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Predicting ICU readmission using grouped physiological and medication trends 

Abstract 
Background: Patients who are readmitted to an intensive care unit (ICU) usually have a high risk 

of mortality and an increased length of stay. ICU readmission risk prediction may help physicians to 
re-evaluate the patient’s physical conditions before patients are discharged and avoid preventable 
readmissions. ICU readmission prediction models are often built based on physiological variables. 
Intuitively, snapshot measurements, especially the last measurements, are effective predictors that 
are widely used by researchers. However, methods that only use snapshot measurements neglect 
predictive information contained in the trends of physiological and medication variables. Mean, 
maximum or minimum values take multiple time points into account and capture their summary 
statistics, however, these statistics are not able to catch the detailed picture of temporal trends. In this 
study, we find strong predictors with ability of capturing detailed temporal trends of variables for 30-
day readmission risk and build prediction models with high accuracy.  

Methods: We study physiological measurements and medications from the Multiparameter 
Intelligent Monitoring in Intensive Care II (MIMIC-II) clinical dataset. Time series of each variable are 
converted into trend graphs with nodes being discretized measurements of each variable. Then we 
extract important temporal trends by applying frequent subgraph mining on the trend graphs. The 
frequency of a subgraph is a good cue to find important temporal trends since similar patients often 
share similar trends regarding their pathophysiological evolution under medical interventions. 
Important temporal trends are then grouped automatically by non-negative matrix factorization. The 
grouped trends could be considered as an approximate representation of patients’ pathophysiological 
states and medication profiles. We train a logistic regression model to predict 30-day ICU readmission 
risk based on snapshot measurements, grouped physiological trends and medication trends. 

Results: Our dataset consists of 1,170 patients who are alive 30 days after discharge from ICU 
and have at least 12 hours of data. In the dataset, 860 patients were not readmitted and 310 were 
readmitted, within 30 days after discharge. Our model outperforms all comparison models, and shows 
an improvement in the area under the receiver operating characteristic curve (AUC) of almost 4% from 
the best comparison model. 

Conclusions: Grouped physiological and medication trends carry predictive information for ICU 
readmission risk. In order to build predictive models with higher accuracy, we should add grouped 
physiological and medication trends as complementary features to snapshot measurements. 

Keywords: ICU Readmission, Risk prediction, Graph mining, Non-negative matrix factorization 
 

1. Introduction 
The cost of critical care is increasing annually. From 2000 to 2005, the annual cost of critical care 

in the US increased from $56.6 to $81.7 billion (by 44.2%) and in 2005, the critical care cost accounted 
for 13.4% of hospital costs [1]. While discharging patients from an Intensive Care Unit (ICU) at an early 
time may have a significantly impact on reducing hospital costs, premature discharges may lead to 
deterioration of patient health or adverse outcomes, and in turn, readmission. Previous studies have 
shown that almost a third of readmissions are due to premature discharge [2, 3]. Reducing the rate of 
premature discharge has become an important concern of hospitals and it has been used as one of 
the top indicators for ICU quality [4].  

 
From a clinical perspective, patients who are readmitted to an ICU usually have a high risk of 

mortality and an increased length of stay, compared with the first admission [3]. Some readmissions 
might be avoided if physicians could re-evaluate patients who have high readmission risk before 
discharging them. On the other hand, physicians may discharge patients with low readmission risk 
from ICUs at the earliest appropriate time to reduce critical care costs and make room for more 
severely sick patients. Furthermore, eliminating unnecessary ICU stays may also help to reduce the 
rate of specific ICU-related complications [5]. Therefore, estimating the readmission risk of ICU 
patients is of critical importance for the consideration of both the health of patients and the critical care 
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costs for hospitals. ICU readmission prediction is an effective way to determine the risk of a patient’s 
readmission and can be used to help physicians to make appropriate decisions of discharge.  

 
In this work, we hypothesize that information hidden in temporal trends of physiological and 

medication variables is predictive for ICU readmission risk, as it could be considered as a 
representation of a patient’s health trend. We adapt the Subgraph Augmented Non-negative Matrix 
Factorization (SANMF) algorithm [6] and apply it for 30-day ICU readmission risk prediction. In addition, 
we perform comparisons between using temporal trends and using only snapshot measurements, and 
between using grouped temporal trends and using temporal trends directly. Our model, using a 
comprehensive feature set, including the snapshot measurements and the grouped temporal trends, 
outperforms other comparison models by demonstrating an improvement in AUC. 

 
The contributions of this work are summarized as follows. To the best of our knowledge, grouped 

physiological and medication trends have not yet been used in ICU readmission risk prediction. 
Additionally, we perform a comprehensive comparison between models using different types of 
features including snapshot measurements, temporal trends and grouped temporal trends. As a result, 
we show that grouped temporal trends of physiological measurements and medications carry 
predictive information for ICU readmission risk and can be used as complementary features to improve 
performance of predictive models. Along the way, we study the impact of different imputation 
techniques and develop a tailored methodology that outperforms all other state-of-the-art approaches. 

 
The remainder of this paper is structured as follows. Section 2 discusses related work while in 

Section 3, the proposed method is described, as well as the cohort selection and the strategy of model 
evaluation. The computational results and the underlying analyses are discussed in Section 4. Section 
5 addresses the limitations of this study and future work, and the conclusions are drawn in Section 6. 

 

2. Related Work 
Research in building accurate ICU readmission prediction models has attracted growing interest in 

recent decades. Some early efforts in ICU readmission risk prediction consider a specific population, 
such as elderly patients (over 65 years old) or patients with cardiac or respiratory problems [7-19]. 
These specific populations may have limited the generalizability of the above methods. Several other 
studies predict ICU readmission mainly based on non-physiological variables [20-25]. These methods 
used patient characteristic variables, including race, income and social status (e.g., living alone). Most 
of the works above used their own institutional data [7-9, 11, 12, 14, 16, 18, 19, 23-25]. The rest of 
them used different public data sources, such as American Hospital Association Annual Survey 
Database and Statewide Planning and Research Cooperative System (SPARCS) database [10, 13, 
15, 17, 20-22]. In recent years, research in seeking predictive physiological variables for readmission 
risk has drawn more interest and the MIMIC-II (The Multiparameter Intelligent Monitoring in Intensive 
Care) database [26, 27] has become a common choice for such studies. The MIMIC-II clinical 
database is a publicly available database containing physiological signals and comprehensive clinical 
data for a cohort of ICU patients. We use the MIMIC-II dataset in our study. 

 
Previous studies in predicting ICU readmission risk using the MIMIC database build models mainly 

based on physiological measurements. Fialho et al [28] applied fuzzy modeling with tree search 
feature selection to the MIMIC-II clinical dataset for 24-72 hours ICU readmission risk prediction. The 
most predictive variables found by Fialho et al include: the mean heart rate, mean temperature, mean 
spO2, mean non-invasive arterial blood pressure, mean platelets and mean lactic acid. The mean 
values of these variables are calculated within the last 24 hours before discharge.  Missing data of a 
variable are imputed with the last valid measurement. In the following few years, several methods 
were proposed to develop the application of fuzzy modeling on ICU readmission prediction. Fernandes 
et al [29] developed a multi-model approach using the 6 most predictive physiological variables found 
by Fialho et al [28]. Vieira et al [30] proposed a test-driven model where they used the medical text 
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reports in the MIMIC-II dataset that presented some particular characteristics. They used a refined 
data selection process where patients with any variable missing from a predefined feature set were 
excluded. This predefined feature set consists of 23 manually selected physiological variables that are 
easily assessed in the 24 hours before discharge. They performed the tree search feature selection 
and found 6 best variables, which were the same as those found by Fialho et al in [28]. Curto et al [31] 
used another text resource -- bedside medical text notes written by physicians or nurses, to explore 
complementary features for a set of 7 physiological variables (heart rate, temperature, platelets, non-
invasive blood pressure mean, oxygen saturation in the blood, lactic acid and creatinine), which were 
determined as important predictors for readmissions by Carvalho et al [32]. Curto et al also used the 
mean values of physiological measurements. These methods use manually selected physiological 
variables, related medical text reports or bedside medical text notes. Despite the improvement of 
AUCs, these methods suffer from neglecting predictive information within trends of physiological 
variables since they use the snapshot measurements or summary statistics such as mean values. 
Additionally, in the data preprocessing step of these methods, the elimination of patients with missing 
values and outliers might have biased their study. To address these problems, we study temporal 
trends of physiological measurements and medications, and use them to improve the performance of 
ICU readmission risk prediction models. 

 
Recently, the PhysioNet/Computing in Cardiology Challenge 2012 developed methods for the 

prediction of in-hospital mortality on the MIMIC-II dataset [33-44]. The data consists of 36 physiologic 
time series. McMillan et al [33] used temporal pattern mining to explore the approach of discovering 
short characteristic patterns (i.e. time series motifs). Temporal pattern mining has been used in several 
ICU mortality prediction studies to discover time series patterns [45, 46]. Hug et al [45] manually 
selected a set of temporal patterns considering a comprehensive set of variables. Cohen [46] et al 
used pattern recognition to identify physiologic patient states with hierarchical clustering. Luo et al [6] 
proposed an unsupervised feature learning algorithm to predict 30-day ICU mortality risk. Instead of 
using temporal pattern mining, they adapted frequent subgraph mining to extract common temporal 
trends. A time series abstraction is used to capture the temporal trends of variables [47-51]. They 
represent the time series of each variable as a graph, where each node is the measurement of a 
variable at each time point. The same representation of time series is used in this work to capture the 
temporal trends. However, instead of predicting 30-day mortality risk, the goal of our study is to predict 
ICU readmission risk within 30 days after discharge. To this end, we additionally use the medication 
trends to complement the physiological trends. Furthermore, Luo et al used linear imputation to 
address missing values. In this work, we perform a comprehensive comparison between several 
widely-used imputation methods on their impact to our predictive models and develop a customized 
linear interpolation that is designed for the MIMIC-II dataset.  
 

3. Methods 
3.1. Patient Cohort 

We use the MIMIC-II dataset [26] collected from a variety of ICUs between 2000 and 2008. The 
dataset consists of detailed information about ICU patients’ stays including time series of physiological 
measurements and medication variables. We select 53 physiological variables, 21 medication 
variables and age of patients. A detailed description of variables is given in Appendix A. We only 
include patients who have recorded readmission time after being discharged from their first admission. 
Each patient must have at least 12 hours of data since we use data from the last 12 hours before 
discharge to train our models. We select 1,170 patients that satisfy our criteria. In our cohort, 860 
patients were not readmitted within 30 days and 310 were readmitted within 30 days.  

 

3.2. Design 

Intuitively, values from the last valid measurements of variables reflect patients’ health effectively 
and have been commonly used by researchers. Therefore, we build a baseline model that used the 
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last measurements as predictors. This model serves as a baseline to evaluate the performance of 
other models in predicting 30-day ICU readmission. In this work, we study physiological and 
medication trends, and use a comprehensive feature set that combines snapshot measurements and 
temporal trends, in order to build more accurate machine learning models. The methodology of 
converting time series data into temporal trends follows the SANMF algorithm [6] and is detailed later, 
see Fig. 1(a). We convert patients’ time series into graphs, where each node represents a discretized 
measurement at a single point in time. Among these graphs, we discover the most important 
subgraphs and identify them as common temporal trends. In this representation, temporal trends are 
encoded by subgraphs and we use the terms “subgraph” and “temporal trend” interchangeably in later 
discussions. We study the correlation between the important subgraphs, group them and use the 
groupings as an augmentation to snapshot features in building predictive models.  

 
(A) 

 
(B) 

Fig. 1. (A) The flowchart of proposed approach, moving from selecting data to predicting readmission risk. (B) An 
example of creating matrix of common subgraphs. Only the Blood Urea Nitrogen (BUN) trend graph for patient 1 is 
shown (BUN 0 1 0 1 0 0). The frequent subgraph is (BUN 0-u-1-d-0), noted as S. Patient 1 has two frequent 
subgraphs S; patients 2 and 4 have one; and patient 3 has no S. The edge labels, “u,” “d” and “s,” are short for “up,” 
“down” and “same,” respectively. 

3.3. Data Preprocessing and Imputation 
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Measurements in the collection of time series are often sparse. In total, about 23.6% of values in 
our dataset are missing. Eliminating patients with incomplete data may bias our study. Therefore, 
imputation becomes an essential step of the data preprocessing. We try several different imputation 
techniques, including mean value imputation and a more sophisticated imputation method called 
Multivariate Imputation by Chained Equations (MICE) [52]. The effectiveness of each imputation 
method is evaluated by the performance of our prediction models. In this work, we introduce an 
imputation method that is designed for temporal data, called customized linear interpolation.  

 
Let 𝑋"  be the set of measurements of variable 𝑋  for patient 𝑝  and let 𝑚  be the last valid 

measurement of 𝑋". Assuming 𝑚 is the measurement at time 𝑡, we replace the missing values of 𝑋" 
after time 𝑡 with measurement 𝑚; we use standard linear interpolation to replace the missing values 
of 𝑋" that are before time 𝑡. For variables of patient 𝑝 that have no valid measurement, we replace 
missing values with mean values. After imputation, we extract the last 12 hours of data before 
discharge for each patient.  

 

3.4. Converting Time Series into Graphs 

The basic idea of converting time series into graphs is to represent measurements with labeled 
nodes and connect them in order of time by labeled edges. Five different discrete levels (0, ±1 and 
±2) are used to label the nodes and are discretized using the z-score [53] of the corresponding 
measurements of the nodes. The z-score 𝑧* of measurement 𝑥* is calculated by: 

𝑧* = (𝑥* − 𝜇0)/𝜎0 
where 𝜇0	and	𝜎0 are the mean and deviation of measurements of variable 𝑥 across all patients and 
time points. If 𝑥* is within the one 𝜎0 range (−1 < 𝑧* < 1), we choose label of 0; if 𝑥* is beyond the one 
𝜎0 range but within the two 𝜎0 range (−2 < 𝑧* ≤ −1 or −2 < 𝑧* ≤ −1), we choose label ±1; otherwise 
we choose label ±2, which means 𝑥*  is beyond the two 𝜎0  range. Three edge labels are used to 
indicate changes between two adjacent nodes: up, down and same. Considering the fact that the time 
series of physiological variables in the MIMIC-II dataset are often sparse and sampled irregularly, 
before converting them into graphs, we discretize the time axis by interpolating time series linearly and 
resampling them at equally spaced intervals. The length of intervals is determined by performing 5-
fold cross-validation over choices of 1,2,3,4,6 or 12 hour intervals, which yields the 2-hour interval as 
the best. As a result, the graphs are sequences of 6 time intervals, since we use 12 hours of data. An 
example of the graph for a patient is shown in Fig. 1(b). 

 

3.5. Frequent Subgraph Mining 

After representing time series (trends) with graphs, we explore important common trends across 
patients for each variable. Intuitively, similar patients tend to experience similar physiological 
trajectories during their ICU stays. Thus, common trends are helpful to characterize similar patients. 
The frequency of a subgraph is a good cue for seeking important common trends. The purpose of 
Frequent Subgraph Mining (FSM) is to discover subgraph structures that occur a significant number 
of times across a set of graphs. One essential concept in FSM is subgraph isomorphism. Assuming 
two graphs 𝐺  and 𝐻  are given, if 𝐺  contains a subgraph that is isomorphic to 𝐻 , then 𝐻  is 
subisomorphic to 𝐺 . In our work, we use Molecular Substructure miner (MoSS) [54] to discover 
frequent subgraphs. The threshold of frequency is a parameter of MoSS and only the subgraph whose 
occurrence is above the threshold is selected. The threshold is determined by performing 5-fold cross-
validation over choices from 1 to 12 for each model. It turns out that subgraphs that occur at least 11 
times are the most suggestive for important common trends in our best model. 

 

3.6. Subgraph Filtering 

Next, we count the number of frequent subgraphs for each patient and create a patient-subgraph 



 6 

matrix, where each entry specifies the number of times that a certain temporal trend (subgraph) occurs 
during that patient’s stay, see Fig. 1(b). Note that the subgraphs of a frequent subgraph are also 
frequent. Since a larger frequent subgraph already contains the information in its own subgraphs, we 
only count maximal frequent subgraph that are not a subgraph of others. Another reason for using this 
counting strategy is that if we count both the larger subgraph and its own smaller subgraphs, the signal 
of the larger one might be overwhelmed by the signal from the smaller subgraphs thus yielding less 
predictive models. 

 

3.7. Subgraph NMF (Non-Negative Matrix Factorization) and Groups 

We may use temporal trends (columns of the patient-subgraph matrix in Fig. 1(b)) directly as 
features to train statistical models, however, using temporal trends directly has two drawbacks: 1) the 
huge number of temporal trends usually causes overfitting problems; 2) treating trends independently 
cannot effectively reflect a patient’s pathophysiological trajectory. The latter is because a patient often 
experiences an underlying pathophysiological condition involving multiple variables and even multiple 
organs. On the other hand, one abnormal physiological variable may have various implications. For 
example, a low hematocrit may be linked to blood loss, bone marrow problems, kidney problems, and 
a variety of other problems. Thus, it is more consistent with medical practice to establish a panel of 
pathophysiological trends as a feature for predictive modeling. 

 
Inspired by the observation that a group of physiological trends usually shows a patient’s underlying 

pathophysiological evolution, we apply Non-Negative Matrix Factorization (NMF) on our patient-
subgraph count matrix to group temporal trends. Another motivation of using NMF is that we aim at 
counting data which are non-negative numbers. Additionally, Hofree et al. [55] have shown that NMF 
is an effective method to cluster similar patients. Let 𝑽 be our patient-subgraph count matrix, which 
has 𝑀 patients and 𝑁 subgraphs. NMF approximates 𝑽 using two matrices 𝑾 and 𝑯 (𝑽 ≈ 𝑾 ∙ 𝑯) by 
minimizing the error function: 𝑚𝑖𝑛𝑾,𝑯||𝑽 −𝑾𝑯||D , subject to 𝑾 ≥ 0,𝑯	 ≥ 0 . Matrix 𝑾  is an 𝑀	×	𝑆 
matrix and 𝑯  is an 𝑆	×	𝑁  matrix, where 𝑆  is the number of subgraph groups. Parameter 𝑆  is 
determined by performing 5-fold cross-validation over choices from 10 to 120 (in increments of 10) 
with the value of 110 being best for our best model. Each row of 𝑯  can be interpreted as the 
composition of each subgraph group. Each column of 𝑾 can be viewed as a mixture of subgraph 
groups for each patient.  

 
The mixture of subgraph groups specified in weight matrix 𝑾 are used as features in machine 

learning models. We split 𝑽 into a training and validation part and calculate the weight matrix 𝑾𝒕𝒓 and 
𝑾𝒗𝒂 separately. Then our model is trained on the training set 𝑾𝒕𝒓 and evaluated on the validation set 
𝑾𝒗𝒂. We tried several machine learning models, such as logistic regression, SVM (Support Vector 
Machine), random forest and an artificial neural network, with default parameters on our dataset. The 
logistic regression works best no matter what snapshot measurements or temporal trends are used 
as features. We decided to only focus on logistic regression as experiments on all these models 
involve too many parameters to tune. 
 

3.8. Model Evaluation 

3.8.1. Cross-validation 
To evaluate the performance of our model, we perform 5-fold cross-validation. Our dataset with 

1,170 patients is spilt into 5 folds. In one round of cross-validation, one of the five folds is treated as 
the validation set and the other four folds serve as the training set. The logistic regression model is 
built on the training set and evaluated on the validation set. Five rounds of cross-validation are 
performed, each time with one of the five different validation datasets, and the validation results are 
combined over rounds. Additionally, in order to make sure that our model does not gain any 
knowledge from the validation set in the subgraph mining procedure, we perform FSM on training 
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and validation sets separately. To achieve this, we find frequent subgraphs from the training set first 
and treat them as a fixed subgraph set. Then we perform FSM on the validation set and only select 
those existing in the fixed subgraph set. Furthermore, the imputation is also done separately on 
training and validation sets.  

3.8.2. Comparison Models 
We evaluate our model by comparing its performance with the following comparison models: (1) 

the “baseline model,” a logistic regression model using only snapshot features, specifically the last 
measurements; (2) the “subgraph model,” using subgraphs directly as features; (3) the “subgraph + 
snapshot model,” combining features from the baseline and subgraph models; (4) the “grouping 
model,” using only grouped subgraphs as features. Our model uses both snapshot features and 
grouped subgraphs and thus it is labeled as “grouping + snapshot.” We do not use summary 
statistics (e.g. mean, max and min) as features because subgraphs capture detailed temporal 
trends. In other words, our model considers summary statistics implicitly.  
 

4. Results 
4.1. Model Evaluation 

The receiver operating characteristic (ROC) curve of our model and comparison models are shown 
in Fig. 2(a). The baseline model achieves an AUC of 0.636 which is only outperformed by the “grouping” 
and “grouping + snapshot” models. The grouping model achieves an AUC of 0.637. Our model referred 
to as the “grouping + snapshot” model gives the best performance with an AUC of 0.661, significantly 
better (and statistically significant with p < 0.001 by the random permutation test [56]) than the second-
best model with an AUC of 0.637. The AUC percentage deviation of all 5 models over the baseline 
model are shown in Fig. 2(b). 

 
(A) 
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(B) 

Fig. 2. (A) ROC curves of different ICU readmission risk predictive models. (B) Percentage deviation of AUC over the 
baseline model. 

All the experiments were done on a 32GB RAM Linux server with 4 2.8GHz cores with the code 
written in Python. NMF with 110 groups takes 607.7 seconds and FSM with the frequency of 11 takes 
94.9 seconds in total for 5-fold cross-validation. 

4.2. Important Groups 

The important groups of temporal trends discovered by our model could not only be used as strong 
features to build predictive models, but also help physicians to determine the patients’ current health 
condition and make better discharge decisions. In Table 1, we list top ranked temporal trend groups 
based on the value of the coefficient of a group in the NMF matrix. Group 1 is the first ranked group 
relating to patients that were not readmitted within 30 days. Group 2 is the first ranked group relating 
to patients readmitted within 30 days. Variables in group 1 tend to have a trend to a better state, such 
as Saturation of arterial oxygen (SaO2) (0 1 1 0), Respiratory rate (-1 0) and Anticoagulant (1 1 1 1 1 
0). There is no variable that indicates a severe health state as well, such as a sequence containing 
several nodes with label 2 or -2. Therefore, group 1 could be an effective predictor for non-readmission 
patients. Intuitively, a predictive trend group for patients with high readmission risk should contain 
trends toward a worse health state. For example, in Group 2, patient’s Lactate shows a severe trend 
(2 2 2 2 2 2), which likely reflects the buildup of lactate in the body. Although two trends going toward 
a better state are included in this group, the probable lactic acidosis condition together with 
continuously abnormal hemoglobin, red blood count etc. do not bode well for the patient. This analysis 
attests that discharging patients with deteriorating trends is an indicator for readmission. 

 
Table 1  
Temporal trend groups with low and high readmission risk.  

Group 1 - non-readmission group 
0.0174 Location 1 1 1 1 1 1 
0.0164 SaO2 0 1 1 0 
0.0159 Respiratory rate  -1 0 
0.0141 Respiratory rate 0 -1 0 -1 
0.0114 Glucose 1 1 1 1 1 1 
0.0113 Anticoagulant 1 1 1 1 1 0 
0.0085 MetCarcinoma 1 1 1 1 1 1 
0.0080 Heart Rate -1 -1 0 -1 -1 
0.0078 Systolic blood pressure 1 0 
0.0078 SaO2 1 1 0 1 
0.0068 Diastolic blood pressure -1 -1 0 -1 -1 

Group 2 - readmission group 
0.2407 Hemoglobin -1 -1 -1 -1 -1 -1 
0.2043 Red blood count -1 -1 -1 -1 -1 -1 
0.0146 Hematocrit -1 -1 -1 -1 -1 -1 
0.0120 Mg 1 1 1 1 1 1 
0.0099 Lactate 2 2 2 2 2 2 
0.0092 Minute Ventilation 1 1 1 1 1 1 
0.0069 Central Venous Pressure 0 1 0 
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0.0068 K 1 0 
0.0066 SaO2 0 -1 -1 
0.0064 Central Venous Pressure -1 -1 
0.0062 Heart Rate 1 1 1 1 1 1 

Each trend is represented by a sequence, e.g. “0.2407 Hemoglobin -1 -1 -1 -1 -1 -1,” where 0.2407 is the membership 
coefficient (the component weight in NMF model), Hemoglobin is the name of measurement and “-1 -1 -1 -1 -1 -1” is 
the trend. Abbreviations used in the table include: SaO2 -- Saturation of arterial oxygen; MetCarcinoma -- Metastatic 
Carcinoma; Mg – Magnesium level; K – Potassium level. 

4.3. Subgraph Analysis 

In our early models, we count all frequent subgraphs and our grouping model only achieves an 
AUC of 0.602. This motivates us to perform an analysis on subgraphs and develop methods to 
enhance the strength of subgraphs.  

 
The numbers of frequent subgraphs of different sizes are shown in Fig. 3. The size of a subgraph 

is the number of nodes in the subgraph. Intuitively, it is much harder for larger subgraphs to become 
frequent than smaller subgraphs. However, the number of subgraphs decreases slower than we 
expect as the size increases, especially in medication subgraphs. To explain the unexpected trends, 
in Fig. 3, we perform an analysis on the frequent medication subgraphs. We observe that the frequent 
medication subgraphs could either indicate stable trends (e.g. “Insulin 0 0” and “BUN 1 1 1 1”) or 
unstable trends with one change (e.g. “Insulin 0 1” and “BUN 1 1 1 0”). None of the temporal trends 
that have more than one change are frequent. Overall, only about one fifth of the frequent medication 
subgraphs indicate unstable trends.  

 
For medication subgraphs that have more than 3 nodes, almost all of them indicate stable trends. 

Having the knowledge that if a subgraph indicating a stable trend is frequent, its subisomorphic graphs 
are frequent as well, we should have a large number of subisomorphic subgraphs, due to the fact that 
most of the frequent subgraphs indicate stable trends. Therefore, one explanation for the unexpected 
trend of the number of frequent subgraphs shown in Fig. 3 is that most of the small subgraphs are 
subisomorphic to some larger frequent subgraphs. In this scenario, the large amount of smaller 
subisomorphic subgraphs could have a significant influence on the performance of our model, since 
the signals from the larger frequent subgraphs might be overwhelmed by those from smaller ones. 
Therefore, we only count the maximal frequent subgraph that are not a subgraph of others. As a result, 
the patients’ average count of subgraphs drops from 143 to 20. In our experiment, the AUC of our 
grouping model is improved from 0.602 to 0.637 by filtering out smaller subisomorphic subgraphs.  

 
(A) 
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(B) 

Fig. 3. Relation between subgraph size and number of distinct subgraphs. 

5. Discussion 
5.1. Error Analysis 

Our best model demonstrates a sensitivity of 57.1%, specificity of 65.7%, positive predictive value 
(PPV) of 37.5% and negative predictive value (NPV) of 80.9%. The confusion matrix from 5-fold cross-
validation is show in Table 2. 

 
Table 2  
Confusion matrix of our best model. 

 Predicted: 
Non-readmitted 

Predicted: 
Readmitted 

Actual: Non-readmitted 565 295 
Actual: Readmitted 133 177 

 
To have a better understanding of why our model sometimes fails in making correct predictions, 

we select 17 patients who have been wrongly classified by our best model, from all validation sets. Of 
these 17 patients 3 patients were readmitted and 14 were not readmitted (ground truth). Our best 
model predicted those, who were actually readmitted, as having a very low readmission risk (predictive 
score lower than 0.2) and predicted those, who were not readmitted, as having a very high readmission 
risk (predictive score higher than 0.8). We observe that the average length of stay of these 17 patients 
is 104 hours, while the average length of stay of all patients is 73 hours. The poor performance of our 
model on these 17 patients, whose average length of stay is above the average level of all patients, 
motivates us to analyze the impact of the length of stay on our model. 

 
Fig. 4 shows the relationship between length of stay and the ratio of patients that are correctly 

classified. Despite an increment from 3- to 4-day stay, the overall trend of the ratio is decreasing. The 
ratio drops from 0.683 for patients who stayed in an ICU less than 1 day to 0.566 for patients whose 
length of stay were 7 days or more. Since our model only considers trends during the last 12 hours, 
the trends captured by our model might be less representative of the trends throughout the entire ICU 
stays, especially for patients having a longer length of stay. 
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Fig. 4. Number of correctly and wrongly classified patients with different length of stay. 

5.2. Impact of Imputation on Model Performance 

The dataset contains a large portion of missing values. Among the 53 physiological variables, only 
one of them has no missing values, 15 of them have less than 10% missing values and 29 (53.7%) of 
them have over 30% missing values. There are 16 variables that have even more than 50% missing 
values. The percentage of missing values for each physiological variable is shown in Fig. 5.  

 
Using different imputation techniques could lead to different prediction results. To reduce variability 

of different imputation, we tried several widely-used imputation methods. The effectiveness of each 
imputation method is evaluated by the performance of our prediction models. We test the performance 
of imputation methods on both the grouping and “grouping + snapshot” models. The grouping model 
could work with missing values by discarding graphs that contain nodes without a value. Without 
imputation, the grouping model only achieves an AUC of 0.592, which motivates us to look for a proper 
imputation method. MICE (Multivariate Imputation by Chained Equations [52]) is a multivariate 
imputation model based on chained equations. Using MICE to replace missing values improves the 
performance of the grouping model to the AUC score of 0.619. 

 
Fig. 5. Percentage of missing values of each variable. 
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By manually checking the imputed values, we found that MICE failed to impute temporal data in 
many cases. As an example (see Fig. 6), the imputed values by MICE cause sharp changes in the 
trends, which might suggest that these imputed values are unreasonable, because the observed 
values show that the alanine aminotransferase in blood (ALT) of this patient is in a stable status. The 
observed measurements of a few variables, including the rapid shallow breathing index rate change 
(RSBI Rate), the prothrombin time international normalized ratio (INR) and the fraction of inspired 
oxygen set on ventilator (FiO2set), of this patient show sharp changes at the very beginning and end 
of the trends. We also noticed that a group of other patients experienced some sharp changes, which 
might be captured by MICE and used as a pattern to replace missing values in ALT. However, sharp 
changes seldom occur at the very beginning or end of the ALT trends in our dataset. The imputed 
values for another 10 variables of this patient show similar patterns as ALT. These sharp changes 
caused by the imputed values could be an explanation of the poor performance of the model using 
MICE imputation. 

To address this problem, we have tried several strategies of imputing missing values. One strategy 
is breaking up the time axis into intervals before performing MICE imputation. The value of an interval 
is the average of all measurements within this interval. By breaking the time axis into intervals, variable 
trends become smoother. We could expect less sharp changes caused by the imputed values if the 
patterns of time series captured by MICE are smoother. As shown in Table 3, by using this strategy, 
referred to as MICE-interval, the grouping model achieves an AUC of 0.612, which is worse than 
performing MICE directly. However, the “grouping + snapshot” model is improved to an AUC of 0.627 
by using this strategy, compared to the AUC of 0.625 from the model where we perform MICE directly. 
We have also tried to perform MICE on standardized data. As a result, the performance of the 
“grouping + snapshot” model is slightly improved (0.630 of MICE-interval-norm vs. 0.627 MICE-interval 
and 0.639 of MICE-norm vs. 0.625 of MICE). Another strategy is to use the customized linear 
interpolation, so that we could maintain the current trends in the imputed values. In our experiment, 
the customized linear interpolation works better than MICE by showing an improvement in the AUC 
score of both the grouping model (0.637 vs. 0.619) and the “grouping + snapshot” model (0.661 vs. 
0.639). A list of performances of the grouping and “grouping + snapshot” models based on different 
strategies of imputation are shown in Table 3. 

 
(A) MICE 
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(B) Customized linear interpolation 

Fig. 6. ALT measurements. X-axis is time and Y-axis is value. Triangles are imputed values. Circles are observed 
values. 

Table 3  
Performance of the grouping and “grouping + snapshot” models based on different imputation methods. 

Imputation Methods AUC of Grouping Model AUC of Grouping + Snapshot Model 
No Imputation 0.592 NA 
Mean 0.620 0.637 
MICE-interval 0.612 0.627 
MICE-interval-norm 0.610 0.630 
MICE 0.619 0.625 
MICE-norm 0.611 0.639 
Customized Linear Interpolation 0.637 0.661 

 

5.3. Summary, Limitation and Future Work 

In this study, we use the MIMIC-II dataset and build logistic regression models to predict the risk of 
30-day ICU readmission. We discover risk-predictive features in time series for readmission and 
provide a grouping method to enhance temporal trend features. Our model outperforms other 
comparison models by using augmented temporal features. 

 
Our model can be considered as a pilot study that focuses extensively on physiologic variables’ 

predictive power on the long standing difficult readmission management problem. Besides physiologic 
variables, other features including procedures, medications, and length of stay (LOS) may also add to 
readmission prediction. On the other hand, our methodology is very general and if additional features 
are available, the same model and methodology would apply with necessary adaptation. 

 
This study adds to the current knowledge in several ways. First, we build a logistic regression model 

that takes advantage of physiological and medication time series to predict 30-day ICU readmission 
risk. The state-of-the-art ICU readmission prediction methods use the last valid measurements or the 
summary statistics (e.g., mean, max, min) of physiological variables during a patient’s ICU stay. In this 
work, we provide a method to utilize the temporal trends in time series of physiological variables to 
build a more accurate predictive model. Our model outperforms the baseline model that only uses the 
snapshot features, suggesting that the temporal trends carry predictive information for ICU 
readmission risk. 

 
Second, our model can discover important groups of temporal trends that could help physicians to 

determine the patients’ current health condition and make better discharge decisions. Physicians may 
re-evaluate patients who are predicted by our model as having a high risk of readmission before 
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discharging them. In addition to simply relying on the predictions, physicians can also check the 
temporal trends in the important groups discovered by our model (e.g., continuous lactic acidosis). 
Discharging patients with deteriorating trends more likely leads to readmissions, even for patients that 
show some improvements at the time of discharge. Our model encourages physicians to take a closer 
look at those patients who have some physiological variables deteriorating, to make further inspections 
and to reconsider the decision of discharge. 

 
Third, we perform extensive analyses on the impact of subgraph filtering on the predictive models. 

Subgraph filtering solves two major problems in predictive models that use subgraphs as features: 
model overfitting and signal overwhelming. Here, signal overwhelming is the problem that signals from 
important subgraphs are overwhelmed by redundant subgraphs and then hard to be captured by 
predictive models. Our experiments show that subgraph filtering is an essential step and has a 
significant impact on our predictive models. 

 
Furthermore, we introduce an imputation method called customized linear interpolation that is 

designed for temporal data. Our experiments show that some imputation methods work well on 
replacing missing values in snapshot measurements but not on temporal data, suggesting that the 
temporal pattern needs to be taken into consideration in imputation. We also perform comparisons 
between several widely-used imputation methods and perform extensive analysis on the impact of 
imputation on predictive models.  

 
Our study has some limitations, which could be the focus for future studies. We focus on 

physiological and medication variables, and our goal is to explore predictive trends in time series of 
these variables for ICU readmission risk. In particular, we do not consider other readmission risk 
factors including socioeconomic status, clinical notes [30, 31] and comorbidities [57, 58]. In this study, 
we focus on predicting 30-day readmission using last 12 hour measurements of a multivariate panel 
of physiologic variables, in order to elucidate subclinical deterioration of patient’s physiologic baselines 
that are predictive of readmission. 

 
In addition, we want to strengthen our model with the ability to capture the trend-trend relative 

changes, rather than changes in single trends, considering that changes in one trend may affect others. 
This may require interconnecting sequences, which could be effectively represented by graphs. To 
make our model more extensible to such cases in the future, instead of just sequence mining, we used 
subgraph mining in the first place.  

 
The dataset used in this study contains a large portion of missing values and the quality of 

imputation has a significant influence on our model’s performance. Either eliminating all patients with 
incomplete data or imputing too many missing values might bias our study. We could have 
misclassified patients whose missing measurements have been replaced by unreasonable values. 
There is an opportunity to develop a better imputation method for temporal data that is stronger than 
the customized linear interpolation in catching the patterns of time series and making more reasonable 
imputation. Besides the missing values issue, another problem that may limit our model’s performance 
is the false alarms and noise in some variables of our dataset. The physiological variables captured 
from the monitors and the ventilators may come with noise due to the potential failure or malfunction 
of these devices, or reading errors. Developing strategies to account for the innate noise of the data, 
such as adding a latent variable of noise to the predictors, may help to further improve our model. 

 
The imbalance of our data could be another problem to address, where only 26.5% of patients were 

readmitted within 30 days. We should expect our model to discover stronger trend groups for the high 
readmission risk population, if our model is trained on a dataset with more readmitted patients. 
Although a patient cohort with a higher readmission ratio is probably difficult to obtain (most physicians 
are doing their best to effectively treat patients), recent development in Generative Adversarial 
Networks (GANs) [59] may offer ways to artificially generate readmitted patient cases to counter the 
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data imbalance problem.  
 

6. Conclusions 
To predict 30-day ICU readmission risk, we present a “grouping + snapshot” model, where a 

subgraph mining based method is used to analyze temporal patterns in time series and to extract 
multivariate temporal trends. We use Nonnegative Matrix Factorization to group correlated temporal 
trends. Our experiments show that the groupings are informative features for ICU readmission risk 
and could be used as complementary features to snapshot measurements to improve the accuracy of 
predictive models and to provide clinical insights. Our model outperforms all the comparison models 
and in particular it demonstrates an AUC improvement from 0.636 to 0.661, compared to the snapshot 
only model. The extensive analysis on the impact of imputation and subgraph filtering to predictive 
models also shed light on how to improve the performance of models using temporal trends. 
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Appendix A. 
 

Variable Description Missing 
percentage 

Age Age of the patient 0.034 
Albumin Albumin in blood 0.823 
ALT Alanine aminotransferase in blood 0.803 
Arterial Base Excess Excess in the amount of base present in arterial blood 0.385 
Arterial CO2 Arterial carbon dioxide 0.349 
Arterial PaCO2 Arterial carbon dioxide tension 0.350 
Arterial PaO2 Arterial oxygen tension 0.351 
Arterial pH The pH level in arterial blood 0.336 
AST Aspartate aminotransferase in blood 0.794 
AST/ALT Aspartate aminotransferase / alanine aminotransferase 0.806 
BUN Blood urea nitrogen 0.125 
BUN/Creatinine Blood urea nitrogen / Creatinine 0.126 
Ca Calcium level 0.351 
Cardiac Index Relates the cardiac output from left ventricle in one minute to 

body surface area 
0.027 

Central Venous Pressure Blood pressure in the thoracic vena cava 0.022 
Cl Chloride level 0.405 
Creatinine Level of creatinine in blood 0.124 
Heart Rate Heart Rate per minute 0.023 
Delivered Tidal Volume Air volume of lung without extra effort 0.513 
Diastolic Blood Pressure Minimum blood pressure during heartbeat 0.026 
Direct Bilirubin Level of bilirubin conjugated with glucuronic acid 0.972 
GFR Estimated glomerular filtration rate 0.124 
FiO2Set Fraction of inspired oxygen set on ventilator 0.422 
GCS Glasgow coma scale 0.044 
Glucose Glucose level 0.081 
Hematocrit Hematocrit level 0.077 
Hemoglobin Hemoglobin level 0.139 
INR Prothrombin time international normalized ratio 0 
Ion Calcium Ion Calcium level 0.538 
K Potassium level 0.347 
Lactate Lactate level 0.766 
MAP Mean arterial pressure 0.028 
Mg Magnesium level 0.173 
Minute Ventilation Volume of gas exchanged from lung per minute 0.526 
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Na Sodium level 0.360 
PaO2/FiO2 Partial pressure arterial oxygen / Fraction of inspired oxygen 0.087 
PEEPSet Positive end-expiratory pressure set on ventilator 0.430 
PIP Peak inspiratory pressure 0.525 
Plateau Pressure Pressure applied (in positive pressure ventilation) to the small 

airways and alveoli 
0.557 

Platelets Platelets count 0.111 
Prothrombin Time Time for plasma to clot 0.354 
PTT Partial Thromboplastin Time 0.350 
RAW Airway Resistance 0.557 
RBC Red blood count 0.150 
Respiratory Rate (RESP) Respiratory rate per minute 0.049 
RSBI Rapid shallow breathing index 0.526 
RSBI Rate Rapid shallow breathing index rate change 0.523 
SaO2 Saturation of arterial oxygen 0.035 
Systolic Blood Pressure Maximum blood pressure during heartbeat 0.025 
Temperature Body temperature 0.033 
Total Bilirubin Level of bilirubin 0.794 
Protein Total protein in blood plasma 0.990 
Urine/Hour/Weight Urine per hour per kg body weight 0.065 
WBC White blood count 0.148 
Antiarrhythmic Antiarrhythmic agents 0 
Anticoagulant Blood thinner 0 
Antiplatelet A class of drugs that decrease platelet aggregation and inhibit 

thrombus formation 
0 

Benzodiazepine Used for sedation, inducing sleep, and muscle relaxation. 0 
Beta Blocking Beta blockers, used to slow the heart rate and lower blood 

pressure, by blocking adrenaline 
0 

Calcium Channel 
Blocking 

Used to decrease blood pressure for hypertensive patients, also 
have the secondary effect of slowing heart rate in addition to 
relaxing blood vessels. 

0 

Diuretic Used to increase the production of urine 0 
Hemostatic Drug that promotes hemostasis and stops bleeding 0 
Inotropic Drug that alters the muscular contraction force 0 
Insulin A hormone that helps manage blood sugar level 0 
Nondepolarizing Neuromuscular nondepolarizing agent, used as muscle relaxant 0 
Sedatives Sedative drugs 0 
Somatostatin Preparation Somatostatin inhibits insulin and glucagon secretion. 0 
Sympathomimetic Drugs that mimic the effects of neurotransmitters of the 

sympathetic nervous system 
0 

Thrombolytic Used to dissolve dangerous clots in blood vessels 0 
Vasodilating Used to dilate blood vessels 0 
AIDS acquired immunodeficiency syndrome 0 
HemMalig Hematologic Malignancies 0 
MetCarcinoma Metastatic Carcinoma 0 
Medtype Clustered medication administration patterns 0 
Location ICU types 0 
 


