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Abstract: The widely adopted slap-and-ship radio frequency identification strategy provides 
valuable information to retailers. On the other hand, suppliers struggle to find benefits even 
though they are submerged with new data. Radio frequency identification provides complete vi-
sibility of their shipments, including the time and location of every pallet, case or even item. We 
provide a novel model relying on such data that is capable of producing better inventory and 
shipping control policies. We first propose a comprehensive inventory model for serial systems 
that captures both the supply and distribution information. We show that the underlying cost-to-
go can be decomposed into two lower dimensional functions. In a special case, the optimal re-
plenishment and shipping policies are base stock with respect to the underlying positions. In ad-
dition, we also analytically study the value of radio frequency identification in terms of the ex-
pected total minimum cost over a finite time horizon by introducing partial radio frequency de-
ployment scenarios. Results indicate that additional cost reductions are possible with broader de-
ployments.  

 
Key Words: inventory control, radio frequency identification 

1. Introduction 
A basic radio frequency identification (RFID) system includes two components: a transponder 
and an interrogator. A transponder is a tiny microcomputer consisting of a microchip, antenna 
and memory connecting these two. In the simplest form, the so-called passive RFID transponders, 
transponders are idle until woken up by an interrogator via radio wave signals. Interrogators are, 
therefore, constantly emitting signals to provide power to the transponders within their antenna's 
field of work. When a transponder receives a signal from an interrogator, it absorbs some of the 
radio energy to power itself and sends back a response, which among other data stored in its 
memory, includes the transponder’s unique identification number. The interrogator decodes this 
information and passes it to information systems. In a typical RFID deployment within a supply 
chain, interrogators are mounted at critical locations. Every time goods affixed with transponders 
come within the read range of an interrogator, the location, time, and identification are recorded. 
Under normal conditions a typical interrogator may interrogate hundreds of transponders per 
second.  

One of the recent information technology advances is the adoption of RFID technology in 
inventory control systems. Early benefits earned from RFID deployments are inventory asset 
tracking, advance shipping notice, real-time order progress information for retailers, and real-
time shipping visibility for suppliers. The additional RFID generated information could possibly 
result in improved inventory control policies and potential new business applications. One of the 
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biggest setbacks to a wider RFID adoption is the lack of return of investment. Many entities in 
supply chains are overwhelmed with data generated from RFID deployment, yet this data is sel-
dom used to enhance business intelligence.   

As an emerging auto data-capture enabler, RFID technology intrigues supply chain re-
searchers and practitioners. Companies have rushed to develop RFID solutions without having a 
clear idea about the potential value of RFID to their business. One of the values of RFID in sup-
ply chains is derived from better supply chain visibility. An RFID deployment improves supply 
chain visibility; however, many benefits in inventory control are still untapped. The value of 
RFID obtained from labor cost reductions and similar basic benefits can be satisfactorily as-
sessed by case studies. Empirical studies and proofs of concepts are of limited scope since they 
have to rely on existing processes and data. It is not clear how RFID can further reduce supply 
chain costs via improved visibility. Educated guesses are currently driving such estimates. Ana-
lytically modeling inventory control systems with an RFID deployment is critical to enhance our 
understanding of the value of RFID. 

Beyond replenishment inventory control on the supply side, the distribution side deals with 
shipping decisions. As is the case with the supply, RFID deployments yield real time visibility of 
shipments. To achieve such capability, it is typical to install portals with readers at important lo-
cations (e.g., in and/or outbound docks) and tag the corresponding goods. Consider an RFID 
mandate imposed by a retailer. A supplier places transponders on the products and ships them to 
the retailer’s distribution centers, thus complying with the corresponding RFID mandate. Since 
typically transponders are affixed just before leaving the final facility of the supplier, this strat-
egy is known as slap-and-ship. Clearly, to obtain further benefits from RFID, it is advised to 
push the tagging process further upstream in the supplier’s own supply chain. The main draw-
back of slap-and-ship is the inability to produce return on investment. As already discussed, the 
retailer could benefit from continuously monitoring the inventory levels and outstanding order 
progress in its own chain. However, it is not clear how the supplier can benefit from the mandate 
even if real-time distribution information is provided by the retailer. This is a typical quote about 
such suppliers: “They (an apple supplier to Wal-Mart) know exactly what day and time the con-
tainer was scanned through its portal, when it entered a distribution center and what day and time 
it went to the store. The company has yet to determine how best to use this data.”, Inbound Lo-
gistics, June 2006. The main objective of this research is to show how suppliers can benefit un-
der such circumstances even under slap-and-ship. We assume a decentralized system where each 
entity in the chain acts independently. The main entity is an installation somewhere in the middle 
of the entire chain. The firm makes two decisions: (1) the replenishment decision from its own 
supplier, and (2) the shipment decision how much to ship downstream. 

We study a single-product, multi-echelon serial supply chain system, in which the supplier 
streamlines both its replenishment and distribution processes by using the RFID data. We pro-
pose a dynamic programming model to capture the real time inventory information generated 
from an RFID deployment across the entire supply chain. The paper is organized as follows. A 
comprehensive inventory model is first presented in Section 2. In addition, we provide a special 
case with an instantaneous replenishment process. We apply multi-echelon techniques to decom-
pose the proposed model into two sub-problems. The optimal control policy under certain condi-
tions is characterized as the echelon base stock policy. The value of RFID in a serial distribution 
process is clearly identified and rigorously proved in Section 3 through discussions of partial RF-
ID deployment scenarios. We conclude the introduction with a brief literature review.  
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1.1. Literature Review 
Our models assume stochastic lead times. In standard single-stage stochastic inventory models, 
the lead time is considered either as a known deterministic constant or a random variable with 
known distribution. In these models, Kaplan 1970, Nahmias 1979, Ehrhardt 1984, the lead time 
is assumed to be time-independent with known distribution. The non-crossover property is also 
assumed in order to make the study tractable. In our analysis, we borrow concepts from multi-
echelon systems. The seminal work on the serial multi-echelon inventory problem was con-
ducted by Clark and Scarf 1960. In their research, the global system is decomposed into separate 
sub-systems. At each echelon, it is optimal to follow the base stock policy with respect to the 
echelon inventory. 

RFID is the most promising technology providing complete and comprehensive supply 
chain visibility. It is a surprisingly simple computing and communication architecture since only 
two basic building blocks are needed - a tag and a reader (AIM Inc., 1999, Clampitt et al. 2006). 
We have already argued that RFID is an enabling technology for visibility that is assumed by our 
model. There are estimates about the value of RFID in supply chain management, including la-
bor cost savings, reduced inventory holding costs, and stock-outs, Lee and Özer 2007, Hardgrave 
2005. Most studies regarding RFID in inventory control concentrate on supply chain simulations, 
Lee, Cheng and Leung 2004, Fleisch and Tellkamp 2005, Kang and Stanley 2005.  

Bottani and Rizzi 2008 describe profitability of deploying RFID in a three-tier supply chain. 
They show by a real world case in a fast-moving consumer goods market the benefits of pallet-
level tagging, and much more lenient results of case- and item-level tagging. Ustundag and Tan-
yas 2009 investigate impacts of different factors, such as product value, lead time, and uncertain 
demand on the supply chain cost performance at echelon levels in conjunction with RFID tag-
ging.  

 Among the few studies that analytically deal with RFID in inventory control, Song and 
Zipkin 1996 provide a modeling framework for the inventory control problem with supply in-
formation. While this study dates back to pre-era of modern RFID, it requires data available only 
through today’s RFID deployments. The replenishment lead time is time-dependent and evolves 
over time. We borrow their modeling technique and enrich their study by focusing on the distri-
bution side, thus dealing with two concurrent decisions. We also present results addressing the 
value of RFID in such distribution systems. Gaukler, Özer and Hausman 2006 quantify the bene-
fits of RFID in the supply system of a retailer who faces uncertain demand and the option of 
emergency orders. They develop an order progress information model to study the optimal poli-
cies for both regular and emergency orders, under the assumption of a single outstanding order. 
Szmerekovsky and Zhang 2008 discuss impacts of item-level RFID tagging in a two-tier system 
under vendor managed inventory. First, the demand processes are characterized in both RFID 
and non-RFID systems. Then they study the control policies for each entity. Second, they study 
channel coordination efforts through sharing of the RFID costs by comparing centralized and 
decentralized systems. Atali, Lee and Özer 2006 analytically study inventory inaccuracy, which 
is a joint effect of transaction errors, shrinkage, and misplacements. RFID yields more accurate 
inventory records and easier audits. Bottani, Montanari, and Rizzi 2009 examine the impact of 
RFID on out-of-stocks of promotional items in the fast-moving consumer goods context. They 
show that by reducing the main causes of unavailability of sales through RFID can yield substan-
tial savings. In addition, a reengineering process is exploited to compare the reduction of stock-
outs. Results of an experiment suggest that RFID has the potential to reduce losses and improve 
profits in fast-moving consumer goods. 
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New processes hinging on RFID are of particular interest. Expediting on the supply side is 
one such process that can benefit from RFID. Kim et al. 2006 address expediting strategies based 
on RFID data. Pricing strategies based on added value on goods are discussed in Schneider 2007. 
RFID is used as a technology to allow dynamic pricing. 

2. Comprehensive Inventory Model 
Most of prior inventory models deal with supply information, i.e., the focus is on the procure-
ment side of supply chains. Such models are appropriate for retailers and the endpoints of supply 
chains. We extend these models to capture both supply and distribution sides. In this section, a 
comprehensive inventory control model is first proposed. It contains both the supply and distri-
bution sides of the entire chain. Next, we give the state reduction result for the pure distribution 
setting (upstream installations are neglected). This result is then extended by including upstream 
installations. Finally, optimal control policies are studied. 

Given several installations as shown in Figure 1, let  denote the i’th upstream installation 
and let 

iu

jd  denote the j’th downstream installation. There are two special installations:  repre-
sents the point-of-sale installation, and 

nd

0nu d=  represents the main decision making installation. 
It will be called the main installation. We can identify the main installation as a supplier to Wal-
Mart and  as installations owned by Wal-Mart. The main installation ships orders to 
Wal-Mart by directly shipping through all these installations. Upstream installations 

1, , nd d −" 1

0 1, , nu u −"  
represent the supply side of the main installation. The on-hand inventory  at the main instal-
lation, net inventory 

tIO

, nt dI  at the point-of-sale, and the net inventory ,t kI  for every 
 describe the system. There are two important differences between 

standard multi-echelon inventory systems and our model. We focus on both the supply and dis-
tribution sides of a decentralized system. Traditional multi-echelon models deal only with the 
supply side of a centralized system. In a centralized system, holding cost is accounted for at each 
installation. Meanwhile, in our decentralized system, it is accounted for only at a single installa-
tion. We consider such a firm with its physical location corresponding to installation , Figure 
1. Downstream Installations  represent another player, namely the retailer and upstream 
installations  attribute to different players as well. If RFID is deployed end to end in 
this serial supply chain, then at any point in time, the location of all outstanding orders placed 
with the supplier corresponding to installation  are known. Likewise, the location of out-
standing shipments is also known at any point in time. RFID is an enabling technology for cost 
effective tracking of goods and as such it provides real-time visibility, including recording quan-
tities of outstanding orders and shipments. The arcs in Figure 1 represent possible order/shipment 
movements in a time period. There is no order/shipment moving into an installation if no incom-
ing arcs attached to the installation appear. Each installation has a single outgoing arc, which 
could also be a self loop representing the scenario of the order staying put. The outgoing arc 
from installation  represents the exogenous end customer demand 

1 1 1{ , , } { , , }nk u u d d−∈ " ∪ " 1n−

d

1

0d

1, , nd "

0 , , nu u −"

0u

nd tD . 
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Figure 1: The Comprehensive Inventory Model 

In order to model downstream shipment transitions, we introduce a random variable W. For 
each realization w of W there is a transition vector ( )M w  that specifies where the current out-
standing shipments at each stage move next. This vector has n elements and it encodes the transi-
tions in downstream shipments. In Figure 2 we show two such possible transitions. Self loops 
correspond to the events that the outstanding shipments stay put at the installation. For example, 
under the top realization we have  and under the bottom realization we obtain 

. Similarly, we introduce a random variable R to encode the upstream stochas-
tic order transitions. The corresponding transition function is denoted by Q( , where r  is a re-
alization of .  

1 31, , ,nt d t d t dI I I
−+ = +

4

44 31, , ,t d t d t dI I I+ = +
r)

R
        

          
Figure 2: Two Possible Outstanding Shipment Transitions 

2.1. Model 
Throughout the document, we use the following notation. 

tC   Procurement cost function in time t 

tS          Shipping cost function in time t  

th   Per unit holding cost in time t at the main installation  nu

tp          Per unit shortage cost in time t occurred at the point-of-sale installation  nd

    

tY  
... 

Enter Arrival 

tY  

Enter Arrival ( )M w for a different realization w  

M(w) for realization w of W 

dn-1 dnd1 d2 d3 d4un / d0 ... 

dn-1 dnd1 d2 d3 d4un / d0 ... 

, 1t dI
1, nt dI
− , nt dI, 2t dI  

3,t dI
4,t dI

, 1t dI
1, nt dI
−, 2t d , nt dII  

4,t dI
3,t dI

Dt

Dt

1

u

 
Xt 

Dt 

    
• • •

, 1t uI  

 
    
• • •

1, nt uI
− tIO

1, nt dI
− , nt dI, 1t dIYt

un-1 un
1
tI

/
1
tI

d0 d1u0 dn-1 dn
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( )kQ u ,R      One step upstream transition at installation , i.e., the coordinate of    cor-
responding to installation  

ku ( )Q R  

ku
( )p

kQ u ,R   p-step upstream transition at installation , i.e., transition in p time periods cor-
responding to installation  

ku

ku
( k )M d ,W    One step downstream transition at installation , i.e., the coordinate of kd ( )M W   

corresponding to installation  kd
(p

k )M d ,W   p-step downstream transition at installation , i.e., transition in p time periods 
corresponding to installation  

kd

kd
   Upstream stochastic lead time uL { 1: }u l

0 nL =Min l Q (u ,R)=u>   
    Downstream stochastic lead time dL 0{ 1: }d l

nL =Min l M (d ,W)=d>    

tI    State vector in time t:  
1 2 1 1 2, , , , , ,( , , , , , , , ,

n nt t u t u t u t t d t d t dI I I I IO I I I
−

= " " )

tD    Stochastic demand in time period t  

1l
tD −       Cumulative demand over l periods starting from time t: 

1
1

t l
l
t k

k t
D D

+ −
−

=

= ∑  

We make the following assumptions.  
 We assume that installations and respectively denote the entering point for the re-
plenishment and distribution process and installation is the point-of-sale location. In 
addition, and are physically the same installation. 

0 u 0 d

nd

 nu 0d
 We assume that the unmet demand is backlogged at the point-of-sale installation .  nd
 Both upstream and downstream stochastic lead times are at least equal to or greater than 2. 
Formally, we require that 0 0( ) nu Q u ,R u< < and 0 0( , ) .nd  M d W d< <  

 We assume that the outstanding orders and shipments never cross in time. The current or-
der and shipment sequence is preserved, or at least not reversed in both supply and distri-
bution networks. Formally,  

-1( , ) ( , )  for every 1,2, ,  and any realization  of ,k kQ u r Q u r k n r R≥ = "

-1( , ) ( , ) for every 1,2, ,  and any realization  of .k kM d w M d w k n w W≥ = "  
 Orders and shipments can not be broken apart. Once an order or shipment is placed, all 
corresponding units travel together. 

Note that the lead times of greater than 1 are just a technical condition to rule out the trivial 
case. It requires that both inbound and outbound orders must go through at least one intermediate 
installation before arriving to the final destinations. In addition, it is easy to see that the non-
crossover property implies that  for every realization r of R, 

 and 
-1( , ) ( , )p p

k kQ u r Q u r≥

1,2, , ,  and 1,2, , ,uk n p= =" " L -1( , ) ( , )p p
k kM d w M d w≥  for every realization w of W, 

.  1,2, , ,  and 1,2, , dk n p= =" " L
Within time period t, events occur as follows: 
 the state vector  is observed at the beginning of time period t, next tI
 the shipping decision is made, then 
 the replenishment decision is made,  
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 replenishment orders due in time period t arrive, and 
 shipment orders due in time period t arrive, 
 demand tD  in time period t occurs, and finally 
 holding and penalty costs are assessed. 

It is important to point that at the end of each time period the holding and penalty costs in 
the proposed model are evaluated differently from standard inventory models. In our proposed 
model, the holding cost is assessed at the main installation at the end of each time period. On the 
other hand, the penalty cost is evaluated at the point-of-sale installation where the customer de-
mand might not have been satisfied. It is crucial to note that we only account for the costs in-
curred at the main installation (the supplier) even though there are other costs incurred by the 
remaining entities, for example the retailer. As for the replenishment orders and shipments, we 
charge the procurement and shipping costs when they are placed. We note that all these costs are 
actually incurred by the main installation (even though the penalty cost is accounted for at the 
point-of-sale installation). This reflects our initial assumption of a decentralized system focusing 
on the main installation. This also implies that there is no holding cost at other installations but 

. Let  denote the procurement quantity and   the shipping quantity in time 
period t, Figure 1.  For ease of notation, we use

0nu d= 0tX ≥ 0tY ≥

0,t u tI X=  and 
0,t d tI Y=  in Section 2.  

The underlying system dynamics are 

 
1

01 ,
: ( , )

1 1

,
n

k

k k n

u

t t t u t
u Q u R u

k n

,dIO IO I I
−

+
=

≤ ≤ −

= + −∑  

and for  we have 1 i nu u u≤ ≤ -1

k
 1, ,

: ( , )
0 1

.
i

k k i

t u t u
u Q u R u

k n

I I+
=

≤ ≤ −

= ∑                          

On the distribution side, for 1 -1j nd d d≤ ≤  we obtain 

 1, ,
: ( , )

0 1

j

k k j

t d t d
d M d W d

k n

I +
=

≤ ≤ −

=
k

I∑                            

and  
 1, , ,

: ( , )
1 1

.
n n k

k k n

t d t d t d t
d M d W d

k n

I I I+
=

≤ ≤ −

= + − D∑       

Note that due to the non-crossover property, if  ( , ) for every , 1 -1,k nQ u R u k k n= ≤ ≤ then 
. Similar property holds for M. The on-hand inven-

tory  in time t+1 equals the on-hand inventory in time t plus the outstanding orders which 
have just arrived at the main installation, minus the shipment  made in time t. The on-hand in-
ventory at installation  equals the arrived outstanding orders and potential . Downstream 
installation inventory  in time t+1 is equal to the outstanding shipments which move to in-

stallation 

1 2 1( , ) ( , ) ( , )k k nQ u R Q u R Q u R u+ + −= = =" n=

1tIO +

tY

iu tX

1, jt dI +

jd  plus shipment  if transition tY 0( , ) jM d W d= occurs. Finally, the net inventory at the 
point-of-sale installation in time t+1 equals the net inventory in time t plus the outstanding ship-
ments, which arrive at the point-of-sale, minus the customer demand in time t.  
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Let l tV  be the expected total minimum system cost starting from time t up to T under an op-
timal policy. The optimality equation over finite time horizon [0,T] reads 
 

       .           (1) l
l

1

0 0 0

, 0
, 0
, 0

, , , ,
: ( , )

1 1

0 , ,
0 1, ,

: ( , )
1 ( 1)

( ) ( ) ( )

( )
[( ) ] [ ( )]

n

k

k k n

t u

t d n k
t d t k k n

u
R

t t u t t d t t t u t d
u Q u R u

k n
t t I D W D W R

I tt t t d t d t
I IO d M d W d

k n

C I S I h E IO I I

V I Min
p E D I I E V I

−

=
≤ ≤ −

≥ +
≥ + +
≤ =

≤ ≤ −

⎧ ⎫
+ + ⋅ + −⎪ ⎪

⎪ ⎪
= ⎨ ⎬

⎪ ⎪+ ⋅ − − +
⎪ ⎪
⎩ ⎭

∑

∑ ,
1

The action space constraint 
0,t d tI IO≤  guarantees that we do not ship more than we have on hand.  

This comprehensive model is complex. We instead first analyze a simplified version and 
tackle the comprehensive model after learning from the analysis in such a setting. In the follow-
ing section, we study a special case of the comprehensive model where we neglect the replen-
ishment stochastic lead time, i.e., the replenishment order is instantaneous. After better under-
standing such a distribution model, we decompose the comprehensive model into two problems, 
which can be handled separately. This decomposition is shown in Section 2.3. 

2.2. Distribution Side 
This section demonstrates how the supplier could make use of the real-time information to im-
prove the distribution operations. Imagine that a supplier to Wal-Mart has access to the distribu-
tion information of its goods via Retailink (http://retaillink.wal-mart.com). In a traditional setting, 
only point-of-sale information is available. Soon after first RFID enabled pallets started arriving 
to the distribution centers, suppliers had complete visibility of their shipments through the same 
system.  

To recapture, each shipment goes through a stream of installations labeled as . 
Each installation corresponds to a transportation node or a specific stockpiling point. Installation 

 stands for the supplier itself, i.e., the main decision-making installation and,  represents the 
point-of-sale. Furthermore, each of the nodes is deployed with RFID. Without RFID, it would 
not be accessible to observe the installation inventories and the exogenous stochastic information 
W. To better understand the distribution process, instantaneous replenishment is assumed.  

0 1, , nd   d   ,  d"

0d nd

Two models are discussed in this section. The full model captures all installation invento-
ries, while the reduced model only includes the inventory on-hand and the downstream echelon 
inventory with respect to the point-of-sale. The full model serves as the starting point and it 
models slap-and-ship. The reduced model is simpler, nevertheless, it is equivalent in a certain 
sense as shown here. Quantities  represent the expected total minimum cost over time periods 

 in the full model or the cost-to-go. Similarly, 
tV

, 1, ,t t T+ " tV  represent the expected total mini-
mum cost over time periods   in the reduced model. Since we do not consider the 
costs incurred beyond time point T, the terminal costs 

, 1, ,t t T+ "

1TV +  and 1TV +  are assumed to be zero. 
An illustration of the full model is shown in Figure 3. In addition to previously defined 

terms, we depict that the order replenishment is instantaneous. The rest of the model configura-
tion is identical to the comprehensive model.  
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Figure 3: Full Model with Distribution Information 

The optimality equation of the full model reads 
 

 
0 0 0 0

, 0
, 0
,  0

, ,  , ,

, ,
, , , 10

: ( , )0
1 1

( ) ( ) ( )
( ) Min [( ) ] [ ( )]

n kt u
k k nt d

t d t

t t u t t d t t t u t d

D W D W
t t d t t t d t d t tI

d M d W dI
k nI IO

C I S I h IO I I
V I p E D I I E V I+

+ +≥
=≥

≤ ≤ −≤

+ + + −⎧ ⎫
⎪ ⎪= ⎨ ⎬+ ⋅ − − +
⎪ ⎪
⎩ ⎭

∑ , 
1,d

(2)     

, )where the state vector is . The underlying system dynamics equations 
are 

1 2, , ,( , , , ,
nt d t t d t d t dI IO I I I= "

0 0, ,1

1, , 1 1
: ( , )

0 1

1, , ,
: ( , )

1 1

.

j k

k k j

n n k

k k n

t u t dt t

t d t d j n
d M d W d

k n

t d t d t d t
d M d W d

k n

IO IO I I

I I     d d d

I I I D

+

+ −
=

≤ ≤ −

+
=

≤ ≤ −

= + −

= ≤

= + −

∑

∑

≤  

The first equation above is different from the corresponding equation in the comprehensive 
model since there is no lead time on the supply side. The inventory on-hand in time t+1 equals 
the inventory on-hand in time t plus instantaneous replenishment order

0, ,t uI  minus the shipment 

0,t dI in time t. The remaining two equations are identical. 
The full model contains many state variables. The multi-dimensional state vector results in 

difficulties when computing inventory control policies. We next introduce the reduced model 
with distribution information as shown in Figure 4. The reduced model has only two variables: 
the inventory on-hand IO  and downstream echelon inventory r  with respect to the point-of-

sale. Formally, we define . 

t ,1t

,1 ,
1

k

n

t t
k

r I
=

= ∑ d

           
Figure 4: Reduced Model with Distribution Information 

dn-1 dn

Dt 
 

    
• • •

tIO
,1tr  

d0
1
tI

d

0,t dI

0,t uI

dn-1 dnd0
1
tI

d1

Dt
 

, 1t dI
    
• • •0,t dI

tIO
1, nt dI
− , nt dI

0,t uI
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The optimality equation for the reduced model reads 

 0 0 0 0

, 0
0, 0

, 0

, , , ,

,1 10 1, ,1 1 1,110

( ) ( ) ( )
( , )

( [( ) ]) [ ( ,
d d

t u
d

t d

t d t

t t u t t d t t t u t d
t t t L D L DI tt t d t t tt lI

I IO

C I S I h IO I I
V IO r Min

E p E D I r E V IO r− +≥
+ + ++ −≥

≤

+ + + −⎧ ⎫⎪ ⎪= ⎨ ⎬
+ ⋅ − − +⎪ ⎪⎩ ⎭)]

, (3) 

where the underlying system dynamics equations are 

             

0 0, ,1

1,1 1,
1

1

1, 1,
1

k

n k

t u t dt t

n

t t d
k

n

t d t d
k

IO IO I I

r  I

I I

+

+ +
=

−

+ +
=

= + −

=

= +

∑

∑

 

                                                                       (4) 
1

, ,
: ( , ) 1 : ( , )

1 1 0 1

n k

k k n g g k

n

t d t d t t d
d M d W d k d M d W d

k n g n

 I I D  
−

= = =
≤ ≤ − ≤ ≤ −

= + − +∑ ∑ ∑ , g
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n
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g
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      I D I I

      r I D

−

=

= − + +

= + −

∑  

In (4) we use system dynamics equations for 1, for every 1, ,
it dI i+ n= " . The third term in 

(5) covers all the possibilities of shipment movements in time t. As a result, this term corre-
sponds to the summation of all outstanding shipments, plus shipment 

0, ,t dI which has just been 
made in time t.  

Next, we state and prove the main result in this section. The following theorem, proved in 
Appendix 1, shows the relationship between the full and reduced models in the distribution proc-
ess.  
Theorem 1. We have                            

, ,( ) ( , )tt t d t t tV I V IO r 1 α= + ,                                                       (6) 

where  represents the expected total 

penalty cost over the shipping lead time.  

12
,

,
0 1 : ( , )

1 1

 ( [(  
d

d

n
p

k k n

jL
L D W j

t t j t t d t d
j p d M d W d

k n

E p E D I Iα
+−

+
+

= = =
≤ ≤ −

= ⋅ − −∑ ∑ ∑ , ) ] )
k

By means of Theorem 1, we show that in a distribution process the original value function 
is divided into two parts: the reduced value function and a penalty cost term. This decomposition 
proves to be crucial in order to study the inventory control policies in Section 2.3. Accessing the 
echelon-level inventory statuses and the current inventory on-hand suffices to characterize the 
optimal polices since the penalty cost term only depends on the exogenous demand, shipment 
movements, and the current inventory. Furthermore, the penalty term is an explicit, closed form 
function.  
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2.3. Decomposition and Analysis of the Comprehensive Model 
In the previous section, we discussed in detail the distribution process with a complete RFID de-
ployment. By a system-wise deployment of RFID both supply and distribution sides can be 
tracked. The comprehensive inventory model with both supply and distribution information has 
already been presented in Section 2.1. In this section, the system is decomposed into two sub-
problems in terms of the value function. Under some assumptions the inventory control policy of 
each sub-problem is determined separately. The optimal system control policy is the echelon 
base stock policy with two threshold numbers, as shown later in this section. 

By applying the same techniques as those presented in Section 2.2 with respect to (1), we 
obtain the following result. 

Theorem 2. We have   

 , (7) l

i

1

0 0 0

, 0
, 0
, 0 0

, , , ,
: ( , )

1 10
0 1 , ,

1, ,1 11
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d dt d
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t t u t t d t t t u t d
u Q u R u

t t t k nI
I L D L D W R

tI IO t t d t tt L

C I S I h E IO I I
V I Min

E p E D I r E V I

α

−

=
≤ ≤ −≥

≥ − +
+≤ ++ −

⎧ ⎫
+ + ⋅ + −⎪ ⎪⎪ ⎪= + ⎨ ⎬

⎪ ⎪
+ ⋅ − − +⎪ ⎪⎩ ⎭

∑

)]
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d

d

n
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L D W j
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j p d M d W d

k n

E p E D I Iα
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+
+
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= ⋅ − −∑ ∑ ∑ ,1tr

≤ − n

where  and  is defined in Section 

2.2.  
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 ( [( ] )
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To derive an optimal policy, we focus on the minimization part in (7). We first define 
 for every ( ) min{ : ( , ) ,0 1}i k k iN u u Q u R u k n= = ≤ 1,2, ,i = " . We denote , 

and We represent the system state as 

 Next, we rewrite (7) in the echelon version as 

,1t t

e
tIO IO r= +

1

, ,  for every 0,1, 2, , 1.
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e e
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In (8), the system dynamics are expressed as 
01,1 ,1 , ,t t t dr r I D+ = + −  

1 , ( )
,

t t N un

e e
tIO I D

+
= −  

and for every  we have 1,2, , 1i = " n −

T

1, , ( )
.

t u t N ui i

e e
tI I D

+
= −  

Theorem 3. If the shipping cost functions  for tS 1, ,t = " are linear and , then   tS h≥ t

   i
1 1,1 , ,( ) ( ) ( , , , )

n t

e e e
t tt t t t u t uV I V r G I I IO

−
= + " e .                               (9) 

In (9), the downstream sub-system follows  

 0 0

, ,10
0

, ,1 ,

,1 1
1, 11

( )
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( [( ) ]) [ ( )]
d d

t d t
d

t t d t t t d
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+ ⋅ − +⎪ ⎪⎩ ⎭,1

, (10)  
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where  and action  is the downstream echelon inventory level after shipping in 
time t. Function  is a function of only the upstream echelon inventories. Moreover, the optimal 
decision rule in the downstream sub-system corresponding to shipping quantities follows the 
base-stock policy with the base stock levels 

01,1 ,t t dr r+ = − tD
0,t dr

tG

, 0t d
r∗ derived appropriately from  (10).  

Proof: The proof is provided in Appendix 2. 
In Theorem 3, we show how to simplify the value function of the comprehensive model. 

We now discuss the underlying replenishment inventory control policy.  

Corollary 1: If the procurement cost functions  for tC 1, ,t T= " are all linear in addition to  
being linear and  for  then the replenishment decision also follows the base 
stock policy.  

tS

tS h≥ t T1, , ,t = "

Proof: Since the value function can be decomposed as in (9) and the sub-systems tV  and  are 
separable in terms of the state variables, we borrow concepts from the multi-echelon inventory 
control techniques, 

tG

Scarf 1960. We first obtain the optimal downstream echelon stock levels 
as discussed in Theorem 3. We next move upstream to focus on the replenishment process. It 

is easy to see by applying convexity that all ’s are convex. Based on (19) in Appendix 2, we 
obtain the upstream base stock level 

, 0t d
r∗

tG

, 0t u
r∗  in time t as in Song and Zipkin 1996. If 

1 , 0
, t u

e
t uI r∗< , the 

optimal order quantity is ; otherwise, the optimal order quantity is zero. This completes 

the proof. 
, 0

,t u

e
t ur I∗ −

1

Under the conditions stated in Corollary 1, the optimal control policy for the comprehensive 
inventory model proposed in Section 2.1 follows the echelon base stock policy and has two thre-
shold numbers and in any given time period t.  

, 0t d
r∗

, 0t u
r∗

3. Value of RFID in Distribution 
In order to identify the value of RFID in inventory control systems, we study partial RFID de-
ployment scenarios, in which only some installations of the chain are covered by RFID. As a re-
sult, there is a possibility that the supplier does not know the location of shipments once they 
leave the RFID-enabled installations. We differentiate two types of shipments in transit: those 
with both location and age information and those with only age information. Note that the age is 
the number of periods since the order was shipped out from the supplier at installation  . By 
comparing the systems with different scope of RFID deployments, we are able to analytically 
identify the value of RFID in the system. For simplicity, we focus on the downstream distribu-
tion side, i.e., the replenishment lead time is zero.  

0d

We study the finite time horizon inventory problem with T time periods. In this section, two 
partial RFID deployment scenarios are proposed, as shown in Figure 5 and Figure 7. Scenario 1 
represents the case where the first s downstream installations are RFID enabled, while in sce-
nario 2 an additional downstream installation s 1d+  is deployed with RFID. We assume that the 
remaining configuration in the two scenarios is identical with the aim to isolate the contribution 
of RFID. Furthermore, both time-labeled (age of outstanding shipments) and location-labeled 
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inventory information is included in the two partial scenarios, while only location inventory in-
formation is captured in the complete RFID deployment model discussed in Section 2. RFID sys-
tem deployed in the first s installations provides information of both types, however, only the 
time-labeled inventory information within the non-RFID zone is used since there the location 
cannot be captured. 

3.1. Two Partial RFID Deployment Scenarios 
In order to capture ages of outstanding shipments, the following new notation is required. In the 
first s installations the system dynamics are as in Section 2. Installations 1 2, , ,s sd d d+ + " n  do not 
have RFID and thus only age is captured. Once a shipment leaves installation sd , the location and 
its progress is no longer known, only age is available. Shipments then arrive randomly based on 
age as in Kaplan 1970. 

jq  Probability that outstanding shipments, which are j periods old or more, arrive 
during the current time period 

 J  Random variable with the distribution based on  jq

,t kR  Amount of the outstanding shipments in time t placed k periods ago; we set    

 if such shipments have arrived before time t.  , 0t kR =

, t jA    Age of the “oldest” shipment at installation jd  in time t 

, t ja    Age of the “youngest” shipment at installation jd  in time t 
 m(t)  ,1 ,2 ,max{ , , , }t t t sA A A"  
 m'(t)  ; clearly, we have m'(t)  m(t). ,1 ,2 , , 1max{ , , , , }t t t s t sA A A A +" ≥

 
t

sV    The value function with RFID deployed in the first s installations  

 
t

sI     State vector in time t with RFID deployed in the first s installations, 

,1 , ,1 , ,1 , 1,( , ,  , ,  ,  , ,  ,  , ,  )
t n t t s t t s t

s
t t dI IO I a a A A R R

−
= " " "

t T

= =

       
 

RFID-enabled Network

 
Figure 5: Partial RFID Implementation in Scenario 1 

If no outstanding shipments appear at installation , we set a A  We require 

 The state space 
kd , , 0.t k t k

,0 0.tR = s
tζ  under s RFID-enabled installations in time t is defined as follows. 

Vector 
t

s s
tI ζ∈  if and only if: 

 , 0tIO ≥

dn
Dt

 
    
• • •

Yt 

tIO , 1t dI   

, 1t mR +

, nt dI  

d0
1
tI

d1

Xt 

    
• • •

1
tI

d2

, 2t dI

1
tI

ds

, st dI   

, 1t TR −  

non-RFID Zone
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, ,
for every 1, 2, ,  we have 0 ,

t i t i
i s a= ≤" A≤

s if for any  it holds that 1,2, ,i = "
,

0,
t i

a =  then 
,

0
t i

A = ,  

 if for any  such that , then , 1,2, ,i = " s

s
,

0
t j

a >
,, 0

t it aR >

 if for any  such that  then , 1,2, ,i = "
,

0,
t i

A >
,, 0

t it AR >

 if for every pair (i, j) with 1 i j s≤ < ≤ , it holds (1)  and (2) for every k 

with i k  has , then we have 
, ,

0,  0
t i t j

A a> >

j< <
, ,

0
t k t k

a A= =
, ,, , , ,1 and 0.

t k t kt i t j t a t AA a R R≤ − = =  

We observe that the inventory at installation d  for every 1i i s≤ ≤  is given by 
,

,

, .
t i

t i

A

t k
k a

R
=
∑  Sup-

pose 1  Given any two consecutive installations d  and  with positive inventory, as 
shown in Figure 6, we have 0 and for every l A  we have 

 

.

,t i t i t j t j
a A a A< ≤ < ≤ ,l a< <

t

i j s≤ < ≤ i jd

, , , ,, t i t j

,
0.

t l
R =

,, ,0, 0
t it A t iR A> >

, , 1t i t jA a≤ −

,, ,0, 0
t it a t iR a> >

0,0

0,0

0,0

0,0

0,0

0,0

,, ,0, 0
t jt A t jR A> >

,, ,0, 0
t jt a t jR a> >

id 1id + kd 1jd − jd
 

Figure 6: An illustration of the action space of scenario 1 in time t 
The main goal in this section is to show that 1

t

s sV V+ ≤ . This clearly shows that by installing 
RFID at installation s 1d+  the system cost is reduced. We call the system with s, s+1 RFID enabled 
installations scenario 1, scenario 2, respectively. In addition, we call installations sd , 1sd+  the bor-
der in scenarios 1, 2, respectively. We make the following assumptions with respect to scenario 1. 

 Transitions moving from non-RFID zone beyond installation sd  across the border back 
into the RFID-enabled network are not allowed. 
 Random vector W describing transitions in the RFID-enabled portion is conditioned on 

random variable J describing the non-RFID area. In other words, we first have the observa-
tion of random variable J and then the realization of W must be compatible with J in terms of 
the shipment transitions. For example, if a realization of J requires all shipments of age p to 
arrive at d  and for installation kn s<  we have ,, ,t k t ka p A≤ ≤  then clearly W cannot lead shipments 
at locations i  for k i  to a different installation but d . d s≤ ≤ n
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    RFID-Enabled Network

 
Figure 7: Partial RFID Implementation in Scenario 2 

 
The shipment transitions originating from the RFID-enabled installations depend on the ex-

ogenous random vector W. The random vector W assures location-labeled installation inventory 
information in each time period. The difference from Section 2 is in the fact that the shipments 
governed by W have to be compatible with J. As seen in Figure 8, we first observe a realization j 
of J. It is obvious that all the outstanding shipments with age at least j must accordingly arrive at 
installation . The realization of W provides additional information about the shipment transi-
tions among installations . The top portion of Figure 8 represents a possible and com-
patible shipment transition case, while the bottom portion represents a case in which the ship-
ment transitions based on W and J are incompatible.   

nd

0 1 2, ,d d d

The system dynamics for scenario 1 are divided into two groups. Part I shows the transi-
tions of installation inventories and outstanding shipments, while part II demonstrates the age 
transitions at installations. If  j is a realization of J, they read  
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g j a j a= ≥  In (I , if the minimum or maximum is over an 

empty set, we define the corresponding quantity 

I)

1,
( )

t i

sa j
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( )
t i

sA j
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 to be 0.         
The interface is defined as the position of the youngest outstanding shipment which arrives 

at installation  at the end of time t. In , nd 1, ( )
n

s
t dI j+ 1,

( )
t i

sa j
+

, and
1,

( )
t i

sA j
+  

we distinguish two cases. 

The first case 1 (  (for  it actually consists of two sub-cases) corresponds to the 
case where the interface is in the RFID-enabled area. Note that  is the oldest age in the RF-
ID-enabled area and j is a realization of J, which implies that all shipments of age equal to or 
more than j arrive at . It follows that the shipments arriving at  at the end of time period t 
include shipments in the RFID-enabled area and all outstanding shipments in the non-RFID zone 
because of the non-crossover property. In the other case of , the interface is beyond the 
RFID-enabled area. The arriving shipments at installation  in time period t are only from the 
non-RFID zone. We similarly distinguish two cases in the remaining equations. In 

) jj m t≤ ≤ 1, ( )
n

s
t dI +

( )m t

nd nd

( )j m t>

nd

1,
( )

t k

sR j
+

 
for , all outstanding shipments which are j periods old arrive in time t. However, in the 
case of , outstanding shipments which are 

 ( )j m t>
( )j m t≤ , ( )t ga j  old or more arrive because we have 

more detailed information from RFID and shipments are not broken. By definition,  de-
scribes the installation beyond which all outstanding shipments arrive during current time period 
t.  
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The optimality equation for partial RFID deployment scenario 1 reads 
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Notation  denotes the random variable W conditional on a realization j of J. /W J j=
In order for the optimality equation to be well defined, we need to show the following lem-

ma, which is proved in Appendix 3. 

Lemma 1. If
t

s s
tI ζ∈ , then

1 1t

s s
tI ζ

+ +∈ . 

 

 16



                   
Figure 8: Shipment Transition Compatibility between W and J 

In the partial RFID deployment scenario 2, the RFID-enabled network is extended to cap-
ture the information of one more downstream installation 1sd+ . It is clear that state vector 1
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scenario 2 has two more coordinates 
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+ and
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+ . The state transitions in scenario 2 are also 
divided into two parts. Part I captures the same transitions of inventories as in scenario 1, except 
that we replace s with s+1 and  with  in the state equations for scenario 2. Part II 
equations of system dynamics regarding 
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sitions as shown in scenario 1 due to the assumption of restricted backward movements from 
non-RFID area beyond installation 1sd+  to RFID-enabled area. The additional transitions special to 
scenario 2 regarding installation 1sd+  read 
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We accordingly replace s with s+1 and m t  with  in the optimality equation for partial 
scenario 2. 
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Shipments moving to installation 1sd+   at the end of time period t are only from the RFID-
enabled area. They can come from installation 1sd+   itself if the outstanding shipments at installa-
tion 1sd+  in time period t stay put. Similarly, as before, we distinguish two cases:  and 

.  Note that starting with the same outstanding shipments in time period t in scenario 1 
and 2, the two systems may possibly end up with different states in time period t+1. From here 
on, we denote the state difference between scenario 1 and 2 by using the superscripts s and s+1. 
For example,  denotes the youngest age of outstanding shipments at installation id  in time 

period t+1 corresponding to scenario 1. Likewise, 

' ( )j m t≤
' ( )j m t>

1,
s
t ia +

1
1,

s
t iA +
+  denotes the oldest age of outstanding 

shipments at installation i  in time period t+1 corresponding to scenario 2. d

3.2. Value of RFID in the Serial Distribution Process 
Intuitively, the broader the RFID deployment is in the distribution network, the greater should 
the benefits be. If the RFID deployment and maintenance costs are neglected, we are able to 
show that additional benefits are obtained by a broader RFID deployment because of availability 
of additional information. We compare two partial RFID deployment scenarios, based on identi-
cal model configurations and assumptions, e.g., the same lead time distributions and non-
crossover of the outstanding shipments in time.  

The following is our main result.  

Theorem 4. For any 
t

s s
tI ζ∈  and , we have , 1 , 1( ,t s t sa A+ + )

1)                   1
, ,1 , , 1 ,1 , , 1 ,1 ,( ) ( , , , , , , , , , , ,

t n

s s s
t t t t d t t s t s t t s t s t t TV I V IO ,I a a a A A A R R+

+ +≥ " " " − .               (12) 
The proof of this result is very technical and is provided in Appendix 4. It clearly states that 

under optimal policies, the total system cost of s+1 RFID deployments is equal to or lower than 
the cost of having only s RFID deployments. In other words, RFID reduces the total inventory 
cost. A weakness of our result is the fact that the deployment cost in not taken into consideration. 
The significance of the cost reduction depends on the RFID deployments. 

4. Concluding Remarks 
After the initial lab experiments and case studies, the real breakthrough of RFID applications 
came with the RFID mandates imposed by Wal-Mart and the U.S. Department of Defense. Most 
of their suppliers are required to apply at least pallet level RFID transponders to the products be-
ing shipped to selected distribution centers. The well-known slap-and-ship strategy provides val-
uable information and benefits to the retailers. However, it is much harder to identify a return on 
investment for suppliers. We first present a comprehensive inventory model and show that the 
underlying multivariate cost-to-go decomposes into two lower dimensional functions. Under cer-
tain assumptions, the optimal control policy for both replenishments and shipments is obtained. 
Furthermore, we analytically show that larger RFID deployments yield reduced overall expected 
cost. This clearly establishes that there is potential benefit of using RFID if novel processes are 
used. There are several important contributions of this work. Prior research mainly studies appli-
cations of RFID internally within a company or inventory control problems in a multi-firm set-
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ting with RFID supply information. This research is the first one to analytically study the inven-
tory control policies with explicit RFID information at the distribution side. This is a nontrivial 
task since we have to simultaneously deal with two actions (replenishment and shipping quanti-
ties). Another contribution is, first, modeling a system with only a partial RFID deployment, and, 
second, comparing the expected cost of the resulting models with respect to the extent of the RF-
ID deployment. Perhaps the most important contribution concerns the next generation business 
applications built on top of RFID data. We show that even by employing slap-and-ship, it is pos-
sible to generate additional value. This research is closing the gap between the ever increasing 
supply chain data and challenging analytical tools to process such information. The main contri-
bution of our work is to establish models and policies for slap-and-ship that benefit suppliers. 

It is clear that in short-term slap-and-ship provides a quick and relatively low cost solution 
compared with a full-scale RFID deployment to achieve compliance with a retailer’s mandate. 
On the other hand, experiences from slap-and-ship can shape suppliers’ future internal deploy-
ments and even further upstream, where suppliers can reap all the benefits from RFID. In this 
work, we show such possibility by an analytical approach exploiting the vast richness of RFID 
data. We first propose a comprehensive inventory model and then evaluate a serial distribution 
process with RFID deployments, which mimics the slap-and-ship processes of suppliers facing 
RFID mandates. The inventory control problem in the serial distribution chain is modeled as a 
dynamic program. Furthermore, the original problem is reduced in size to a simpler model with-
out losing optimality. Based on this state reduction result, the optimal inventory control policy is 
the echelon base stock policy. It establishes that by knowing the downstream flow of goods 
through the distribution channel the supplier can improve decision making with respect to inven-
tory control. The proposed comprehensive inventory model contains both supply and distribution 
information in serial systems. It asserts that armed with entire supply chain status information 
from using RFID, suppliers could better manage their internal and external processes and make 
integrated decisions that would improve their bottom line. 

The value of RFID in inventory control systems is also discussed in detail within the stud-
ied context. It is usually claimed that slap-and-ship is a cost-bearing solution. We argue that be-
yond the cost associated with slap-and-ship, suppliers could indeed find the benefits of RFID de-
ployments downstream. We show analytically how RFID can improve the system performance 
in terms of the expected overall cost over a finite time horizon. The partial RFID deployment 
scenario with s+1 installations covered by RFID yields lower procurement and shipping costs 
than the costs based on s installations covered by RFID. The cost difference can be regarded as 
the true value of RFID in the system, setting aside the RFID system deployment and mainte-
nance costs. 

The most important revelation and message of our paper is the fact that even by employing 
slap-and-ship, which is a basic deployment, benefits in inventory control are possible. Such ben-
efits could offset the underlying costs and thus establish the elusive ROI for an RFID deploy-
ment. Clearly a positive ROI is not possible by simply slapping the tag and then shipping. An 
information system with analytical capabilities demonstrated here must be put together. RFID 
leaves an enormous trail of data that can be creatively analyzed and used to improve decision 
making. The results in Section 3 clearly demonstrate that wider RFID deployments bring addi-
tional benefits. Firms must carefully leverage deployment costs vs. benefits when deciding the 
scope of an RFID deployment. We demonstrated that additional benefits are definitely possible 
with broader deployments.  
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A drawback of our study is that the actual deployment costs are not explicitly captured. We 
do not claim of showing a positive ROI, but without the analytical aspects presented herein, a 
positive ROI is definitely not possible under the slap-and-ship strategy.   

Many suppliers to Wal-Mart are struggling with the underlying costs of slap-and-ship. 
Through its power, Wal-Mart is able to dictate the RFID terms, while risking insolvency of 
smaller suppliers. Instead of these relentless pressures, Wal-Mart could more tightly collaborate 
with suppliers by using its tremendous IT resources and knowledge. To this end, it should show 
the suppliers how to gain benefits from its RFID mandate, and not only incur cost. By using the 
presented findings, the big-box retailer could show the suppliers how to improve inventory man-
agement simply by using the feedback data from Wal-Mart; thus not going deeper into the proc-
esses of the suppliers and more complex deployments of this pervasive technology. 

With the real-time information generated from RFID, many new research directions are 
possible. This research addresses a partial RFID deployment issue in order to study the value of 
RFID in inventory control. We assume RFID is deployed from the supplier downstream. An al-
ternative setting not addressed here is to start deploying RFID at the point-of-sale and expanding 
it upward. It would be interesting to investigate the system differences between a forward and 
backward deployment. All partial RFID deployment scenarios in this work are based on perfect 
RFID read rates. This immediately raises the question of the impact of imperfect RFID read rates 
on system performance.  
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Appendix 1   

Proof of Theorem 1: We use induction. We define 1 0.Tα + =  Since all the terminal costs are zero, 

we clearly have 11 1 0TT TV V α++ += + = .  
We assume that  (6)  holds for t+1.  In other words, 
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In 1tα +  above, the summation over j is decomposed into two groups: from 0 to dL -3 and 
j= dL -2.  Moreover, the non-crossover property is applied for j= dL -2 as follows. Term
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Equation (15) is the optimality equation of the distribution process. In (16) we use the in-
duction hypothesis. The optimality equation (3) of the reduced model is applied in (17). In (18) 
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realization  of  and  of  After simplifying the remaining terms and pulling term dl dL w .W tα out 
of minimization because it is independent of the decision variables 

0,t uI  and
0, ,t dI we conclude 

that , 1( ) ( , )tt t d t t tV I V IO r .α= + This completes the proof.  

Appendix 2 

Proof of Theorem 3: We prove the statement by induction. It is straightforward to show the 
theorem for T+1. We assume that (9) holds for t+1, i.e., 

i
1 1 1n t

By examining the downstream sub-system, standard arguments are applicable showing that 
1 11 1,1 1 1, 1,( ) ( ) ( , , , )e e e e

t tt t t t u t uV I V r G I I IO
− +

+ ++ + + + += + " . 

tV ’s are all convex. The base stock levels 

{ }, 0 00
, 0

1
1, ,1

0
arg min ( ) ( [( ) ]) [ ( )]

d d

d
t d

t d

L D L D
tt t t d t t d t d tt L

r
r S h r E p E D r E V  r∗ − +

++ −
≥

= − + − + −
0, D  

are used to determine the optimal shipping decisions to the distribution process. In other words, 
if , the optimal shipping quantity in time t is 

, 0,1 t dtr r∗<
, 0 ,1t d tr r∗ − ; otherwise, the optimal shipping 

quantity is zero. In order to show (9), we need to distinguish two cases.  
Case I: Let first  We have 

, 0
.
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Case II : Let now  It is clear that the optimal shipping decision satisfies  be-

cause of the convexity of function  and 
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where  is the pen-

alty term corresponding to the shortage of on-hand inventory for an optimal shipment.  
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 As a result, we have 

 
i

{ }
1 1

0 , ( ) 1 1
, 0

,1 , ,

, 1 1, 1,0

( ) ( ) ( , , , )

( ) ( ) ( ) [ ( , , , )]
n t

t N u n tnt u

e e e e
t tt t t t u t u

R e e R e e e
t t u t t t t t u t uI

V I V r G I I IO

Min C I h E I IO E G I I IOθ
−

− ++ + +≥

− =

= + ⋅ + +

"

"
1

,

+

(19) 

where the penalty term reads 
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This completes the proof of Theorem 3. 
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Appendix 3          

Proof of Lemma 1: We need to show that if 
t

s s
tI ζ∈ , then

1 1t

s s
t I ζ

+ +∈ . First, we consider non-
negativity requirements. It is clear from system dynamics that 1 0s s

t t t tIO IO X Y+ = + − ≥  because 
  and 0,tX ≥ 0tY ≥ .s

tY IO≤ t  Non-negativity of other components follows by definition and from 
system dynamics.  

If  for a k, then  (otherwise 
,, 0

t kt aR > , 0t ka > , , 0,t k t ka A= =  which implies ). In turn 

we have  and thus . System dynamics imply that for every j 

.  

,, 0
t kt aR =

, 0t kA >
,, 0

t kt AR >

1, 1,0 ( ) ( )s s
t i t ia j A j+ +≤ ≤

If  then the underlying set defining the quantity is 1, ( ) 0,s
t ia j+ = .∅  The underlying set defin-

ing 1, ( )s
t iA j+  is also empty, which in turn implies 1, ( ) 0.s

t iA j+ =   

If  then we have  for some 1, ( ) 0,s
t ia j+ >

,, 0
t kt aR > 1 k s≤ ≤  and  Since 

 we obtain that j in time period t must be greater than  Then either  or 

. System dynamics imply in both cases that 

1, ,( ) 1.s
t i t ka j a+ = +

1, ( ) 0,s
t ia j+ > , .t ka ( )j m t>

, ( )t ka j m< ≤ t
1, ,1, ( ) ,

0.s
t i t k

s
t a j t a

R R
++

= >  The same argu-

ment applies to the case   implying  1, ( ) 0s
t iA j+ >

1,1, ( )
0.s

t i

s
t A j

R
++

>

It remains to show that if for ' '1 i j s≤ < ≤  such that  and for every  

 we have , then we have 
1, ' 0,s

t iA + > 1, ' 0s
t ja + >

' 'i k j< < '
1, ' 1, ' 0s s

t k t ka A+ += = 1, ' 1, ' 1.s s
t i t jA a+ +≤ −  A possible scenario of the 

order transitions from time period t to t+1 is shown in Figure 9. Outstanding orders in the instal-
lation range [u,v] in time period t move to installation i′ in time period t+1. Similarly, out-
standing orders in [u′,v′] move to installation j′ in time period t+1. The light-shaded installations 
correspond to installations with no inventory in time period t. Installations i�  and  are the two 
farthest installations with positive inventory within [u,v], i.e., inventory in installations within 
[ i� , i ] is 0, while 

i

j  and �j  are two such installations within [u′,v′]. As can be easily verified by 
the non-crossover assumption, the dark-shaded area represents installations with no outstanding 
orders in time period t. Formally, we obtain 1, ' , 1s

t i t iA A+ = +  and 1, ' , 1.s
t j t ja a+ = +  

From  we then obtain , , 1,t i t jA a≤ − 1, ' 1, ' 1.s s
t i t jA a+ +≤ −  

        In conclusion, the presented dynamic program is well-defined. This completes the proof of 
Lemma 1. 
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Figure 9: Graphical Representation of Order Transitions 

  

Appendix 4 
In order to show Theorem 4, we need the following lemma. 

Lemma 2. For simplicity, we denote 

 where the 

state variables are derived from the recursion in scenario 2, and 

1,1 1, 1 1,1 1, 1 1,1 1, 1

1 1 1 1 1 1 1 1 1 1 1 1
1 1, 1 1 1 1,( , ) [ ( , , , , , , , , , , )],

n n t t s t t s t

s s s s s s s s s s s s
t t d t t t t dV I R E V IO I a a A A R R

+ + + + + + + + −

+ + + + + + + + + + + +
+ + + + + += " " "

t T

,

1

1, 1 1, 1 1,1 1, 1, 1 1,1 1, 1, 1 1,1 1, 1

1 1 1 1 1 1
1 1 1 1 1,( , , ) [ ( , , , , , , , , , , , , )]

t s t s n t t s t s t t s t s t t T

s s s s s s s s s s s s s s s
t t t t t dV I a A E V IO I a a a A A A R R

+ + + + + + + + + + + + + + −

+ + + + + +
+ + + + += " " "  

where state variable 1
s s
t tI ζ+ ∈ + n

 is derived from the recursion in scenario 1. If  , then 

for every  we have 

1
1, 1,n

s s
t d t dI I +
+ +≤

{1,2, , -1}k T= "
1, 1,

1
t k t k

s sR R
+ +

+≥ , 
1, 1,

1 1
1

1, 1,
1 1

n t k n

T T
1

t k

s s s s
t d t d

k k
I R I R

+

− −

+

+ +
+ +

= =

+ = +∑ ∑

1)+

 and                                     

 .  (20) 
1, 1 1, 1

1 1 1 1 1
1 1 1 1, 1( , , ) ( ,

t s t s n

s s s s s s s
t t t t d tV I a A V I R

+ + + +

+ + + + +
+ + + + +≥

Proof: Let us first show that for every {1,2, , -1}k T= "  we have 
1, 1,

1
t k t k

s sR R
+

+≥
+

≥

. We distinguish 
three cases. 

1)Let  Following the state transitions in partial scenarios 1 and 2, for 
 and  we have 

' ( ) and 2.j m t k>
' ( )j m t> ,k j≤

1, , 1
( )

t k t k

sR j R
+ −

=  and  which implies 
1, , 1

1 ( ) ,
t k t k

sR j R
+

+ =
−

1, 1,

1( ) ( ).
t k t k

s sR j R j
+ +

+=  If ' ( ) ,m t j k< <  we have 
1,

( ) 0
t k

sR j
+

=  and  which also 

implies 
1,

1 ( ) 0,
t k

sR j
+

+ =

1, 1,

1( ) ( ).
t k t k

s sR j R j
+ +

+=                 

t: 

t+1: 

Installations 

Installations 

�j

u v 'u 'v  

i’ j’

i� ji 
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2)Let  and . For  we have '( ) ( )m t j m t< ≤ 2k ≥ '
,( ) ( ),t gm t a k j m t< ≤ ≤ ≤

1, , 1
( ) ( )

t k t k

s sR j R j
+ −

=  

and  which implies
1,

1 ( ) 0,
t k

sR j
+

+ =
1, 1,

1( ) ( )
t k t k

s sR j R j
+ +

+≥ . Otherwise, we clearly have 

1, 1,

1( ) ( )
t k t k

s sR j R j
+ +

+= .       

3)Finally, let  For  we have 1 ( ) and 2.j m t k≤ ≤ ≥ '
, ( ) ( ),t gk a j m t m t≤ ≤ ≤ ≤

1, , 1
( ) ( )

t k t k

s sR j R j
+ −

=  and 
1, , 1

1 ( ) ( ),
t k t k

s sR j R j
+ −

+ =  which implies 
1, 1,

1( ) ( ).
t k t k

s sR j R j
+ +

+=  Otherwise, 

we have  and 
1,

( ) 0
t k

sR j
+

=
1,

1 ( ) 0
t k

sR j
+

+ = , which again implies 
1, 1,

1( ) ( )
t k t k

s sR j R j
+ +

+= .  

We also observe that 
1,1 1,1

1( ) ( ) .
t t

s s
tR j R j Y

+ +

+= = Thus, we conclude that for every 

 we have {1,2, , -1}k T= "
1, 1,

1
t k t k

s sR R
+ +

+≥ .               

Next, let us show . We similarly distinguish cases as follows. 1
1, 1,n

s s
t d t dI I +
+ +≤

n

1 .1) Let first 
, ,

1 ( ) and 
t i t i

a j A m t i≤ ≤ ≤ ≤ ≤ ≤ s  By using the state transitions in scenarios 1 

and 2, we have 
,

,

1
1

1, 1, ,( ) ( )
n n n t k

t i

T
s s
t d t d t d t

k a

I j I j I R
−

+
+ +

=

= = + ∑ D−

( ).

. 

2) Let 
, , '

1
t i t i

A j a m t≤ < < ≤  For every g such that 
, ,

1 '  and 
t d t dg g

i g i s a A 0,≤ < < ≤ = =  we 

have 
,

, '

1
1

1, 1, ,( ) ( )
n n n t k

t i

T
s s
t d t d t d t

k a

I j I j I R
−

+
+ +

=

= = + ∑ D− . 

3) Let now . We have '( ) ( )m t j m t< ≤

  
,

1

1, ,( )
n n t k

T
s
t d t d t

k j
I j I R D

−

+
=

= + −∑ ,  

,

1
1

1, ,
( ) 1

( )
n n t k

T
s
t d t d t

k m t
I j I R D

−
+
+

= +

= + −∑ .  

4) Finally, let . We have ' ( )j m t>
,

1
1

1, 1, ,( ) ( ) .
n n n t k

T
s s
t d t d t d t

k j
I j I j I R D

−
+

+ +
=

= = + −∑  

    Therefore, we obtain  because 1
1, 1,( ) ( )

n

s s
t d t dI j I +
+ +≤

n
j

, ,

1 1

( ) 1
t k t k

T T

k j k m t
R R

− −

= = +

≤∑ ∑ . 

Now, we show 
1, 1,

1 1
1

1, 1,
1 1

n t k n

T T
1

t k

s s s s
t d t d

k k
I R I R

+

− −

+

+ +
+ +

= =

+ = +∑ ∑ t k
. We first investigate 

1,

1

1,
1

n

T
s s
t d

k
I R

+

−

+
=

+∑  and 

distinguish two cases. 
1) Let 1 (  and . By state transitions in sce-

nario 1 we have 

) d≤j m t≤ ≤ . . 1argmax{ | , }t i t i i s
i

g a j a d d= ≥ ≤

, ,

1, 1, 1, ,

,

11 1

2 2 1 1
( ) ( ) ( ) .

t g t g

t k t k t k t p

t g

a aT T
s s s

k k k a p
R j R j R j R

+ + +

−− −

= = = + =

= + =∑ ∑ ∑ ∑  

Let  and 1min{ : ( , ) , }n se d M d W d d d= = ≤ d≤ 1max{ : ( , ) , }.n sf d M d W d d d d= = ≤ ≤  
Let also B be the subset of { , 1, , }e e f+ "  such that for every bd B∈  we have  

and for every  we have 
,, 0

t bt aR >

{ , 1, , }\bd e e f∈ + " B
, ,, , 0.

t b t bt a t AR R= =  We also denote 
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1
min{ : }b b bd d d= ∈B B and 

2
max{ : }.b b bd d d= ∈  We have  and 

 In addition, 

1,t b t ga a= ,

2, ,( ) max{ } .t b t bb B
m t A A

∈
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1,1
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t
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tR j Y
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We conclude that in both cases 
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1 1
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n t k n t k
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I R I R D
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+
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By using almost identical steps as those shown above it can be derived that 
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I R D Y
−

=
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 Next, we argue that if , 1
1, 1,n n

s s
t d t dI I +
+ +≤

1, 1,

1
t k t k

s sR R
+ +

+≥  and  then 

,

1, 1,

1 1
1 1

1, 1,
1 1
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s s s s
t d t d

k k
I R I R

+ +
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1
2, 2,n n
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t d t dI I +
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2 , 2 ,

1
t k t k

s sR R
+

+≥
+

1
k
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k k

I R I R
+
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+

+ +
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+ = +∑ ∑ . We note that from time period 

t+1 to time period t+2 the system follows the recursions in scenario 2. It is clear that 
if

1, 1,

1
t k t k

s sR R
+

+≥
+

 for every  then {1,2, , -1},k T= "
2 , 2 ,

1
t k t k

s sR R
+ +

+≥ . We next show  by dis-
tinguishing two cases.  

1
2, 2,n
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+ +≤

n
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1) Let  We note that for every ' ( 1)j m t≤ + . s{1,2, , },k = "  it holds  and 1
1, 1,
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t k t ka a +
+ = +

1
1, 1,
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where (21) follows by the induction hypothesis. This completes the proof of Lemma 2.            ■                           
Proof of Theorem 4. We take a closer look at the current one-period cost in time period t in sce-

narios 1 and 2. For ease of notation, we denote 
l

'

, ,

,

, ,
'

1

 

( ) 1
, /

1  ( ): (

1 1

( ) 1

( ) ( ) ( )

       [( ) ]

       [( ) ].

t d t ln
t k k n

t d t kn

s
t t t t t t t t t

m t T
D W J j

t j t
j l a j M

T T
D

t j t
k jj m t

C C X S Y h IO X Y

p q E D I R

p q E D I R

+

−

, )d w d

= +

= =

− −
+

== +

= + + + −

+ ⋅ ⋅ − −

+ ⋅ ⋅ − −

∑ ∑

∑ ∑

=

 

l

, ,

,

, ,

 
( ) 1

, /

1  ( ): (

1 1

( ) 1

( ) ( ) ( )

       [( ) ]

       [( ) ],

t

t d t ln
t k k n

t d t kn

s

t t t t t t t t
m t T

D W J j
t j t

j l a j M

T T
D

t j t
j m t k j

C C X S Y h IO X Y

p q E D I R

p q E D I R

−

, )d w d

= +

= =

− −
+

= + =

= + + + −

+ ⋅ ⋅ − −

+ ⋅ ⋅ − −

∑ ∑

∑ ∑

=

 

 32



       Quantity l t

s
C  denotes the one-period cost in scenario 1 and l

1

t

s
C

+
 denotes the one-period cost 

in scenario 2. We first show that 

                                                     l l 1

t t

s s
C C

+
≥ .                                                                    (22) 

We start by showing 
' '

, , , ,

( ) ( )1 1

( ) 1 ( ) 1 ( ) 1

[( ) ] [( ) ].
t d t k t d t kn n

m t m tT T
D D

j t t j t t
j m t k j j m t k m t

q p E D I R  q p E D I R
− −

+ +

= + = = + = +

⋅ ⋅ − − ≥ ⋅ ⋅ − −∑ ∑ ∑ ∑          (23) 

To show (23), we distinguish three cases. 

1) Let first . Then it follows  ' ( ) ( )m t m t=
' '

, , , ,

( ) ( )1 1

( ) 1 ( ) 1 ( ) 1

[( ) ] [( ) ] 0.
t d t k t d t kn n

m t m tT T
D D

j t t j t t
j m t k j j m t k m t

q p E D I R q p E D I R
− −

+ +

= + = = + = +

⋅ ⋅ − − = ⋅ ⋅ − − =∑ ∑ ∑ ∑  

         2) Next let . We have ' ( ) ( ) 1m t m t= +
' '

, , , ,

'
, ,

'

( ) ( )1 1

( ) 1 ( ) 1 ( ) 1

1

( )
( )

[( ) ] [( ) ]

[( ) ].

t d t k t d t kn n

t d t kn

m t m tT T
D D

j t t j t t
j m t k j j m t k m t

T
D

t tm t
k m t

q p E D I R  = q p E D I R

q p E D I R

− −
+ +

= + = = + = +

−
+

=

⋅ ⋅ − − ⋅ ⋅ − −

= ⋅ ⋅ − −

∑ ∑ ∑

∑

∑
 

3) Finally, let . For every  we have ' ( ) ( ) 1m t m t> + '( ) 1 ( ),m t j m t+ ≤ ≤
' '

, ,

( ) ( )

( ) 1

 
t k t k

m t m t

k j k m t

R R
= = +

≤∑ ∑    

and 
' '

, , , ,

( ) ( )1 1

( ) 1 ( ) 1 ( ) 1

[( ) ] [( ) ].
t d t k t d t kn n

m t m tT T
D D

j t t j t t
j m t k j j m t k m t

q p E D I R q p E D I R
− −

+ +

= + = = + = +

⋅ ⋅ − − ≥ ⋅ ⋅ − −∑ ∑ ∑ ∑  

Suppose that there exists  such that . It is clear that 

and 

'{ ( ) 1, , ( )}k m t m t∈ + " , 0t kR >

,1 ,2 ,( ) max{ , , , }t t t sm t A A A= " '
, 1 , 1( ) max{ ( ), } .t s t sm t m t A A+ += =  By definition of s

tζ  we con-

clude that  , 1 , 1( ) 1 '( ).t s t sm t a A m t+ ++ ≤ ≤ =

 33



         Now, we perform the final step towards showing l l 1

t

s s
tC C
+

≥ . We have               

 

l

, ,

,

, ,

( ) 1
, /

1 ( ): ( , )

1 1

( ) 1

( )
, /

1

( ) ( ) ( )

[( ) ]

[( ) ]

( ) ( ) ( )

[

t

t d t ln
t k k n

t d t kn

s

t t t t t t  t t
m t T

D W J j
j t t

j  l a j M d w d

T T
D

j t t
j m t k j

t t t t t t  t t
m t

D W J j
j t

j

C C X S Y h IO X Y

 q p E D I R

 q p E D I R

C X S Y h IO X Y

 q p E

−
= +

= = =

− −
+

= + =

=

=

= + + + −

+ ⋅ ⋅ − −

+ ⋅ ⋅ − −

= + + + −

+ ⋅ ⋅

∑ ∑

∑ ∑

∑ , ,

,

'

, , , ,
'

1

( ): ( , )

( ) 1 1 1

( ) 1 ( ) 1

( ) ]

[( ) ] [( ) ]

t d t ln
t k k n

t d t k t d t kn n

T

t
 l a j M d w d

m t T T T
D D

j t t j t t
j m t k j k jj m t

D I R

 q p E D I R q p E D I R

−
+

= =

− − −
+ +

= + = == +

− −

+ ⋅ ⋅ − − + ⋅ ⋅ − −

∑

∑ ∑ ∑ ∑

,

    (24)         

               

, ,

,

'

, , ,
'

( ) 1
, /

1 ( ): ( , )

( ) 1 1 1

( ) 1 ( ) 1 ( ) 1

( ) ( ) ( )

[( ) ]

[( ) ] [( ) ]

t d t ln
t k k n

t d t k t d t kn n

t t t t t t  t t
m t T

D W J j
j t t

j  l a j M d w d

m t T T T
D D

j t t j t t
j m t k m t k jj m t

t

C X S Y h IO X Y

 q p E D I R

 q p E D I R q p E D I R

C

−
= +

= = =

− − −
+ +

= + = + == +

≥ + + + −

+ ⋅ ⋅ − −

+ ⋅ ⋅ − − + ⋅ ⋅ − −

=

∑ ∑

∑ ∑ ∑

l

'

, ,

,

, ,
'

( ) 1
, /

1 ( ): ( , )

1 1

( ) 1

1

( ) ( ) ( )

[( ) ]

[( ) ]

.

t d t ln
t k k n

t d t kn

t t t t t  t t

m t T
D W J j

j t t
j  l a j M d w d

T T
D

j t t
k jj m t

s
t

X S Y h IO X Y

 q p E D I R

 q p E D I R

C

−
= +

= = =

− −
+

== +

+

+ + + −

+ ⋅ ⋅ − −

+ ⋅ ⋅ − −

=

∑ ∑

∑ ∑

∑
(25) 

In (24) we break the indices and apply (23) in (25).  

We are now ready to carry out the complete proof by induction. Since we do not consider 

the cost incurred beyond the time horizon T, we have 1
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Starting from (11), we obtain  
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In (27), (28), (29), we have used (26), (22) and (20) respectively. 

This completes the proof of Theorem 4. 
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