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The flow of packages and documents in collective groups, called splits, of an express package 
carrier consists of picking up the packages at customers’ locations by a courier and bringing 
them to a station for sorting.  Next the splits are transported either in bulk or containerized 
conveyances to a major regional sorting facility called the ramp.  In this work we focus on the 
afternoon and evening operations concerned with stations and the ramp.  We deal with the 
sorting decisions at the stations and the ramp, as well as the transportation decisions among these 
locations. We model these processes by means of a dynamic program where time periods 
represent time slices in the afternoon and evening.  The resulting myopic problem is a linear 
mixed integer program.  The overall model is solved by approximate dynamic programming 
where the value function is approximated by a linear function.  Further strategies are developed 
to speed up the algorithm and decrease the time needed to find feasible solutions. The 
methodology is tested on several instances from an international express package carrier.  Our 
solutions are substantially better than the current best practice.  

 

1. Introduction  
For overnight express package carriers, large volumes of packages and documents must be han-
dled and often travel large distances in order to be delivered on time.  In many cases, the time 
window between the pick up and delivery is less than 24 hours.  Several operations and package 
movements must be completed within this time.  These tasks can be divided into those that occur 
within the market where the package originated, and those outside the origin market.  The intra 
market operations consist of a package being picked up by a courier from a customer, and any 
movement within its origin market until it reaches a location where it departs the origin market 
by plane or a different mode of transportation.  Many carriers route packages on a hub and spoke 
network.  After packages depart the origin market they travel to a hub before reaching the desti-
nation market and are ultimately received by the customer. In the U.S., major metropolitan areas 
constitute markets. All stations corresponding to surrounding towns and suburbs of a major city 
form a market. All packages from these towns and suburbs are gathered at a central facility 
called the ramp and are then transported to a hub.  
 It is important to route and sort packages within the origin market in such a manner that they 
meet their departure times dictated by schedules to prevent flight delays from propagating 
throughout the network.  Customers use express shipment to ensure on-time delivery, so the fail-
ure of packages to depart the origin market can lead to poor customer service.  The express pack-
age industry is also significant to the U.S. economy.  In 1999, it was estimated that goods repre-
senting between 8.6% to 14.3% of the U.S. GDP were transported by express parcel shipments, 
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Cannon (2000).  While it is critical to deliver packages in a timely manner, excessive handling 
and package routing can lead to high operating costs for the carrier. 

When packages are picked up by couriers, they are delivered to a nearby station. Next they 
are sorted and put into containers, which are transported to the ramp by conveyances, which in-
clude bulk and containerized trucks and vans as well as aircraft of various capacities.  At the 
ramp the containers are broken down if required and the packages are sorted again.  The ramp 
sorting process creates different containers, which are then loaded into an aircraft.  This is a con-
tinuous time process throughout the afternoon and evening.  The aircraft loading plans drive the 
entire process since they impose a requirement of a certain container type with specific packages 
at a given time.  If packages are aggregated in a certain way at stations, they can bypass sorting 
at the ramp, which yields operating cost savings.  Intra market package flow is depicted in Figure 
1. 

 
Figure 1: Market Depiction 

 The entire process has two key components: how to aggregate (sort) packages at stations in 
order to bypass sorting at the ramp, and what is the most cost effective transportation from the 
stations to the ramp.  The output of the model is essentially a transportation schedule from the 
stations to the ramp with an indication of what kind of splits, aggregated groups of packages and 
documents, must be transported on each conveyance.  We model the intra market afternoon or 
PM operations by means of a dynamic program (DP).  We divide the entire time window into 
several smaller time periods, which yields a discrete time, finite time horizon DP.  The resulting 
large-scale DP is solved approximately by using a linear function approximation to the value 
function.   
 The most important contributions of this work are a detailed model of the PM operations 
problem as well as the underlying solution methodology.  While we use an existing algorithmic 
framework, we enhance and tailor it in several aspects.  Results of our computational experi-
ments show that linear approximations using gradient information (measuring the change in the 
value function with respect to the current state) generate good solutions to problems with many 
more time periods, longer travel times, and more constrained state and action spaces than other 
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previously researched problems where this method was implemented.  Since optimal solutions to 
the PM operations problem even for smaller markets are not known, our solutions are bench-
marked against an integer programming formulation and the current operational practice.  We 
also present strategies for choosing better initial values for the value function approximations 
and other methods to improve the speed and convergence of the algorithm.  We improve the ex-
isting solutions in both direct cost and service level measured as the percentage of containers 
ready to depart the ramp on time.  The former objective is captured by means of the one period 
cost function and the latter by properly forming the terminal conditions of the underlying dy-
namic program.  

Section 2 discusses the PM operations problem in greater detail.  Section 3 describes the dy-
namic programming formulation of the PM operations problem.  Section 4 discusses details of 
the approximate dynamic programming algorithm and the corresponding solution methodology.  
Section 5 presents the results of computational experiments for the DP algorithm, a mixed inte-
ger linear programming formulation of the problem as well as comparisons with current opera-
tions in practice.  We conclude the introduction with a literature review.  

1.1. Literature Review 

Although there has been extensive research on vehicle routing and service network design, there 
is no work concerning the sorting and package handling details required for efficient intra market 
operations.  The detailed modeling of package sorting and handling combined with routing deci-
sions with a large number of discrete time periods presented in this work is unique.  Due to the 
large number of time periods and multiple decisions concerning how to sort and route packages, 
our model is extremely large.  A market with five stations, one ramp and over 300 time periods, 
which is considered a medium size market, resulted in a model with over 20 million decision 
variables and 3 million constraints when modeled as a simplified mixed integer program. 
 The related research follows two streams: the approximate DP area and service network de-
sign for express package carriers.  We start with the latter. Kim et al. (1999) model multimodal 
express package delivery as a service network, which they call the Express Shipment Service 
Network Design (ESSND) problem.  This paper presents solution methodologies for moving 
packages from their origins to their destinations with time windows for delivery.  This work 
routes packages from the ramp to the hub while considering package transfer at an intermediate 
destination, and can similarly be used to route from the hub to the destination ramp on the out-
bound side.  The volume of packages is considered constant to allow for flow conservation of 
aircraft to ensure that the solution can be repeated daily.  For the PM operations problem, since 
conveyances only travel comparatively small distances within the market, we ignore reposition-
ing and flow conservation and are able to capture fluctuations in package volume within a small 
time interval.  The problem modeled here can be thought of as the input to the ESSND problem 
since the PM operations problem involves routing packages from stations to ramps and ESSND 
routes packages from ramps to the corresponding hub.  Several problem reduction methods and 
heuristics are presented to decrease problem size without compromising model optimality.  Fur-
ther solution methodologies to the ESSND problem are given in Armacost et al. (2002).  This 
paper introduces the notion of composite variables, which are essentially variables that capture 
both aircraft routing and package flow decisions.  Thus there is no need for separate variables to 
represent these decisions, and the problem size and solution time are both reduced considerably.  
Both papers conclude that integer programming methods must be combined with heuristic strate-
gies and other problem modifications to solve large problem instances. 
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We chose not to investigate these network reduction strategies since there are many more 
constraints in the PM operations problem compared to the ESSND problem and a large number 
of variables due to many time periods.. Instead, due to the natural discrete time component of the 
PM operations problem, we employ DP techniques.  For problems modeled as a DP with many 
decisions and a large state space, the number of possible outcomes grows considerably and 
makes problems difficult to solve.  These problems such as the PM operations problem with 
large state spaces require the use of approximate dynamic programming to provide an approxi-
mation to the value function.  For a survey of approximate dynamic programming and work on 
other topics concerning the values of states including neuro-dynamic programming and Q-
learning, the reader is referred to for example Bertsekas and Tsitsiklis (1996), Sutton and Barto 
(1998), and Powell and Van Roy (2004).  Much of the recent work on dynamic programming 
applications and approximation algorithms to transportation problems is summarized in Powell 
et al. (2003) and Powell and Topaloglu (2003).  Powell et al. (2001) provides a formal notation 
for the dynamic modeling of transportation problems and defines problem classes and terminol-
ogy.   

The seminal work on the topic is Powell et al. (1995).  This paper provides a stochastic for-
mulation of the dynamic assignment problem and approximates the problem for a continuous 
time and space setting as opposed to decomposing the problem into time periods.  The model 
uses actual and forecasted demands to anticipate future events.  Later work by Powell uses more 
of a standard dynamic programming methodology by decomposing the problem into time peri-
ods, solving the myopic problem for each time period, and using information from each time pe-
riod for updating parameters of the approximate value function.   

The work of Powell and Carvalho (1998) studies a dynamic fleet management problem and 
uses linear approximations based on gradients from the single time period problem in the value 
function and they present computational experiments that show that the results of their algorithm 
generates solutions that are within three percent of the LP relaxation of the integer programming 
formulation of the problem.  Computational experiments show that the linear approximations 
work equally well for single and multi period travel times. 

The differences in solving dynamic programs with single and multi period travel times are 
further discussed in the companion papers Godfrey and Powell (2002a and 2002b).  They exam-
ine a stochastic version of the dynamic resource allocation problem where resources must be as-
signed to tasks over time and resources may be repositioned to a different location in order to 
fulfill the tasks.  An efficient dynamic program which uses separable piecewise linear functions 
to approximate the value function is given that works well for single period travel times but de-
grades in performance for multi period travel times.  Modifications are made to the nonlinear ap-
proximations for problems with multi period travel times that result in improved performance 
over the basic algorithm.  The general problem with using separable piecewise linear functions in 
the case of multi period travel times is known as the long haul bias, which essentially results in 
repositioning a vehicle from a location that is farther away since this decision arises first.  As a 
result, a higher cost is incurred to meet demand, resulting in poorer quality solutions.  Further 
discussion of both linear and nonlinear value function approximations with multi period travel 
times is given in Topaloglu and Powell (2004).    

The methods presented in this work differ from the work by Powell and his collaborators in 
the following important aspects. In our setting, the underlying optimization problem solved in 
each time period and iteration is a linear mixed integer program, which depends in a nonlinear 
manner on the given current state.  In Powell’s work, these problems are linear programs with 
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linear value functions which yields a relatively easy way to compute gradients.  As a result, the 
problems must be approximated by relaxing the integrality restrictions in order to measure the 
change in the value function with respect to the current state from the gradient. 

2. Station and Ramp Operations 

2.1. Suply 
On a given day, customers deposit packages at drop off points or couriers pick up packages from 
customer locations.  Couriers then take these packages to facilities called stations.  A station is a 
local facility that has the ability to sort and handle packages.  Since we break up the time hori-
zon, packages arrive at stations at fixed times, which are considered as incoming supply points. 
We assume that supply arrives at the beginning of a time period and volume departs a station at 
the end of a time period.  We consider the overall volume of supply as opposed to the number of 
packages.  Incoming supply can be differentiated based on destination, type of product such as 
hazardous or fragile, and package type such as a box or document.  Each unique combination of 
these identifiers, referred to as splits, drives how volume will depart the station and eventually 
the market.   

2.2. Sorting 
Once supply arrives to a station, it must be sorted to identify the volume by split.  The sorting 
belt is essentially a conveyor belt that the supply is loaded onto and then moved within the facil-
ity.  Prioritized sorting mimics a manual sorting procedure, where package handlers can pick and 
choose what packages to load into containers.  Therefore splits that must depart the ramp earlier 
than others based on the demand profile can be sorted first.  Based on a fixed speed of the con-
veyor belt or number of package handlers, there is a maximum amount of volume that can be 
sorted in a time period.  So if the amount of incoming supply in a time period exceeds the sorting 
belt capacity, some of the supply will not be sorted in the time period in which it arrives and it 
must be determined how much of each split is actually sorted and how much is carried over to 
the following time periods.  The reader is referred to Schenk (2005) for further extensions and 
complexities of the problem involved in practical situations.  Examples of these extensions in-
clude a maximum capacity utilization per time period for each container, the sorting operations 
at each station and the ramp having unique start and end times, containers cannot be filled to the 
capacity, and so forth.  

2.3. Demand Points 

At the ramp, there are fixed times when a specific split and container is needed to depart the 
market on time.  These time, split, and container type (containers have different sizes) combina-
tions are called demand points.  Note that the container type of a demand point is given and is 
not a decision due to the desire of operational planning and other operational constraints (load 
balancing of outbound aircraft, loading congestion, etc.).  We assume that the volume required 
by demand points is greater than the total supply, meaning that all supply can leave the market, 
i.e, demand exceeds supply. 

To fulfill demand, a container with only one split can be created at a station and sent to the 
ramp to be directly used to meet a demand point.  Such a container is known as a pure container.  
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Alternatively, a split can be combined with other splits at a station to form what is referred to as 
a mixed container.  A mixed container must be broken down upon arriving at the ramp.  This 
means that the volume is removed from the mixed container and re-sorted to separate the splits 
and eventually create pure containers that can then be used to fulfill demand points.  The creation 
of a pure container may be impractical though, such as creating a pure container type that is not 
demanded, as this container would have to be broken down at the ramp. 

2.4. Assigning Supply to Containers  
After determining how much of each split is sorted in a time period, we must decide where to put 
the sorted supply.  A sorting belt has a number of locations where volume can be taken off the 
sorting belt as seen in Figure 2.  As volume is being sorted at stations, the decision must be made 
as to what container type a split will be placed in and whether this will be a pure or mixed con-
tainer.  If there is sufficient volume, creating a pure container can be advantageous since mixed 
containers incur additional sorting and handling costs at the ramp.  The process of re-sorting a 
mixed container also takes additional time which could result in supply missing its demand 
point, whereas a pure container can be immediately off-loaded at the ramp and used to meet de-
mand.  However, creating many pure containers can also lead to poor solutions as this can re-
quire additional conveyances in containerized or bulk form to transport the volume. Not to men-
tion, creating a partial pure container may prevent a fuller container from being created at the 
ramp using mixed volume arriving from different stations.  

2.5. Container Types and Load Positions 

Containers are divided into two main types, refillable and non-refillable containers.  This divi-
sion of containers is necessary due to how containers are filled with volume. Once a non-
refillable container is closed, it cannot be reopened in order to add additional packages. A refil-
lable container could be thought of as an actual conveyance where volume is loaded in bulk 
form. Packages can be added to refillable containers at any time. Thus there is a one-to-one cor-
respondence between refillable containers and so-called bulk conveyances. On the other hand, 
several non-refillable containers can be loaded into a single conveyance. Another important dif-
ference between these container types is that non-refillable containers must be placed at load po-
sitions to obtain volume.  Load positions are essentially slots/locations that are configured to 
hold specific sized containers while they are being loaded.  Non-refillable containers also must 
be placed at load positions to properly close the container whenever it is filled up or ready to de-
part the station.  For non-refillable containers, the number of currently loading containers is re-
stricted by the number of containers of each type that can fit in load positions, see Figure 2.  
Also, at least one load position must be reserved for creating a mixed container.  This is to pre-
vent a condition where all load positions are occupied by pure containers and a split arrives that 
does not have a designated container at any load position.  Figure 2 depicts sorting and package 
movements at a station.  Throughout the time horizon, supply is sorted into refillable and/or non-
refillable containers at stations.  At some point in time, a container becomes ready to depart the 
station.  This can be due to the container being filled to its capacity, or due to time constraints 
that require the container to depart the station to meet a demand requirement. 

Containers come in different sizes. We address this by introducing container types. Within 
refillable and non-refillable containers we have several types, i.e., containers of different volume 
capacity.  
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Figure 2: Station Sorting Operations 

2.6. Container Conveyance Relationship 

Both refillable and non-refillable containers have a maximum capacity on volume.  Containers 
are further distinguished by their container footprint.  This parameter determines how load posi-
tions and conveyances are configured, in a sense taking into account the shape as well as the size 
of a container.  For example, if a load position has a capacity of one, and a certain container type 
has a footprint of 0.5, two of these containers can be placed at the load position.  The logic is 
similar for containers being placed on conveyances.  So the number of containers that depart a 
station in a given time period times their footprint must be less than the footprint capacity of a 
conveyance being sent.  It is assumed that any combination of containers can fit on a convey-
ance, provided that the total footprint capacity is equal to or less than the conveyance capacity. 

2.7. Ramp Operations 

Ramps are typically much larger than stations and can sort more volume per time period.  While 
non-refillable containers must still be placed at load positions to re-sort mixed volume, we do not 
consider a restriction on the number of load positions since there are often many of them.  The 
decision as to what type of container to assign volume to at the ramp is also not considered since 
containers are placed at load positions based on the demand profile.  It is also possible to have 
incoming supply that is picked up by couriers to go directly to the ramp.  Clearly this supply 
must go on the sorting belt and be used to meet demand points that are not fulfilled by pure con-
tainers. 

2.8. The Decision Making Process 
The main part of the input to the intra market problem is the supply and the demand profile.  The 
supply profile gives the volume of each split that arrives at every station at a given time period 
while the demand profile represents the time, volume, and number of containers that are needed 
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at the ramp and dictated by the departure schedules.  In addition to these inputs, there are many 
more such as capacities, sort start times, footprints, load positions, etc.  The main decisions to be 
made are the amount of each split to sort at each station and the ramp in each time period, which 
containers to assign the sorted splits to, and the resulting transportation plan. 

The process is completely driven by the ramp.  A day before the actual day of operations, the 
ramp engineer makes the aforementioned decisions and conveys them to station managers.  In 
addition, the corresponding containers and conveyances are dispatched to the stations.  Even 
though these are day to day operations, the entire problem is actually at the tactical level.  The 
supply profile is very stable and therefore it is almost constant throughout a month.  A single 
plan is made for a month and it is followed throughout the month.  Month to month supply 
changes occur due to the seasonality of the express package business.       

3. Dynamic Program  
Initially we tried to solve the problem as a linear mixed integer program.  However, even a sim-
plified version of the model, which did not include all details of the problem and model con-
straints and handles only mixed containers, for the smallest instance was not able to find a solu-
tion with a reasonable gap.  For larger instances the commercial integer programming solver was 
unable to find a feasible solution after several hours of computing time.  Since there is an inher-
ent time component in the model, we chose to model the problem as a dynamic program.  

This section presents the details of the dynamic programming model.  All notation, state and 
action space variables are given in this section.    

3.1. Assumptions and Notation 

The following basic notation is used throughout this paper. 

F  Set of all stations (does not include the ramp) 
}{raF ∪   Set of all locations (all stations plus the ramp) 

S  Set of all container types (unique container sizes) 
L  Set of all conveyance types (they differ by their capacity and cost, and poten-

tially mode) 
A   Set of refillable container types  
B  Set of non-refillable container types, BAS ∪=  
C  Set of volume possibilities in a container, { }puremixC ,= , where mix signifies 

a mixed volume container with more than one split and pure represents a pure 
volume container 

I  Set of all splits 
es  Footprint of each container Ss∈  
vs  Volume capacity of each container Ss∈  

lu   Footprint capacity of each conveyance Ll ∈  

jnblp   Number of load positions at station Fj∈  

tjcap   The maximum amount of volume that can be sorted at station  in 
time t based on the sorting belt 

}{raFj ∪∈

mf  The minimum amount of volume in a container before it is removed from a load 
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position. It is based off of a proportion of the container capacity. 
wtij The amount of split i coming to station j in time period t. These values deter-

mine the supply profile. 
dtis The number of containers of type s and split i demanded in time period t. These 

values define the demand profile. 
( rajg , )   Number of time periods to travel from station Fj∈  to the ramp 

f(s)  Number of time periods needed to unload a container of type s 
sc  The cost per unit of volume to sort and handle packages 

l
rajcc ,   The cost of shipping a conveyance of type l from station  to the ramp.  

This parameter incorporates both fixed and variable transportation costs. 
Fj∈

  We also make the following assumptions.  

• All supply comes into a station at the beginning of the time period. 
• Containers are removed from load positions at the end of the time period. Any incoming sup-

ply that becomes ready during the time period can be removed at the end of the time period. 
• Conveyances are sent at the end of time periods after containers are removed from load posi-

tions and they arrive at the beginning of a time period. 
• Demand occurs at the end of a time period before conveyances arrive.  For example, sorting 

may be performed during a time period and that volume can be used to meet demand in the 
same time period. 

• At most one conveyance of a certain type is sent from a station to the ramp in each time pe-
riod.  This assumption enables us to capture the conveyance capacity and container footprint 
relationship precisely.  In practice it never happens that more than one conveyance is sent in 
a time period since their capacity is much higher than the sort rate.  

• We assume that it is not possible to create more than one refillable container of the same type 
in a time period.  Due to the low sorting rate and high container capacity, this is for our in-
stances without loss of generality. 

• After a container of a certain type and split is removed from a load position, another con-
tainer of the same type and split can be placed at a load position only after a one time period 
delay.  In practice the load and unload time of a container is more than a single time period. 
This more general case is treated in Schenk and Klabjan (2006). 

• Mixed containers that are ready to be sent to the ramp are set aside.  We assume that if we 
choose to send one of these containers, then we must send all of them.  This assumption is 
justifiable from the fact that typically only a few mixed containers are ready to leave.  In 
most cases only a single one is ready.  From the modeling point of view, if this assumption 
were not made, then we have to track the amount of every split in every single container (not 
just container type).  In addition, the decision as to which mixed containers to send is a chal-
lenging optimization problem per se. 

The sequence of events at a station and the ramp is depicted in Figure 3. 
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Figure 3: Sequence of Events 

3.2. States 

From the point of incoming supply at stations, several resources must be tracked to ensure that 
all supply eventually departs the market and the decisions made in a time period are based on the 
appropriate resources that are present.  The amount of volume in containers at load positions 
must be tracked to determine when containers are full and should be removed.  Once removed, 
we need to know the number of available containers and amount of volume that could potentially 
depart the station in each time period.  Since demand at the ramp is given in terms of containers 
rather than volume, we do not need to know the amount of pure volume ready to depart, simply 
the number of containers.  For mixed containers, the volume of each split is important so we can 
guarantee that volume departs the station in order to be re-sorted at the ramp. 

When the decision is made to have containers depart stations, we need to know the time that 
they depart the station as well as the time that they arrive at the ramp since this will not necessar-
ily be the next time period due to multi period travel times.  We let time t be the time that con-
tainers or volume depart stations and let time t ′  be the time that these assets arrive at the ramp.  
This information is then used to determine the amount of volume that must be re-sorted and the 
number of pure containers available to meet demand.  Once supply is re-sorted, we need to track 
this amount to know what volume is available to potentially be used to meet demand. 

It turns out that often we need to model the system dynamics for a pure container of type 
 as well as a mixed container.  Therefore often we consider the split , which is 

interpreted as a pure container of split i if 
Ii∈ {mixIi ∪∈ }

Ii∈  or a mixed container if mixi =  in order to incor-
porate both pure and mixed containers across the system dynamics.  Consider volume of split 

 in container type .  This split can either be in a pure container or in a mixed con-
tainer with other splits.  We use  to indicate that we are referring to the amount of split 

 in a pure container of type  and  to represent split  being aggregated 
together with other splits in a mixed container of type 
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3.3. State Variables 

The following variables are used to represent the states of the system at the end of time period t. 

s
tijr̂  

The number of ready containers of type BAs ∪∈  of split  at station 
 at time t. 

}{mixIi ∪∈
Fj∈

sc
tijr  Amount of split  type Ii∈ Cc∈  at station Fj∈  that is currently being loaded into a 

container of type  at a load position at time t. As∈
sc

tijr  Amount of split  type Ii∈ Cc∈  at station Fj∈  that is in container type  at time 
t and is ready to be sent.  

As∈

' ,
ˆs
tt i ra

r  The number of containers of split Ii∈  type BAs ∪∈  that are sent to the ramp from 
any station at time t and arrive to the ramp at time . 't

mix
raitt

r
,'

~  The amount of mixed volume of split Ii∈  that leaves any station at time t and arrives 
at the ramp at time . 't

NS
tijr  Non sorted volume of split Ii∈  at facility }{raFj ∪∈  at time t. 
MV

ratir ,  Amount of split  that has already been sorted at the ramp but has not been used be-
fore time t to fill demand points. 

Ii∈

s
ratir ,ˆ  The number of pure containers of split Ii∈  type BAs ∪∈  that are at the ramp and 

have not been used before time t to fill demand points. 

To clarify the notation involving c, the quantity  is the amount of split i at station j in 
time period t in all pure containers of type s that are ready to be sent.  If this quantity is positive, 
it means that only split i is loaded in these containers.  Similarly,  represents the same quan-
tity except that we consider all mixed containers of type s that are ready to be sent.  In addition to 
split i, these containers may have other splits in them.  We denote by 

pures
tijr ,

mixs
tijr ,

tR  the vector of all these 
state variables at time period t. 
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3.4. Action Variables 

The following action variables are used in the dynamic program. 

s
tijŷ  Binary variable equal to 1 if container type As∈  of split }{mixIi ∪∈  is removed 

from a load position at station Fj∈  by the end of time period t. 
ls
tijx̂  Number of containers of type BAs ∪∈  of split }{mixIi ∪∈  that depart station Fj∈  

at time t on conveyance . Ll ∈
sc
tijz  Amount of split at station Ii∈ Fj∈ that at time t is sorted and assigned to a container 

of type , with either mixed (c=mixed) or pure (c=pure) volume, . BAs ∪∈ Cc∈
s
tjλ  Binary variable equal to 1 if all mixed containers of type BAs ∪∈  are sent from sta-

tion  at time t.  Fj∈
sc
tijx  Amount of split , type Ii∈ Cc∈  sent that departs station Fj∈  at time t in container 

type . BAs ∪∈
l
tjς̂  Number of conveyances of type Ll ∈  that leave station Fj∈  for the ramp at time t. 

Based on our assumption this is a binary variable. 
s

rati ,θ  Number of pure containers of type BAs ∪∈  of split Ii∈  that are used in time period 
t to meet demand. 

MV
rati ,ψ  Amount of volume of split Ii∈  that came to the ramp in mixed containers that is used 

to cover demand in time t. 
s
tijσ  Binary variable equal to 1 if a non-refillable container As∈  of split  is 

occupying a load position at station 
}{mixIi ∪∈

Fj∈  at time t. 

tijz  Variable representing the prioritized amount of split Ii∈  that is sorted in time period t 
at  { }raFj ∪∈

Let tX  correspond to the vector of all these action variables at time t. 

3.5. System Dynamics 

Figure 4 pictorially describes the parameters, state, and action variables representing station op-
erations and departing conveyances, which are modeled by the following system dynamics.  The 
number of containers that are ready to potentially depart is based on the number that are removed 
from load positions and those that depart the given station. 

 ∑
∈

+ −+=
Ll

ls
tij

s
tij

s
tij

s
ijt xyrr ˆˆˆˆ ,1   FjmixIiAs ∈∪∈∈ },{,                         Eq. 1 

To track the currently loading non-refillable containerized volume, we consider two options: 
removing the container from a load position or leaving it in a position.  If it is not removed, the 
amount currently in a container at a load position plus any additional volume added to that con-
tainer during the given time period must be captured, which is represented by the first term in Eq 
2 and can be seen in Figure 4.  If a container is removed, clearly the volume in the next time pe-
riod is zero as shown in the second term.  For mixed volume of split Ii∈ , we must denote that it 
is a mixed container being removed, as shown in Eq. 3. 

 { })ˆ1(,min ,,,
,1

s
tijs

pures
tij

pures
tij

pures
ijt yvzrr −+=+   FjIiAs ∈∈∈ ,,                       Eq. 2 
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 { })ˆ1(,min ,,
,,,

,1
s

jmixts
mixs

tij
mixs

tij
mixs
ijt yvzrr −+=+   FjIiAs ∈∈∈ ,,                            Eq. 3 

 

 
 Figure 4: The Actions and States at Station j  

The following system dynamic for non-refillable containers accounts for the mixed volume 
that has been removed from load positions and could potentially leave the station.  If a container 
is removed, then the amount of volume in the container is now ready to potentially leave.  

 { }, , , , ,
1, , ,ˆmin ,s mix s mix s mix s mix s s mix

t ij tij tij tij s t mix j tijr r r z v y x+ = + + ⋅ − FjIiA ∈  s ∈∈ ,,                    Eq. 4 

Mixed refillable containerized volume is monitored in a similar fashion.   

 , , , ,
1,

s mix s mix s mix s mix
t ij tij tij tijr r z x+ = + −   FjIiBs ∈∈∈ ,,                             Eq. 5 

The next system dynamic accounts for container arrivals at the ramp.  The number of con-
tainers that arrive at the ramp at  is based on the number that depart stations if the departure 
time from that station plus the travel time to the ramp is equal to t

t ′
′ .  Since the entire pure con-

tainer is used to meet demand points, it is not necessary to track the amount of volume in such 
containers. 

 ∑ ∑
=+

∈
+

+=
j

trajgt
Ll

ls
tij

s
itt

s
itt

xrr
'

''

),(

,1
ˆˆˆ                           Eq. 6 ttIiBAs >∈∪∈ ',,

Since a mixed container must be broken down and re-sorted at the ramp, it is the volume of 
each split and not the actual number of containers that are of importance.  Mixed volume will 
arrive at the ramp and be available to potentially be re-sorted at time t ′  if the station departure 
time plus the travel time and the time to unload the volume based on the container type equals t ′ .   

Ramp

tijw  tijz  

ls
tijx̂  

mix
itt

s
itt

r

r

′

′

~
ˆ

 

ls
jmixtx ,,ˆ

pures
tijr ,  mixs

tij

mixs
tij

r

z
,

,

 

s
tijr̂  

s
jmixtr ,,ˆ  

jnblp  

pures
tijz ,  

ready containers 

mixs
tijr ,  

1ˆ =l
tjς

mixs
tijx ,  

1ˆ =s
tijy  
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                          Eq. 7 ' '

'

,
1, , , ,

( , ) ( )
t

mix mix s mix
tijt t i ra tt i ra

j F s A B
t g j ra f s t

r r x
+

∈ ∈ ∪
+ + =

= +∑ ∑ ∑� � ttIi >∈ ',

The amount of non-sorted volume at the ramp is based on the direct incoming supply, mixed 
volume arriving from stations, and the amount that is sorted.  

   rati
mix

rattirait
NS

rati
NS

rait zrwrr ,,,,,,,1
~ −++=+ Ii∈                          Eq. 8 

The amount of non-sorted volume at a station is based on the direct incoming supply and the 
amount that is sorted and assigned to a container type.  

 ∑ ∑
∪∈ ∈

+ −+=
BAs Cc

sc
tijtij

NS
tij

NS
ijt zwrr ,1   FjIi ∈∈ ,                          Eq. 9 

  The amount of volume that arrived to the ramp as mixed volume and has already been re-
sorted is based on the amount that is sorted and any volume used to fulfill demand points. 

   MV
ratirati

MV
rati

MV
rait zrr ,,,,,1 ψ−+=+ Ii∈                              Eq. 10 

The number of ready pure containers available at the ramp is based on any pure containers 
arriving from stations at time t and those used in the current time period to fulfill demand points. 

   s
ratti

s
rati

s
rati

s
rait rrr ,,,,,1 ˆˆˆ +−=+ θ IiBAs ∈∪∈ ,                        Eq. 11 

3.6. Action Space  

This section briefly describes some of the constraints in the action space.  The remaining action 
space constraints can be found in the appendix. 

The amount of supply that is assigned to a container must not exceed the amount that is 
sorted.   

   ∑ ∑
∪∈ ∈

≤
BAs

tij
Cc

sc
tij zz FjIi ∈∈ ,                              Eq. 12 

The following four constraints ensure that the amount of mixed or pure volume in a non-
refillable or refillable container does not exceed the container capacity.     

 pures
tijs

pures
tij rvz ,, −≤   FjIiAs ∈∈∈ ,,                        Eq. 13  

 ∑∑
∈∈

−≤
Ii

mixs
tijs

Ii

mixs
tij rvz ,,   FjAs ∈∈ ,                        Eq. 14  

   pures
tijs

pures
tij rvz ,, −≤ FjIiBs ∈∈∈ ,,                        Eq. 15 

 ∑∑
∈∈

−≤
Ii

mixs
tijs

Ii

mixs
tij rvz ,,   FjBs ∈∈ ,                        Eq. 16  

The number of containers on a conveyance is bounded by the conveyance capacity.  Note 
that this expression captures footprint capacity exactly only if  is binary. l

tjς̂

   0ˆˆ
}{

≤⋅−⋅∑ ∑
∪∈ ∪∈

l
tjl

mixIi

ls
tij

BAs
s uxe ς FjLl ∈∈ ,                        Eq. 17 
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The next two constraints relate pure containers and re-sorted mixed volume at the ramp to 
demand points.  Demand points can be fulfilled by mixed or pure volume.  The number of pure 
containers of type  used to meet demand for a split has to be less than or equal to the 
number of containers of that type and split demanded.  Also, the overall volume used, which is 
given by the capacity of pure containers and the amount of re-sorted mixed volume, must be less 
than the overall volume demanded. 

BAs ∪∈

   tis
s

rati d≤,θ IiBAs ∈∪∈ ,                               Eq. 18 

 tis
BAs

s
MV

rati
BAs

s
ratis dvv ⋅≤+⋅ ∑∑

∪∈∪∈
,, ψθ   Ii∈                        Eq. 19 

The following four constraints concern volume occupying load positions.  To count the 
number of pure containers in load positions, Eq. 20 states that if any volume is assigned to, or 
already sorted into a container, the corresponding indicator variable  must be equal to one.  
Constraint Eq. 21 keeps a similar count on mixed containers at load positions.  If volume of any 
split is assigned to, or at a load position in a mixed container,  must equal one.  Constraint 
Eq. 22 guarantees that the number of occupied load positions times the corresponding container 
footprint is less than the total number of load positions at a station, while the last constraint re-
serves at least one load position for mixed volume.  This is to allow the creation of a mixed con-
tainer at all times, since there may be incoming supply of a split that does not have a pure con-
tainer at a load position. 

s
tijσ

s
jmixt ,,σ

 pures
tij

pures
tij

s
tijs rzv ,, ≥−⋅σ   FjIiAs ∈∈∈ ,,                        Eq. 20  

 ∑∑
∈∈

≥−⋅
Ii

mixs
tij

Ii

mixs
tij

s
jmixts rzv ,,

,,σ   FjAs ∈∈ ,                       Eq. 21  

   ∑ ∑
∈ ∈

≤⋅
}{mixIi

j
As

s
tijs nblpe

∪
σ Fj∈                              Eq. 22 

 1  ,, ≥∑
∈As

s
jmixtσ Fj∈                                     Eq. 23 

3.7. Cost Function 

The objective of the model is to minimize the costs associated with transporting all supply from 
stations to the ramp.  There are also handling and sorting costs at stations, however this cost is 
constant based on the amount of supply.  The first term in the cost expression Eq. 24 represents 
the sorting and handling cost at the ramp for mixed volume.  The second term represents a con-
veyance departing station j for the ramp.  The costs associated with this departure are a fixed cost 
to use the conveyance as well as mileage and driver costs based respectively on distance and 
time.   

 ∑∑∑
∈ ∈∈

⋅+⋅=
Ll

l
tj

Fj

l
raj

Ii

MV
ratittt ccscRXc ςψ ˆ),( ,,                           Eq. 24 

The variables of the right hand side of the cost function are part of .  To summarize, the 
dynamic program consists of the cost function Eq. 24, system dynamics Eq. 1 – Eq. 11 and the 
action space is constrained by Eq.

tX

 12 – Eq. 23, Eq. 35, Eq. 36, and Eq. 38 – Eq. 50 given in the 
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appendix.  To incorporate missed deadlines and supply not leaving the ramp, a large penalty is 
given for having non zero state variables in the last time period. 

4. Solution Methodology 
The general methodology used to solve the dynamic program is based on the stochastic gradient 
algorithm for approximate dynamic programming, see Powell and Van Roy (2004) and Powell et 
al. (2003).  Even though the dynamic programs developed in this work are deterministic, to com-
ply with the existing terminology and literature on the subject, we call the presented algorithm 
the stochastic gradient algorithm.  We use linear approximations of the value function for the 
stochastic gradient algorithm since this was shown to work well for problems with multi period 
travel times in Powell and Carvalho (1998).  An additional benefit is computational tractability.   

Let DP1 refer to the dynamic program given in Section 3 and let  be the value of being in a 
particular state at time t. We first write the general form of the dynamic programming recursion 
Eq. 25 as follows. 

tV

  ( ) ( )( 1 1( ) min , ( , )
t

t t t t t t t t tX
V R c X R V R R X+ += + )

)

                                 Eq. 25 

Here we denote by (1 ,t t tR R X+  the transition function, which takes the current state and actions 
as arguments. 

For our problem, the minimum is subject to constraints Eq. 12 – Eq. 23, Eq. 35, Eq. 36, and 
Eq. 38 – Eq. 50 and the initial value of all states is zero.  Function ( )1 ,t t tR R X+  is given by equa-
tions Eq. 1 – Eq. 11 and the cost function is defined by Eq. 24.  Since it is desired to have all 
supply depart the market, we want the final value of all states at the end of the time horizon to be 
zero also.  Since we are minimizing the total cost, a large penalty is imposed for having non zero 
state values at time T, that is ( ) MRV TT =  for  and 0>TR ( ) 00 =TV  where T is the total number 
of time periods and M is a large number. 

Standard discrete dynamic programming techniques can not be applied to the value function 
recursion due to the large state space and heavily constrained actions.  So we attempt to replace 
the value function in the next time period ( )11 ++ tt RV  by ( )11

~
++ tt RV .  The approximate recursive 

formula, where  is only a placeholder, is then given by the following equation. ( )tt RV̂

 ( ) ( )( )( 1 1
ˆ ( ) min , ,

t
t t t t t t t t tX

V R c X R V R R X+ += + � )                                  Eq. 26 

In order to have computational tractability, we selected a linear function approximation.  This 
approximation is given by ( )t t tq tq

q

V R Rα= ⋅∑� with tqα  being unknown parameters.  The entire 

optimization problem now translates into the problem of finding the best possible values of  tqα . 
Since there is a one-to-one correspondence among α’s and R’s, to simplify the exposition, we use 
the same notation for α as for R. For example, α̂ corresponds to the states denoted by  and r̂ α�  
to the states denoted by . r�

We are now faced with the decision of how to find good approximations for the values of 
states, or in other words, the values ( )tt RV̂ . Instead of using only ( )tt RV̂ , more information 

about the function is revealed by obtaining the gradient of  ( )tt RV̂ .  
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Given state tR , it can be seen that Eq. 26 is a linear mixed integer optimization problem of 
the form  
 ( ) mint tg R c Xt= ⋅  

 ( )t t tA X f R≤                                            Eq. 27 

 0,  binary for selected .t tiX X i≥  

Function g  and  are virtually the same functions except that they are offset by a linear term in 
R

t̂V
t.  The rigorous argument about Eq. 26 being in the form of Eq. 27 can be found in Schenk 

(2005) and it uses the fact that  is a linear function.  For example, Eq. 2 has to be lin-
earized and Eq. 36 needs to be modified to remove R

( 11
~

++ tt RV )
t  from the constraint matrix (as shown  in 

the appendix). If not for these modifications to remove nonlinearities, tX  would be equal to tX  
and At would simply be the constraint matrix corresponding to Eq. 12 – Eq. 23, Eq. 35, Eq. 36, 
and Eq.38 – Eq. 50.  tX  contains the entire actions space variable tX  and additional auxiliary 
variables. Note that the linear programming relaxation is solved to obtain the dual information 
which is then used to solve the mixed integer program to obtain decisions. 
 Let us discuss in more details the cost function tc .  It clearly includes the right-hand side of 

Eq. 24.  Consider the contribution of ( )11
~

++ tt RV   with respect to .  We have r̂

1, 1, 1, 1, 1, 1,
, , , , , , , , , ,

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆs s s s s ls s s s s s
t ij t ij t ij tij tij tij t ij tij t ij tij t ij tij

s i j s i j l L s i j s i j s i j l L

r r y x r yα α α α α+ + + + + +
∈ ∈

⎛ ⎞= + − = + +⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑ ∑∑ lsx . 

The first term of the right most expression does not depend on the decision variables and it thus 
contributes only toward the offset between g  and .  The remaining two terms involve decision 
variables and are thus part of  

t̂V

tc X⋅ t .  Similar expressions can be obtained for each state compo-
nent.   

Since obtaining a gradient of g  is difficult due to the binary restrictions on variables, we in-
stead approximate g  by its linear programming relaxation .  Assuming that the functions f and 
g are differentiable, we define the gradient as follows, where m represents the number of rows in 
the constraint matrix A

g

t and q is the coordinate index in . tR

 
tq

p
m

p
tp

tq
tq R

f
R
g

∂

∂
⋅=

∂
∂

=Π ∑
=1
π                                     Eq. 28 

In Eq. 28,  and ( mfff ,...,1= ) tπ  is the optimal dual solution to Eq. 27.  Even though function g 
is not necessarily differentiable, we use Eq. 28 to approximate the descending direction since in 
our case f  is linear and thus differentiable. 

Because the gradient can fluctuate, the following smoothing equation Eq. 29 is used to give 
weights to gradient information at the current iteration as well as previous approximations. 
 ( ) n

t
nn

t
nn

t Π⋅+⋅−= − λαλα 11                                    Eq. 29 
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In the above equation,  is the value function approximation in iteration n for state n
tα tt Rr ∈  at 

time t and ( )
q

n
tq

n
t Π=Π .  The smoothing constant  can be adjusted throughout the algo-

rithm to help speed convergence.  

)1,0(∈nλ

4.1. Algorithm Summary 

Algorithm 1 gives the main steps of the approximate dynamic programming methodology.  Note 
that in Step 1.2 we solve the mixed integer programming problem given by g .  Its solution dic-
tates the next state, see Step 1.3.  When solving this mixed integer program, we store the optimal 
dual values of its LP relaxation and use them to compute n

tΠ  based on Eq. 28.  
________________________________________________________________________ 
Step 0  Initialization:  Choose an approximation  for  for all t.  Set iteration counter     1~

tV 1
tV

             n = 1. 
Step 1  Forward Pass: 
 Step 1.1 Initialize forward pass:  Set t = 1.  Initialize  .1R
 Step 1.2 Solve the myopic problem for a time period:  For time period t solve the ap     
proximate myopic problem given by Eq. 26 by using the approximation  subject to the 
action space constraints to get . 

n
tV 1

~
+

tX
 Step 1.3 Apply the system dynamics:  Calculate . 1+tR
 Step 1.4 Advance time: Set t = t + 1.  If Tt ∈  go to Step 1.2. 
Step 2  Advance iteration counter:  Set  n = n + 1. 
Step 3 Value function update: Calculate ( ) n

t
nn

t
nn

t Π⋅+⋅−= − λαλα 11  for all to  Tt ∈

 provide an approximation n  for the next iteration. Go to Step 1. tV~

________________________________________________________________________    
Algorithm  1: The Approximate Dynamic Programming Algorithm 

4.2. Updating Value Function Approximations for DP1 

This section gives updates to the value function approximations for a subset of the state vari-
ables.  It shows what constraints in the myopic problem effect the perceived value of different 
state variables.  Let  be the dual variables corresponding to constraints Eq. 12 – Eq. 
23 shown in Section 3 and  be the dual variables for the action space constraints 
given in the appendix.  The update equations obtained based on the gradients with respect to 
each approximating term as given by Eq. 28 for selected 

2312 ,.....,ππ
4935 ,.....,ππ

tα  are as follows. 

                      ( ) ( ), 1, , 16 37 481ns mix n n s mix n s s s
tij tij tj tij tjα λ α λ π π π−= − ⋅ + ⋅ − + + , ,s B i I j F  ∈ ∈ ∈

1ns mix n n s mix n s
tij tij tij

          Eq. 30 

                       ( ), 1, , 37α λ α λ π−= − ⋅ + ⋅ FjIiAs                                    Eq. 31 ∈∈∈ ,,

                                   ( ) ( ), 1, 40 1,
1, ,
−

, ,1n mix n n mix n n NS
tti ra tti ra ti t i raα λ α λ π α−

+= − ⋅ + ⋅ +� � i I  ∈                              Eq. 32  

         i I( )' '
, 1, 1,

,, ,
1n mix n n mix n n mix

tt i ratt i ra tt i ra
t t

α λ α λ α− −
′

′>

⎛ ⎞= − ⋅ + ⋅⎜ ⎟
⎝ ⎠
∑� � � , t t′∈ >                           Eq. 33  
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Let us show next how to derive Eq. 30, which corresponds to ,s mix
tijr .  Consider 

, ,s B i I j F∈ ∈ ∈ .  The corresponding state ,s mix
tijr  appears on the right-hand sides of Eq. 16, Eq. 

37, and Eq. 48 for these given s,i,j.  It means that , 0p
s mix

tij

f
r
∂

=
∂

  for all p except three of them.  For 

p corresponding to Eq. 16 we have ,( ) s mix
p t s tij

i I
f R v r

∈

= −∑  and thus , 1p
s mix

tij

f
r
∂

= −
∂

 from which we 

conclude 16 16
,
ps s

tj tjs mix
tij

f
r

π π
∂

= −
∂

.  We can similarly analyze Eq. 37 and Eq. 48. Based on Eq. 28 we 

obtain  
16 37 48

, ,
1

m
p s s s

tp tj tij tjs mix s mix
ptij tij

fg
r r

π π π π
=

∂∂
= ⋅ = − + +

∂ ∂∑ , 

which in turn justifies Eq. 30. The remaining equations Eq. 31-Eq. 33 can be verified in the same 
way.  

4.3. Initial value function approximations 

To begin the algorithm, we must determine initial linear approximations to the value function.  
While these could theoretically be set to any value, the initial values as well as the weight given 
to data from previous iterations of the algorithm based on the smoothing factor can play a sig-
nificant role in the performance of the algorithm.  Basically, we are attempting to approximate 
the effect or value of having one additional unit of a particular resource.   

Consider state , which represents the number of containers of type s of split i that are 
ready to potentially depart station j.  Since these containers must eventually be sent to the ramp, 
at some point in time they will be responsible for a fraction of the conveyance cost to transport 
the container to the ramp.  If we estimate the cost of a container to be the fraction of space that 
the container occupies on the conveyance times the container footprint and consider the con-
tainer departing on any possible conveyance, we obtain the following initial estimate for  
given by Eq. 34. 

s
tijr̂

s
tijα̂

 ∑
∈

⋅
=

Ll l

l
rajss

tij u
cce ,1α̂   FjIiBAs ∈∈∪∈ ,,                             Eq. 34 

As further examples of reasonable initial approximations consider the states mix
ittr ′

~  and , 
which represent mixed volume traveling to the ramp and volume that has arrived at the ramp but 
has not yet been sorted.  Clearly an additional unit of mixed volume would result in the extra 
cost incurred to re-sort mixed volume at the ramp, sc.  Similar reasoning is used to estimate the 
initial values of other states to provide a better initial approximation than a trivial starting value 
such as zero. 

NS
ratir ,

4.4. Monotonicity Properties 

For some states, the sign of the initial approximation value α will affect the decisions made in 
the action space as well as future values of the approximating parameter.  A necessary action 
such as volume leaving a station may be discouraged from happening due to the terms in the 
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value function. Monotonicity properties of some of the state variables are important to determine 
the proper sign of some of the value function approximations and is used to properly update the 
approximations.  We refer the reader to Schenk (2005) for proofs that the value function ( )tt RV  
is non-decreasing with respect to the following states.  

1.  IiBAsr s
rati ∈∪∈ ,ˆ ,

2.  ttIiBAsr s
itt ≥′∈∪∈′ ,,ˆ

3.  FjIiBAsr s
tij ∈∈∪∈ ,,ˆ

4.  FjBAsr s
jmixt ∈∪∈ ,ˆ ,,

5.  Iir MV
rati ∈,

This information is used to restrict the approximation updates for these state variables to be 
nonnegative.  For example, since ( )tt RV  is non-decreasing in  , it makes sense to require that 

 be non-decreasing in .  This is equivalent to , which is imposed 

by modifying the updating formulas Eq. 30 – Eq. 33 for these states by applying the operator 
 on the right-hand side. 

s
ratir ,ˆ

( )t t tq tq
q

V R Rα= ⋅∑� s
ratir ,ˆ 0ˆ , ≥s

ratiα

( ) )0,max(⋅=⋅ +

4.5. Improvement Strategies 

Several strategies are implemented to speed the algorithm.  While gradient information should 
properly adjust the value function approximations, additional strategies and variable fixing is dis-
cussed in this section in order to accomplish this.   

The first decision that must be made when considering the time based flow of supply from 
stations to the ramp is what container type to assign the incoming supply to.  This decision is 
heavily based on the demand profile, as it is irrational to create a pure container of a type and 
split that is not demanded, or to create a pure container of a split that has a small amount of in-
coming supply at a station.  Setting all initial approximations of the parameters corresponding to 
this decision to the same value would not convey this information in the myopic problems.  So 
before the first initial pass of the algorithm, the amount of incoming supply at each station and 
the ramp demand profile are analyzed to determine good potential candidates for creating pure 
containers.  Considerations as to the total number of pure containers made across all stations are 
compared with the demand profile to prevent creating more pure containers than the number de-
manded. 

Naturally, whenever all incoming supply to a station has arrived and has been sorted, con-
tainers must be removed from load positions and conveyances must depart for the ramp as there 
is no benefit gained from having supply sit idle at a station if no more is to arrive.  This forcing 
of supply out of stations is accounted for in the algorithm.  Another reason supply may need to 
be forced out concerns departing the station in time to meet the last demand point for the given 
split and container type.  If there is a pure container at a station and the current time plus the 
travel time from the station to the ramp and the container unload time equals the last demand 
point for the given split and container, this container must be removed and depart the station to 
have any chance of meeting demand.   

The situation is similar for mixed containers.  If there is mixed volume of any split at time t, 
and t plus the travel time, unload time, and the additional time to remove volume from the mixed 
container to be re-sorted equals the last demand point of any container type for that split, the con-
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tainer must leave the station immediately.  This does not guarantee that the volume will meet the 
demand point due to the ramp sort capacity and other mixed volume still needing to be re-sorted.  
The ability to recognize volume missing demand points and the need to send mixed containers in 
an earlier time period (or more pure containers to lessen the queue at the ramp) will help allevi-
ate the problem of late volume in later iterations of the algorithm.  These additional strategies 
force the logical flow of supply along with insightful initial estimates for the value function ap-
proximations and provide sensible solutions after the first pass of the algorithm.  

5. Computational Experiments 
In this section we compare the DP model, an integer programming formulation given in Schenk 
(2005), as well as current operational practices.  The models were tested on two different mar-
kets.  Table 1 provides details about the range of the size of parameters for both market sizes, 
which will be referred to as M1 and M2 respectively.  A time period of two minutes is used due 
to the need for timely actions for overnight delivery.  There are other parameters that are not 
listed in this table that varied between the two market sizes.  Both M1 and M2 are real world in-
stances from U.S. geographic markets. 

Table 1: Market Parameters 
 M1 M2 
Number of Stations 4-6 9-13 
Number of Splits 22-26 22-26 
Number of Container Types 5-7 7-9 
Number of Conveyance Types 5-7 7-9 
Number of Time Periods 250-350 350-500 
Total Supply 14,000-18,000 cu-ft 21,000-25,000 cu-ft 
Number of Action Variables in    
the Myopic Problem 

20,000 45,000 

Number of State Variables in 
the Myopic Problem 

4,000 9,000 

Number of Constraints in the 
Myopic Problem 

7,000 15,000 

Computational experiments were performed on a Dell personal computer with a Pentium® 4 
1.80GHz processor, 1GB of RAM, and Windows XP operating system.  Microsoft Visual C++ 
6.0 was the development environment and we used ILOG CPLEX 8.0 with Concert Technology 
1.0 as the mixed integer programming solver.   

5.1. Small Market 

Table 2 gives solution characteristics for M1 using the three solution methods listed above.  Due 
to proprietary reasons, we cannot discuss further details of the current operational practices, 
which we refer to as the baseline case.  
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Table 2: M1 Solution Characteristics 
  Objective Run 

Time 
(hours) 

Number of 
Conveyances

% 
Pure 

Service 
Level 

Conveyance 
Capacity 
Utilization 

Container 
Capacity 
Utilization

DP1 16.5% 14 9 41.98 100% 95.83% 80.86%
MIP -9.60% 120 15 0 100% - -
Current  0.00% - 11 57.21 99.90% 97.20% 61.49%

 
 Objective values are given as the percentage gap from the baseline solution.  It can be seen 
that DP1 outperforms the current operations in practice by more than 16 percent.  The mixed in-
teger programming formulation (denoted as “MIP’’) produces a worse solution than the baseline 
solution. This formulation was modified considerably in order to even obtain an integer solution, 
let alone one that is close to the LP relaxation value.  Pure volume was not allowed as the addi-
tion of constraints and variables to incorporate pure volume and containers more than doubles 
the size of the model.  Even with this greatly restricted mixed integer program, it took nearly 24 
hours to find the first integer solution and after running it for three more days there was still a 
considerable IP/LP gap.  If it were tractable to consider creating pure containers for MIP, this 
would most likely result in a better solution than current practice.  However, it is unlikely that 
allowing pure containers in the MIP would lead to comparable or better solutions than the dy-
namic programs since the cost difference is primarily due to almost double the number of con-
veyances being used as opposed to just the additional sorting cost of mixed volume.   
 Comparing the current operations with DP1, we see that the dynamic program results in a 
lower cost because fewer conveyances are used.  Although the current practice sends more pure 
containers and there is less volume to be re-sorted, it requires more conveyances and space is not 
as efficiently utilized.  Current practice results in containers with less volume, thus causing 
wasted space and more conveyances to transport the volume.  The container capacity utilization 
for both data sets is based off of the container capacity.  Service level is the percentage of vol-
ume that is able to depart the market on time.  As seen in Table 2, all volume is sorted in DP1 
while a small amount of volume remains at the ramp in practice.  Although more volume must be 
re-sorted at the ramp, it is sent early so that there is sufficient time to re-sort all of the mixed vol-
ume.  
 Figure 5 shows the objective value after each full pass of the dynamic programming algo-
rithm for DP1.  Clearly the initial approximations along with the strategy used to update the 
smoothing factor  play a factor in the convergence rate.  It is important to note that the heuris-
tics used to obtain initial approximations are based on the problem structure and not the specific 
data sets, therefore we firmly believe that the same successful behavior would be observed with 
different data sets. The strategy used for updating the smoothing factor  started with an initial 
value and then increased the value every given number of iterations by a certain amount to place 
a greater weight on the gradient information at later iterations of the algorithm.  The number of 
iterations between two consecutive updates of  was selected in such a way as to keep the run-
ning time between two consecutive updates constant.  

nλ

nλ

nλ

While the objective value for iteration 1 is at least 15 percent more costly than the final solu-
tion, this is actually a reasonable starting point as nearly all of the supply departs the ramp.  Fig-
ure 6 gives the service level per iteration for DP1.  Trivial initial approximations and not imple-
menting additional rules such as forcing volume out of stations to meet demand points results in 
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much poorer initial solutions and longer times to converge or even not finding reasonable solu-
tions. 
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Figure 5: Objective Improvements for Market M1 

99.91
99.92
99.93
99.94
99.95
99.96
99.97
99.98
99.99

100
100.01

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

Iteration

%
 S

er
vi

ce
 L

ev
el

Service Level
 

Figure 6: Service Level Improvements for Market M1 

5.2. Larger Market 

Table 3 provides the results for the larger market.  A feasible solution to even greatly reduced 
formulations from the mixed integer model could not be found.  The dynamic programming so-
lution significantly outperforms the current practice.  The objective function gain is almost a 
third.  Most of this gain comes from a significantly lower number of conveyances.  Although the 
current practice sends slightly more volume in pure containers, this savings in sorting costs is 
dominated by the extra transportation cost of sending many more partially filled pure containers 
and there is still a significant amount of mixed volume that must be resorted.  In addition to hav-
ing a lower overall cost, the DP1 solution also has a larger service level and thus it dominates the 
baseline solution in both attributes.      
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Table3: M2 Solution Characteristics 
  Objective Run 

Time 
(hours) 

Number of  
Conveyances

% Pure 
Volume

Service 
Level 

Conveyance 
Capacity 
Utilization 

Container 
Capacity 
Utilization

DP1 29.3% 24 20 67.36 99.10% 87.72% 69.75%
Current  0.00% N/A 32 71.66 98.90% 100.00% 38.72%

 
As seen from the next to the last column, the baseline solution sends completely loaded con-

veyances.  The conveyance capacity utilization of the DP1 solution is approximately 87%.  On 
the other hand, many of the containers sent by the baseline solution are less than half full, while 
the DP1 solution sends containers that are more than two thirds filled.  To summarize, the base-
line solution sends fully loaded conveyances with containers filled up at approximately one third 
and the DP1 solution sends conveyances that are not completely loaded but the containers are 
filled to more than two thirds of their capacity.    

Due to the problem size, run times were considerably longer for M2 compared with M1.  Tri-
als were stopped after 24 hours of run time for DP1 and the best solution is reported.  While M2 
is a larger data instance than M1, the main factor that causes an increase in run time is the num-
ber of time periods in the time horizon.  As the number of time periods increases, the number of 
states and approximation values that must be generated increases dramatically due to states such 
as  where both the time t when an action is taken and the time tlsc

ikjttr ′
~ ′  when the effect of the ac-

tion in time t occurs must be accounted for.  Figure 7 and Figure 8 give the objective value and 
service level per iteration for DP1 respectively with prioritized sorting at stations and the ramp.  
Although there are fewer iterations compared to the experiments with the smaller market M1, 
there is a clear improving trend in the objective value and service level.  The initial value func-
tion approximations and forcing of supply out of stations again lead to reasonable initial solu-
tions and service levels.  Longer running times and further experimentation with updating the 
smoothing parameter could lead to improved solutions. 
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Figure 7: Objective Improvements for Market M2 
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Figure 8: Service Level Improvements for Market M2 

5.3. Analysis 

After comparing the models developed in this work across the two data sets, a few interesting 
trends emerge.  An interesting point in comparing the solutions from the two markets is the 
amount of volume sent in pure containers rather than aggregated together as mixed volume.  Af-
ter analyzing the solutions, it appears that based on the given cost parameters, creating pure vol-
ume is only beneficial if this does not lead to excess cost from having to use additional convey-
ances.  If there is not enough volume to fill a container close to the capacity, there is wasted 
space on the conveyance. 

Consider the percentage of pure volume for both markets given in Table 2 and Table 3.  Due 
to less supply for M1, the sorting belt at the ramp is able to process the roughly 60% of the vol-
ume that arrives as mixed volume.  There is no need to ship more pure containers to lessen the 
queue at the ramp as all volume is able to be re-sorted on time, and creating more pure containers 
will likely lead to extra conveyances which would outweigh the savings of less volume to re-sort.   

For the larger market M2, much more volume is sent in pure containers.  There is simply too 
much incoming supply and many early demand points in the time horizon to send large amounts 
of mixed volume.  Figure 9 gives a snapshot of the mixed volume that has arrived at the ramp but 
is not yet sorted and the demand points over this portion of the time horizon.  This represents an 
early iteration of the approximate dynamic programming algorithm on data set M2.  The plot 
starts with the beginning of the sorting operations at the ramp.  There is initially a large queue of 
volume to be re-sorted due to volume from stations as well as direct incoming supply to the 
ramp.  It can be seen that there is considerable congestion during time periods 125 through 135.  
While the demand points during this period represent only a subset of all splits and prioritized 
sorting leads to sorting those splits that are demanded during this period first, if a large amount 
of supply is sent as mixed volume to the ramp around this time, it may not be possible to re-sort 
all the supply to meet demand points.  
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Figure 9: Unsorted Ramp Volume and Demand 

So even if the creation of a new pure container led to an additional conveyance, this may be 
necessary in order to lessen the queue at the ramp and provide an acceptable service level.  Due 
to the high conveyance and capacity utilization levels, it appears that the algorithm recognizes 
that when an additional conveyance is used, it should search for additional splits to make into 
pure containers to effectively use the conveyance capacity.  Conveyance capacity utilization is 
lower for M2 compared with M1 due to containers being forced out of a station before the sort is 
complete in order to meet demand points.   
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Appendix 
This appendix gives the rest of the action space constraints that are not discussed in Section 3. 

For mixed volume, it is not possible to ship one split while not shipping another since all the 
volume is mixed together.  The next constraints enforce that either all or none of the mixed con-
tainers and mixed volume that are available to potentially depart are sent.  

   0ˆˆ ,,,, =⋅−∑
∈

s
jmixt

s
tj

Ll

ls
jmixt rx λ FjBAs ∈∪∈ ,                        Eq. 35  

   0,, =⋅− mixs
tij

s
tj

mixs
tij rx λ FjIiBAs ∈∈∪∈ ,,                        Eq. 36            

Note that these two families of constraints do not directly have the form stated in Eq. 27 since 
components   and , ,ˆs

t mix jr ,s mix
tijr  do not appear only on the right-hand side.  To ensure these con-
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straints are of the problem stated in Eq. 27, we transform Eq. 36 (the transformation for Eq. 35 is 
identical) into  
                                           , ,                 , ,s mix s mix

tij tijx r s A B i I≤ ∈ ∪ ∈ j F∈                                Eq. 37 
,              , , ,s mix s

tij tjx M s A B i Iλ≤ ⋅ ∈ ∪ ∈ ∈j F  

where M is a big number. This follows from the observation that ( ), ,min ,s s mix s s mix
tj tij tj tijM r rλ λ⋅ = ⋅  

since λ is binary.  
The following two constraints are needed to accurately track incoming supply.  These con-

straints prevent assigning supply to a container in the same time period that a container is being 
removed.  This also provides a delay of one time period for creating two containers of the same 
split and type.    

   s
pures

tij
s
tijs vzyv ≤+⋅ ,ˆ FjIiBAs ∈∈∪∈ ,,                        Eq. 38 

   s
Ii

mixs
tij

s
jmixts vzyv ≤+⋅ ∑

∈

,
,,ˆ FjBAs ∈∪∈ ,                        Eq. 39 

 The amount sorted at the ramp is a decision variable to give precedence to splits with fast 
approaching demand points.  This amount must be less than the unsorted volume currently at the 
ramp, which is represented by non sorted volume that arrived in previous time periods, direct 
incoming supply to the ramp, and mixed volume from stations.  In addition to this constraint, the 
total amount of volume of any split sorted in a time period at the ramp is restricted by the ramp 
sort capacity. 

                                Eq. 40 , , , , ,
NS mix

ti ra ti ra t i ra tti raz r w r i≤ + + ∈� I

 rat
Ii

rati capz ,, ≤∑
∈

                                          Eq. 41 

In addition to the previously discussed constraints that model the actions that take place in a 
given time period, additional constraints are needed to ensure non-negativity of the state vari-
ables.  The following constraints state that the number of containers departing a station, the 
number used to fulfill demand points at the ramp, and re-sorted mixed volume at the ramp must 
be less than the amount of containers and volume on hand. 

   s
tij

s
tij

Ll

ls
tij ryx ˆˆˆ ≤−∑

∈

FjmixIiBAs ∈∪∈∪∈ },{,                       Eq. 42 

   s
ratti

s
rati

s
rati rr ,,, ˆˆ +≤θ IiBAs ∈∪∈ ,                              Eq. 43  

   rati
MV

rati
MV

rati zr ,,, +≤ψ Ii∈                               Eq. 44 

The following four constraints put a lower bound on the amount of volume that is in a con-
tainer before it can be removed from a load position for As∈  and before the container is ready 
to potentially leave for .  These constraints are added to initialize the sorting of volume into 
containers in early iterations of the algorithm.   

Bs∈

 
pures

tij
s
tijs ryvmf ,ˆ ≤⋅⋅

       FjIiAs ∈∈∈ ,,                                 Eq. 45 
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≤⋅⋅
Ii

mixs
tij

s
jmixts ryvmf ,

,,ˆ   FjAs ∈∈ ,                                                Eq. 46  

   
pures

tij
s
tijs ryvmf ,ˆ ≤⋅⋅ FjIiBs ∈∈∈ ,,                             Eq. 47 

 ∑
∈

≤⋅⋅
Ii

mixs
tij

s
jmixts ryvmf ,

,,ˆ  FjBs ∈∈ ,                             Eq. 48 

If such a behavior is not imposed explicitly, then it is dynamically adjusted by the algorithm. In 
some circumstances, values mfs are part of the input (it captures the incentive of not handling too 
many containers). If this is not the case, we still add these constraints to speed up the conver-
gence of the algorithm. In the latter case, we start with a large value that is gradually decreased.  

Eq. 49 together with Eq. 12 imposes that the non sorted volume at stations  is nonnega-
tive and Eq. 50 imposes the sort rate restriction at stations. 

NS
jitr ,,1+

   ijt
NS

tijtij wrz +≤ FjIi ∈∈ ,                                          Eq. 49 

   jt
Ii

tij capz ≤∑
∈

Fj∈                                          Eq. 50 
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