relation-based model, hrLDA. hrLDA incorpo-
rates semantic topic modeling with relation extraction to in-
tegrate syntax and has the capacity to provide comprehen-
sive hierarchies even in corpora containing mixed topics.

3 Hierarchical Relation-based Latent Dirich-
let Allocation

The main problem we address in this section is gener-
ating terminological ontologies in an unsupervised fashion.
The fundamental concept of hrLDA is as follows. When
people construct a document, they start with selecting sev-
eral topics. Then, they choose some noun phrases as sub-
jects for each topic. Next, for each subject they come up
with relation triplets to describe this subject or its relation-
ships with other subjects. Finally, they connect the sub-
ject phrases and relation triplets to sentences via reason-
able grammar. The main topic is normally described with
the most important relation triplets. Sentences in one para-
graph, especially adjacent sentences, are likely to express
the same topic.

We begin by describing the process of reconstructing
LDA. Subsequently, we explain relation extraction from
heterogeneous documents. Next, we propose an improved
topic partition method over CRP. Finally, we demonstrate
how to build topic hierarchies that bind with extracted rela-
tion triplets.

3.1 Relation-based Latent Dirichlet Allocation

Documents are typically composed of chunks of texts,
which may be referred to as sections in Word documents,
paragraphs in PDF documents, slides in presentation docu-
ments, etc. Each chunk is composed of multiple sentences
that are either atomic or complex in structure, which means
a document is also a collection of atomic and/or complex
sentences. An atomic sentence (see module T in Figure 2) is
a sentence that contains only one subject (S), one object (O)
and one verb (V ) between the subject and the object. For
every atomic sentence whose object is also a noun phrase,
there are at least two relation triplets (e.g., “The tiger that
gave the excellent speech is handsome” has relation triplets:
(tiger, give, speech), (speech, be given by, tiger), and (tiger,
be, handsome)). By contrast, a complex sentence can be
subdivided into multiple atomic sentences. Given that the
syntactic verb in a relation triplet is determined by the sub-
ject and the object, a document d in a corpus D can be ul-
timately reduced to Nd subject phrases (we convert objects
to subjects using passive voice) associated with Nd relation
triplets Td. Number Nd is usually larger than the actual

number of noun phrases in document d. By replacing the
unigrams in LDA with relation triplets, we retain definitive
information and assign salient noun phrases high weights.

We define Dir(α) as a Dirichlet distribution parameter-
ized by hyperparameters α, Multi(θ) as a multinomial dis-
tribution parameterized by hyperparameters θ, Dir(η) as
a Dirichlet distribution parameterized by η, and Multi(β)
as a multinomial distribution parameterized by β. We as-
sume the corpus has K topics. Assigning K topics to the
Nd relation triplets of document d follows a multinomial
distribution Multi(θ) with prior Dir(α). Selecting the Nd

relation triplets for document d given theK topics follows a
multinomial distribution Multi(β) with prior Dir(η). We
denote T = {Td}d∈D as the list of relation triplet lists ex-
tracted from all documents in the corpus, and Z as the list
of topic assignments of T . We denote the relation triplet
counts of documents in the corpus by N = {Nd}d∈D. The
graphical representation of the relation-based latent Dirich-
let allocation (rLDA) model is illustrated in Figure 2.

Figure 2: Plate notation of rLDA

The plate notation can be decomposed into two types
of Dirichlet-multinomial conjugated structures: document-
topic distribution Dir(α) → Multi(θ) → Z and topic-
relation distribution Dir(η) → Multi(β) → T |Z. Hence,
the joint distribution of T and Z can be represented as

P (T,Z|α, η)
= P (T |Z, η) P (Z|α)
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where W is the number of unique relations in all docu-
ments, Cw

k is the number of occurrences of the relation
triplet w generated by topic k in all documents, and Bk

d

is the number of relation triplets generated by topic k in
document d. Dir(α) is a conjugate prior for Multi(θ) and



thus the posterior distribution is a new Dirichlet distribu-
tion parameterized by (Bd + α). The same rule applies to
Dir(Ck + η).

3.2 Relation Triplet Extraction

Extracting relation triplets is the essential step of hrLDA,
and it is also the key process for converting a hierarchical
topic tree to an ontology structure. The idea is to find all
syntactically related noun phrases and their connections us-
ing a language parser such as the Stanford NLP parser [19]
and Ollie [20]. Generally, there are two types of relation
triplets:

• Subject-predicate-object-based relations,
e.g., New York is the largest city in the United States
⇒ (New York, be the largest city in, the United States);

• Noun-based/hidden relations,
e.g., Queen Elizabeth⇒ (Elizabeth, be, queen).

A special type of relation triplets can be extracted from
presentation documents such as those written in Power-
Point using document structures. Normally lines in a slide
are not complete sentences, which means language parsing
does not work. However, indentations and bullet types usu-
ally express inclusion relationships between adjacent lines.
Starting with the first line in an itemized section, our algo-
rithm scans the content in a slide line by line, and creates
relations based on the current item and the item that is one
level higher.

3.3 Acquaintance Chinese Restaurant Process

As mentioned in Section 2, CRP always assigns the high-
est probability to the largest table, which assumes customers
are more likely to sit at the table that has the largest number
of customers. This ignores the social reality that a person is
more willing to choose the table where his/her closest friend
is sitting even though the table also seats unknown people
who are actually friends of friends. Similarly with human-
written documents, adjacent sentences usually describe the
same topics. We consider a restaurant table as a topic, and a
person sitting at any of the tables as a noun phrase. In order
to penalize the largest topic and assign high probabilities to
adjacent noun phrases being in the same topics, we intro-
duce an improved partition method, Acquaintance Chinese
Restaurant Process (ACRP).

The ultimate purposes of ACRP are to estimate K, the
number of topics for rLDA, and to set the initial topic dis-
tribution states for rLDA. Suppose a document is read from
top to bottom and left to right. As each noun phrase be-
longs to one sentence and one text chunk (e.g., section,

paragraph and slide), the locations of all noun phrases in a
document can be mapped to a two-dimensional space where
sentence location is the x axis and text chunk location is
the y axis (the first noun phrase of a document holds value
(0, 0)). More specifically, every noun phrase has four at-
tributes: content, location, one-to-many relation triplets,
and document ID. Noun phrases in the same text chunk are
more likely to be “acquaintances;” they are even closer to
each other if they are in the same sentence. In contrast to
CRP, ACRP assigns probabilities based on closeness, which
is specified in the following procedure.

1. Let zn be the integer-valued random variable corre-
sponding to the index of a topic assigned to the nth

phrase. Draw a probability P (zn+1) from Equations 2
to 5 below for the (n + 1)th noun phrase tn+1, join-
ing each of the existing k topics and the new (k+1)th

topic given the topic assignments of previous n noun
phrases, Z1:n. If a noun phrase joins any of the exist-
ing k topics, we denote the corresponding topic index
by i ∈ [1, k].

• The probability of choosing the (k + 1)th topic:

P (zn+1 = (k + 1)|Z1:n) =
γ

n+ γ
. (2)

• The probability of selecting any of the k topics:

– if the content of tn+1 is synonymous with or
an acronym of a previously analyzed noun
phrase tm (m < n+ 1),

P (zn+1 = i|Z1:n) = 1− γ; (3)

– else if the document ID of tn+1 is different
from all document IDs belonging to the ith

topic,

P (zn+1 = i|Z1:n) = γ; (4)

– otherwise,

P (zn+1 = i|Z1:n) =

Ci − (1− 1
min(Q1:i)

)

(1 +min(S1:i))n+ γ
,

(5)

where Ci refers to the current number of
noun phrases in the ith topic,Q1:i represents
the vector of chunk location differences of
the (n + 1)th noun phrase and all members
in the ith topic, S1:i stands for the vector
of sentence location differences, and γ is a
penalty factor.

Normalize the (k + 1) probabilities to guarantee they
are each in the range of [0, 1] and their sum is equal to
1.



2. Based on the probabilities 2 to 5, we sample a topic
index z from {1, ..., (k+1)} for every noun phrase, and
we count the number of unique topics K in the end.
We shuffle the order of documents and iterate ACRP
until K is unchanged.

3.4 Nested Acquaintance Chinese Restaurant
Process

The procedure for extending ACRP to hierarchies is es-
sential to why hrLDA outperforms hLDA. Instead of a pre-
defined tree depth L, the tree depth for hrLDA is optional
and data-driven. More importantly, clustering decisions
are made given a global distribution of all current non-
partitioned phrases (leaves) in our algorithm. This means
there can be multiple paths traversed down a topic tree for
each document. With reference to the topic tree, every node
has a noun phrase as its label and represents a topic that may
have multiple sub-topics. The root node is visited by all
phrases. In practice, we do not link any phrases to the root
node, as it contains the entire vocabulary. An inner node
of a topic tree contains a selected topic label. A leaf node
contains an unprocessed noun phrase. We define a hashmap
leaves with a document ID as the key and the current leaf
nodes of the document as the value. We denote the current
tree level by l. We next outline the overall algorithm.

1. We start with the root node (l = 0) and apply rLDA to
all the documents in a corpus.

(a) Collect the current leaf nodes of every docu-
ment. leaves initially contains all noun phrases
in the corpus. Assign a cluster partition to the
leaf nodes in each document based on ACRP and
sample the cluster partition until the number of
topics of all noun phrases in leaves is stable or
the iteration reaches the predefined number of it-
eration times (whichever occurs first).

(b) Mark the number of topics (child nodes) of par-
ent node m at level l as Klm . Build a Klm -
dimensional topic proportion vector θ based on
Dir(α).

(c) For every noun phrase {tn}Nd
n=1 in document d,

form the topic assignments Z{1,...,Klm} based on
Multi(θ).

(d) Generate relation triplets from Multi(β)
given Dir(η) and the associated topic vector
{Zk}K

lm

k=1 .
(e) Eliminate partitioned leaf nodes from leaves.

Update the current level l by 1.

2. If phrases in leaves are not yet completely partitioned
to the next level and l is less than L, continue the fol-
lowing steps. For each leaf node, we set the top phrase

(i.e., the phrase having the highest probability) as the
topic label of this leaf node and the leaf node becomes
an inner node. We next update leaves and repeat pro-
cedures 1(a)− 1(e).

To summarize this process more succinctly: we build the
topic hierarchies with rLDA in a divisive way (see Figure
3). We start with the collection of extracted noun phrases
and split them using rLDA and ACRP. Then, we apply the
procedure recursively until each noun phrase is selected as a
topic label. After every rLDA assignment, each inner node
only contains the topic label (top phrase), and the rest of the
phrases are divided into nodes at the next level using ACRP
and rLDA. Hence, we build a topic tree with each node as
a topic label (noun phrase), and each topic is composed of
its topic labels and the topic labels of the topic’s descen-
dants. In the end, we finalize our terminological ontology
by linking the extracted relation triplets with the topic labels
as subjects.

Figure 3: Graphical representation of hrLDA

We use collapsed Gibbs sampling [15] for inference from
posterior distribution P (Z|T, α, η) based on Equation 1.
Assume the nth noun phrase tn = t̂ in parent nodem comes
from document d. We denote unassigned noun phrases from
document d in parent node m by dm, and unique noun
phrases in parent node m by T̂m. We simplify the proba-
bility of assigning the nth noun phrase in parent node m to
topic k among Klm topics as

P (zn = k|Z¬n, T̂m, α, η)

∝ P (tn = t̂, zn = k|Z¬n, T̂m¬n, α, η)

=

∫
P (tn = t̂, zn = k|Z¬n, T̂m¬n, θdm , βk)dθdm , dβk

=
Ck,t̂¬n + η∑T̂m

t̂
(Ck,t̂¬n + η)

Cdm,k¬n + α∑Klm

k=1 (Cdm,k¬n + α)

(6)



whereZ¬n refers to all topic assignments other than zn, θdm

is multinational document-topic distribution for unassigned
noun phrases dm, βk is the multinational topic-relation dis-
tribution for topic k, Ck,t̂¬n is the number of occurrences of
noun phrase t̂ in topic k except the nth noun phrase in m,
Cdm,k¬n stands for the number of times that topic k occurs
in dm excluding the nth noun phrase in m.

In order to build a hierarchical topic tree of a specific do-
main, we must generate a subset of the relation triplets using
external constraints or semantic seeds via a pruning process
[31]. As mentioned above, in a relation triplet, each rela-
tion connects one subject and one object. By assembling all
subject and object pairs, we can build an undirected graph
with the objects and the subjects constituting the nodes of
the graph [18]. Given one or multiple semantic seeds as in-
put, we first collect a set of nodes that are connected to the
seed(s), and then take the relations from the set of nodes as
input to retrieve associated subject and object pairs. This
process constitutes one recursive step. The subject and ob-
ject pairs become the input of the subsequent recursive step.

4 Empirical Results

4.1 Implementation

We utilized the Apache poi library to parse texts from
pdfs, word documents and presentation files; the MAL-
LET toolbox [21] for the implementations of LDA, op-
timized LDA [2] and hLDA; the Apache Jena library to
add relations, properties and members to hierarchical topic
trees; and Stanford Protege1 for illustrating extracted on-
tologies. We make our code and data available 2. We used
the same hyper-parameter setting (i.e., α = 1.0, η = 0.1,
and γ = 0.01) across all our experiments.

4.2 Evaluation and Examples

In this section, we present the evaluation results
of hrLDA tested against optimized LDA, hLDA, and
phrase hLDA (i.e., hLDA based on noun phrases) as well
as ontology examples that hrLDA extracted from real-world
text data. The entire corpus we generated contains 349,362
tokens (after removing stop words and cleaning) and is built
from articles on semiconductor packaging. It includes 84
presentation files, articles from 1,782 Wikipedia pages and
3,000 research papers that were published in IEEE manu-
facturing conference proceedings within the last decade. In
order to see the performance in data sets of different scales,
we also used a smaller corpus Wiki that holds the articles
collected from the Wikipedia pages only.

1http://protege.stanford.edu/
2https://github.com/UnsupervisedOntologyLearning/hrLDA

We extract a single level topic tree using each of the four
models; hrLDA becomes rLDA, and phrase hLDA becomes
phrase-based LDA. We have tested the average perplexity
and running time performance of ten independent runs on
each of the four models [14, 13]. Equation 7 defines the
perplexity, which we employed as an empirical measure.

ln(perplexity) = −
∑D

d log(
∑K

k=1 P (Td|Zk)P (Zk|d))∑D
d Nd

, (7)

where Td is a vector containing the Nd relation triplets in
document d.

The comparison results on our Wiki corpus are shown in
Figure 4. hrLDA yields the lowest perplexity and reason-
able running time. As the running time spent on parame-
ter optimization is extremely long (the optimized LDA re-
quires 19.90 hours to complete one run), for efficiency, we
adhere to the fixed parameter settings for hrLDA. We then
demonstrate the evaluation results from two aspects: topic
hierarchy and ontology rule.

Figure 4: Comparison results of hrLDA, phrase hLDA,
hLDA and optimized LDA on perplexity and running time

4.2.1 Hierarchy Evaluation

Superiority
Figures 5 to 7 illustrates the perplexity trends of the three

hierarchical topic models (i.e., hrLDA, phrase hLDA and
hLDA) applied to both the Wiki corpus and the entire cor-
pus with seed “chip” given different level settings. From
left to right, hrLDA retains the lowest perplexities compared
with other models as the corpus size grows. Furthermore,
from top to bottom, hrLDA remains stable as the topic level
increases, whereas the perplexity of phrase hLDA and es-
pecially the perplexity of hLDA become rapidly high. Fig-
ure 8 highlights the perplexity values of the three models
with confidence intervals in the final state. As shown in the
two types of experiments, hrLDA has the lowest average
perplexities and smallest confidence intervals, followed by
phrase hLDA, and then hLDA.



(a) The Wiki corpus (b) The entire corpus

Figure 5: Perplexity trends within 2000 iterations with level = 2

(a) The Wiki corpus (b) The entire corpus

Figure 6: Perplexity trends within 2000 iterations with level = 6

(a) The Wiki corpus (b) The entire corpus

Figure 7: Perplexity trends within 2000 iterations with level = 10



(a) The Wiki corpus (b) The entire corpus

Figure 8: Average perplexities with confidence intervals of the three models in the final 2000th iteration with level = 10

Robustness
Figure 9 shows exhaustive hierarchical topic trees ex-

tracted from a small text sample with topics from four do-
mains: semiconductor, integrated circuit, Berlin, and
London. hLDA tends to mix words from different domains
into one topic. For instance, words on the first level of the
topic tree come from all four domains. This is because the
topic path drawing method in existing hLDA-based models
takes words in the most important topic of every document
and labels them as the main topic of the corpus. In con-
trast, hrLDA is able to create four big branches for the four
domains from the root. Hence, it generates clean topic hier-
archies from the corpus.

4.2.2 Gold Standard-based Ontology Evaluation

The visualization of one concrete ontology on the
semiconductor packaging domain is presented in Figure
10. For instance, Topic packaging contains topic integrated
circuit packaging, and topic label jedec is associated with
relation triplet (jedec, be short for, joint electron device en-
gineering council).

We use KB-LDA, phrase hLDA, and LDA+GSHL as
our baseline methods, and compare ontologies extracted
from hrLDA, KB-LDA, phrase hLDA, and LDA+GSHL
with DBpedia ontologies. We use precision, recall and F-
measure for this ontology evaluation. A true positive case is
an ontology rule that can be found in an extracted ontology
and the associated ontology of DBpedia. A false positive
case is an incorrectly identified ontology rule. A false nega-
tive case is a missed ontology rule. Table 1 shows the evalu-
ation results of ontologies extracted from Wikipedia articles
pertaining to European Capital Cities (Corpus E), Office
Buildings in Chicago (Corpus O) and Birds of the United
States (Corpus B) using hrLDA, KB-LDA, phrase hLDA
(tree depth L = 3), and LDA+GSHL in contrast to these

Semiconductor is a material characterized by its intermediate electrical property. A semiconductor material has an electrical 
conductivity value between a conductor, such as copper, and an insulator, such as glass. Semiconductors are the foundation of 
modern electronics.

An integrated circuit is a set of electronic circuits on one small plate chip of semiconductor material, normally silicon. Integrated 
circuits are used in virtually all electronic equipment today and have revolutionized the world of electronics.

Berlin is the capital city of Germany and one of the 16 states of Germany. With a population of 3.4 million people, Berlin is 
Germany's largest citGermany's largest city, the second most populous city proper, and the seventh most populous urban area in the European Union.

London is the capital city of England and the United Kingdom. It is the most populous region, urban zone and metropolitan area in 
the United Kingdom. Standing on the River Thames, London has been a major settlement for two millennia.

(a) A toy corpus in domains: semiconductor, integrated circuit,
Berlin, and London

(b) The topic tree obtained from hLDA; each node contains the top
five words ordered by their probabilities of being in the corresponding
topics

(c) The topic tree (left panel class hierarchy) with relations (right
panel class annotations) obtained from hrLDA

Figure 9: Performance of hLDA and hrLDA on a toy corpus
of diversified topics



Figure 10: A 10-level semiconductor ontology that contains
2063 topics and 6084 relation triplets

gold ontologies belonging to DBpedia. The three corpora
used in this evaluation were collected from Wikipedia ab-
stracts, the same text source of DBpedia. The seeds of
hrLDA and the root concepts of LDA+GSHL are “capital,”
“building,” and “bird.” For both KB-LDA and phrase hLDA
we kept the top five tokens in each topic as each node of
their topic trees is a distribution/list of phrases. hrLDA
achieves the highest precision and F-measure scores in the
three experiments compared to the other models. KB-LDA
performs better than phrase hLDA and LDA+GSHL, and
phrase hLDA performs similarly to LDA+GSHL. In gen-
eral, hrLDA works well especially when the pre-knowledge
already exists inside the corpora. Consider the following
two statements taken from the corpus on Birds of the United
States as an example. In order to use two short documents
“The Acadian Flycatcher is a small insect-eating bird.” and
“The Pacific Loon is a medium-sized member of the loon.”
to infer that the Acadian Flycatcher and the Pacific Loon
both belong to topic “bird,” the pre-knowledge that “the
loon is a species of bird” is required. This example explains
why the accuracy of extracting ontologies from this kind of
corpus is low.

5 Concluding Remarks

In this paper, we have proposed a completely unsuper-
vised model, hrLDA, for terminological ontology learning.
hrLDA is a domain-independent and self-learning model,
which means it is very promising for learning ontologies in
new domains and thus can save significant time and effort
in ontology acquisition.

We have compared hrLDA with popular topic models to
interpret how our algorithm learns meaningful hierarchies.
By taking syntax and document structures into considera-
tion, hrLDA is able to extract more descriptive topics. In ad-
dition, hrLDA eliminates the restrictions on the fixed topic
tree depth and the limited number of topic paths. Further-

Table 1: Precision, recall and F-measure (%)

Domain Corpus E Corpus O Corpus B
hrLDA 96.0 92.4 84.0
KB-LDA 90.7 89.9 79.4
phrase hLDA 27.6 27.4 24.5Precision
LDA+GSHL 52.4 19.8 28.6
hrLDA 86.9 74.7 81.9
KB-LDA 83.8 75.4 63.3
phrase hLDA 50.6 57.5 36.5Recall
LDA+GSHL 20.0 73.1 11.8
hrLDA 91.2 82.6 82.9
KB-LDA 87.1 82.0 70.4
phrase hLDA 35.7 26.8 29.3F-measure
LDA+GSHL 29.0 31.2 16.7

more, replacing random topic assignments with acquain-
tance topic assignments in ACRP allows hrLDA to create
more reasonable topics and to converge faster in Gibbs sam-
pling.

We have also compared hrLDA to several unsupervised
ontology learning models and shown that hrLDA can learn
applicable terminological ontologies from real world data.
Although hrLDA cannot be applied directly in formal rea-
soning, it is efficient for building knowledge bases for in-
formation retrieval and simple question answering. Finally,
one issue we have not addressed in our current study is cap-
turing pre-knowledge. Although a direct solution would be
adding the missing information to the data set, a more ad-
vanced approach would be to generate topic embeddings to
extract hidden information.
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