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Abstract

We study the polyhedron of the single node capacitated network design model with integer variable upper
bounds. We first give a characterization of valid inequalities that is useful in proving the validity of several
classes of inequalities. Next we derive several classes of valid inequalities and we give conditions for them
to be facet-defining. Sequence independent lifting is used to obtain additional facets. We conclude by
reporting computational results with a branch-and-cut algorithm.

1 Introduction

The single node capacitated network design model with variable upper bounds has been studied extensively
since valid inequalities, called flow covers, derived from it can be used in branch-and-cut algorithms for
mixed integer programs. In this paper we consider a generalization where the binary variables are replaced
by integer variables. Valid inequalities for this problem can be used in mixed integer programs with integer
variables. The facility location problem with integer variables representing the number of facilities to open
at a specified location, which appears in certain circuit design problems, motivated our study, Bauer (1997).
Another application is in the network design problem, where the integer variables represent the number of
links to open, see e.g. Ahuja et al. (1995).

In this paper we study the set

S = {(y, x) ∈ R2n
+ :

n∑
i=1

yi ≤ b, yi ≤ aixi, xi ≤ vi, i = 1, . . . , n, x integer} ,

where vi ≤ ∞ for all i ∈ N = {1, . . . , n} are positive integers, b is a positive integer, ai are positive integers
for all i ∈ N , and the associated convex hull P = conv(S).

The case vi = 1 for all i ∈ N is the usual binary model studied first by Padberg, Van Roy and Wolsey
(1985). Several generalizations have been studied since, most of them assuming vi = 1 for all i ∈ N . Variable
lower and upper bounds are studied in Van Roy and Wolsey (1986), generalized upper bounds are given in
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Wolsey (1990), and Atamtürk, Nemhauser and Savelsbergh (2001) study additive variable upper bounds.
Several lifted inequalities are presented in Gu, Nemhauser and Savelsbergh (1999). Recently Atamtürk
(2002) studied the case vi = ∞ for all i ∈ N . He considers the case ai = a for all i ∈ N and he also considers
a model with additive variable upper bounds, i.e. yi ≤ aixi is replaced by yi ≤

∑
j∈T ajx

i
j . It can be shown

that the model with additive variable upper bounds is a relaxation of S. His model is on one hand less
general than ours since he assumes vi = ∞ for all i ∈ N , but on the other hand it is more general since he
also considers incoming flow.

The rest of the paper is organized as follows. Section 2 presents an alternative condition for checking
the validity of an inequality and we give a theorem showing that any vector (y, x) on a facet of P is almost
uniquely determined by the integer vector x. Flow cover inequalities are presented in Section 3. Two
extentions of S are studied in Section 4. In Section 5 we present a full description of P in terms of linear
inequalities in the special case of a1 = a2 = · · · = an. Computational results with a branch-and-cut algorithm
are presented in Section 6.

Basic Properties

Since we also allow the upper bounds v to be infinity, for simplicity of notation we define F = {i ∈ N : vi <
∞} and let I = N \ F . We can assume without loss of generality that ai ≤ b for all i ∈ N as otherwise
yi ≤ aixi is dominated by yi ≤ bxi. Similarly if I = ∅, we assume that

∑
i∈F aivi > b since otherwise∑n

i=1 yi ≤ b is redundant. Using these assumptions it is easy to see that dim(P ) = 2n and that all the
inequalities listed in the description of S are facet-defining. We call these facets the trivial facets.

The following properties of facets can be proven by using the techniques from Padberg, Van Roy and
Wolsey (1985) and therefore their proofs are omitted.

Proposition 1. If my ≤ u0 + ux defines a nontrivial facet of P , then

1. 0 ≤ m, 0 ≤ u, 0 < u0,

2. if ui > 0, then mi > 0,

3. if i ∈ I, then mi > 0 if and only if ui > 0.

In the rest of the paper we always assume that 0 ≤ u, 0 ≤ m, 0 < u0,m 6= 0 and that u, m and u0 are
integral. Let 1 be the n-dimensional vector whose components are all one and let M = maxi∈N mi.

Throughout the paper we demonstrate our results on the following example.

Example. Consider the following single node capacitated network design model

S = {
6∑

i=1

yi ≤ 15, y1 ≤ 4x1, y2 ≤ 3x2, y3 ≤ 6x3, y4 ≤ 4x4, y5 ≤ 6x5, y6 ≤ 2x6,

x1 ≤ 2, x2 ≤ 3, x3 ≤ 3, 0 ≤ y, 0 ≤ x, x integer}.

In this instance we have a = (4, 3, 6, 4, 6, 2), v = (2, 3, 3,∞,∞,∞).

2 Valid Inequalities and Facial Properties

Define the set

V = {x ∈ Zn
+: 1 + u0 + ux ≤

∑
i∈N

(mi − j)+aixi + jb for all j = 0, . . . ,M,

x ≤ v, x integer}.

Here we will first prove that my ≤ u0 + ux is a valid inequality for P if and only if V is empty.
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Lemma 1. Let Ai ∈ Q+ for all i ∈ N , B ∈ Q+, and let b ∈ Q+. Then
∑n

i=1(mi − j)+Ai + jb ≥ B for all
j = 0, . . . ,M if and only if the polytope

{y ∈ Rn
+ :

n∑
i=1

yi ≤ b, my = B, yi ≤ Ai for all i ∈ N} (1)

is nonempty.

Proof. (=⇒) By Farkas’ lemma (1) is nonempty if and only if

{u ∈ R+, v ∈ R, x ∈ Rn
+ : u−miv + xi ≥ 0 for all i ∈ N, bu− vB +

n∑
i=1

Aixi < 0} (2)

is empty.
We prove the claim by contradiction. Assume that (2) is nonempty and that (u, v, x) is a vector in (2).

From the last inequality it follows that v > 0. If we divide each constraint in (2) by v and let zi = mi − xi,
it follows that the polyhedron

{u ∈ R+, z ∈ Rn : zi − u ≤ 0 for all i ∈ N, z ≤ m, bu +
n∑

i=1

Ai(mi − zi) < B} (3)

is nonempty. Hence the linear program

min{bu +
n∑

i=1

Ai(mi − zi) : zi − u ≤ 0 for all i ∈ N, z ≤ m,u ≥ 0, z unrestricted},

has an optimal solution. Since m is integral, there exists an integral optimal solution and therefore there is
an integer vector (u, z) in (3).

If u > M , then (M, z) is in (3). Therefore we can assume that u ≤ M since otherwise we can replace (u, z)
with (M, z). Since mi−zi ≥ (mi−u)+, it follows that u satisfies the inequalities bu+

∑n
i=1 Ai(mi−u)+ < B

and u, 0 ≤ u ≤ M is integral. But this contradicts our assumption in the lemma.
(⇐=) For a vector y from (1) and for each integer j, 0 ≤ j ≤ M , we have

B = my =
n∑

i=1

(mi − j)+yi +
j∑

k=1

∑
i∈N

mi≥k

yi ≤
n∑

i=1

(mi − j)+Ai + jb,

which proves the other direction.

Theorem 1. The inequality my ≤ u0 + ux is valid for P if and only if V is empty.

Proof. Suppose first that V is nonempty and let x ∈ V . By Lemma 1 with Ai = aixi for all i ∈ N and
B = 1 + u0 + ux, it follows that there exists a vector (y, x) ∈ P such that my = 1 + u0 + ux > u0 + ux.
Therefore the inequality is not valid.

If the inequality is violated by (y, x) ∈ P , then y is in (1) if we take B = my and Ai = aixi for all i ∈ N .
Therefore by Lemma 1, u0 + ux < my ≤

∑
i∈N (mi − j)+aixi + jb, which shows that x ∈ V .

Example (continued). The inequality y1 + y2 ≤ 8 + 2x1 + x2 is valid since there do not exist nonnegative
integers x1, x2 such that

9 + 2x1 + x2 ≤ 4x1 + 3x2

9 + 2x1 + x2 ≤ 15
x1 ≤ 2, x2 ≤ 3.
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On the other hand, the inequality 2y1 + y2 ≤ 8 + x1 + x2 is not valid since x1 = x2 = 1 satisfies

9 + x1 + x2 ≤ 8x1 + 3x2

9 + x1 + x2 ≤ 4x1 + 15
9 + x1 + x2 ≤ 30

x1 ≤ 2, x2 ≤ 3.

Unfortunately Theorem 1 does not give a computationally efficient method for testing validity. It is
merely a tool for proving validity of various inequalities that are presented in Section 3.

Next we present a theorem that gives some structure of facets. Define the set

Q0 = {x ∈ Rn
+ : u0 + ux =

∑
i∈M̄

miaixi,∑
i∈M̄

aixi ≤ b− 1,

x ≤ v, x integer },

where M̄ = {i ∈ N : mi > 0}.

Theorem 2. Let F = P ∩ {(y, x) ∈ R2n : my = u0 + ux}. If my ≤ u0 + ux is a valid inequality for P , then

1. there exists (y, x) ∈ F such that
∑

i∈M̄ yi < b if and only if Q0 6= ∅,

2. if (y, x) ∈ F and yl < alxl for an index l ∈ M̄ , then there exists an integer k,ml ≤ k ≤ M such that

yi = 0 for all i ∈ M̄ such that mi < k,∑
j∈M̄
mj=k

yj = b−
∑
j∈M̄
mj>k

ajxj , (4)

yi = aixi for all i ∈ M̄ such that mi > k.

Proof. We first prove that if there exists (y, x) ∈ F such that
∑

i∈M̄ yi < b, then Q0 = ∅. Let (y, x) ∈ F be
such that

∑
i∈M̄ yi < b. Therefore there exists an ε > 0 such that∑

i∈M̄

yi ≤ b− ε,

∑
i∈M̄

miyi = u0 + ux,

yi ≤ aixi for all i ∈ M̄.

By Lemma 1, for all j = 0, . . . ,M we have
∑

i∈M̄ (mi − j)+aixi + j(b− ε) ≥ u0 + ux. Therefore∑
i∈M̄

(mi − j)+aixi + jb ≥ u0 + ux + jε (5)

holds for j = 0, . . . ,M . For j = 1, . . . ,M it follows that
∑

i∈M̄ (mi − j)+aixi + jb ≥ u0 + ux + 1. If (5) is
not satisfied at equality for j = 0, then x ∈ V , which is a contradiction since by assumption the inequality
is valid and therefore by Theorem 1 V = ∅. Inequality (5) for j = 0 reads u0 + ux =

∑
i∈M̄ miaixi. Finally

by substituting for j = 1, we see that inequality (5) is equivalent to
∑

i∈M̄ aixi ≤ b− 1. Therefore x ∈ Q0.
To show the other direction of the first part, let x ∈ Q0. If we define yi = aixi for all i ∈ M̄ and yi = 0

otherwise, then (y, x) ∈ F and
∑

i∈M̄ yi < b.
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Next we prove the second part of the theorem. Let (y, x) ∈ F be such that yl < alxl. Hence there exists
an ε > 0 such that ∑

i∈M̄

yi ≤ b,

∑
i∈M̄

miyi = u0 + ux,

yi ≤ aixi for all i ∈ M̄ \ {l}
yl ≤ alxl − ε.

By Lemma 1,
∑

i∈M̄ (mi − j)+aixi + jb ≥ u0 + ux + ε(ml − j)+ holds for j = 0, . . . ,M and therefore∑
i∈M̄ (mi − j)+aixi + jb ≥ u0 + ux + 1 for all j such that j < ml. For j ≥ ml it follows that∑

i∈M̄

(mi − j)+aixi + jb ≥ u0 + ux. (6)

Since my ≤ u0 + ux is a valid inequality, by Theorem 1, V = ∅. Therefore x /∈ V and there is an integer
k, k ≥ ml, such that (6) is satisfied at equality, i.e.

∑
i∈M̄ (mi − k)+aixi + kb = u0 + ux. Since (y, x) ∈ F , it

follows that u0 + ux = my. Now we have

u0 + ux = my =
∑
i∈M̄

(mi − k)+yi +
k∑

i=1

∑
j∈N
mj≥i

yj

≤
∑
i∈M̄

(mi − k)+aixi + kb = u0 + ux ,

where the inequality follows from yi ≤ aixi for i such that mi > k and
∑

j∈N
mj≥i

yj ≤ b for i = 1, . . . , k. Since

the left hand side is equal to the right hand side, the upper bounds that were made are equalities. We
conclude that yi = 0 for i ∈ M̄ such that mi < k and yi = aixi for all i ∈ M̄ such that mi > k, and that∑

j:mj=k yj = b−
∑

j:mj>k ajxj .

If F is a facet, then Theorem 2 reveals structure on vectors (y, x) ∈ F . Namely, either yi = aixi for all
i ∈ M̄ or y has the structure described by (4).

Padberg, Van Roy and Wolsey (1985) show for the binary case that if my ≤ u0 + ux defines a nontrivial
facet of P , then

∑
i∈M̄ ai ≥ b . The next corollary, in addition to generalizing this result, is also a stronger

result.

Corollary 1. Let my ≤ u0 + ux define a nontrivial facet F of P . Then
∑

i:mi=M aivi ≥ b and there is a
vector (y, x) ∈ F such that

∑
i∈M̄ yi = b.

Proof. If we consider an index l such that ml = M , then both claims follow from Theorem 2 since there is
a vector (y, x) ∈ F such that yl < alxl.

3 Flow Cover and Lifted Flow Cover Inequalities

3.1 Unbounded Flow Cover Inequalities

In this section we define flow covers that are subsets of I and we give necessary and sufficient conditions for
facet-defining inequalities.

For each C ⊆ N , let ā = maxi∈C ai, a = mini∈C ai, k = d b
āe, and λ = kā − b. A subset CI ⊆ I is an

unbounded flow cover if λ > 0 and a ≥ ā− λ + 1.
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Proposition 2. If CI is an unbounded flow cover, then
∑

i∈CI
yi ≤ (k − 1)λ + (ā − λ)

∑
i∈CI

xi is a valid
inequality for P .

Proof. We prove the validity by using Theorem 1 . Suppose there is an integral x that satisfies the two
constraints from V . The inequality with j = 1, 1+u0 +

∑
i∈CI

uixi ≤ b yields that
∑

i∈CI
xi ≤ k− 1

ā−λ and
in turn, since x is integral,

∑
∈CI

xi ≤ k−1. From the inequality with j = 0, 1+u0+
∑

i∈CI
uixi ≤

∑
i∈CI

aixi,
it follows by using

∑
i∈CI

aixi ≤ ā
∑

i∈CI
xi that

∑
i∈CI

xi ≥ k − 1 + 1
λ . Therefore again by integrality of

x we get
∑

i∈CI
xi ≥ k, which is a contradiction. We conclude that V is empty and hence the inequality is

valid.

Theorem 3. Let CI ⊆ I and let t, u0 be positive integers. The inequality∑
i∈CI

yi ≤ u0 + t
∑
i∈CI

xi (7)

defines a nontrivial facet of P if and only if CI is an unbounded flow cover, and u0 = (k − 1)λ, t = ā− λ.

Proof. (=⇒) Let ap = ā and aq = a. If (y, x) is a vector on the facet, then

1 + t
∑
i∈CI

xi ≤ u0 + t
∑
i∈CI

xi =
∑
i∈CI

yi ≤
∑
i∈CI

aixi ≤ ā
∑
i∈CI

xi

and therefore t < ā.
We first show that u0 + tk = b. Since (bep, kep) ∈ P and (7) is valid, it follows that b ≤ u0 + tk. On the

other hand, by Corollary 1, there is a vector (y, x) ∈ P such that b =
∑

i∈CI
yi = u0 + t

∑
i∈CI

xi. We have
b =

∑
i∈CI

yi ≤
∑

i∈CI
aixi ≤ ā

∑
i∈CI

xi. Therefore since x is integral,
∑

i∈CI
xi ≥ d b

āe = k. It then follows
that b ≥ u0 + tk.

Next we show that u0 = (k − 1)(ā − t). Since V is empty, x = (k − 1)ep /∈ V and therefore either
1+u0+(k−1)t > b or 1+u0+(k−1)t > ā(k−1). If the first condition holds, then 1+u0+(k−1)t > b ≥ u0+tk
and therefore t < 1. This contradicts our assumption that t is a positive integer. Therefore the second
condition, i.e. 1 + u0 + (k − 1)t > ā(k − 1), is satisfied. This is equivalent to u0 ≥ (k − 1)(ā − t). Since∑

i∈CI
yi ≤ u0 + t

∑
i∈CI

xi is facet-defining, there exists a vector (y, x) on the facet with
∑

i∈N yi < b. By
Theorem 2, there exists x ∈ Q0. For this vector we have u0+t

∑
i∈CI

xi =
∑

i∈CI
aixi and

∑
i∈CI

aixi ≤ b−1.
Therefore

b− tk + t
∑
i∈CI

xi = u0 + t
∑
i∈CI

xi =
∑
i∈CI

aixi ≤ b− 1

and the integrality of x now implies that
∑

i∈CI
xi ≤ k − 1. On the other hand from u0 + t

∑
i∈CI

xi =∑
i∈CI

aixi we get

u0 =
∑
i∈CI

(ai − t)xi ≤ (ā− t)
∑
i∈CI

xi ≤ (k − 1)(ā− t).

This proves that u0 = (k − 1)(ā− t). Since u0 + tk = b, we have t = ā− λ and u0 = (k − 1)λ. Since for any
nontrivial facet u0 > 0, it follows that λ > 0.

Since
∑

i∈CI
yi ≤ u0 + t

∑
i∈CI

xi is facet-defining, there exists a vector (y, x) on the facet with yq <
aqxq; otherwise the facet would have two linearly independent constraints in the equality set. Therefore
1 + u0 + t

∑
i∈CI

xi ≤
∑

i∈CI
aixi and since x /∈ V , it follows that u0 + t

∑
i∈CI

xi = b. This yields that
1 + b ≥

∑
i∈CI

aixi and in turn k ≥
∑

i∈CI
xi. Since for this vector xq ≥ 1, we get that

ā− a ≤ (ā− a)xq ≤
∑
i∈CI

(ā− ai)xi ≤ āk − b− 1.

This is equivalent to a ≥ ā− λ + 1 and therefore CI is an unbounded flow cover.
(⇐=) Next we prove that if u0 = (k − 1)λ, t = ā − λ and CI is an unbounded flow cover, (7) is facet-

defining. The validity has been proven in Proposition 2.

6



Assume that
∑

i∈I αiyi+
∑

i∈I βixi = π0 is satisfied by all vectors in F = P ∩{(y, x) ∈ R2·|I|
+ :

∑
i∈CI

yi =
(k − 1)λ + (ā− λ)

∑
i∈CI

xi}.
Let us denote y = (k − 1)apep, x = (k − 1)ep. Together with (y, x), consider the vectors (y + ei, x +

ei), (y, x + ei) for each i ∈ N \ CI . Since they are all in F , it follows that αi = βi = 0 for all i ∈ N \ CI .
For each i ∈ CI let yi = b

ai+(k−1)ar
(aiei +(k− 1)arer) and xi = ei +(k− 1)er. The vectors (yi, xi) are in

F and yi
i > 0, yi

r < arx
i
r for each i ∈ CI . Then there exists an ε > 0 such that the vectors (yi − εei + εer, x

i)
are in F for each i ∈ CI . They yield αi = αr for all i ∈ CI .

Now consider the vectors (yi, xi), i ∈ CI . They yield that βi = βr for all i ∈ CI . Finally, by considering
(yr, xr) and (y, x) we conclude that βr = (λ− ā)αr and π0 = λ(k − 1)αr. Therefore F is a facet.

If CI is an unbounded flow cover, we call the facet-defining inequality∑
i∈CI

yi ≤ (k − 1)λ + (ā− λ)
∑
i∈CI

xi (8)

the unbounded flow cover inequality.

Example (continued). The unbounded flow covers are {4}, {5}, {6}, {4, 5} and they yield facets defined
by

y4 ≤ 3 + 3x4 (9)
y5 ≤ 6 + 3x5 (10)
y6 ≤ 7 + x6 (11)

y4 + y5 ≤ 6 + 3x4 + 3x5. (12)

The unbounded flow cover inequalities yield the following valid inequalities called simple lifted unbounded
flow cover inequalities. For each j ∈ N \ CI we define

ij =

{
baj

ā c if aj ≤ daj

ā eā− λ,

daj

ā e otherwise.

Theorem 4. Let CI ⊆ I be an unbounded flow cover and let T ⊆ N \CI . For each j ∈ T , let uj = aj − ijλ
if ij ā ≤ aj ≤ (ij + 1)ā − λ and let uj = ij(ā − λ) if ij ā − λ < aj < ij ā. Then the simple lifted unbounded
flow cover inequality ∑

i∈CI∪T

yi ≤ (k − 1)λ + (ā− λ)
∑
i∈CI

xi +
∑
i∈T

uixi (13)

is valid for P .

Proof. By Theorem 1 it suffices to prove that V is empty. Suppose that there is an x ∈ V . Then

1 +
∑
i∈CI

(ā− λ)xi +
∑
i∈T

uixi ≤ b− (k − 1)λ = k(ā− λ), (14)

1 + (k − 1)λ +
∑
i∈CI

(ā− λ)xi +
∑
i∈T

uixi ≤
∑

i∈CI∪T

aixi. (15)

Let
∑

i∈T uixi =
∑

j∈T1
(aj − ijλ)xj + (ā − λ)

∑
j∈T2

ijxj , where T1 = {j ∈ T : ij = baj

ā c} and T2 =
{j ∈ T : ij = daj

ā e}. From (14) and since aj ≥ ij ā ≥ ijλ for all j ∈ T1, it follows that 1 + (ā −
λ)

∑
i∈CI

xi + (ā − λ)
∑

j∈T ijxj ≤ (ā − λ)k and after dividing by ā − λ and rounding down we obtain∑
i∈CI

xi +
∑

j∈T ijxj ≤ k − 1.
From (15) it follows that

1 + (k − 1)λ ≤
∑
i∈CI

(ai − ā + λ)xi +
∑
i∈T

(ai − ui)xi ≤ λ
∑
i∈CI

xi + λ
∑
j∈T

ijxj ,
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where the last inequality follows from aj − ij ā ≤ 0 for all j ∈ T2. If we divide this inequality by λ and round
up, we get that k ≤

∑
i∈CI

xi +
∑

j∈T ijxj . Hence V = ∅.

The facet-defining simple lifted unbounded flow cover inequalities are given in Section 3.3.1.

Example (continued). With T = N \ CI , the facet-defining inequality (9) gives the valid inequality∑6
i=1 yi ≤ 3 + 3x1 + 3x2 + 5x3 + 3x4 + 5x5 + 2x6, (10) yields

∑6
i=1 yi ≤ 6 + 3

∑5
i=1 xi + 2x6, (11) produces∑6

i=1 yi ≤ 7+2x1+2x2+3x3+2x4+3x5+x6, and (12) yields the same inequlity as (10). Note that additional
valid inequalities are obtained by considering subsets T ⊂ N \ CI and using the same coefficients.

Proposition 2 and Theorem 4 can be derived from the multifacility cut-set inequality presented in
Atamtürk (2002). However we obtained these results before we knew of Atamtürk’s and we use a com-
pletely different technique in proving validity. Moreover, since Atamtürk makes the assumption F = ∅, none
of our subsequent results are relevant to his paper.

3.2 Flow Cover Inequalities

In this section we develop flow cover inequalities for subsets of F . We call CF ⊆ F a flow cover if λ =∑
i∈CF

aivi − b > 0 and ā > λ. We generalize the lifted flow cover inequalities from Gu, Nemhauser and
Savelsbergh (1999) and give a short proof that they are valid.

Theorem 5. Let CF ⊆ F be a flow cover and let T ⊆ N \ CF . For each j ∈ T let uj = aj − ijλ if
ij ā ≤ aj ≤ (ij + 1)ā − λ and let uj = ij(ā − λ) if ij ā − λ < aj < ij ā. Then the simple lifted flow cover
inequality ∑

i∈CF∪T

yi ≤ b−
∑

i∈CF

(aj − λ)+(vj − xj) +
∑
i∈T

uixi (16)

defines a valid inequality for P .

Proof. We use Theorem 1. Suppose that x ∈ V and let L = {i ∈ CF : ai > λ}. Then

1 +
∑
i∈L

(ai − λ)xi +
∑
i∈T

uixi ≤
∑
i∈L

vi(ai − λ) , (17)

1 + b−
∑
i∈L

vi(ai − λ) +
∑
i∈L

(ai − λ)xi +
∑
i∈T

uixi ≤
∑

i∈CF∪T

aixi . (18)

For each i ∈ L we substitute xi = vi − zi. As in the proof of Theorem 4, let
∑

i∈T uixi =
∑

j∈T1
(aj −

ijλ)xj+(ā−λ)
∑

j∈T2
ijxj , where T1, T2 is the partition of T . By the definition of λ and since

∑
i∈CF \L aixi ≤∑

i∈CF \L aivi, it follows from (18) that

1 + λ
∑
j∈L

zj − λ
∑
j∈T1

ijxj ≤ λ +
∑
j∈T2

(aj − ij(ā− λ))xj ≤ λ + λ
∑
j∈T2

ijxj ,

where the last inequality follows from aj − ij ā ≤ 0 for j ∈ T2. After dividing by λ and rounding up the left
hand side since zi and xi are integers, we get that∑

j∈L

zj ≤
∑
j∈T

ijxj . (19)

On the other hand, from (17) and since aj ≥ ij ā for all j ∈ T1, we have

1 + (ā− λ)
∑
j∈T

ijxj ≤
∑
j∈L

(ā− λ)zj .

After dividing by ā− λ and rounding up the left hand side, we get that 1 +
∑

j∈T ijxj ≤
∑

i∈L zj . But this
contradicts (19), showing that V is empty.
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Next we give some necessary conditions for facet-defining inequalities.

Theorem 6. Let CF be a flow cover and assume that ar = ā. Let T ⊆ N \ CF be such that for each j ∈ T
we have ij ≤ vr and ij ā− λ ≤ aj ≤ ij ā. If |CF | = 1, then we require that ij < vr for each j ∈ T . Then the
inequality ∑

i∈CF∪T

yi ≤ b−
∑

i∈CF

(aj − λ)+(vj − xj) + (ā− λ)
∑
j∈T

ijxj (20)

is facet-defining.

Proof. Assume that αy + βx = π0 is satisfied by all the vectors in F = P ∩ {(y, x) ∈ R2n :
∑

i∈CF∪T yi =
b−

∑
i∈CF

(aj − λ)+(vj − xj) + (ā− λ)
∑

j∈T ijxj}. We show that (α, β, π0) represents the same inequality.
For simplicity of notation we define x ◦ y to be the vector (x1y1, x2y2, . . . , xnyn). We write n-dimensional
vectors as (z, z̄, z̃) where z corresponds to indices in CF , z̄ to indices in T and z̃ to indices in N \ (CF ∪ T ).

Let L = {i ∈ CF : ai > λ} and consider an index j ∈ L. Then the vector (a◦x, x), where x = (v−ej , 0, 0),
is in F . The vectors (a ◦ x, x) and (a ◦ x, x + ei) for each i ∈ N \ (CF ∪ T ) yield that βi = 0. Similarly by
considering the vectors (a ◦ x, x) and (a ◦ x + ei, x + ei) we get that αi = 0 for all i ∈ N \ (CF ∪ T ).

Next we consider the following integer vectors

uk = (v − ek, 0, 0) k ∈ CF \ L,

zk = (v − iker, ek, 0) k ∈ T,

w = (v, 0, 0).

For any vector x listed above, we define the corresponding y vector as

y(x) =
b

ax
a ◦ x.

It is easy to check that (y(x), x) ∈ F since ax > b and
∑

i∈CF∪T y(x)i = b.
For each i, k from CF consider the vector (y(w) − εei + εek, w). There is an ε > 0 such that all these

vectors are in F . It then follows that αi = t, where t is a constant, for each i ∈ CF . Similarly for a small
enough ε > 0 and for each k ∈ T consider the vector (y(zk) + εel − εek, zk) ∈ F , where l = r if |CF | = 1 and
l is a fixed index from CF \ {r} otherwise. These vectors yield that αk = αl = t for all k ∈ T .

Next we consider (y(w), w) and (y(uk), uk) for each k ∈ CF \L. We obtain that βk = 0 for all k ∈ CF \L.
Similarly by considering (y(w), w) and (y(zk), zk) for each k ∈ T , we get that βk = t · ik.

Finally we consider the integer vectors ũk = (v − ek, 0, 0) for each k ∈ L. The vectors (a ◦ ũk, ũk) are in
F and they yield βk = t(λ− ak) for each k ∈ L. This completes the proof.

Example (continued). There are two flow covers {1, 2}, {3} and they yield facet-defining inequalities
y1 + y2 ≤ 8 + 2x1 + x2, y3 ≤ 6 + 3x3, respectively. The corresponding simple lifted flow cover inequalities
with T = N \ CF are in turn

6∑
i=1

yi ≤ 8 + 2x1 + x2 + 4x3 + 2x4 + 4x5 + 2x6, (21)

6∑
i=1

yi ≤ 6 + 3x1 + 3x2 + 3x3 + 3x4 + 3x5 + 2x6. (22)

Inequality (22) can also be obtained from the unbounded flow cover {5} or {4, 5} by using Theorem 4. By
Theorem 6 (21) is facet-defining and additional facets are obtained by considering T ⊂ N \ {1, 2}. However
from (22) only the inequalities with T ⊆ {1, 2, 4, 5} are facet-defining.
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3.3 Sequence Independent Lifting

We first briefly review sequence independent lifting for flow cover inequalities, Gu, Nemhauser and Savels-
bergh (1999, 2000). Even though the results from these two papers assume only binary variables, they can
be rather easily extended to general integer variables. For simplicity of notation we define vi = db/aie for
all i ∈ I.

Assume that for a subset C ⊂ N the inequality∑
i∈C

αiyi ≤ α0 +
∑
i∈C

βixi (23)

is valid for P ∩ {(y, x) ∈ R2n
+ : yi = xi = 0 for all i ∈ N \ C}. New valid inequalities can be derived from

(23) by lifting. Lifting the variables in N \ C means finding coefficients αi, βi for each i ∈ N \ C such that
the lifted inequality ∑

i∈N

αiyi ≤ α0 +
∑
i∈N

βixi (24)

is also valid for P .
We lift pairs (yp, xp), p ∈ N \ C simultaneously. For each p ∈ N \ C and for each z ∈ [0, apvp] we define

hp(z) = max αpyp − βpxp

yp = z

0 ≤ yp ≤ apxp

0 ≤ xp ≤ vp

x integer.

In addition for each z ∈ [0, b] let

f(z) = minα0 −
∑
i∈C

αiyi +
∑
i∈C

βixi∑
i∈C

yi ≤ b− z

0 ≤ yi ≤ aixi for all i ∈ C

0 ≤ xi ≤ vi for all i ∈ C

x integer.

Definition 1. A function f is superadditive on Z ⊆ R if f(z1) + f(z2) ≤ f(z1 + z2) for each z1 ∈ Z, z2 ∈ Z
such that z1 + z2 ∈ Z.

The following theorem from Gu, Nemhauser and Savelsbergh (1999) is crucial in deriving lifted valid
inequalities.

Theorem 7. If f is superadditive on [0, b] and if for each p ∈ N \C the lifting coefficients αp, βp are selected
in such a way that hp(z) ≤ f(z) for each z ∈ [0,min{b, apvp}], then (24) is a valid inequality for P . If in
addition, (23) is facet-defining for the projection of P to C and for each p ∈ N \C the equation hp(z) = f(z)
has two linearly independent vectors (y1

p, x1
p), (y

2
p, x2

p), then (24) is facet-defining for P .

It is easy to see that

hp(z) =

{
0 if z = 0,
αpz − jβp (j − 1)ap < z ≤ jap j = 1, . . . , vp.

The facet inducing property now reads that there must exist z1, z2 ∈ [0,min{b, apvp}] such that hp(z1) =
f(z1), hp(z2) = f(z2) and if (j1 − 1)ap < z1 ≤ j1ap, (j2 − 1)ap < z2 ≤ j2ap for 0 ≤ j1, j2 ≤ vp, then

10



j2z1 − j1z2 6= 0. Note that since we lift pairs of variables simultaneously for a given p there can be more
than one lifting pair αp, βp.

Gu, Nemhauser and Savelsbergh (1999) also study a class of superadditive functions. Given a positive
number l, nonincreasing and nonnegative sequences ū and v̄ such that ūi + v̄i > 0 for all i = 1, 2, . . . ,∞, we
define wi = ūi + v̄i for all i = 1, 2, . . . ,∞, and Wh =

∑h
i=1 wi for all h = 1, 2, . . . ,∞. In addition let

g1(z) =

{
hl if hw1 ≤ z ≤ hw1 + ū1, h = 0, 1, . . . ,∞,

hl + l(z − hw1 − ū1)/v̄1 hw1 + ū1 < z < (h + 1)w1, h = 0, 1, . . . ,∞,

g2(z) =

{
hl if Wh ≤ z ≤ Wh + ūh+1, h = 0, 1, . . . ,∞,

hl + l
(
1− (Wh+1 − z)/v̄1

)
Wh + ūh+1 < z < Wh+1, h = 0, 1, . . . ,∞.

They show that g1 and g2 are superadditive functions on [0,∞].

3.3.1 Lifted Unbounded Flow Cover Inequalities

We first assume that (23) is an unbounded flow cover inequality (8). In this case

f(z) = min (k − 1)λ−
∑
i∈CI

yi + (ā− λ)
∑
i∈CI

xi∑
i∈CI

yi ≤ b− z

0 ≤ yi ≤ aixi for each i ∈ CI

0 ≤ xi for each i ∈ CI

x integer.

Proposition 3. If CI ⊆ I is an unbounded flow cover, then

f(z) =

{
jλ if jā ≤ z ≤ (j + 1)ā− λ j = 0, . . . , k − 1,

z − (ā− λ)j jā− λ < z < jā j = 1, . . . , k,

and f is superadditive on [0, b].

Proof. Let ar = ā, where r ∈ CI . If (y, x) is a feasible solution to f(z) and l ∈ CI , then (y + yler − ylel, x +
xler − xlel) is a feasible vector with the same objective value. We conclude that there exists an optimal
solution (y, x) to f(z) with yi = xi = 0 for all i ∈ CI \ {r}. The claim is now easy to check.

f = g1 by taking ū1 = ā− λ, v̄1 = λ, l = λ and is therefore superadditive.

The following theorem gives lifting coefficients that are computationally easy to obtain.

Theorem 8. Let CI ⊆ I be an unbounded flow cover. If T ⊆ N \CI and for each p ∈ T the lifting coefficients
are defined as

1. αp = 1, βp = (ā− λ)s, where sā− λ < ap ≤ sā for an integer s, 1 ≤ s ≤ k − 1, or

2. αp = λ/ā, βp = λ
ā (ā− λ) and ap ≥ 2ā− λ, or

3.

αp = max{ λ

λ + ap − sā
,

sλ

λ + (q + 1)ap − (sq + 1)ā
} (25)

βp = αpap − λs,

where sā+ ā−λ
q+1 ≤ ap ≤ sā+ ā−λ

q for an integer s such that 1 ≤ s ≤ k−1 and an integer q, 1 ≤ q ≤ vp−1,
and the second term in (25) is not present if qs ≥ k, or
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4.

αp =
λ

λ + ap − sā
, βp = αpap − λs,

where sā < ap ≤ sā + ā−λ
vp

for an integer s, 1 ≤ s ≤ k − 1,

then the lifted unbounded flow cover inequality∑
p∈T

αpyp +
∑
i∈CI

yi ≤ (k − 1)λ + (ā− λ)
∑
i∈CI

xi +
∑
p∈T

βpxp (26)

is facet-defining for P .

Proof. It is easy to see that the functions hp and f are piecewise linear and f is concave on every interval
[jā− λ, (j + 1)ā− λ] , j = 1, . . . , k − 1. Therefore if hp(z) ≤ f(z) for all points z = jap, j = 1, . . . , vp and
z = jā − λ, j = 1, . . . , k, then hp(z) ≤ f(z) for all z ∈ [0,min{b, apvp}]. For any p ∈ N \ CI note that
αp = βp = 0 are always a valid facet inducing lifting coefficients and therefore we set αp = βp = 0 for all
p ∈ N \ (CI ∪T ). Based on Theorem 7 we have to show that hp(z) ≤ f(z) for all αp, βp given in the theorem.

1. Let αp = 1, βp = (ā − λ)s and s be such that sā − λ < ap ≤ sā. First note that since s ≥ 1, ā − λ < ap

and therefore h(ap) = f(ap). By the definition of h and since f is superadditive by Proposition 3, it follows
that h(jap) = jh(ap) = jf(ap) ≤ f(jap) for all j, 1 ≤ j ≤ vp.

Next we consider points jā− λ. Let i be such that (i− 1)ap < jā− λ ≤ iap. Then jā− λ ≤ iap ≤ isā.
Therefore since λ < ā it follows that j − is ≤ bλ

ā c = 0. The inequality jā − λ − is(ā − λ) = hp(jā − λ) ≤
f(jā− λ) = (j − 1)λ is equivalent to (ā− λ)(j − is) ≤ 0 which clearly holds. Therefore we have shown that
hp(z) ≤ f(z), which establishes feasibility.

To see that it yields a facet observe that hp(z) = f(z) for z = ap and z = sā−λ and that ap−(sā−λ) 6= 0.

2. Now let αp = λ/ā, βp = λ
ā (ā−λ) and ap ≥ 2ā−λ. We first show that hp(jap) ≤ f(jap) for j = 1, . . . , vp. If

sā−λ ≤ jap ≤ sā for an integer s, 1 ≤ s ≤ k, then h(jap) ≤ f(jap) is equivalent to (ā−λ)(jλ− ās+jap) ≥ 0
which holds by the definition of s. If sā ≤ jap ≤ (s + 1)ā − λ for an integer s, 0 ≤ s ≤ k − 1, then
h(jap) ≤ f(jap) is equivalent to (ā− λ)(j − 1) ≥ 0 which clearly holds.

Now let j = 1, . . . , k and we consider z = jā − λ. If (s − 1)ap < jā − λ ≤ sap for an s, 1 ≤ s ≤ vp,
then the inequality hp(z) ≤ f(z) is equivalent to (ā − λ)(s − 1) ≥ 0 which clearly holds. In addition, since
2ā− λ ≤ ap we have hp(z) = f(z) for z = ā− λ and z = 2ā− λ and therefore we get a facet inducing lifting
pair.

3. Now let q and s be as in statement 3 in the theorem. First observe that sā < ap < (s + 1)ā − λ and
therefore hp(ap) = αpap − βp = λs = f(ap). Since f is superadditive it follows that hp(jap) ≤ f(jap) for all
j, 1 ≤ j ≤ vp.

Next we show the inequality for z = jā − λ, 1 ≤ j ≤ k. If (i − 1)ap < jā − λ ≤ iap, then hp(jā − λ) =
αp(jā− λ)− iβp and f(jā− λ) = (j − 1)λ. Therefore we have to show that

αp ≥
λ(si− j + 1)
iap − jā + λ

. (27)

For simplicity of notation we define ᾱ(i, j) to be the fraction in (27), i.e. we need to show that ᾱ(i, j) ≤ αp

for all j. Even though it would be enough to consider i as a function of j and therefore defining ᾱ as a
function of a single argument, we define ᾱ in this more general way since we will prove that (27) holds for a
larger range of i and j. We write j = us + l, where 1 ≤ l ≤ s.

It is easy to see by the definition of q that if 0 ≤ u ≤ q, then uap < jā − λ ≤ (u + 1)ap. For any j
it follows that ᾱ(u, j) ≤ ᾱ(u, j + 1) if u ≤ ā−λ

ap−ās , which is equivalent to u ≤ q, and ᾱ(u, j) ≥ ᾱ(u, j + 1)
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otherwise. Therefore

max
j=1,...,(q+1)s

ᾱ(i, j) = max
u=0,...,q

ᾱ(u + 1, (u + 1)s)

= max
u=0,...,q

λ

u(ap − ās) + λ + ap − ās
=

λ

λ + ap − ās
,

where the first equality follows from the monotonicity property and from uap < jā− λ ≤ (u + 1)ap, and the
second equality follows by the definition of ᾱ. We have proven that ᾱ(i, j) ≤ αp for all j, 1 ≤ j ≤ (q + 1)s.
If qs > k, then this completes this part of the proof.

Next we claim that ᾱ(i, j) ≤ ᾱ(i + 1, j) for all j ≥ (q + 1)s + 2. This inequality is equivalent to
j ≥ (ap − sλ)/(ap − ās). But

ap − sλ

ap − ās
≤

ās + ā−λ
q − sλ

ās + ā−λ
q+1 − ās

= s(q + 1) +
q + 1

q
≤ s(q + 1) + 2,

implying that if j ≥ s(q + 1) + 2, then ᾱ(i, j) ≤ ᾱ(i + 1, j).

It follows that for each ī ≥ 2

max
l=1,...,s

ᾱ(i, (q + ī)s + l) ≤ max
l=1,...,s

ᾱ(q + ī + 1, (q + ī)s + l) ≤ ᾱ(q + ī + 1, (q + ī)s + 1)

=
λs

(q + ī)(ap − ās) + ap − ā + λ
≤ λs

λ + (q + 1)ap − (sq + 1)ā
,

where the first inequality follows from the monotonicity in i and ā((q+ ī)s+ l)−λ ≤ (q+ ī+1)ap, the second
inequality from the monotonicity property with respect to the second argument of ᾱ, and the last one from
ī ≥ 2. Therefore we have shown that ᾱ(i, j) ≤ αp for all j ≥ (q + 2)s + 1.

It remains to establish the inequality for j = (q+1)s+1, . . . , (q+2)s. For j = (q+1)s+1 it follows by the
definition of q that (q+1)ap < jā−λ ≤ (q+2)ap and therefore it is easy to see that ᾱ(q+2, (q+1)s+1) ≤ αp.
For j, (q + 2)s ≥ j ≥ (q + 1)s + 2 it follows that

ᾱ(i, j) ≤ ᾱ(q + 2, j) ≤ ᾱ(q + 2, (q + 1)s + 2) ≤ λs

λ + (q + 1)ap − (sq + 1)ā
,

where the first and second inequality follow as above from monotonicity and the last inequality can be
checked with a trivial but long calculation. This establishes that αp, βp are a valid lifting pair.

To show that they yield a facet, note that hp(z) = f(z) for z = ap and for either z = ās − λ or
z = (qs + 1)ā− λ, depending where the maximum in αp is attained.

4. This case is similar to the previous one and its proof is therefore omitted.

Note that statement 1 in Theorem 8 gives sufficient conditions for facet-definining simple lifted unbounded
flow cover inequalities.

Example (continued). The facet-defining inequality (9) yields (by using statement 1 in Theorem 8 for
variable 1 and statement 3 for variables 3 and 5) the facet-defining inequality y1 + 1

3y3 + y4 + 1
3y5 ≤

3 + 3x1 + x3 + 3x4 + x5, and facet-defining inequalities (10) and (12) produce the facet-defining inequality
y1 + y3 + y4 + y5 ≤ 6 + 3x1 + 3x3 + 3x4 + 3x5 by applying statement 1. The last facet can also be obtained
by using Theorem 4 or Theorem 6. The facet-defining inequality (11) yields multiple lifting coefficients by
using statements 1 and, either 2 or 3 or 4: (α1, β1) = (α4, β4) ∈ {(1, 2), ( 1

2 , 1
2 )} and (α3, β3) = (α5, β5) ∈

{(1, 3), ( 1
2 , 1

2 )}. For example, y1 + 1
2y3 + 1

2y4 + y5 + y6 ≤ 7+2x1 + 1
2x3 + 1

2x4 +3x5 +x6 is facet-defining.
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3.3.2 Lifted Flow Cover Inequalities

Here we consider flow covers CF ⊆ F . In this case the lifting function is

f(z) = min b−
∑

i∈CF

yi −
∑

i∈CF

(ai − λ)+(vi − xi)∑
i∈CF

yi ≤ b− z

0 ≤ yi ≤ aixi for each i ∈ CF

0 ≤ xi ≤ vi for each i ∈ CF

x integer.

For simplicity of notation we assume that CF = {1, 2, . . . , q}, a1 ≥ a2 ≥ · · · ≥ aq and that ai > λ for
i = 1, 2, . . . , r. We define the following two sequences.

M1,0 = 0

Ms,l =
s−1∑
i=1

aivi + las s = 1, 2, . . . , r l = 1, . . . , vs

Ms,vs+1 = Ms+1,1 s = 1, 2, . . . , r − 1
Mr,vr+1 = −∞

As,l =
s−1∑
i=1

vi + l s = 1, 2, . . . , r l = 1, . . . , vs

We will repeatedly make use of the property

Ms,l − λAs,l =
j∑

i=1

(ai − λ) > 0,

where j =
∑s−1

i=1 vi + l.

Example (continued). For CF = {1, 2} we have

(M1,0,M1,1,M1,2,M2,1,M2,2,M2,3) = (0, 4, 8, 11, 14, 17),
(A1,1, A1,2, A2,1, A2,2, A2,3) = (1, 2, 3, 4, 5).

Proposition 4. For each z ∈ [0, b]

f(z) =


z −Ms,l + λAs,l if Ms,l − λ ≤ z ≤ Ms,l s = 1, . . . , r, l = 1, . . . , vs,

λAs,l if Ms,l ≤ z ≤ Ms,l+1 − λ s = 1, . . . , r, l = 1, . . . , vs,

z −Mr,vr
+ λAr,vr

Mr,vr
≤ z ≤ b,

and f is superadditive on z ∈ [0, b].

Proof. The claim has been proven by Gu, Nemhauser and Savelsbergh (1999) for the binary case, i.e. vi = 1
for all i ∈ CF . For the general case we can replace the variables yi, xi with new variables yj

i , x
j
i , j = 1, . . . , vi

and we can replace each inequality yi ≤ aixi with yj
i ≤ aix

j
i for each i ∈ CF , j = 1, . . . , vi. In addition, we

require that the xj
i variables are binary. It is now easy to check the claim from the corresponding function

listed in Gu, Nemhauser and Savelsbergh (1999).
To prove that f is superadditive we use the g2 function. We define ūi = aj − λ for i =

∑j−1
s=1 vs, . . . ,∑j

s=1 vs and for j = 1, . . . , r, and v̄i = λ for all i and l = λ. Then f is precisely g2 and therefore is
superadditive.
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The following theorem gives the lifting coefficients for the flow cover inequalities.

Theorem 9. If T ⊆ N \ CF and for each p ∈ T the lifting coefficients are defined as either

1.

αp =
1
as

, βp =
λ

as
(as − λ +

s−1∑
i=1

(vi(ai − as))),

where 1 ≤ s ≤ r and ap ≥ 2ā− λ if s = 1 and v1 ≥ 2, and ap ≥
∑s−1

i=1 aivi + as − λ otherwise, or

2. αp = 1, βp = Mst − λAst and Mst − λ < ap ≤ Mst,

then the lifted flow cover inequality∑
p∈T

αpyp +
∑

i∈CF

yi ≤ b−
∑

i∈CF

(ai − λ)+(vi − xi) +
∑
p∈T

βpxp (28)

is facet-defining for P .

Proof. Note again that f is piecewise linear and concave in each interval [Mij − λ, Mi,j+1 − λ] and therefore
it is enough to show that hp(z) ≤ f(z) for z = jap and z = Mij − λ.

1. We can rewrite the coefficients and the conditions as αp = 1/ãs, βp = λ(Ms,t+1−λ
ãs

−As,t), where M12−λ ≤
Ms,t+1 − λ ≤ ap, 0 ≤ s ≤ r, 1 ≤ t ≤ vs and ãs = as if t < vs and ãs = as+1 otherwise. Note that by the
definition of ãs it follows that Ms,t+1 −Ms,t = ãs.

For each z ∈ [0, apvp] we have hp(z) ≤ αpz − βp and we next show that αpz − βp ≤ f(z). It is enough
to prove this inequality for Mij − λ since αpz − βp is a linear function. But for these points the inequality
is equivalent to Mij −Mst ≤ ãs(Ajt −Ast) which holds because of the order imposed in CF . Therefore the
inequality is valid.

It is easy to check that hp(z) = f(z) for z = Ms,t+1−λ and z = Mst−λ, and therefore is facet inducing.

2. Now let αp = 1, βp = Mst − λAst and Mst − λ < ap ≤ Mst. It is easy to see that hp(ap) = f(ap) and
therefore by superadditivity of f the inequality hp(z) ≤ f(z) holds for all z = jap.

Now let 1 ≤ j ≤ vp and consider the function g(z) = f(z)− z + jβp defined on [(j − 1)ap, jap]. We have
already argued that g is nonnegative at the boundaries of the interval. The derivative g′ exists at all points
except those that are of the form Mij − λ for indices i and j. At points where it exists g′ is either 0 or −1.
Therefore g is nonincreasing which implies that g(z) ≥ 0 for all z ∈ [(j − 1)ap, jap].

The above arguments show that hp(z) ≤ f(z) for all z. The equality is attained for z = ap and z = Ms,t

and therefore we get lifting coefficients that yield facet-inducing inequalities.

Example (continued). The flow cover CF = {1, 2} yields the facet-defining inequality y1 +y2 +y4 + 1
4y5 ≤

8 + 2x1 + x2 + 2x4 + x5 by using statement 1 in Theorem 9 with s = 1 for variable 5 and statement 2
for variable 4, whereas by applying statement 2 the flow cover CF = {3} gives the facet-defining inequality
y1 + y3 + y4 + y5 ≤ 6 + 3x1 + 3x3 + 3x4 + 3x5, which has already been obtained. Except by considering
subsets of the lifted variables, we do not get any other facets by applying Theorem 9.

4 Extentions

In this section we study two related sets

S= = {(y, x) ∈ R2n
+ :

n∑
i=1

yi = b, yi ≤ aixi, xi ≤ vi, i = 1, . . . , n, x integer} ,

S≥ = {(y, x) ∈ R2n
+ :

n∑
i=1

yi ≥ b, yi ≤ aixi, xi ≤ vi, i = 1, . . . , n, x integer},
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and the associated convex hulls P= = conv(S=) and P≥ = conv(S≥). For S≥ we assume that if I = ∅, then∑
i∈N aivi ≥ b + akvk for all k ∈ F as otherwise yk ≥ 0 is dominated by yk ≥ b−

∑
i∈N\{k} aivi. For S≥ we

also assume that if |I| = 1, then
∑

i∈F aivi ≥ b. For S= we use all these assumptions and the assumptions
made for S before. Using these assumptions it is easy to see that dim(P≥) = 2n, dim(P=) = 2n−1 and that
all the inequalities listed in the description of the sets S=, S≥ are facet-defining, called the trivial facets, for
P=, P≥, respectively.

Similar propositions to Proposition 1 hold for P= and P≥ and are given next.

Proposition 5. If m̃y ≤ u0 + ux defines a nontrivial facet of P=, then

1. 0 ≤ u,

2. there exists a vector m ≥ 0 with mj = 0 for some j ∈ N such that the inequality my ≤ u0 + ux, called
a normalized facet-defining inequality, defines the same facet,

3. if i ∈ I and mi > 0, then ui > 0.

Proposition 6. If my + ux ≥ u0 defines a nontrivial facet of P≥, then u ≥ 0,m ≥ 0, u0 > 0.

The following proposition shows how to get facets for P and P≥ from facets of P=. Its proof follows
closely the proof in Padberg, Van Roy and Wolsey (1985) and is therefore omitted.

Proposition 7. If my ≤ u0 + ux defines a nontrivial normalized facet of P=, then

1. (M1−m)y + ux ≥ Mb− u0 defines a nontrivial facet of P≥,

2. (m + (−t)+1)y ≤ u0 + (−t)+b + ux defines a nontrivial facet of P , where

t = min{
u0 +

∑
i∈N (ui − aimi)xi

b− ax
: ax < b, 0 ≤ x ≤ v, x integer} ,

and t+ = max{0, t}.

Example (continued). The inequality y1 + y2 ≤ 8 + 2x1 + x2 is facet-defining for P= and therefore by
Proposition 7 is also facet-defining for P , and 7 ≤ y3 + y4 + y5 + y6 + 2x1 + x2 is facet-defining for P≥.

Every valid inequality for the set K = conv{ax ≥ b, 0 ≤ x ≤ v, x integer} is a valid inequality for P=

and P≥. The following proposition identifies which facets of K are facets of P≥ or P=. The proof is omitted
since it closely follows the related proof in Padberg, Van Roy and Wolsey (1985).

Proposition 8. Let ux ≥ 1 be facet-defining for K. Then ux ≥ 1 defines a nontrivial facet of P≥/P= if
and only if for each i ∈ N there exists a vector (y, x) ∈ P≥/(y, x) ∈ P= such that ux = 1 and yi < aixi.

As in Section 2 we define

V≥ = {x ∈ Rn
+ : 1− u0 + ux ≤

∑
i∈N

(j −mi)+aixi − jb for all j = 0, . . . ,M,

−1 + u0 − ux ≤
∑
i∈N

miaixi,

ax ≥ b,

x ≤ v, x integer},

An analoguos theorem to Theorem 1 holds for P≥.

Theorem 10. The inequality u0 ≤ my + ux is valid for P≥ if and only if V≥ is empty.

The proof uses the following lemma, which can be proved from Lemma 1 by making the substitution
zi = Ai − yi.
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Lemma 2. Let Ai ∈ Q+ for all i ∈ N , B ∈ Q+, b ∈ Q+, and we assume that b ≤
∑n

i=1 Ai and B ≤∑
i∈N miAi. Then jb−

∑n
i=1(j −mi)+Ai ≤ B for all j = 0, . . . ,M if and only if

{y ∈ Rn
+ :

n∑
i=1

yi ≥ b, my = B, yi ≤ Ai for all i ∈ N}

is nonempty,

In order to show that the facets obtained for P have corresponding facets in P= and P≥, we need the
following corollary to Theorem 2, which states that all facets of P of the projection to the variables in F or
I are facets of P=.

Corollary 2. If my ≤ u0 + ux defines a nontrivial facet F of {(y, x) ∈ P, xi = yi = 0 for all i ∈ F} and

a)
∑

i∈F aivi > b−min{
∑

i∈N yi : (y, x) ∈ F}, and

b) min{
∑

i∈I aixi :
∑

i∈I aixi ≤ b− 1,
∑

i∈I(miai − ui)xi = u0, x ≥ 0, x integer} ≥ b−
∑

i∈F aivi,

then it also defines a facet of P=.
If my ≤ u0 + ux defines a nontrivial facet of {(y, x) ∈ P, xi = yi = 0 for all i ∈ I}, then it also defines a

facet of P=.

Proof. We first prove the claim when F is a facet of the projection onto the variables in I, i.e. xi = yi = 0
for all i ∈ F .

Let
∑

i∈N αiyi +
∑

i∈N βixi = Π0 be satisfied by all vectors in F̄ = {(y, x) ∈ R2n
+ : (y, x) ∈ P=,my =

u0 + ux}. We show that β = 0 and that α = K1 for a constant K. We write vectors in R2n as (y, x, ȳ, x̄)
where y and x correspond to indices in I and ȳ, x̄ correspond to indices in F .

By Corollary 1, there is a vector (y, x) ∈ R2·|I| on the projection of F to I such that
∑

i∈I yi = b. Let ei

be the ith unit vector and consider the vectors (y, x, 0, 0) ∈ F̄ and (y, x, 0, ei) ∈ F̄ for all i ∈ F . It follows
that βi = 0 for all i ∈ F .

Since F is a nontrivial facet, there exists (y, x) ∈ F such that
∑

i∈I yi < b. From assumption a) it follows
that

∑
i∈F aivi > b−

∑
i∈I yi. Then there exist affinely independent vectors y1 ∈ R|F |

+ , . . . , y|F | ∈ R|F |
+ such

that yj
i ≤ aivi for all i ∈ F ,

∑
i∈F yj

i = b −
∑

i∈I yi for all j = 1, . . . , |F |. The vectors (y, x, yj , v) are in F̄
and hence αi are equal to a constant K for all i ∈ F .

Since F is a facet of the projection onto the variables in I, there are 2 · |I|+1 affinely independent vectors
(yj , xj) ∈ F . We next show that by assumption b) these vectors yield vectors in P=. Let U be the set of all
vectors (yj , xj) ∈ F such that

∑
j∈I yj

i < b. We know from Theorem 2 that every vector in U has to satisfy
the property that yj

i = ajx
j
i for all i ∈ I such that mi > 0. From assumption b) it follows that for each

(yj , xj) ∈ U there is a vector (ȳj , x̄j) such that (yj , xj , ȳj , x̄j) ∈ F̄ . These vectors show that α = K1 and
that βi = 0 for all i ∈ I. Therefore F̄ is a facet of P=.

The remaining case for P= can be proven in the same way except that we replace v by b1 and x̄j above
by b1.

Using the same vectors as in the proof of Theorem 3 and Corollary 2 we can establish the following result.
The second statement follows from Proposition 7 and the first statement.

Corollary 3. Let CI ⊆ I be an unbounded flow cover. Assume that if F = ∅, then CI 6= I and that if
CI = I and F 6= ∅, then

∑
i∈F aivi > b− ā(k − 1). Then∑

i∈CI

yi ≤ (k − 1)λ + (ā− λ)
∑
i∈CI

xi

is facet-defining for P=, and
(ā− λ)k ≤

∑
i∈N\CI

yi + (ā− λ)
∑
i∈CI

xi

is facet-defining for P≥.
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By using Proposition 7, Corollary 2, and Theorem 6 we obtain facets for P= and P≥ that are derived
from CF .

Corollary 4. Let CF , T be defined as in Theorem 6 and let us also assume that ā ≤ λ +
∑

i∈N\(CF∪T ) aivi

and that there is a j ∈ CF such that λ < aj < λ +
∑

i∈N\(CF∪T ) aivi. Then

1. (20) is facet-defining for P=, and

2. the inequality ∑
i∈CF

(ai − λ)+vi ≤
∑

i∈N\(CF∪T )

yi +
∑

i∈CF

(ai − λ)+xi + (ā− λ)
∑
i∈T

xi

is facet-defining for P≥.

Note that if (N \ (CF ∪ T )) ∩ I 6= ∅, then the extra conditions in Corollary 4 are automatically fulfilled.

5 The Case ai = a for all i ∈ N

In this section we give a complete polyhedral description of P if ai = a for all i ∈ N . For the case I = N ,
such a description was recently given by Atamtürk (2002) using a completely different argument from the
one presented here. It is easy to see that if a divides b, then the trivial inequalities completely describe P .
Therefore we assume that λ = ak − b > 0, where k = db/ae.
Proposition 9. For any C ⊆ N such that

∑
i∈C vi ≥ k,∑

i∈C

yi ≤ b− (a− λ)(k −
∑
i∈C

xi) (29)

is facet-defining for P .

Proof. Let C ⊆ N be such that
∑

i∈C vi ≥ k. If C ∩ I 6= ∅, then C ∩ I is an unbounded flow cover and
Theorem 8, rule 1, yields that (29) is facet-defining.

Let C ⊆ F . If
∑

i∈C vi = k, then C is a flow cover and therefore (29) is facet-defining by Theorem 6
with T = ∅. Now consider a set C ⊆ F such that

∑
i∈C vi ≥ k + 1. Validity can be easily checked by using

Theorem 1. Without loss of generality let C = {1, . . . , q} and let j, 0 ≤ j ≤ q − 1 be such an index that∑j
i=1 vi ≤ k and

∑j+1
i=1 vi ≥ k + 1. Let us define the vector x0 as

x0
i =


vi if i ≤ j,

k −
∑j

t=1 vt if i = j + 1,

0 i > j + 1.

In addition, for i > j + 1 we define xi = x0 − e1 + ei and for 2 ≤ i ≤ j we define xi = x0 − ei + ej+2. We
denote also xj+1 = x0− ej+1 + ej+2. The vectors xi all have the property that

∑
t∈C xi

t = k and 0 ≤ xi
t ≤ vt

for all t ∈ C. Using these vectors, the vector x0 − e1, and the technique used in the proof of Theorem 3, it
is easy to see that (29) is facet-defining.

The main goal of this section is to prove that the trivial facets and facets defined by (29) completely
describe P . Note that the facets induced by (29) are not always special cases of privously given facets.

Theorem 11.

P = {(y, x) ∈ R2n
+ :

∑
i∈N

yi ≤ b (30a)

yi ≤ axi i ∈ N (30b)
xi ≤ vi i ∈ N (30c)∑

i∈C

yi ≤ b− (a− λ)(k −
∑
i∈C

xi) for all C ⊆ N such that
∑
i∈C

vi ≥ k} (30d)
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The theorem has been proven by Padberg, Van Roy and Wolsey (1985) if vi = 1 for all i ∈ N and for
P=. We generalize their approach to general upper bounds and to P .

Lemma 3. Let m,u be two nonnegative n-dimensional vectors. Then the solution to max{my−ux : (y, x) ∈
P} is given by the LP

max
∑
i∈N

(ami − ui)wi +
∑
i∈N

((a− λ)mi − ui)zi (31a)∑
i∈N

wi ≤ k − 1 (31b)∑
i∈N

zi ≤ 1 (31c)

wi + zi ≤ vi i ∈ N (31d)
w ≥ 0, z ≥ 0 (31e)

Proof. Let (y, x) be an optimal solution to max{my − ux : (y, x) ∈ P}.
Case 1.) Suppose that

∑
i∈N yi = b. If there exist i, j such that 0 < yi < axi, 0 < yj < axj and mi ≥ mj ,

then there is an ε > 0 such that (y + εei − εej , x) is again a feasible vector. Note also that since u ≥ 0, if
yi = 0, then xi = 0. Therefore there exists an optimal solution (y, x) and an index j ∈ N such that yi = axi

for all i ∈ N \ {j} and yj = b − a
∑

i∈N\{j} xi. Let l = k − 1 −
∑

i∈N\{j} xi. Since uj ≥ 0, it follows that
xj = l + 1. It is easy to see that z = ej and wi = xi for all i ∈ N \ {j}, wj = l, is a feasible solution to (31)
with the same objective value.

Case 2.) Now let
∑

i∈N yi < b. In this case yi = axi for all i ∈ N since otherwise either the solution is not
optimal or we can obtain a solution that is covered by the first case. Now it is easy to see that z = 0, w = x
is a solution to max{my − ux : (y, x) ∈ P} with the same objective value.

Conversely, suppose that (w, z) is an integer solution to (31). An integer solution always exists since the
constraint matrix is totally unimodular. Then we can define (y, x) ∈ P as above with the same objective
value.

Lemma 4. If (y, x) is a vertex of P , then xi ≤ k for all i ∈ I.

Proof. Let (y′, x′) be a vertex of P . Then there exist m ∈ Rn, u ∈ Rn such that (y′, x′) is the unique solution
to max{my − ux : (y, x) ∈ P}. Note that ui > 0 for all i ∈ I since otherwise the maximum is unbounded.
Then there are sets S̃ ⊆ I, S̄ ⊂ I with the property I = S̃ ∪ S̄, |S̄| ≤ 1, and y′i = ax′i for all i ∈ S̃, and
y′l = b− a

∑
i∈S̃ xi, x

′
l = dyl/ae, where l ∈ S̄. If these conditions are not met, it is easy to see that (y′, x′) is

not a unique optimal solution. For i ∈ S̃ it follows that x′i ≤ y′i/a ≤ b/a ≤ k. Similarly for l ∈ S̄ it follows
that x′l = dy′l/ae ≤ db/ae = k. This proves the statement.

Proof of Theorem 11. We prove that for any vectors m,u the objective values max{my − ux : (y, x) ∈ P}
and max{my − ux : (y, x) satisfies (30)} are equal. It is easy to see that it suffices to prove this property
for all m,u that define a facet of P . Therefore by Proposition 1 we can assume that m ≥ 0, u ≥ 0 and by
Corollary 1 for a given m,u we can consider only optimal solutions with

∑
i∈N yi = b.

Let us define ṽi = vi if i ∈ F and ṽi = k if i ∈ I. By Lemma 4 and since for any C ⊆ N
∑

i∈C vi ≥ k
if and only if

∑
i∈C ṽi ≥ k, it suffices to prove the theorem for ṽ. We prove that the objective value of the

dual of (31) is the same as the objective value of the dual of (30). By Lemma 3 this establishes the result.
The dual of (31) is

min
∑
i∈N

ṽiπi + (k − 1)δ1 + δ2

δ1 + πi ≥ ami − ui i ∈ N (32)
δ2 + πi ≥ (a− λ)mi − ui i ∈ N

δ1 ≥ 0, δ2 ≥ 0, π ≥ 0,
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where δ1 corresponds to (31b), δ2 to (31c), and π to (31d), and the dual of (30) is

min bα +
∑
i∈N

ṽiθi + (k − 1)λ
∑
C

γC

α + βi +
∑

C:i∈C

γC ≥ mi i ∈ N (33)

−aβi + θi − (a− λ)
∑

C:i∈C

γC ≥ −ui i ∈ N

α ≥ 0, β ≥ 0, γ ≥ 0, θ ≥ 0,

where α corresponds to (30a), β to (30b), θ to (30c), and γC is defined only for subsets with
∑

i∈C ṽi ≥ k
and it corresponds to (30d).

Without loss of generality we assume that m1 ≥ m2 ≥ · · · ≥ mn and that if mi = mj , i > j, then
uj ≥ ui. An optimal solution (y, x) to max{my − ux : (y, x) ∈ P} with

∑
i∈N yi = b corresponds to an

optimal solution (w, z) of (31) with
∑

i∈N wi = k − 1 and
∑

i∈N zi = 1. Therefore there exists an index
j∗ ∈ N such that zj∗ = 1. Among all such optimal solutions to (31) we select one that has the largest j∗.
Observe that (a−λ)mj∗ −uj∗ > 0 since otherwise we get a better solution by setting zj∗ = 0. Let (δ1, δ2, π)
be an optimal solution to (32). Define

t∗ = max{i ∈ N : δ1 − δ2 ≤ λmi},

s∗ =

{
n + 1 if mi ≥ δ2

a−λ for all i ∈ N,

min{i ∈ N : mi < δ2
a−λ} otherwise.

Among all optimal solutions to (32) we select one that has the largest t∗. By the order imposed on m we
have that (δ1− δ2)/λ ≤ mi for all i such that i ≤ t∗ and (δ1− δ2)/λ > mi for all i such that i > t∗. Similarly
we have that mi < δ2/(a− λ) for all i such that i ≥ s∗ and mi ≥ δ2/(a− λ) for all i such that i < s∗.
Claim 1. t∗ ≤ j∗

Since zj∗ = 1, by complementary slackness δ2 + πj∗ = (a− λ)mj∗ − uj∗ and therefore mj∗ ≤ (δ1 − δ2)/λ.
If mj∗ < (δ1 − δ2)/λ, then by the definition of t∗ it follows that t∗ < j∗. Suppose that mj∗ = (δ1 − δ2)/λ
and j∗ < t∗. Then

δ1 − δ2

λ
= mj∗ ≥ mt∗ ≥

δ1 − δ2

λ
.

Therefore mj∗ = mt∗ and since ut∗ ≤ uj∗ by the order imposed, it follows that (a − λ)mj∗ − uj∗ ≤
(a − λ)mt∗ − ut∗ . Suppose that wt∗ < ṽt∗ . Then consider (w, z̄) = (w, z − ej∗ + et∗), which is a feasible
solution to (31). If ut∗ < uj∗ , then (w, z) is not an optimal solution which is a contradiction. If ut∗ = uj∗ ,
then (w, z̄) is an optimal solution to (31) with z̄t∗ = 1, which contradicts the choice of j∗. Therefore we have
shown that wt∗ = v̄t∗ . Now consider (w̄, z̄) = (w − et∗ + ej∗ , z̄). It is easy to see that (w̄, z̄) is an optimal
solution to (31), again contradicting the choice of j∗. This proves Claim 1.
Claim 2. j∗ < s∗

Since zj∗ = 1 and by complementary slackness it follows that δ2 ≤ δ2+πj∗ = (a−λ)mj∗−uj∗ ≤ (a−λ)mj∗ .
Therefore by definition j∗ < s∗, which shows Claim 2.

Claim 3.
∑t∗

i=1 ṽi ≥ k

By complementary slackness, if wi > 0, then δ1 +πi = ami−ui. Since δ2 +πi ≥ (a−λ)mi−ui, it follows
that δ1 − δ2 ≤ λmi, and therefore i ≤ t∗. Note also that

∑
i:zi>0 ṽi ≥

∑
i:zi>0 zi = k − 1. Therefore

t∗∑
i=1

ṽi ≥
∑

i:zi>0

ṽi ≥ k − 1. (34)

If
∑t∗

i=1 ṽi ≥ k, then the claim is true, so assume that
∑t∗

i=1 ṽi = k − 1. In this case clearly t∗ < n. By
analyzing lower bounds in (34), we get that wi = 0 for all i > t∗ and wi = ṽi for all i ≤ t∗. If δ1+πi = ami−ui
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and i > t∗, then this contradicts the choice of t∗. Therefore δ1 + πi > ami − ui for all i > t∗. Let us define
ε = min{mini=t∗+1,...,n{δ1 +πi−ami +ui}, δ1}. If δ1 = 0, then t∗ = n, which is a contradiction and therefore
ε > 0. Consider the following optimal solution to (32): δ̄1 = δ1 − ε, δ̄2 = δ2, π̄i = πi for all i > t∗, and
π̄i = πi + ε for i = 1, . . . , t∗. If δ̄1 = 0, then t∗ corresponding to this solution is n, which is a contradiction.
Therefore δ̄1 > 0 and there exists l > t∗ such that δ̄1 + πl = aml − ul, where l is the index attaining the
minimum in the definition of ε. The solution (δ̄1, δ̄2, π̄) is an optimal solution to (32) with a larger t∗ than
the fixed solution (δ1, δ2, π). But this contradicts the choice of t∗ since t∗ is the maximum index over all
optimal dual solutions to (32). This proves the claim.

For i ∈ N let us denote Ci = {1, 2, . . . , i}. Consider the following dual solution to (33).

α =
δ2

a− λ

βi = (mi −
δ1 − δ2

λ
)+ i ∈ N,

γCt∗ =
δ1 − δ2

λ
γCi

= mi −mi+1 t∗ < i < s∗ − 1,

γCs∗−1 = ms∗−1 −
δ2

a− λ

γC = 0 otherwise.

This solution is well defined by Claims 1, 2, and Claim 3 and it is easy to see that it is dual feasible to
(33) with the same objective value as the objective value of (δ1, δ2, π) for (32). Therefore we have proven
Theorem 11.

Since P= is a face of P , we get the following corollary.

Corollary 5.

P= = {(y, x) ∈ R2n
+ :

∑
i∈N

yi = b

yi ≤ axi i ∈ N

xi ≤ vi i ∈ N∑
i∈C

yi ≤ b− (a− λ)(k −
∑
i∈C

xi) for all C ⊆ N such that
∑
i∈C

vi ≥ k} (35)

Here we do not claim that this is a minimal representation of P=, i.e. it is not necessarily true that all
of the inequalities in (35) are facet-defining. We leave open the case P≥.

6 Computational Experiments

Here we present a branch-and-cut algorithm that uses our valid inequalities. We also compare the results
obtained from CPLEX with and without our cuts. We first show how to use our cuts to separate fractional
solutions from the LP relaxation.

6.1 Separation

For all the valid inequalities (13), (16), (26), and (28) the separation is done heuristically and we always try
to find an inequality that is most violated. Let (y∗, x∗) be an LP solution at a given node of the branch-
and-bound tree. Given either an unbounded flow cover or a flow cover C, for each index p ∈ N \ C the
lifting pair (αp, βp) is selected as the pair of coefficients that leads to the largest violation, i.e. among all
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possible lifting coefficients for p, which are given by the corresponding formulas in Theorem 4, Theorem 5,
Theorem 8, and Theorem 9, we select the one that maximizes αpy

∗
p − βpx

∗
p.

To detect a lifted unbounded flow cover inequality we proceed as follows. Before we start branch-and-cut,
we sort the variables in N in nondecreasing order of (k−1)λ. In the separation routine, we scan the variables
i ∈ N and at each iteration we construct CI on the fly such that ai = maxj∈CI

aj . A variable pair k ∈ N \{i}
is either lifted based on CI , or we add k to CI if ak ≤ ai and in this case the corresponding coefficients
are computed based on (8). If both cases are possible, we choose the one that leads to the larger violation.
If a cut is found, we add it to the LP relaxation of the node. This yields an algorithm with a worst case
complexity O(n2), which might be excessive, but in practice many variables have y∗p = x∗p = 0 and all such
variables need not be considered for lifting. If the last cut found has ak = maxj∈CI

aj , then the next time
the separation routine is invoked it starts scanning the variables with index k. In other words, indices are
considered in a wrap-around order and every time we start scanning from the index visited last.

Unfortunately finding a flow cover itself is an NP-complete problem. Note that in the case of binary
variables finding a flow cover is solvable in polynomial time, however in the general case the constraint ā > λ
is not automatically fulfilled.

Proposition 10. Given a, v and b, the problem of finding a flow cover is NP-complete.

Proof. We give a reduction from the subset sum problem. Let ã ∈ Zn
+ and b̃ ∈ Z+ be the input to the subset

sum problem, i.e. we want to find a subset C̃ ⊆ {1, 2, . . . , n} such that
∑

i∈C̃ ãi = b̃.
We define the input for the flow cover problem as follows. There are n + 1 elements, where the first n

elements correspond to the elements in the subset sum problem. Let b = b̃ + 1, a = (1, 2), and v = (ã, 1) be
the input data for the flow cover problem.

Let C be a flow cover for these input data. By definition C satisfies
∑

i∈C aivi > b̃ + 1 and ā >∑
i∈C aivi−b̃−1. If C ⊆ {1, 2, . . . , n}, then ā = 1 and it is easy to see that in this case b̃+1 <

∑
i∈C ãi < b̃+2,

which is a contradiction. We conclude that {n+1} ∈ C. We define C̃ = C \{n+1}. Then the two flow cover
conditions are equivalent to b̃− 1 <

∑
i∈C̃ ãi < b̃ + 1. Since the data are integral it follows that

∑
i∈C̃ ãi = b̃

and therefore C̃ solves the subset set problem.

At each node of the branch-and-cut tree we first sort the variables in nondecreasing order of

y∗i + (ai − 1)(vi − x∗i )
v2

i

.

The numerator guides the selection of the variables that give the largest violation, where we use the ap-
proximation λ = 1. On the other hand, a greedy approach for finding a flow cover is to select the variables
in nondecreasing order of ai/vi, which is captured by our formula if y∗i = x∗i = 0 since the denominator is
v2

i . Next we construct a flow cover as follows. We start with an empty set CF and we include variables
in CF based on the order described. If

∑
i∈CF

aivi ≤ b, then we expand CF with the next variable. If∑
i∈CF

aivi > b and ā ≤ λ, we remove the last variable from CF and keep scanning from the current posi-
tion. If

∑
i∈CF

aivi > b and ā > λ, then we stop since CF is a flow cover. Such a procedure typically leads
to a flow cover but it often happens that the flow cover does not yield a violated lifted flow cover inequality.
To generate additional covers, we randomly select a variable i ∈ CF and we start the greedy procedure all
over from the beginning of the array, except that we assume that i is not a candidate for inclusion in CF and
that the initial set CF consists of CF \{i}. We repeat the procedure at most 60 times, i.e. at most 60 covers
can be obtained. Each flow cover obtained is lifted and if it yields a cut, it is added to the LP relaxation of
the node.

6.2 Implementation

Computational experiments were carried out on an SGI Origin200 workstation with a RISC 12000 processor
running at the clock speed of 270MHz. The operating system is IRIX, version 6.5, and the workstation is
equipped with 512MB of main memory. The branch-and-cut algorithms were implemented on top of CPLEX,
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CPLEX Optimization (2002), version 7.5. Except for cut generation, all other features and parameters of
CPLEX are set to their default values.

Cuts are generated at every node of the branch-and-bound tree and at every node except the root node
at most 3 rounds of cuts are added, i.e. we solve the LP relaxation at most 3 times. Since computational
experiments have shown that lifted flow cover inequalities are the most useful cuts and the hardest to find,
in each round at most 30 cuts resulting from the flow covers are added and at most 10 lifted unbounded flow
cover cuts are added. We add only globally valid inequalities, i.e. those cuts that are valid at the root node,
since CPLEX does not allow the addition of cuts that are valid only at a given node. Since at the root node
the LP relaxation yields a global lower bound and it is important to find quickly a good primal solution, at
the root node the number of rounds is unlimited but we limit the total number of cuts added at the root
node to 300. The cut generation procedure is extremely fast since in all our computational experiments it
never required more than a total of 30 seconds or 5% of the overall computational time.

Cuts are added to a pool and each time the cut generation procedure is invoked, the pool is scanned
first for cuts. If the number of valid inequalities in the pool exceeds 1,500, the pool is cleaned by selecting
at most 500 cuts that were most frequently violated. At every node after the LP relaxation is solved by
applying at most 3 rounds of cuts, only the cuts that are in the basis are added to the formulation and the
remaining cuts are put in the pool. This strategy prevents the formulation from growing too rapidly.

CPLEX does not allow modification of the formulation at a node and therefore the deletion of nonbasic
cuts is not possible. To circumvent this restriction, at each node we copy the node LP into a separate
LP and we solve the copied LP with the cut generation procedure. After 3 rounds of adding cuts, we add
to the original formulation only those that are in the basis. The copied formulation is then freed. This
strategy has a large overhead in copying the node LPs and therefore we chose to time and report only the
time needed for solving the LP relaxations throughout the branch-and-bound tree. We observed that in
the branch-and-bound algorithm this time represents on average 85% to 95% of the overall computation
time, which in addition includes branching, node selection and the application of a primal heuristic, and
therefore it is a reasonable estimate of the overall computational time. Since this extra time is proportional
to the number of evaluated nodes and in general the number of evaluated nodes is lower for branch-and-cut
algorithms, the overall time without the overhead of copying would benefit even further the branch-and-cut
algorithm. In all of our computational experiments we set a time limit of 1800 seconds. When both CPLEX
and our branch-and-cut algorithm reach the time limit, we compare the gap between the best upper and
lower bounds.

6.3 Computational Results

We first generated some random instances of S and random objective functions which are to be maximized
over S. The sequences b, a, v, c, d, where c, d are the objective function coefficients with respect to the y and
x variables, are generated dependently in the following way. Let Xi, i = 1, . . . , 5 be independent random
variables from the uniform distribution on [0, 1]. We choose b = 1000 · X1 and ai = db · X2/10e, vi =
1 + db ·X3/aie, ci = X4, di = −(vi ·X5 + 10) for all i ∈ N . We have generated 3 different types of instances
and 5 instances of each type. The first instances all have F = N and v is generated as above. For the second
instances a vi is generated as above with probability 0.75 and is infinity otherwise, so on average |F | = 3|I|.
The third instances all have I = N . For i ∈ I first vi and di are generated based on the formulas and then
vi is set to infinity. In our experiments n = 3000 and n = 4000.

The computational results are shown in Table 1 and Table 2, where the CPLEX columns represent the
time, the number of evaluated nodes, the value of the best integer solution obtained at the root, the objective
value of the root node LP relaxation, the overall gap and the number of cuts generated by the default CPLEX
implementation. The overall gap is defined as 100(zUB − zIP)/zUB, where zUB is the best upper bound and
zIP is the best IP solution obtained at the end of the computation. The branch-and-cut columns have
identical meaning except that they are obtained with our enhanced cut generation routine. The default
CPLEX implementation generates various cuts at the root node (mostly Gomory and MIR inequalities),
which we call the CPLEX cuts, and the number of generated cuts is reported in the ‘no. cuts’ column.
The first number in ‘no. cuts’ under ‘branch-and-cut’ shows the number of CPLEX generated cuts and the
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second number is the number of cuts generated by our routine in our implementation of branch-and-cut. In
the bottom row we show the average improvement of the branch-and-cut algorithm over CPLEX in terms
of computational time, number of nodes, the value of the IP solution at the root node, and the value of the
LP relaxation at the root node.

Easy instances, defined by the branch-and-bound execution time being less than a minute, are not
included since the cuts do not help. For most instances we were able to generate many cuts and the cuts
substantially reduce the number of evaluated nodes. The instances with finite upper bounds are harder than
the instances with I = N . This is due to the fact that the former instances have more rows, i.e. those
corresponding to the upper bounds on x, and therefore solutions of the LP relaxations tend to be more
fractional. The largest improvement of branch-and-cut over CPLEX is seen in instances with I = N . In this
case we have the richest set of cuts and they are easy to find and therefore this behavior is expected. On
average the time improvement is 48.5% and the average reduction in the number of nodes is approximately
64%. For many instances CPLEX was able to find a better integer solution at the root node. Nevertheless,
on average the integer solutions obtained at the root node by branch-and-cut are slightly better than those
obtained by CPLEX. Our cuts do not improve the objective value of the root node LP relaxation substantially
(on average by 0.08% and 0.04%), which indicates that not many cuts are found at the root node.

CPLEX branch-and-cut
time no. root root gap no. time no. root root gap no.

nodes IP LP % cuts nodes IP LP % cuts

F = N

39 800 862 871 0 4 5 33 864 870 0 3+87
102 2340 730 737 0 10 84 1304 730 737 0 9+65

† 231 2240 341 348 0 5 326 2306 340 348 0 6+1227
61 679 521 523 0 4 46 644 520 523 0 4+244

414 13294 299 303 0 9 72 440 298 302 0 11+207

|F | ≈
3|I|

114 898 264 266 0 4 90 489 260 265 0 2+869
1082 14990 130 136 0 6 23 177 133 135 0 2+333

† 1800 14473 772 783 .12 4 1800 4000 777 783 .16 2+4493
† 393 7729 552 559 0 5 1550 1788 552 558 0 8+2643
1800 32252 344 349 .37 8 90 731 345 348 0 4+1101

I = N

165 3775 452 458 0 6 28 262 452 457 0 4+437
59 535 391 393 0 4 15 160 389 393 0 2+291
36 291 348 352 0 3 10 17 351 352 0 1+140
77 476 189 193 0 4 56 124 189 193 0 2+462

154 718 418 423 0 5 40 211 420 423 0 2+422
Improvement 44% 69% 0.13% 0.08%

Table 1: Computational results for P with n = 3000

For instances denoted by † CPLEX outperforms the branch-and-cut algorithm because either

• CPLEX found improved primal solutions quicker than branch-and-cut or

• branch-and-cut produced too many cuts.

Cuts reduce the number of nodes but the LP relaxations may be much more difficult and therefore the overall
computational time can be greater. To understand the value of a good primal solution, we investigated
running time under the assumption that the optimal solution value is known. We have taken the instances
denoted by † and we have imposed the pruning upper bound of zIP + ε, where ε is a small number, i.e. every
node with the value of the LP relaxation above this value is pruned. Note that this substantially reduces
the effect of a primal heuristic. The results are given in Table 3, where the last instance is another difficult
instance not shown in the previous two tables. The column ‘idx. opt. solution’ shows the index of the
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CPLEX branch-and-cut
time no. root root gap no. time no. root root gap no.

nodes IP LP % cuts nodes IP LP % cuts

F = N

† 278 4719 281 282 0 2 615 3302 281 282 0 3+1126
174 2499 446 451 0 5 40 558 446 451 0 6+215
745 8985 386 392 0 6 524 4771 386 392 0 6+1187

† 1800 26343 317 320 0.12% 5 1800 12000 317 320 0.33% 5+4295
1445 7869 655 669 0 6 401 4170 663 669 0 5+1055

|F | ≈
3|I|

239 1962 233 237 0 8 66 272 233 237 0 3+526
256 2458 822 828 0 5 11 56 825 828 0 2+147
340 800 343 345 0 6 230 743 343 345 0 6+330
231 656 263 277 0 9 167 565 263 277 0 9+177

1261 3970 700 715 0 3 49 376 710 715 0 3+383

I = N

1201 5934 646 650 0 3 76 692 646 650 0 4+878
50 35 363 366 0 2 48 48 363 366 0 2+45
96 733 308 312 0 4 21 56 308 311 0 2+165

269 1646 632 641 0 2 42 204 634 640 0 2+349
53 76 643 652 0 5 6 8 647 652 0 2+41

Improvement 53% 59% 0.25% 0.04%

Table 2: Computational results for P with n = 4000

branch-and-bound node where the optimal solution is found. We see that in proving the optimality branch-
and-cut outperforms CPLEX in 4 instances but however there are still 2 instances where branch-and-cut is
inferior. In branch-and-cut the optimal solution is always found towards the end of the execution, which
is not the case for CPLEX in some of the instances. Once the optimal solution is found, branch-and-cut
terminates quickly. This confirms that having a primal heuristic tailored for branch-and-cut would likely
speed up the algorithm.

CPLEX branch-and-cut
problem time no. idx. opt. no. time no. idx. opt no.
type nodes solution cuts nodes solution cuts
3000/f 50 489 489 5 34 274 219 10+126
3000/m 243 5550 710 5 92 928 927 8+643
3000/m 602 18581 8700 4 534 5277 5276 2+2378
4000/f † 129 2114 54 2 456 2976 2975 2+1120
4000/f † 1271 22178 13176 5 1465 12551 8699 6+2105
3000/m 255 5277 5000 5 169 955 840 7+872

Table 3: Computational results with the optimality upper bound

In addition to these instances, we have tried the branch-and-cut algorithm on several capacitated facility
location instances, where more than one facility is allowed to be opened, i.e. xi ≤ vi, where the integer
variable xi represents the number of facilities opened at location i. Note that these are minimization
problems. These random instances were generated by Aardal (1998) and are also used in the computational
experiments performed by Gu, Nemhauser and Savelsbergh (1999). We have generated random upper bounds
vi using the formula given above and as above we generated three types of instances. The problem sizes
are reported in Table 4. The first number in the name is the number of clients and the second number is
the number of facilities. Problems with fewer than 75 facilities were easy to solve and are not considered
in this study. These problems have a single row that together with the variable upper bound constraints
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correspond to P= and therefore cuts are generated from the P relaxation and from the P≥ relaxation based
on Proposition 7. Namely, for every violated valid inequality for P the corresponding valid inequality for P≥
is violated as well and therefore both are added to the LP relaxation.

name # vars # int. vars # rows # nonzeros
10 200 2400 200 2411 8800
100 75 7650 75 7751 30300
75 75 5775 75 5851 22800

100 125 12750 125 12851 50500
125 100 12700 100 12826 50400

Table 4: Facility location problem sizes

The computational results are presented in Table 5, where the gaps are defined accordingly for minimiza-
tion problems. Our implementation was able to find many cuts and for many problems the branch-and-cut
implementation outperforms CPLEX. Due to a substantially lower number of integer variables the number
of cuts found in these instances is lower. The problems where CPLEX performs better are denoted by †.
The results for the facility location problems are not as good as those presented in Table 1 and Table 2.
This is expected since the cuts do not necessarily yield a facet for the capacitated facility location problem
and often the cut generation procedure did not find any cuts at the top of the tree, which is confirmed by
an average gap of 3% at the root node. Similar to the P≤ computational experiments, the problems with
finite upper bounds are harder.
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