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The flow of packages of an express package carrier consists of pick ups at costumer locations by 
couriers and delivering the packages to a local station for sorting.  The packages are then 
transported to a major regional sorting facility called the ramp. At the ramp, packages can be 
sorted again before departing to a hub.  From the hub they are moved to the destination ramp, 
where the entire process repeats in the reverse order until ultimate delivery of the package to the 
end customer.  We focus on the afternoon and evening operations concerning stations and the 
ramp.  Sorting and transportation decisions among these locations are considered. The most 
important decisions are: (1) which packages to aggregate at the stations, and (2) what is the most 
efficient transportation among locations to meet time deadlines at the ramp.  Several options for 
modeling the sorting process at stations and the ramp, as well as the possibility of vehicles 
traveling from one station to another station to consolidate volume before proceeding to the ramp 
are considered. We model these processes by means of a dynamic program, where time periods 
represent time slices in the afternoon and evening. The overall model is solved by approximate 
dynamic programming, where the value function is approximated by a linear function. Further 
strategies are developed to speed up the algorithm and decrease the time needed to find feasible 
solutions. The methodology is tested on several instances from an express package carrier.  The 
dynamic program solutions are substantially better than the current best practice and the best 
solutions obtained from an integer programming formulation of the problem.   

 

1. Introduction  
Packages move through several steps within the originating market before being loaded on a 
truck or plane to move through one or more hubs, after which the packages arrive at the destina-
tion market.  Those tasks that occur within the market where the package originated are known 
as intra market operations.  It is important to route and sort packages within the origin market in 
such a manner that they meet their departure times to prevent flight delays from propagating 
throughout the network.  Customers use express shipment to ensure on-time delivery, so the fail-
ure of packages to depart their origin market can lead to poor customer service levels.  While it is 
critical to deliver packages in a timely manner, excessive handling and package routing can lead 

mailto:lukeschenk@gmail.com�
mailto:d-klabjan@northwestern.edu�


 
 

2

to high operating costs.  Figure 1 provides a depiction of intra market operations with the possi-
bility of aggregating volume at an intermediate station before proceeding to the ramp. 

 
Figure 1: Intra Market Depiction 

The intra market operations for moving packages outbound from the market occur in the af-
ternoon and evening hours to meet overnight departure times.  Therefore the problem of moving 
the volume from stations to the ramp is referred to as the PM operations problem.  This problem 
consists of making the sorting decisions, determining how to create containers, and transporta-
tion decisions such as which transportation mode to use and which containers to load.  A multi-
class package flow refers to a set of packages going to the same outbound destination and of the 
same package type (box, letter). The term multi-class refers to the fact that they are differentiated 
by package type and the term flow stands for the fact that it is a set of packages with a specific 
origin and destination, and the underlying routing. For example, a set of letters going from Peo-
ria, IL to Fresno, CA represents a single multi-class package flow. If a container is created at a 
station consisting of a single multi-class package flow, then such a pure container need not be 
sorted again at the ramp and therefore cost savings occur. On the other hand, such decisions can 
yield higher transportation costs due to the use of more containers and thus increased transporta-
tion capacity.  

Within a season, the daily inflow of packages at stations is fairly stationary and it does not 
fluctuate from day to day. As a result, the planning problem under consideration is solved before 
the beginning of a season and it is typically not altered throughout the season. During a season, 
based on the provided solution of the proposed model, the macro level decisions are deployed: 

• every morning, the recommended vehicles are dispatched to stations, 
• each vehicle is preloaded with the assigned number of containers, and 
• during sorting at stations, the correct mix of pure vs. mixed containers is attempted. 

Another reason for adhering to the same plan throughout the season is operational ease and effi-
ciency. Clearly such high repetition is possible due to stationary inflow of packages.  
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In Schenk and Klabjan (2008), the authors formulate a version of the PM operations problem 
as a dynamic program and propose an algorithm to solve the problem based on approximating 
the value function by a linear function.  In their model, the sorting process assumes that whenev-
er a sorting queue builds up, it is possible to select the volume to be processed next in an optimal 
way (prioritized sorting). This is only an approximation since in real operations most of the time 
the sorting queue follows the first-in first-out principle. In this manuscript we introduce a new 
concept termed proportional sorting, which models the sorting process more accurately.  Propor-
tional sorting introduces nonlinearities, which complicates the solution methodology.  Schenk 
and Klabjan (2008) also assume that a transportation vehicle travels directly from a station to the 
ramp.  In this work we relax this restriction by allowing a vehicle to start at a station and then 
travel to a different station to pick up additional volume or to unload volume before proceeding 
to the ramp.  This substantially complicates the model, but, can lead to further cost savings 
through consolidation and a reduced number of vehicles to transport the packages to the ramp. 

This paper makes the following contributions. 
1. A detailed model of the PM operations problem that includes the option of aggregat-

ing volume between stations and more detailed sorting and unloading options. 
2. An approximate dynamic programming strategy for solving the model. 
3. Experimental work that demonstrates the quality of the solution obtained by the algo-

rithm. 
Results of computational experiments show that linear approximations using gradient infor-

mation generate good solutions to problems with many more time periods, longer travel times, 
and larger, more heavily constrained state and action spaces than other previously studied prob-
lems where this method was implemented.  Since optimal solutions to the PM operations prob-
lem even for smaller markets are not known, solutions are benchmarked against the current oper-
ations in practice.  Strategies are presented for choosing initial values for the value function ap-
proximation and other methods to improve the speed and convergence of the algorithm. 

Section 2 gives a review of existing literature on dynamic programming and transportation 
problems, while Section 3 discusses the PM operations problem in greater detail, including small 
examples showing alternative sorting options and the benefits of station to station travel.  Section 
4 outlines the states, actions, and costs that are captured in the dynamic programming formula-
tion of the PM operations problem.  While some example system dynamics and action space 
constraints are given, the dynamic program is very complex and the reader is referred to Schenk 
(2005) for the complete mathematical model.  Section 5 gives the general overview of the ap-
proximate dynamic programming algorithm and gives details as to how the corresponding solu-
tion methodology is modified to include the extensions to the model.  Section 6 presents the re-
sults of computational experiments for the dynamic programming algorithm with station to sta-
tion travel. These results are compared to the integer-programming-based algorithm found in 
Schenk and Klabjan (2008) as well as current operations in practice. 

2. Literature Review    
Our working is related to three areas: freight transportation, express package operations and 
planning, and approximate dynamic programming. There is abundant literature on designing ser-
vice networks in freight transportation, see, e.g., surveys Crainic (2003), Crainic and Kim 
(2007). Our work is not really about designing the network, but, the common theme is the selec-
tion of a mode of transportation. Another important difference is the granularity and the time ho-
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rizon. Service network design problems deal with a multi-year time horizon, while our discreti-
zation is down to minutes of a single afternoon. The employed modeling and algorithmic tech-
niques are vastly different and are much more aligned with the work by Powell et al. (2007), 
which is discussed in greater details later.   

There is limited literature concerning express package deliveries.  Kim et al. (1999) model 
multimodal express package delivery through a model which they call the Express Shipment 
Service Network Design Problem (ESSND).  This paper presents solution methodologies for 
moving packages from their origins through their originating market to their destinations with 
time windows for delivery.  This work routes packages from the ramp to the hub while consider-
ing package transfer at an intermediate destination, and can similarly be used for routing from 
the hub to the destination ramp on the outbound side.  The volume of packages is considered the 
same from day to day in order to allow for flow conservation of aircraft.  The problem modeled 
in our paper can be thought of as the input to the ESSND problem.  Several problem reduction 
methods and heuristics are presented to decrease problem size without compromising model op-
timality.  Further solution methodologies to the ESSND problem are given in Armacost et al. 
(2002).  This paper introduces the notion of composite variables, which are essentially variables 
that capture both aircraft routing and package flow decisions.  There is thus no longer a need for 
separate variables representing these decisions and the problem size and solution time are re-
duced considerably.  Both papers conclude that integer programming methods must be combined 
with heuristic strategies and other problem modifications to solve large problem instances. 

Our paper draws on the emerging field of approximate dynamic programming.  For problems 
modeled as a dynamic program with many decisions and a large state space, the number of poss-
ible outcomes grows considerably and makes problems difficult to solve.  These problems such 
as the PM operations problem with a large state space require the use of approximate dynamic 
programming to provide an estimate to the value function.  Much of the recent work on dynamic 
programming applications and approximation algorithms to transportation problems is summa-
rized in Powell et al. (2007) and Powell and Topaloglu (2003).  Powell et al. (2001) provides a 
formal notation for the dynamic modeling of transportation problems and defines problem 
classes and terminology.    

3. Problem Description 
This section describes the PM operations problem in detail.  The description follows the time 
based flow from the customer sending a package to the point of departure from the origin mar-
ket.  Several small examples are also provided to better explain the operations and flow of pack-
ages within the market. 

3.1. Supply and Sorting at Stations 
On a given day, customers deposit packages at drop off points.  Couriers then take these pack-
ages to facilities called stations.  Packages arrive at stations at fixed times that are considered as 
incoming supply points.  Since packages can be of any size, we consider the overall volume of 
supply as opposed to the number of packages.  Incoming supply can be differentiated based on 
destination and package type such as a box or document.  Each unique combination of these 
identifiers is called a multi-class package flow. For easy of discussion, the term package is some-
times used to represent the combination of these identifiers.   
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Once packages arrive to a station, the supply is loaded onto the sorting belt, which is a con-
veyor belt, and then moved within the facility.  We consider two alternative sorting processes at 
stations and the ramp, proportional and prioritized sorting.  Proportional sorting mimics an au-
tomated sorting belt where packages pass across the conveyor belt and are sorted automatically 
into containers.  The order that packages are placed on the conveyor belt determines the order in 
which they are sorted.  Prioritized sorting mimics a manual sorting procedure, where package 
handlers can pick and choose what packages to load into containers.  

For both sorting methods, based on a fixed speed of the conveyor belt or number of package 
handlers, there is a maximum amount of volume that can be sorted in a time period.  So if the 
amount of incoming supply in a time period exceeds the sorting belt capacity, some of the pack-
ages will have to be held over to the next time period.   

For proportional sorting, while the amount of each multi-class package flow that arrives at a 
station in a time period is known, it would be difficult to model the layout and the exact order of 
the packages on the sorting belt.  So if the supply at a station that has yet to be sorted exceeds the 
sort belt capacity, the amount that is sorted is proportional for each multi-class package flow.  
Then in the next time period, there would be leftover supply from the previous time period as 
well as the new incoming supply.  Since the leftover supply is already queued at the sorting belt, 
the new incoming supply will be placed at the end of the queue and all leftover supply will be 
sorted first.  So the process can be thought of as a batched first-in first-out (FIFO) queue.   

Example of Proportional Sorting: Consider incoming supply of three multi-class package flows 
at a single station over three time periods and proportional sorting.  In the first time period, there 
is incoming supply of 50 cubic feet of each multi-class package flow.  50 cubic feet of package 1 
and 25 of package 2 arrive in the second time period, while 25 cubic feet of each package come 
to the station in the third time period as shown in Table 1.  The maximum sort capacity per time 
period is 100 cubic feet and sorting begins in the second time period.   

Although sorting does not begin until time period 2, the incoming supply in time period 1 is 
the first to be loaded onto the belt and is first compared with the maximum sort rate.  Since the 
sum of this supply over all multi-class package flows is greater than the sort rate, not all of this 
supply can be sorted in one time period.  For each multi-class package flow, the proportion of 
supply relative to the total supply of all packages times the sorting capacity will be the amount 
sorted.  This leads to 33.33 cu-ft of each of the three multi-class package flows being sorted in 
the second time period since this is when the sort begins and 16.67 cu-ft of each package is the 
leftover supply from time period 1.  The incoming supply from time period 2 is also leftover 
supply since the supply from time period 1 used all of the capacity in the second time period. 

In time period 3, the 50 cu-ft of leftover supply from the first time period will be sorted first 
since it is less than the sort capacity.  This leaves the remaining sort capacity of 50 cu-ft to 
process the next batch of incoming supply, which arrived in time period 2.  Since the total supply 
is greater than the remaining sort capacity, the proportional sorting assumption results in an addi-
tional 33.33 cu-ft of multi-class package flow 1 and 16.67 cu-ft of multi-class package flow 2 
being sorted in time period 3.   

Although there is no incoming supply in time period 4, there is unsorted supply that arrived 
in time periods 2 and 3 that still must be processed.  Based on the batched FIFO queue, the 25 
cu-ft of leftover supply from time period 2 will be sorted first.  This leaves a remaining sorting 
capacity of 75 cubic feet as well as 75 cubic feet of supply yet to be sorted.  So all of this supply 
can be sorted and since there is no more scheduled incoming supply, the sort is completed.  The 
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results of proportional sorting can be seen in Table 1.  The logic behind prioritized sorting is dis-
cussed in Section 3.5.                                                                                                                  □ 

Table 1: Proportional Sorting 

Multi-class Pack-
age Flow 

Incoming 
Supply (cu-ft) 

Time Sorted Supply 
(cu-ft) 

1 50 1 0 
2 50 1 0 
3 50 1 0 
1 50 2 33.33 
2 25 2 33.33 
3 0 2 33.33 
1 25 3 50.00 
2 25 3 33.33 
3 25 3 16.67 
1 0 4 41.67 
2 0 4 33.33 
3 0 4 25.00 

 

3.2. Assigning Supply to Containers 
After determining how much is sorted in a time period, a decision must be made as to where the 
sorted packages will be placed.  A sorting belt consists of a number of locations where volume 
can be pushed off the sorting belt as seen in Figure 2.  At the ramp, there are fixed times when 
specific multi-class package flows and container sizes are needed in order to depart the market 
on time. These time, package and container type combinations are called requirements, where 
the container type determines the amount of capacity to be filled.   

To fulfill requirements, a pure container with a single multi-class package flow can be 
created at a station, sent to the ramp, and be directly used to meet a requirement.  Alternatively, a 
multi-class package flow can be combined with other packages at a station to form what is re-
ferred to as a mixed container.  A mixed container must be broken down upon arriving at the 
ramp.  This means that at the ramp the volume is removed from the mixed container and resorted 
to create pure containers that can then be used to fulfill requirements.  Any package can be put in 
a mixed container and it is possible to create a pure container of any multi-class package flow.   

Since requirements specify the container type, there is no need to track the volume in pure 
containers. However, for mixed containers, we need to track the volume of each multi-class 
package flow since mixed containers are resorted at the ramp.  So as volume is being sorted at 
stations, the decision must be made as to what container type a multi-class package flow will be 
placed in and whether this will be a pure or mixed container.  The process of breaking down a 
container takes additional time which could result in supply missing its outbound departure, whe-
reas a pure container can be immediately off loaded at the ramp and loaded on outbound vehicles 
departing the market.  However, creating many pure containers can also lead to poor solutions as 
this could require additional vehicles to transport the containers from the stations to the ramp.    
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3.3. Container Types and Load Positions 
Containers are categorized into two different types, each with varying capacities.  The differen-
tiation between these two types is an important factor when considering station to station travel.  
However, this also plays a role concerning how volume is loaded into containers and how they 
depart a station.  

Refillable Containers 
A refillable container could be transported to a different station and have additional volume 
placed in it.  At a station, the action of placing volume in a refillable container simply involves 
moving the designated supply from the sorting belt and dumping it into the container.  There can 
be requirements for refillable containers so therefore it is possible to create both pure and mixed 
containers of this type.   

Shrink Wrapped Containers 
For a shrink wrapped container, once the decision has been made for the container to depart a 
station, it is impossible to have more volume placed in this container.  While more volume could 
potentially be placed in the container after it is closed if the container is not already full, this 
would require additional effort, time and container movement, thus making it operationally in-
feasible.  However, there are also many benefits to creating shrink wrapped containers since they 
can be moved more easily and effectively.  

When a shrink wrapped container is being loaded with volume at a station, it is placed in a 
load position.  Load positions are essentially slots or locations that are configured to hold specif-
ic sized containers while they are being loaded.  Shrink wrapped containers must be placed at 
load positions to properly close the container whenever it is filled or ready to depart the station. 

Since refillable containers need not be at a specific position to be filled, it is assumed that 
there is no limit to the number of refillable containers that can have volume loaded into them in a 
time period.  However, for shrink wrapped containers, the number of currently loading contain-
ers is restricted by the number of containers of each type that can fit in load positions.  Also, at 
least one load position must be reserved for creating a mixed container.  This is to prevent all 
load positions being occupied by pure containers and the arrival of a multi-class package flow 
that does not have a designated container at a load position.  Figure 2 depicts sorting and package 
movements at a station.  



 
 

8

 
 Figure 2: Station Sorting Operations 

3.4. Departing Containers and Vehicles 
At some point in the daily operations, a container will depart the station.  This can be due to the 
container being filled to capacity, or due to time constraints that require the container to depart 
the station due to requirements. 

Container-Vehicle Relationship 
Both refillable and shrink wrapped containers have a maximum volume capacity.  Containers are 
further distinguished by their container footprint.  This parameter determines how load positions 
and vehicles are configured, in a sense taking into account the shape as well as the size of a con-
tainer.  For example, if a load position has a capacity of one, and a certain container size has a 
footprint of 0.5, two of these containers can be placed at the load position.  The logic is similar 
for containers being placed on vehicles.  The sum over the number of containers that depart a 
station in a given time period times their footprint must be less than the total capacity of the ve-
hicles sent.   

3.5. Station to Station Travel 
Depending on the overall amount of supply at a station and how supply is assigned, there may be 
containers or vehicles that are not at capacity.  A container being forced out of a station in order 
to meet a requirement leads to poor resource utilization.  After all supply is sorted at a station, 
having a vehicle travel to another station to pick up additional containers and volume could lead 
to reduced costs and the need for fewer vehicles across the entire market as shown in Figure 3.  
Similarly, timing a vehicle to arrive at an intermediate station in time to pick up a container that 
is forced out to meet requirements can lead to a full vehicle being sent to the ramp as opposed to 
an additional vehicle being needed just to ship the container that is forced out.  This section dis-
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cusses how resources are tracked when station to station travel is introduced and describes logi-
cal relationships that must occur for station to station travel to be beneficial.   

     
 Figure 3: Potential Travel Routes 

Shrink Wrapped Containers and Station to Station Travel 
By definition, once a shrink wrapped container is closed and departs a station, it cannot be reo-
pened until it is emptied at the ramp or destination market.  So clearly, no additional volume 
could be placed in a shrink wrapped container at an intermediate station.  However, it is possible 
to have a vehicle travel to an intermediate station and pick up a shrink wrapped container that 
was created from volume that originated at this station.  If a container is loaded onto a vehicle 
that originated at another station, this container is said to complement the vehicle.  This container 
could be created before the vehicle arrives, and simply loaded to then depart for the ramp.  The 
number of containers that are at an intermediate station but originated at another station must be 
tracked in order to ensure that these containers depart for the ramp and so that the vehicle capaci-
ty is not violated by the addition of new containers at the intermediate station.  Mixed volume 
from both the origin and intermediate station must be tracked; however, it is not necessary to ac-
count for pure shrink wrapped container volume since requirements are in terms of the number 
of containers as opposed to a specific amount of volume.  

Refillable Containers and Station to Station Travel 
A refillable container can have additional volume loaded into it before it reaches the ramp.  A 
container must be present at the intermediate station before additional, complementary volume 
can be loaded into it.  So at a station, there is a possibility of assigning incoming supply to com-
plement a refillable container from another station as well as to be assigned to a container that 
originates at the same station as the supply.  The amount of volume in a refillable container from 
both the origin and intermediate station must be monitored so the amount of volume in a con-
tainer does not exceed its capacity.   

As with shrink wrapped containers, it is also possible to pick up an entire refillable container 
from an intermediate station and place it on a vehicle from another station.  This requires moni-
toring both containers and volume to ensure vehicle capacity and the departure of all volume to 
the ramp.   

Example: Consider a vehicle originating at station k and traveling to station j, then to the ramp as 
shown in Figure 3.  Figure 4 represents a snapshot at time t when the vehicle departs station k 
with one refillable (rfc), and one shrink wrapped (src) container.   

Station k 

Station j

Ramp
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 Figure 4: Vehicle Departing the Origin Station 

After the vehicle has reached station j at time t and until it departs station j, volume can be 
assigned to the refillable container, and new refillable or shrink wrapped containers that are 
created at station j can be loaded onto this vehicle before the vehicle departs on its final leg to the 
ramp.  Figure 5 depicts the vehicle at the intermediate station.   

 
 Figure 5: Vehicle at an Intermediate Station 

Although the number of containers that originated at station k does not change, they still must 
be accounted for since they are occupying space on the vehicle.  It also may be possible for 
another vehicle to arrive from the same station during this time, thus increasing the number of 
containers and volume from station k.  Finally, Figure 6 shows the vehicle at the time it is fully 
loaded and departs station j en route to the ramp.  The vehicle holds the shrink wrapped container 
from k, the refillable container from k with volume from both stations, as well as the refillable 
and shrink wrapped containers complementing the vehicle that contain volume originating at the 
intermediate station j.                                                                                                                □ 
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Figure 6: Vehicle Departing the Intermediate Station 

Station to Station Numerical Example: This example builds on the examples shown in Section 
3.1 and Section 3.5 to show the benefits of stopping at an intermediate station to consolidate vo-
lume.  Refer to Table 1 for the supply profile at what is denoted as station 1.  Now consider 
another station in the market. For simplicity, we will not discuss sorting at this station and as-
sume the only incoming supply to station 2 is 75 cu-ft of multi-class package flow 1 that is sorted 
and ready to potentially depart the station in time period 6.  The container and vehicle options in 
Table 2 are available at both stations.  Table 3 gives the travel times between the stations and the 
ramp as well as the requirements at the ramp.   

Table 2: Container and Vehicle Parameters 

Travel Time 2 time periods 
Ramp Sort Rate 100 cu-ft/time period 
Ramp Sort Start 1st time period 
Vehicle 1 Footprint 1 
Vehicle 2 Footprint 2.5 
Container 1 Capacity 100 cu-ft 
Container 1  Footprint 0.5 
Container 2  Capacity 300 cu-ft 
Container 2 Footprint 1 
Vehicle 1 Cost $400.00 
Vehicle 2 Cost $600.00 
Ramp Sort Cost  $1.00 per cu-ft 

 

Table 3: Requirements (right) and Travel Times (left) 
 

 
The solution for the single station problem results in sending four pure containers on vehicle 

2.  Note that the footprint capacity of vehicle 2 is 2.5 while the sum of the footprints of the con-
tainers on this vehicle is 2, meaning that there is room on the vehicle for another container with 
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footprint 0.5.  The optimal solution to the two station problem without allowing station to station 
travel would result in sending vehicle 1 from station 2 to the ramp with a pure container of multi-
class package flow 1 as well as the previously discussed vehicle from station 2.  This results in a 
total cost of $1000.   

With station to station travel, the vehicle that departed station 2 can be eliminated and the 
pure container of multi-class package flow 1 at station 2 can be used to complement the vehicle 
that originated at station 1.  The vehicle from station 1 will once again depart in time period 4 
with 4 pure containers and an additional spare 0.5 footprint capacity.  Instead of traveling direct-
ly to the ramp, it takes two time periods to travel to station 2, thus arriving by time period 7.  The 
pure container of multi-class package flow 1 that has already been created can be loaded onto 
this vehicle, and then travel to the ramp in one time period, allowing all containers with a time of 
8 to meet requirements since they are pure containers and there is no need for resorting.  This 
results in a solution with a significantly reduced cost of $600 since only one vehicle is needed for 
two stations.  If time permitted and there were requirements for refillable containers, the 75 cu-ft 
of multi-class package flow 1 at station 2 could complement the pure containers that originated 
at station 1 as opposed to creating a new container.                                                                        □ 

4. Dynamic Program Model Description 
This section describes the resources that must be tracked in the dynamic programming model.  
We then provide a numerical example to describe how the states are updated, some of the con-
straints on the actions in the system, and give an example of some system dynamics and action 
space constraints when considering station to station travel. The full mathematical model is very 
complex and can be found in Schenk (2005).  

4.1. States 
Due to the complexity, we employ the modeling framework from Powell et al. (2001), which is 
based on the notion of resources and attributes.  

From the point of the incoming supply at stations, several resources must be tracked to en-
sure that all supply eventually departs the origin market and the decisions made in a time period 
are based on the appropriate resources that are present. Resources are represented by an attribute 
vector a. We have already indicated that for each container we must distinguish between a pure 
or a mixed one and therefore this is the first attribute. Containers differ in their size and shape 
and therefore for each container the second attribute represents its type. The underlying multi-
class package flow is also an attribute. Since containers also move between locations on vehicles, 
the last three attributes correspond to the origin and destination station, and the underlying ve-
hicle. When referring to containers stationed at a station, we specify the origin station attribute 
and leave the last two attributes empty.  

In order to appropriately load containers into vehicles we need to track the number of con-
tainers or resources of each attribute vector. On the other hand, to capture requirements for each 
mixed container we need to know the volume of each container or resource of each attribute vec-
tor. This requires two type of state variables; one for counting the number of resources and the 
other one to represent the underlying volume.  

Let a = (‘pure’ or ‘mixed’, container type, multi-class package flow index, station index, sta-
tion index, vehicle type) be the attribute vector. Its coordinates are labeled as 1 2 6, ,...,a a a . The 
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two station indices capture the origin and destination station indices of a potential transfer carried 
out by the corresponding vehicle. If an attribute is not needed for a particular state component, 
we represent it with an underscore.  

We denote by tar  the amount of volume at time t in all containers with attribute vector a. For 
example, if ('mixed', , , , _, _)a s i j= , then tar  denotes the amount of volume of multi-class pack-
age flow i in mixed containers of type s at time t and station j that are ready to leave the station. 
If type s is a shrink wrapped container, then these containers have already been removed from 
load positions. There are similar state variables t̂ar  that capture the number of containers. The 
amount of volume in containers at load positions must be tracked to determine when containers 
are full and should be removed. As an example, tar  with ('pure', , , , _, _)a s i j=  has the same in-
terpretation as tar  except that it is the volume in a pure container s at a load position.  Once re-
moved, we need to know the number of available containers and amount of volume that could 
potentially depart the station in each time period.  Since requirements at the ramp are given in 
terms of containers rather than volume, we do not need to know the amount of pure volume 
ready to depart, simply the number of containers.  For mixed containers, the volume of each mul-
ti-class package flow is important so we can guarantee that volume departs the station in order to 
be resorted at the ramp. 

Due to the limited sort capacity in a time period we must allow for backlogging of incoming 
supply at stations and incoming volume at the ramp. In other words, volume that is not yet sorted 
in a time period carries over to the next time period. To model this we introduce NS

tar  with 
(_, _, , , _, _)a i j= , which represents the amount of volume of multi-class package flow i that is 

at station j or the ramp if j corresponds to the ramp before time t but has not yet been sorted.  
When the decision is made to have containers depart stations, we need to know the time that 

they depart the station as well as the time that they arrive at the ramp since this will not necessar-
ily be the next time period due to multi period travel times.  We let time t be the time that con-
tainers or volume depart stations and time t ′  be the time that these resources arrive at the ramp.  
This information is then used to determine the amount of volume that must be resorted and the 
number of pure containers available to meet requirements. As an example, consider 't̂t a

r  with 
('pure', , , _, _, _)a s i= , which is the number of pure containers of multi-class package flow i type 

s known at time t and arriving at time t′  to the ramp. Although these containers and the corres-
ponding volume are not present at the ramp at time t, actions are taken at this time that predeter-
mine the state of the system after the multi period travel time to the ramp.  Once supply is re-
sorted, we need to track this amount to know what volume is available to potentially be used to 
meet requirements. For example, 'tt a

r%  with ('mixed', _, , _, _, _)a i=  tracks the amount of multi-
class package flow i arriving to the ramp at time t′  in mixed containers.  

Next we outline states that are required to capture the new features of the problem presented 
herein. Concerning volume at load positions, this model tracks the time since a container of a 
given type and multi-class package flow has been removed from a load position to capture the 
switching time to remove and then place a new container at a load position. We must assure that 
sufficient time is elapsed since the removal of a container of a particular type from a load posi-
tion before we can start using a new container at a load position. We need, for example, tar′  with 

('pure', , , , _, _)a s i j=  to represent the number of time periods since a pure container of type s 
and multi-class package flow i has been removed from a load position at station j. If this value is 
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less than a given parameter, then we cannot load a new container at a load position. Whenever a 
container with these characteristics is removed from a load position, this value is set to one and 
then it is increased by one each subsequent time period.  

We must also account for containers and volume traveling between stations.  Consider the 
following four possibilities of station to station movement. 

1. A pure shrink wrapped container (src)  
2. A pure refillable container (rfc) 
3. A mixed shrink wrapped container (src) 
4. A mixed refillable container (rfc) 

For all four cases, the number of containers as well as the time that these containers arrive at 
the intermediate station must be tracked to account for the space that they are occupying on the 
vehicle.  The difference between the cases concerns volume.  For case 1, the volume in the con-
tainer does not need to be tracked since it cannot acquire additional volume and will be used di-
rectly to meet requirements.  For a pure refillable container, we must account for the volume ar-
riving to the intermediate station to ensure that the container capacity constraint is not violated 
by adding complementary volume into the container.  The volume in cases 3 and 4 must clearly 
be monitored since this volume will be resorted at the ramp after departing the intermediate sta-
tion. 

Now consider the containers in all four cases and volume for the cases where this must be 
tracked once the vehicle has arrived at the intermediate station.  New states are needed to track 
containers and volume from the origin station at the intermediate station since this information is 
not conveyed in the states linking the departure and arrival times of the two stations.  Tracking 
containers and volume in limbo at the intermediate station is necessary to guarantee that these 
resources eventually depart for the ramp and that the vehicle capacity is not violated by addition-
al containers and supply from the intermediate station. For example, we denote by t̂ar  with 

('pure', , , , , )a s i k j l=  the number of pure containers of type s multi-class package flow i in ve-
hicle type l that are at station j at time t and arrived from station k. 

An advantage of this modeling paradigm is that each state coordinate can be encoded by at 
most three indices, the time index t, the actionable time t′ , and the underlying attribute vector a.  

Example: Here we follow the example shown in Section 3.6 of a vehicle departing station k=1 
with a refillable and shrink wrapped container and traveling to station j=2 to pick up complemen-
tary volume and containers before proceeding to the ramp.  The parameters used are different 
from those given in Table 2 and Table 3.  The example presented in Section 3.6 was given to 
show the potential benefits of station to station travel while the example given next is intended to 
show how states are tracked across the time horizon.  Let src in Figure 4 be a pure container with 
attribute vector (‘pure’,1,1,1,2,1), and let the current time period be t=10 with the travel time 
from station k to station j being 10 time periods.  We assume rfc represents a different container 
with attributes (‘pure’,2,2,1,2,1). Containers of type 1 are shrink wrapped while those of type 2 
are refillable. Also let there be 50 cu-ft of volume in rfc.  Clearly the action variables 
representing the departing containers will equal one at time t=10.  Assuming that there are no 
other available containers on hand at station 1, the number of available containers in the next 
time period will be driven to zero by the departing vehicle.  Since we must also track the time 
when containers or volume arrive to the intermediate station, state variables are needed to 



 
 

15

represent that a container departing in time period 10 will arrive in time period 20 after the travel 
time of 10 time periods.  

The tracking of containers and volume across multi period travel times is necessary to deter-
mine when the resources will arrive at the intermediate station as well as to monitor the resources 
that originated at station k while they are in limbo at station j=2 to guarantee that they eventually 
depart for the ramp.  Consider time period 20=t  when the vehicle arrives at station j and as-
sume that no volume or complementary containers have been added to the vehicle.  For the refil-
lable container, we must track that at this time period a container arrives as well as the 50 cu-ft of 
volume in the container.   

While the vehicle is in limbo at station j=2, rfc can have additional volume loaded into it in 
each time period and containers of both types can be created at j to complement the vehicle in a 
later time period as depicted in Figure 5.  Consider time period t=21 after the vehicle has arrived 
and assume that the vehicle will not depart for the ramp in this time period.  Suppose that it is 
decided to have 10 cu-ft of multi-class package flow i=2 be loaded into the rfc that arrived from 
station 1 in the previous time period.  Assume that there are no additional vehicles arriving to 
station 2 in this time period or throughout the rest of the time horizon.  The total amount of vo-
lume from either station that is in rfc will then consist of the 50 cu-ft that originated at station 
k=1 as well as the 10 cu-ft that have just been assigned to this container. 

Now let t=30 represent the time when the vehicle that originated at station 1 departs station 2 
for the ramp.  Clearly the complementary containers that were created at station 2 must have 
been loaded onto the vehicle by this time and volume can no longer be added to rfc.  Suppose 
that during the time that this vehicle was in limbo at station 2, 50 cu-ft of supply was loaded into 
an rfc that originated at station 1.  State variables concerning the number of refillable and shrink 
wrapped containers as well as the amount of volume in the refillable container on the vehicle that 
originated at station 1 will be driven to zero in the next time period due to the departing re-
sources.  Other states such as those representing the src and the volume and mixed containers 
complementing this vehicle will also drop to zero in the time period after the vehicle departs for 
the ramp.  These departing containers and volume must be tracked to determine when the re-
sources will arrive at the ramp.                                                                                                  □ 

4.2. Sample System Dynamics 
Here we provide a sample of the system dynamics that pertain specifically to station to station 
travel.  Note that only those parameters and variables that are used in the following system dy-
namics are formally defined.  The next section gives a similar sample of the action space con-
straints that are relevant for station to station travel.  For a complete description of the dynamic 
program, refer to Schenk (2005). 

Let D be the set of all decision types. These decision types act on resources and the corres-
ponding attribute vector. For example, the decision of removing a container from a load position 
is encoded as d=‘rmv’ D∈ .  

Let ˆ , (_, , , , _, _)tar a s i j=  be the state representing the number of refillable or shrink wrapped 
containers of type s containing the pure or mixed multi-class package flow i at station j that have 
been removed from load positions and could potentially depart the station at time t.  Also, let us 
define the variable , (_, , , , _, _),tdax a s i j d= = ‘rmv’ to be the number of refillable containers of 
type s, multi-class package flow i removed from a load position at station j  at the end of time 
period t. In our case it can only be 0 or 1 since we have at most one container of type s in all load 
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positions. Similarly, we define , (_, , , , , ),tdax a s i j k l d= =  ‘trv’ to be the number of containers of 
type s of multi-class package flow i sent from station j to another station or the ramp k at time t 
on vehicle l, and let , (_, , , , , ),tdax a s i k j l d= = ‘cmp’ represent the number of containers of multi-
class package flow i container type s created at station j and used in time t to complement vehicle 
l that originated at a different station k. The following equation tracks the number of pure and 
mixed volume containers on hand at a station that are ready to depart.     

 

1, ,'rmv',
{'trv','cmp'}

1 2 3 4 5 6

1 2 3 5 4 6
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0              otherwise
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This equation shows that a container may leave the station on a vehicle that originated at this sta-
tion, or complement a vehicle that arrived to station j from another station. The summation over 
all attributes a  corresponds to the summation over all vehicle types and all stations. There is 
such a system dynamics equation for each (_, , , , _, _)a s i j= . 

Another extension to the model presented in Schenk and Klabjan (2005) concerns the switch-
ing time between removing a container from a load position and placing a new container in the 
position.  The state variable tar′  was already defined in Section 3.1.  This information is used in 
action space constraints to ensure that a container of the same multi-class package flow and type 
is not assigned volume until sufficient time has passed. By definition we have  

   ( )1, ,'rmv',1 1t a ta t ar r x+′ ′= ⋅ − +   

for each ('pure', , , , _, _).a s i j=  
In general, each system dynamic equation can be written in the form 
 

1

1, ( , )t a ta a tda ta tatda
a d D

R R a d x R xσ τ+
∈

= + ± ⋅ +∑∑ )  

for some function aσ , constant taτ , and decision type d
)

. In addition, tdax )  is binary. Here R 
represent any one of the different parts of the state.  

4.3. Action Space Constraints 
This section provides a description of selected action space constraints that concern station to 
station traffic and other extensions to the intra market optimization problem that are discussed in 
this paper.  Any variables or parameters that are needed to express the action space constraints 
that have not already been explicitly defined are presented in this section. 

 For vehicles that depart an intermediate station for the ramp, the containers on this vehicle 
include those originating at another station as well as any containers complementing this vehicle 
that were picked up at the intermediate station.  Binary variable , (_, _, _, , , ),tdax a k j l d= = ‘snd’ 
is 1 if a vehicle of type l that originated at station k departs intermediate station j at time t.  Vari-
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able , (_, , , , , ),tdax a s i k j l d= = ‘crt’ is used to represent those containers that were created at the 
origin station k and are also on the vehicle. The vehicle capacity requirement reads 

1 6 ,'snd',
{'cmp','crt'}

1 2 3 4 5 6

( , ) 0

1              ( , , , , , )
( , 'cmp') ( , 'crt')

0              otherwise.

a a tda a t a
a d

a a

e a d x u x

a a a a a a a
a a

σ

σ σ

∈

− ⋅ ≤

=⎧
= = ⎨

⎩

∑ ∑
 

Here es is the footprint of container type s and ul is the footprint capacity of vehicle type l. Note 
that the summation is over all container types and multi-class package flows. These constraints 
are present for each attribute vector (_, _, _, , , ).a k j l=  

Constraint (1) below tracks when containers are removed from load positions, and guarantees 
that no volume of a given package and container type is assigned until sufficient time has elapsed 
to unload, and then load a new container into a load position.  In action space constraint (1), ,tdax

('mixed', , , , _, _)a s i j= , d=‘asg’ represents the amount of multi-class package flow i at station j 
that is assigned to a mixed container of type s at time t. Quantities sv  and , (_, , , , _, _)taul a s i j=  
are input parameters representing the capacity of container s and the time needed to switch a con-
tainer of multi-class package flow i type s at station j, respectively. Thus we have 

 ( )
2,'asg',t a a ta tax v r u +′≤ −                          (1)  

for each attribute vector a = (‘mixed’,s,i,j,_,_). 

A further example of including the option of station to station traffic in the dynamic pro-
gramming model concerns assigning supply to containers.  All volume that is sorted in a time 
period must be assigned to a container type.  Volume of a multi-class package flow may be as-
signed to a container that is created at the same station as the incoming supply or to complement 
a refillable container from another station.  Variable , ( , , , , , ),tdax a c s i k j l d= = ‘cmp-r’ represents 
the amount of a given multi-class package flow assigned to complement a refillable container 
that is currently at station j but that originated at a different station k. We have 

,'srt ',
{'arg','cmp-r'}
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We denote by ,'srt ',t ax  the maximum amount of multi-class package flow 3a  that can be sorted in 
time t at station 4a . Here the summation is over mixed and pure attributes, container types, and 
destination stations. There is such a constraint for each (_, _, , , _, _).a i j=  

Next we discuss proportional sorting. Here we briefly formalize the concepts introduced in 
Section 3.1. For simplicity we consider only the ramp although the treatment of a station is very 
similar. Let , (_, _, , , _, _)taw a i ra=  be the amount of incoming supply of multi-class package flow 
i to the ramp in time period t and let ratc ,  be a parameter representing the maximum sorting belt 
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rate at the ramp. Here ra represents the ramp. By definition from Section 4.3 it follows that 
, ('mixed', _, , , _, _)ttar a i ra=%  is the amount of multi-class package flow i that has just arrived to 

the ramp in mixed containers. Expression (2) gives the sorted volume of each multi-class pack-
age flow. The first term on the right-hand side expresses the total amount of multi-class package 
flow i that is yet to be sorted. In case the capacity is not binding it represents the amount that is 
sorted. The second term in (2) gives a proportion of each multi-class package flow. The denomi-
nator represents the total volume that is yet to be sorted. The numerator then takes the total 
amount of yet to be sorted multi-class package flow i and the corresponding sort capacity.  Note 
that (2) is nonlinear in the state space variables.  

( )
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                  (2) 

There is such a constraint for each a = (_,_,i,ra,_,_). 
It turns out that each action space constraint can be written in the form 

1

( , ) ( )a tda ta ta
a d D

a d x f Rσ
∈

≤∑∑  

for some function taf . 

5. Solution Methodology 
This section gives the general approach used to solve the dynamic program with station to station 
traffic and proportional sorting.  Topics concerning station to station travel and proportional sort-
ing are explicitly mentioned while the reader is referred to Schenk (2005) for a discussion of fur-
ther details of the solution methodology. 

5.1. Approximate Dynamic Programming 
The methodology used to solve the dynamic programming model with station to station travel is 
based on the stochastic gradient algorithm for approximate dynamic programming, see e.g. Pow-
ell and Van Roy (2004) and Powell et al. (2003).  Even though the dynamic program developed 
to solve the intra market operations problem is deterministic, to comply with the existing termi-
nology and literature on the subject, we call the presented algorithm the stochastic gradient algo-
rithm.  We use a linear approximation of the value function since this was shown to work well 
for problems with multi period travel times in Powell and Carvalho (1998) and provides a com-
putationally tractable model.   

Let tR  represent the vector of all states at time t, let tV  be the value of being in a particular 
state at time t, and let tc  and tX  represent the respective single period cost function and action 
variables.  Then the optimality equation is written as 

  ( ) ( )( ).,min)( 11 +++= tttttXtt RVRXcRV
t
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In our case, the initial value of all states 0R  is zero.  Since it is desired to have all supply de-
part the market, we want the final value of all states at the end of the time horizon to be also ze-
ro.  Since we are minimizing the value function, a large penalty is imposed for having non zero 
state values in the last time period T, that is ( ) ∞=TT RV  for 0>TR  and ( ) 00 =TV .   

Standard discrete dynamic programming techniques cannot be applied to the value function 
recursion due to the large state space (curse of dimensionality) and heavily constrained actions. 
In approximate dynamic programming the value function ( )tt RV  is approximated by ( )tt RV~ . Each 
coordinate of the state is indexed by the attribute vector a and/or t′ . When t′ is not present, we 
can assume that t t′ =  and thus we suppose that ,( )t tt a t t aR R ′ ′≥= . We use a linear approximation 

and therefore ( )t t tt a tt a
a t t

V R Rα ′ ′
′≥

= ⋅∑∑% . The whole problem now transforms into the one of find-

ing good coefficients α . We define 
               ( ) ( )( ),~,min)(ˆ

11 +++= tttttXtt RVRXcRV
t

                         (3) 

where  ( )tt RV̂  is merely a placeholder. In the algorithm ( )tt RV̂  needs to be computed several 
times for fixed states tR .   

Observe that t
tt a

tt a

V
R

α ′
′

∂
=
∂

%
 and therefore α ’s are updated based on partial derivatives of 

( )tt RV̂ . Since this function is not differentiable at some points and it is also neither convex nor 
concave, we consider “local subgradients”. In our case it can be shown that (3) is equivalent to  
 ( ) tttt XcRV ⋅= minˆ  

 ( )tt RfXA ≤ .       

Some parts in (3) need to be linearized and we denote by tX  the expanded actions. Each term 

tt a tdaR x′ )  is replaced by ,tt atda tda tdax R x M x′≤ ≤ ⋅) ) )  for a large enough number M. Clearly for this li-
nearization to be valid the objective coefficient must be negative. It turns out that this is always 
the case. Some of the actions are required to be binary but in subgradient computation we use the 
linear programming relaxation. 

Assuming that the functions f and tV̂  are differentiable, we define the subgradient as follows 

where m represents the number of rows in the constraint matrix A. 

 
1

ˆ m
pt

tt a tp
ptt a tt a

fV
R R

π′
=′ ′

∂∂
Π = = ⋅

∂ ∂∑                 (4) 

In (4), ( )mfff ,...,1=  and tπ  is an optimal dual solution.  Even though tV̂  is not necessarily dif-
ferentiable, we still use (4) to approximate a descending direction. 

Based on (4) and the dual variables, update equations are generated for all state variables.  
Refer to Schenk (2005) for detailed examples of these equations. Next we address proportional 
sorting. Recall (2), which defines the amount to be sorted. When solving (3), observe that the 
states are given, which implies that (2) is not really a constraint but it specifies some actions.   
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Since the right-hand side of (2) is not differentiable, we approximate the subgradient by con-
sidering which of the two values represents the minimum.  The following formula can be found 
for example in Bertsekas (2003). Let us denote the minimization of the two functions by 
( ) ( ) ( ){ }xhxhxh 21 ,min=  and let ( )xh ′1  and ( )xh ′

2  represent the derivatives of the two functions. 
We compute the gradient as follows. 

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) [ ]

1 1 2

2 1 2

1 2 1 2

                                      if

                                      if

1          if and any 0,1

h x h x h x

h x h x h x h x

h x h x h x h xλ λ λ

′⎧ <
⎪
⎪ ′∇ = >⎨
⎪ ′ ′⋅ + − ⋅ = ∈⎪⎩

 

In our case, h , 1h  and 2h  are functions of two variables, NS
tar  and ttar%  , and therefore the deriva-

tives are replaced by partial derivatives. If the third case occurs, we compute λ  in such a way 

that we get the steepest decent. Formally, we minimize ( ) ( ) ( )
2

21 1 xhxh ′⋅−+′⋅ λλ .  

Because the gradient can fluctuate, the following smoothing equation (5) is used to give 
weights to gradient information at the current iteration as well as at the previous approximations. 

 ( ) n
t

nn
t

nn
t Π⋅+⋅−= − λαλα 11                                                                     (5)                

In (5), n
tα  is the value function approximation in iteration n and time t and ( )

,

n n
t tt a t t a′ ′≥

Π = Π . The 

smoothing constant )1,0(∈nλ  can be adjusted throughout the algorithm to help speed conver-
gence.  

5.2. Algorithm Summary 
Algorithm 1 gives the main steps of the approximate dynamic programming methodology. 
________________________________________________________________________ 
Step 0  Initialization:  Choose an approximation 1~

tV  for 1
tV  for all t.  Set iteration counter     

             n = 1. 
Step 1  Forward Pass: 
 Step 1.1 Initialize forward pass:  Set t = 1.  Initialize tR  
 Step 1.2 Solve the myopic problem: For time period t solve the approximate myopic  
     problem (3) by using n

tV 1
~
+  subject to the action space constraints to get tX . 

 Step 1.3 Apply the system dynamics:  Calculate 1+tR . 
 Step 1.4 Advance time: Set t = t + 1.  If Tt <  go to Step 1.2. 
Step 2  Advance iteration counter: Set  n = n + 1. 
Step 3 Value function update: Calculate ( ) n

t
nn

t
nn

t Π⋅+⋅−= − λαλα 11  for all 1, ,t T= K to  

 provide an approximation n
tV~  for the next iteration. Go to Step 1. 

________________________________________________________________________    
  Algorithm  1: The Approximate Dynamic Programming Algorithm 
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6. Computational Experiments 
In this section, we compare the dynamic programming model discussed in this paper, the dynam-
ic programming model discussed in Schenk and Klabjan (2005), the integer programming model 
given in Schenk (2005), and current operations in practice. The main interest of the company 
was in evaluating potential benefits of the station to station travel, which is not considered in the 
current practice. For this reason we kept switching times and the sorting process identical in all 
experiments. Since most of the stations use manual sorting, the sorting process at stations is 
modeled as prioritized sorting and at the ramp we use proportional sorting. The dynamic pro-
gram in Schenk and Klabjan (2008) does not allow for station to station traffic. It also does not 
capture container switching times at load positions and proportional sorting but to focus solely 
on the station to station traffic we have added these two features to the model. 

The models were tested on two different markets. Table 4  provides details about the range of 
the size of parameters for both market sizes, which will be referred to as M1 and M2 respective-
ly.  The main parameters that differ between M1 and M2 are the number of stations, time hori-
zon, and the overall incoming volume of supply to the market  

Table 4: Market Parameters 
  M1 M2 
Number of Stations 4-6 9-13 
Number of Multi-class Pack-
age Flows 

22-26 22-26  

Number of Container Types  5-7 7-9  
Number of Vehicle Types  5-7 7-9  
Number of Time Periods  250-350 350-500  
Total Supply  14,000-18,000 cu-ft 21,000-25,000 cu-ft 

6.1. Results 
Computational experiments were performed on a Dell PC with a Pentium® 4 1.80GHz proces-
sor, 1GB of RAM, and Windows XP operating system.  Microsoft Visual C++ 6.0 was the de-
velopment environment and we used ILOG CPLEX 8.0 with Concert Technology 1.0 as the 
mixed integer programming solver.   

M1 Results 
The following table gives solution characteristics for M1 using the four solution methods.  DP1 
refers to the direct station to ramp dynamic program given in Schenk and Klabjan (2008) while 
DP2 includes station to station traffic.  MIP refers to the integer programming formulation of the 
PM operations problem while the fourth row gives results based on the current practice.  Due to 
confidentiality reasons, we cannot discuss further details of the current operational practices. 
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Table 5: M1 Solution Characteristics 
  Objective Run 

Time 
(hours) 

Time per 
Iteration 

(mins)

No. of 
Vehicles 

Used

 Pure 
Vol.

Service 
Level

Vehicle 
Capacity 

Utilization 

Container 
Capacity 

Utilization
DP1 106.9% 14 15 9 41% 100.0% 95.83% 80.86%
DP2 100.0% 16 17 8 41% 100.0% 95.83% 80.86%
MIP 136.9% 120 - 15 0% 100.0% - -
Current  120.2% - - 11 57% 99.9% 97.20% 61.49%
 

Objective values are given as the percentage gap from the best solution obtained, which for 
this instance is DP2.  It can be seen that DP2 outperforms the current operations in practice by 
over 20 percent.  Cost savings are incurred by considering aggregating volume at stations com-
pared with direct station to ramp routing.  The MIP formulation presented in Schenk (2005) was 
modified considerably in order to even obtain an integer solution, let alone one that is close to 
the LP relaxation value.  Only direct station to ramp paths were considered and pure volume was 
not allowed as the addition of constraints and variables to incorporate pure volume and contain-
ers more than doubles the size of the model.  Even with this greatly restricted mixed integer pro-
gram, it took nearly 24 hours to find the first integer solution and after running for three more 
days there was still a considerable IP/LP gap.  It is unlikely that allowing pure containers in the 
MIP would lead to comparable or better solutions than the dynamic programs even if this were 
tractable since the cost difference is due primarily to almost double the number of vehicles being 
used as opposed to just the additional sorting cost of mixed volume.   

Comparing the current operations with DP1 and DP2, we see that the dynamic programs re-
sult in a lower cost because fewer vehicles are used.  Although the current practice sends more 
pure containers and there is less volume to be resorted, it requires more vehicles and space is not 
used as efficiently.  Current practice results in containers with less volume, thus causing wasted 
space and more vehicles to transport the volume.  Service level is the percentage of volume that 
is able to depart the market on time.  As seen in Table 5, all volume is sorted in DP1 and DP2 
while a small amount of volume remains at the ramp in practice.  Although more volume must be 
resorted at the ramp, it is sent early enough that there is sufficient time to resort all of the mixed 
volume. 

There are predetermined times when the sorting process begins at stations and the ramp as 
well as implied ending times after all volume has been sorted. Vehicles leaving a station before 
the implied ending time are often forced out to meet a requirement.  This implies that such ve-
hicles have no extra time to visit an intermediate station. For this reason to improve the conver-
gence of the algorithm we did not allow for station to station travel before the implied ending 
times. After the ending times several vehicles depart for the ramp and many of them are usually 
not at full capacity.  Vehicles can now potentially be consolidated. The approximate dynamic 
programming algorithm found a solution that resulted in one less vehicle for model DP2 com-
pared with DP1 and the savings of an entire vehicle outweighed the additional costs associated 
with the multi leg travel route. 

Figure 7 shows the objective value after each full pass of the dynamic programming algo-
rithm for DP2.  The initial value function approximation along with limiting the possibilities of 
station to station travel yields a reasonable initial solution as nearly all of the supply departs the 
ramp and the solution is within 15 percent of the best solution obtained at a later iteration of the 
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algorithm. Figure 8 gives the service level per iteration for DP2. Initially the service level is 
beyond 100% but quickly it reaches the optimal level.    

    
 Figure 7: Objective Improvements for Market M1 
 

   
 Figure 8: Service Level Improvements for Market M1 

M2 Results 
Table 6 provides the results for the larger market modeled by both dynamic programs and the 
current practice.  We were not able to obtain a feasible solution to the integer program.   

Table 6: M2 Solution Characteristics 
  Objective Run 

Time 
(hours) 

Time per 
Iteration 

(mins)

No. of  
Vehicles 

Used

Pure 
Vol.

Ser-
vice 

Level

Vehicle 
Capacity 

Utilization 

Container 
Capacity 

Utilization
DP1 104.3% 24 144 20 67% 99.10% 87.72% 69.75%
DP2 100.0% 24 144 19 67% 99.10% 91.14% 82.69%
Current 133.3% - - 32 71% 98.90% 100.00% 38.72%
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The results for the larger market size also lead to the conclusion that considering station to 
station travel in the approximate dynamic program leads to improved costs over both the original 
dynamic program without allowing travel to intermediate stations and current operational prac-
tice.  DP2 outperformed the current operations by over 30 percent.  The reason for this improve-
ment was also consistent with the results from market M1.  While the dynamic programs send 
less volume in pure containers than current practice, the containers that are created are filled to a 
greater level thus resulting in the need for fewer vehicles to transport the volume.  DP2 resulted 
in a significantly smaller number of vehicles than current practice and considering station to sta-
tion travel saved the cost of one vehicle and resulted in improved container and vehicle capacity 
utilization compared to the best solution obtained from DP1. 

Due to the problem size, run times were considerably longer for M2 compared with M1. Tri-
als were stopped after 24 hours of run time for DP1 and DP2 and the best solution is reported.  
While M2 is a larger data instance than M1, the main factor that causes an increase in run time is 
the number of time periods in the time horizon.  As the number of time periods increases, the 
number of states and approximation values that must be generated increases dramatically due to 
states where both actionable time t and the effect time t′  must be accounted for.   

Figure 9 and Figure 10 give the objective value and service level per iteration for DP2, re-
spectively. Although there are less iteration compared to the experiments with the smaller market 
M1, there is a clear improving trend in the objective value and service level.  Initial value func-
tion approximations lead to reasonable initial solutions and service levels.  Longer running times 
and further experimentation with updating the smoothing parameter could lead to improved solu-
tions. 

 
Figure 9: Objective Improvements for Market M2 
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Figure 10: Service Level Improvements for Market M2 

Since this is a tactical problem solved once at the beginning of a season, the running times of 24 
hours are acceptable. Nevertheless, shorter times would be desirable from the what-if analysis 
point of view.  

7. Concluding Remarks 
The discussed PM operations problem is of vital importance to express package carriers. It pro-
vides a tremendous cost savings opportunity. Even a small relative improvement leads to sub-
stantial savings since the savings are assessed every day and for each market. Due to the underly-
ing complexities and the sheer size, it is a tough nut to crack. Standard approaches such as integ-
er programming do not yield satisfactory solutions even after relaxing several business rules. On 
the other hand, manual solutions provided by experienced engineers leave savings on the table. 
The proposed state-of-the-art dynamic programming algorithm provides several benefits. First, it 
establishes substantial savings. At the same time, the service level as measured by the number of 
on-time delivered packages is also improved. Finally, a successful deployment of an information 
system would ease the work load of engineers.  

Due to the inherent complexities, modeling is a tedious task that must not be taken lightly. 
The notion of attributes and the attribute vector ease the notational burden by simplifying the 
state space and actions. The underlying dynamic programming algorithm uses a linear value 
function approximation, which is updated by using gradient information.  

On the operational side, we model the option of vehicles making intermediate stops to pick 
up additional containers and/or packages. This is a non-trivial extension requiring careful model-
ing. Stations mostly relying on manual sorting allow the workers to prioritize sorting by manual-
ly picking the desired packages. Modern automated stations allow the packages to be sorted pro-
portionally based on their arrival mixture. The latter, which is a focus of this work, creates nonli-
near relationships in system dynamics. They further complicate the algorithmic development.  

The presented model and algorithm are moving from the proof-of-concept phase to the pro-
duction setting. To this end, the company is currently implementing a production version of the 
algorithm.  
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