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Abstract

Most recent machine learning research focuses on developing new classifiers for

the sake of improving classification accuracy. With many well-performing state-

of-the-art classifiers available, there is a growing need for understanding inter-

pretability of a classifier necessitated by practical purposes such as to find the

best diet recommendation for a diabetes patient. Inverse classification is a post

modeling process to find changes in input features of samples to alter the ini-

tially predicted class. It is useful in many business applications to determine

how to adjust a sample input data such that the classifier predicts it to be in a

desired class. In real world applications, a budget on perturbations of samples

corresponding to customers or patients is usually considered, and in this set-

ting, the number of successfully perturbed samples is key to increase benefits.

In this study, we propose a new framework to solve inverse classification that

maximizes the number of perturbed samples subject to a per-feature-budget

limits and favorable classification classes of the perturbed samples. We de-

sign algorithms to solve this optimization problem based on gradient methods,

stochastic processes, Lagrangian relaxations, and the Gumbel trick. In exper-

iments, we find that our algorithms based on stochastic processes exhibit an

excellent performance in different budget settings and they scale well. The rela-

tive improvement of the proposed stochastic algorithms over an existing method

with a traditional formulation is 15% in the real-world dataset and 21% in two

public datasets on average.

Keywords: inverse classification, adversarial learning, counterfactual

explanation, machine learning, neural networks

1. Introduction

Classification is a building block for solving various machine learning tasks

such as customer segmentation, sentimental analysis, and image recognition. To



achieve high classification accuracy various perspectives should be considered in

the model development phase; normalization, imputation, and treating outliers

of given data, feature selection and extraction, advanced architectures of clas-

sifiers, hyperparameter tuning, and training. Especially, designing a classifier

including feature engineering is one of the keys to high performance. Through

numerous state-of-the-art feature engineering and advanced model architectures

deep neural networks made significant progress on classification tasks (Good-

fellow et al., 2016; Polap & Wlodarczyk-Sielicka, 2020). On the other hand,

there is increasing demand for analyses and use of well-fitted models as a post

process (Aggarwal et al., 2010; Lash et al., 2017a). A common post modeling

step is to consider changes in features that alter the predicted class, e.g. from

the prediction of becoming sick to remaining healthy. Given a trained classi-

fier, inverse classification models identify minimal changes of input features of a

sample so that the sample is predicted as a desired class that is different from its

originally predicted class (Laugel et al., 2018). It is first introduced as a topic of

sensitivity analysis (Mannino & Koushik, 2000) and then augmented as an inter-

pretability approach (Barbella et al., 2009). Viewing inverse classification as a

utility-based data mining problem, Lash et al. (2017a) argue that it is a subtopic

of strategic learning (Boylu et al., 2010). Inverse classification is also related to

counterfactual explanation in interpretable machine learning. A counterfactual

explanation reveals how a sample should be perturbed to significantly change

its original prediction. By crafting counterfactual samples we can interpret how

a classifier computes individual predictions (Wachter et al., 2018; Molnar, 2019;

Verma et al., 2020, 2021). Lowd & Meek (2005) and Laugel et al. (2018) point

out that inverse classification is related to adversarial learning (Tygar, 2011)

that aims to attack a classifier by applying small perturbations to samples to

modify their initial predictions. Inverse classification and counterfactual ex-

planation studies focus on interpretability of classification models. Meanwhile,

adversarial learning mainly focuses on robustness of associated models. In ad-

dition to generating adversarial attacks, developing a defensive system against

the attacks is a study of interest in adversarial learning (Machado et al., 2021).
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Perturbing samples so that they are predicted as a desired label is a common

goal in these areas. In this paper, we focus on generating adversarial attacks

without any defensive system; thus, designing a defensive system is out of scope.

In many business applications samples correspond to treatment of customers

or patients and the goal is to perturb their treatment in order to be predicted in

a more favorable class. We often have limits on feature perturbation amounts,

e.g., a limited number of interactions with all of the customers or we only have

limited availability of a drug or procedure. Within per-feature-budget limits

we want to treat as many customers or patients as possible. This is equivalent

to stating that we want to maximize the number of perturbed samples because

we turn each one of them into a more favorable class. Past works deal with

objectives such as minimizing budget or other continuous loss functions but to

capture the number of samples to perturb requires a discrete function which

poses unique challenges addressed herein. In this work we are focusing on the

problem of maximizing the number of selected samples subject to per-feature-

budget limits and desired reclassification of the perturbed samples. We seek to

obtain the maximal number of successfully perturbed samples while the budget

is bounded by each input feature. This setting is a direct result of a real-world

use case.

A typical setting considered in inverse classification, counterfactual expla-

nations, and adversarial learning is as follows. Let us assume that we have

a classifier f : x ∈ X → y ∈ Y with input x and output y. The goal is to

generate an adversarial sample x̂ that is of the same form as a given sample

x, and is to be predicted as a desired class that is different from the originally

predicted label of x. Especially in adversarial learning, there are two types of

adversarial examples. A non-targeted adversarial example x̂ is generated by

adding small perturbation to x so that x̂ is classified as any class that is not the

original ground truth. A targeted adversarial sample fools a classifier so that

it produces a desired label f(x̂) = ȳ where ȳ is the desired class determined by

the adversary. In this paper, we assume that we have a desired class for each

sample. Therefore, our problem is aligned with a targeted adversarial attack.
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Figure 1 illustrates process of inverse classification. A classifier is fitted to find

decision boundaries, which leads to accurate classification. Through the trained

classifier, adversarial samples are generated by perturbing input features of the

samples such that they are labeled as desired. The Lp norm of the perturba-

tion between adversarial samples and given samples is usually used as the loss

function where p can be 0, 1, 2,∞ (Dong et al., 2018). In some cases, a set of

budget constraints for the perturbation is introduced, and subsequently, not all

of candidate samples can be successfully perturbed as desired. Herein we focus

on spending the budget so that as many samples as possible can be successfully

perturbed within the budget. Our goal is to perturb all of the candidate sam-

ples as desired within the budgets as shown in Figure 1 (b). Existing inverse

classification and adversarial attack frameworks do not capture this perspective

since they minimize the cost of the perturbation.

In this study, we develop a new framework that can be applied to inverse

classification and counterfactual explanations as well as adversarial learning.

We assume to have a budget constraint on perturbations of continuous input

features. In order to obtain the maximum number of successfully perturbed

samples within the budget, we define an objective function that maximizes the

number of samples to be perturbed, which is different from the existing formula-

tions of minimizing perturbations. To this end, we introduce a binary variable

indicating which sample is to be perturbed. In addition, we include a set of

constraints that the probability of the desired class produced by the classifier is

higher than all other classes by a tunable margin. This is done to avoid a purely

adversarial change in the prediction but instead induce perturbations yielding

the actual desired change in the real-world process. We propose Langrangian-

based models relying on binary variables. An alternative view considering the

selection of samples as a stochastic process with unknown probabilities yields

even better algorithms. The resulting model uses chance constraints and the

Gumbel trick to make algorithms more efficient. We rely on gradient-based

optimization in conjunction with Lagrangian relaxations.

For evaluation, we use a real-world proprietary dataset and two public
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(a) Trained classifier f (b) Generating adversarial samples x̂

Figure 1: Illustration of inverse classification

datasets from a health clinic (Johnson et al., 2016; Goldberger et al., 2000)

and hospitals (Dua & Graff, 2017). We compare the performance of our algo-

rithms with respect to the number of selected samples and the budget consumed

per selected sample. Algorithms based on stochastic processes significantly out-

perform those relying on binary variables. We conduct budget and scalability

experiments on the real-world data; the relative improvement of the proposed

stochastic algorithms over an existing method with a traditional objective func-

tion is 7% and 23% on average for a variety of budget and possible sample size

settings, respectively. In the budget experiments on the two public datasets,

the stochastic algorithms outperform the existing model by 21% on average.

The contributions of this work are as follows.

1. We introduce a new framework to solve inverse classification to achieve the

maximal number of successfully perturbed samples within a per-feature

budget. As far as we know, this framework has not yet been applied to

inverse classification in the existing literature.

2. We design novel algorithms based on gradient methods, stochastic pro-

cesses, Lagrangian relaxations and the Gumbel trick.

3. In the computational study, stochastic approaches perform well on differ-

ent budget scenarios, and they scale.
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The rest of this paper is organized as follows. In Section 2, the related work

is discussed. Section 3 describes the proposed models, and the algorithms to

solve them are presented in Section 5. Section 5 provides the computational

study including experimental details and analyses of the experimental results.

Conclusions are given in Section 6.

2. Related work

In inverse classification and counterfactual explanation studies the focus is

either on unconstrained or constrained problems, or algorithmic mechanisms

(Lash et al., 2017a,b). A problem statement is related to either feasibility or

implementability of perturbed samples, which yield either an unconstrained

(Aggarwal et al., 2010; Yang et al., 2012) or a constrained problem (Barbella

et al., 2009; Chi et al., 2012; Lash et al., 2017a,b; Wachter et al., 2018; Lash &

Street, 2020; Mannino & Koushik, 2000; Gupta et al., 2021). Since an uncon-

strained formulation does not consider practical constraints such as a budget,

it tends to produce unrealistic perturbations of input features of a sample, e.g.

cannot offer a drug if a patient is at home. A constrained formulation provides

realistic perturbations, however, it is challenging to solve them. There are three

factors to be considered: a) identify changeable features to be perturbed, e.g.

an unchangeable feature can be a product purchase history, b) how costly is it

to change a feature, and c) limit the amount of perturbations over all samples,

i.e., a budget (Lash et al., 2017a,b). In (Barbella et al., 2009), only aspect c is

considered. Mannino & Koushik (2000) consider b), but do not consider a) and

c). Lash et al. (2017a) propose a general framework that considers a, b, and

c, however, a prediction confidence constraint is not included. With respect to

algorithms there are greedy (Aggarwal et al., 2010; Chi et al., 2012; Yang et al.,

2012; Lash et al., 2017b; Mannino & Koushik, 2000) and non-greedy (Barbella

et al., 2009; Lash et al., 2017a; Lash & Street, 2020; Gupta et al., 2021) algo-

rithms. Greedy methods are computationally efficient but typically suffer from

low solution quality. Non-greedy methods tend to focus on more moderate ob-
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jectives not capturing many aspects so that the obtained adversarial samples

are more realistic. In (Aggarwal et al., 2010; Chi et al., 2012; Yang et al., 2012;

Lash et al., 2017b; Mannino & Koushik, 2000), heuristic methods that do not

use gradients such as local search, hill climbing, and genetic algorithm are used.

In (Lash et al., 2017a; Lash & Street, 2020; Gupta et al., 2021), a projected

gradient method is adopted and in (Barbella et al., 2009), a non-linear solver

package is used to solve a constrained problem. Our work is different from the

aforementioned research since none of the existing methods consider maximizing

the number of perturbed samples in their formulation. Because of the discrete

nature of the counting objective functions these algorithms are not appropriate

to our problem.

In adversarial learning, recent research mostly focuses on generating adver-

sarial samples to attack deep learning models to study robustness of state-of-

the-art classifiers. Algorithms for generating non-targeted adversarial samples

have been proposed in Szegedy et al. (2013); Goodfellow et al. (2015); Kurakin

et al. (2017); Papernot et al. (2016); Combey et al. (2020). However, these

algorithms do not consider a budget constraint that is critical and practical

in inverse classification. In addition, our framework is designed to achieve the

maximal number of successfully perturbed samples within a budget. Therefore,

these algorithms are not applicable in a meaningful way to tackle our setting.

3. Proposed models

In this section, we present our constrained optimization problem to solve

inverse classification. The formulation is designed to generate the maximal

number of adversarial examples that are classified as a desired class. In addition,

we include a set of budget constraints on perturbations of input features. We

first introduce notation and the baseline model. Next, we present variations of

the baseline model - chance constraint models that assume decision variables

follow an unknown probability distribution.

We denote a given sample by x ∈ Rp and a perturbed sample by x̂ ∈ Rp. We
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assume that all features are continuous. Let f(x) : Rp 7→ [0, 1]k be a function

associated with a classification model that computes a score of x being in a class

such as the probability of k classes. We optimize over samples x̂j given a new

desired label vector ȳj ∈ [0, 1]k with j = 1, . . . , |S| and S = {x1,x2, . . . ,x|S|}.

We denote a perturbed input feature matrix by X̂ = (x̂1, x̂2, . . . , x̂|S|). Further-

more, we introduce binary variables, z ∈ {0, 1}|S|, to decide which sample is to

be perturbed. We maximize the number of these binary variables that have value

1. We introduce general budget constraints on perturbations of input features.

In addition, we have a per-sample constraint, called the prediction confidence

constraint, to capture a margin for prediction reflecting the uncertainty in the

score function. Formally, the max samples model (MS) is formulated as

max
z,X̂

|S|∑
j=1

zj

s.t. gi(z, x̂) ≤ 0, i = 1, . . . , p,

hj(z, x̂) ≤ 0, j = 1, . . . , |S|

(1)

where each gi and hj is a nonlinear function associated with the budget and

prediction confidence constraint, respectively. A typical budget constraint for

feature i on perturbation of input features is

gi(z, x̂) =

|S|∑
j=1

zj ||x̂ij − xij ||22 −Bi (2)

where Bi ∈ R+ is a given budget for feature i. Prediction confidence constraints

are explicitly expressed as

f(x̂j)u + δ ≤ f(x̂j)ỹj with j = 1, . . . , |S|, u = 1, . . . , k, u 6= ỹj (3)

where ỹj ∈ argmax
u

[ȳj ]u is a desired class of xj and δ > 0 is a given margin. In

MS, we rewrite (3) by multiplying it with binary variables so that we consider
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the constraints only on selected samples as follows:

hj(z, x̂) = zj · h̄j(x̂) = zj max{0, max
u=1,...,k
u6=ỹj

f(x̂j)u − f(x̂j)ỹj + δ}, j = 1, . . . , |S|.

(4)

MS is challenging to solve due to the presence of constraints and binary variables

z. To address the latter, we assume that the binary variables have a probability

distribution which is an approximation. We impose that the variables follow ei-

ther Bernoulli or Categorical distributions considering dependency among sam-

ples. First, we present the Bernoulli case where no relationship among perturbed

samples is assumed.

Let zj ∼ Bernoulli(πj), j = 1, . . . , |S|, i.e., zj = 1 with probability πj . Let

0 ≤ Π = (π1, π2, . . . , π|S|) ≤ 1. Transforming MS, we propose a Bernoulli

chance max samples model (BCMS) as

max
Π,X̂

Ez

[ |S|∑
j=1

zj

]
s.t. Pr

(
gi(z, x̂) ≤ 0

)
≥ 1− ε, i = 1, . . . , p,

Pr
(
hj(z, x̂) ≤ 0

)
≥ 1− ε, j = 1, . . . , |S|,

(5)

where ε is a parameter. We can explicitly rewrite BCMS as

max
Π,X̂

|S|∑
j=1

πj

s.t. Pr
( |S|∑
j=1

zj ||x̂ij − xij ||22 −Bi ≤ 0
)
≥ 1− ε, i = 1, . . . , p

πj h̄j(x̂j) ≤ 0, j = 1, . . . , |S|.

(6)

The chance max samples model with the Categorical distribution (CCMS) con-

siders dependency among samples to be perturbed. To this end, let 0 ≤ Π =

(π1, π2, . . . , π|S|) with
∑|S|
j=1 πj = 1 and K an integer parameter. CCMS has

the same formulation as BCMS, but we use the following binary variables to
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determine which sample to perturb:

z̄ξ ∈ R|S| ∼ Cat(Π), ξ = 1, . . . ,K and z ∈ R|S|, z = min(1,

K∑
ξ=1

z̄ξ). (7)

We finish with a benchmark model based on the existing framework (Szegedy

et al., 2013; Molnar, 2019) of generating adversarial samples that is designed to

solve inverse classification with a minimal cost of perturbation. This model opti-

mizes over samples in x̂j ∈ S to minimize the loss function lj(x̂) = KL(ȳj ||f(x̂j))+

a ||x̂j − xj ||22, a ∈ [0,∞) where KL denotes the Kullback-Leibler divergence.

The model (KL) reads

min
X̂

|S|∑
j=1

lj (x̂)

s.t. gi(x̂) ≤ 0, i = 1, . . . , p,

h̄j(x̂) ≤ 0, j = 1, . . . , |S|

(8)

where each g and h̄ is a nonlinear function associated with budget (2) and

prediction confidence constraints (3) without the binary variable z. This model

has a smaller number of decision variables than our models since it does not

include binary variables or any possible related variables; however, it does not

explicitly count the number of perturbed samples and thus it has a different

objective. KL does not necessarily achieve the maximal number of successfully

perturbed samples.

4. Algorithms

In this section, we describe algorithms based on Lagrangian and subgradi-

ent methods. We first reformulate the problem as an unconstrained problem

by using Lagrangian multipliers. We develop algorithms to solve Lagrangian

functions based on the projected subgradient method. Projection is used to

keep Lagrangian multipliers positive during updates or to maintain probabil-

ity requirements. For chance max samples models, we apply the Gumbel trick
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(Maddison et al., 2014) to use approximate gradients when updating the binary

variables.

Algorithm for max samples model. We first define the Lagrangian function for

MS (1) as

L(z, X̂, λ, µ) =

|S|∑
j=1

zj −
p∑
i=1

λigi(z, x̂)−
|S|∑
j=1

µjhj(z, x̂)

=

|S|∑
j=1

zj −
p∑
i=1

λi
( |S|∑
j=1

zj ||x̂ij − xij ||22 −Bi
)
−
|S|∑
j=1

µjzj h̄j(x̂j)

=

|S|∑
j=1

cjzj +

p∑
i=1

λiBi

where

cj = 1−
p∑
i=1

λi ||x̂ij − xij ||22 − µj h̄j(x̂j) (9)

and λ and µ are Lagrangian multipliers. We propose Algorithm 1 to solve

min
λ,µ

max
z,X̂

L(z, X̂, λ, µ). The algorithm consists of two main loops to solve the

min max problem; the inner loop updates input features and binary variables z

to maximize L, and the outer loop updates Lagrangian multipliers to minimize

L. In the algorithm, we initialize all z with one as we aim to achieve as many

successfully perturbed samples as possible. Meanwhile, we add a line to break

the inner loop when all entries of z are zero, which is the case of no updates

on variables. Note that ∇λiL = −
∑|S|
j=1 zj ||x̂ij − xij ||22 + Bi, and ∇µjL =

−zj h̄j(x̂j). In addition, lines 7-13 in Algorithm 1 are derived by solving

max
z

|S|∑
j=1

cjzj

where cj is assumed to be constant in this part of the algorithm.
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Algorithm 1 MS

1: Initialize λ, µ, γ, η.
2: while until convergence do
3: z← 1
4: while until convergence do
5: Break if z = 0
6: while until convergence do
7: X̂∗ ← argmax

X̂

L(z, X̂, λ, µ)

8: end while
9: for j = 1, . . . , |S| do

10: if cj ≥ 0 then
11: zj ← 1
12: else
13: zj ← 0
14: end if
15: end for
16: end while
17: λi ←

(
λi − γ ∇λi

L
)+
, i = 1, . . . , p

18: µj ←
(
µj − η ∇µj

L
)+
, j = 1, . . . , |S|

19: end while

Algorithm for Bernoulli and Categorical chance max samples model. We define

the Lagrangian function for BCMS (6) as

L(Π, X̂, λ, µ) =

|S|∑
j=1

πj
(
1− µj h̄j(x̂j)

)
+

p∑
i=1

λi

[
Pr
( |S|∑
j=1

zj ||x̂ij − xij ||22 −Bi ≤ 0
)
− (1− ε)

]
.

(10)

We need to solve min
λ,µ

max
Π,X̂

L where we have to compute gradients of Ez∼Ber(Π)

with respect to Π. To relieve the burden of computing exact gradients with

respect to discrete distributions, we apply the Gumbel trick (Maddison et al.,

2014) to use their approximation. Especially, in our paper we derived our dis-

tribution based on a Gumbel Softmax distribution introduced by Jang et al.

(2017) where the proposed continuous distribution can approximate any dis-

crete variables, and through the reparameterization trick their gradients can

be computed easily. Jang et al. (2017) show that this approach is superior for
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approximating the sampling process for categorical variables to conventional

single-sample gradient approaches. In addition, the Gumbel Softmax distribu-

tion allows applying standard backpropagation. Let the exact probability be

Pri = EzX (
∑|S|
j=1 zj ||x̂ij−xij ||22−Bi ≤ 0) where X is the indicator function. We

first approximate X (x) ≈ (1 + exp(−κx−τ
1−τ ))−1 where κ and τ are hyperparame-

ters. We have Pri ≈ Ez(1 + exp(−κx−τ
1−τ ))−1 with x =

∑|S|
j=1 zj ||x̂ij−xij ||22−Bi.

Let us consider first the Bernoulli case. Applying the Gumbel trick, the expec-

tation term is approximately computed as

Pri ≈
1

N

N∑
n=1

Pin =
1

N

N∑
n=1

(1 + exp(−κx
i
n − τ

1− τ
))−1 (11)

where

xin =

|S|∑
j=1

vnj ||x̂ij − xij ||22 −Bi and

vnj = z̄j(πj , g
n
1 , g

n
2 ) =

exp((logπj + gn1 )/ω)

exp((logπj + gn1 )/ω) + exp((log(1− πj) + gn2 )/ω)

and gn1 ∼ G, gn2 ∼ G. Here the Gumbel distribution is denoted by G and ω and

N are hyperparameters. Values z̄j approximate zj . We can rewrite (10) as

L ≈
|S|∑
j=1

πj
(
1− µj h̄j(x̂j)

)
+

1

N

N∑
n=1

p∑
i=1

λiP
i
n − (1− ε)

p∑
i=1

λi. (12)

We propose Algorithm 2 to solve min
λ,µ

max
Π,X̂

L. This algorithm has two main loops

to maximize L with respect to Π and X̂, and to minimize L with respect to the

Lagrangian multipliers. A part of generating Gumbel’s samples is added to the

inner loop so that approximated gradients are used to update variables. In the

algorithm we use

L̈ =

|S|∑
j=1

πj
(
1− µj h̄j(x̂j)

)
(13)

For CCMS, we define the Lagrangian function based on (5), which is written
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Algorithm 2 BCMS

1: Initialize Π,λ, µ, α, β, γ, η.
2: while until convergence do
3: while until convergence do
4: for n = 1, . . . , N do
5: for j = 1, . . . , |S| do
6: gn1 ∼ Gj , gn2 ∼ Gj
7: vnj ← z̄j(πj , g

n
1 , g

n
2 )

8: end for
9: L̇n ←

∑p
i=1 λiP

i
n with Pin as in (11)

10: end for
11: ∇ΠL← 1

N

∑N
n=1∇Π L̇n +∇Π L̈ with L̈ as in (13)

12: Π ← min{1,
(
Π + α∇ΠL

)+}
13: X̂← X̂ + β ∇X̂L
14: end while
15: λi ←

(
λi − γ ∇λiL

)+
, i = 1, . . . , p

16: µj ←
(
µj − η ∇µjL

)+
, j = 1, . . . , |S|

17: end while

as

L(Π, X̂, Λ,M) = Ez

[ |S|∑
j=1

zj
(
1− µj h̄j(x̂j)

)
+

p∑
i=1

λi

[
Pr
( |S|∑
j=1

zj ||x̂ij − xij ||22 −Bi ≤ 0
)
− (1− ε)

]]

where zj is jth element of z as defined in (7). Based on the Gumbel’s approach

we approximate z by

[z̄ξ]j =
exp((logπj + gjξ)/ω)∑|S|
k=1 exp((logπk + gkξ)/ω)

where g1ξ, . . . , g|S|ξ ∼ G, ξ = 1, . . . ,K.
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The approximate Lagrangian function for CCMS reads

L ≈ EG∼G

[ |S|∑
j=1

z̄j(Π,G)
(
1− µj h̄j(x̂j)

)
+

p∑
i=1

λi

[
Pr
( |S|∑
j=1

z̄j(Π,G) ||x̂ij − xij ||22 −Bi ≤ 0
)
− (1− ε)

]]

≈ 1

N

N∑
n=1

|S|∑
j=1

vnj
(
1− µj h̄j

)
+

1

N

N∑
n=1

p∑
i

λiP
i
n − (1− ε)

p∑
i=1

λi

=
1

N

N∑
n=1

L̃n +
1

N

N∑
n=1

L̇n − (1− ε)
p∑
i=1

λi

(14)

where G ∈ R|S|×K is a Gumbel matrix, and Pin is the same as in (11) except

that

vnj = z̄j(Π,G
n) = min(1,

K∑
ξ=1

exp((logπj + gnjξ)/ω)∑|S|
k=1 exp((logπk + gnkξ)/ω)

).

We propose Algorithm 3 to solve min
λ,µ

max
Π,x̂

L, which has the same structure as

Algorithm 2 for BCMS. The part of simulating Gumbel’s samples is edited for

the Categorical distribution (lines 4-13).

Algorithm for KL. The Lagrangian function for KL (8) reads

L(X̂, λ, µ) =

|S|∑
j=1

lj (x̂j , ȳj) +

p∑
i=1

λi gi(x̂) +

|S|∑
j=1

µj h̄j(x̂) (15)

where λ and µ are Lagrangian multipliers. Algorithm 4 is designed to solve

max
λ,µ

min
X̂

L. Similar to Algorithm 1, it consists of two loops; the inner loop

updates input features to minimize L, and the outer loop updates Lagrangian

multipliers to maximize L.

Obtaining the final solution. Since Lagrangian methods do not necessarily guar-

antee feasibility of solutions X̂ with respect to budget and prediction confidence,

we conduct the following steps to obtain the final solution set.

1. Run one of the Algorithms 1-4 to obtain a ‘good’ but possibly infeasible
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Algorithm 3 CCMS

1: Initialize Π,λ, µ, α, β, γ, η.
2: while until convergence do
3: while until convergence do
4: for n = 1, . . . , N do
5: for j = 1, . . . , |S| do
6: for ξ = 1, . . . ,K do
7: [Gn]jξ ← gnjξ ∼ G
8: end for
9: end for

10: vnj ← z̄j(Π,G
n), j = 1, . . . , |S|

11: L̃n ←
∑|S|
j=1 vnj

(
1− µj h̄j

)
12: L̇n ←

∑p
i=1 λiP

i
n

13: end for
14: ∇ΠL← 1

N

∑N
n=1(∇Π L̃n +∇Π L̇n)

15: Π ←
(
Π + α∇ΠL

)+
16: X̂← X̂ + β ∇X̂L
17: end while
18: λi ←

(
λi − γ ∇λiL

)+
, i = 1, . . . , p

19: µj ←
(
µj − η ∇µj

L
)+
, j = 1, . . . , |S|

20: end while

Algorithm 4 KL

1: Initialize λ, µ, γ, η
2: while until convergence do
3: while until convergence do
4: X̂← argmin

X̂

L(X̂, λ, µ)

5: end while
6: λi ←

(
λi + γ ∇λi

L
)+
, i = 1, . . . , p

7: µj ←
(
µj + η ∇µj

L
)+
, j = 1, . . . , |S|

8: end while
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solution X̂.

2. Find a subset Ŝ ⊆ S of samples satisfying prediction confidence con-

straints, i.e., all of the samples in Ŝ are classified as desired.

3. Solve the following problem over Ŝ to find the final set S̃ of feasible sam-

ples:

max
z1,...,z|Ŝ|

|Ŝ|∑
s=1

zs

s.t.

|Ŝ|∑
s=1

ais zs ≤ Bi, i = 1, . . . , p

zs ∈ {0, 1}, s = 1, . . . , |Ŝ|,

(16)

where ais = ||x̂is − xis||22.

Sequences. Let us consider the case when samples are sequences of varying

length of feature vectors of the same length; e.g., f corresponds to an LSTM or

transformer. In this case, x̂ is not well defined, i.e. it is not a matrix and thus

(1) is ill-posed. If we consider only sequences of the same length, then (1) is well

defined. If we have R different lengths, then we can form R different disjoint

subsets Sr of samples and define (1) for each one subset. The link between all

subsets becomes a joint per-feature budget. This budget needs to be allocated

to the R problems. Herein we use a simple strategy of allocating |S
r|
|S| Bi for

each feature i (note that |S| =
∑R
r=1 |Sr|).

5. Computational study

In this section, we conduct a computational study on two datasets: a pro-

prietary dataset and a public dataset. We experiment with different budget sce-

narios and we assess scalability with respect to the number of samples. Model

implementations for all the experiments are done in Python using Tesla V100

GPU and Intel Xeon CPU E5-2697 v4 @ 2.30Hz for the real-world dataset, and

Titan XP 1080 GPU and Intel Xeon Silver 4112 CPU @ 2.60GHz for the public

dataset.
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We use the following hyperparameter values: δ = 0.1, κ = 2, τ ∈ {30, 50},

ω = 1, and N = 100. The learning rates α and β affecting x̂ and z are selected

as one of {0.01, 0.05, 0.1}. We use a decaying learning rates γ and η, affecting

the Lagrangian multipliers λ and µ, initially set as one in {0.5, 1}. The stopping

criterion is set to be the maximum number of iterations (variable updates). For

the outer loop it is set to be 10 for MS, BCMS, and KL and 20 for CCMS,

and for the inner loop it is set to be 10, 100, 100, and 5,000 for MS, BCMS,

CCMS and KL, respectively. The initial Lagrangian multipliers are selected as

one from {1, 10} but adding white Gaussian noise.

5.1. Real-world data

We conduct experiments on a real-world proprietary dataset that contains

sequential input features for 5 classes, which is introduced in (Stec et al., 2018).

The data has 169 features and sequences are of size from 1 to 150 and thus the

joint per-feature budget needs to be employed. The classification model Sparse

Time LSTM from (Stec et al., 2018) is selected as our classifier f . The accuracy

of the model on approximately 700,000 training samples is around 70%.

5.1.1. Budget experiments

We perturb 300 samples selected from the test set which are grouped into

5 different groups by input sequence length. Thus, we have |S| = 300, and

R = 5. The 300 samples are correctly predicted by the trained classifier into

a ”negative” class - four of the five classes - (e.g. have disease) and thus the

perturbed samples should fall into the positive class - the remaining class - (e.g.

does not have the disease). We perturb 19 features since the remaining features

cannot be altered in practice. To decide the sizes of the budgets, we first run

Algorithm 4 with unlimited budgets to measure how much budget is needed for

successful perturbation. Then, as well as based on practical considerations from

subject matter experts and data stockholders, we determine small, middle, and

large sizes of budgets by the amounts that are proportional to the total budget

consumption with the unlimited budgets.
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(a) Size of S̃ (b) Consumption per sample average

(c) Budget constraint residual (d) Prediction gap average

Figure 2: Real-world data: Budget experiment

Figure 2 shows the results of the budget experiment. We find that algo-

rithms with the Gumbel’s method BCMS and CCMS perform better than other

algorithms. They achieve a larger size of successfully perturbed samples than

other algorithms, and they also achieve lower consumption per sample defined

as the budget used by all of the samples divided by |S̃|. The relative improve-

ment of BCMS and CCMS over KL is 10% and 7%, 9% and 6%, and 8% and

4% for small, middle, and large budget, respectively. This is because the ob-

jective of the max samples models is to maximize the number of successfully

perturbed samples. In addition, in plot (a) we observe that a larger budget

achieves a larger size of successfully perturbed samples for all algorithms, which

is expected. We also analyze budget and prediction confidence constraints. For

budget constraint residuals defined by −gi in (2) divided by the total available

budget, we compute how much of the budget is spent for each budget constraint,

and calculate the mean of them, see plot (b). In addition, a prediction gap is

computed by measuring the gap between the top and the second best predic-
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tion probabilities, see plot (d) for average prediction gaps. We find that budget

constraint residuals of BCMS and CCMS are lower than those from other algo-

rithms, and their prediction gaps are smaller than the others. We reason this

as BCMS and CCMS spend budgets large enough to guarantee a certain level

of prediction confidence; it is larger than δ in their predictions, but not more

than necessary. On the other hand, KL has a large prediction gap that shows

high confidence in its prediction which is more than necessary. This is a reason

their budget residual per sample is relatively large.

5.1.2. Scalability experiments

We also conduct a scalability analysis of our algorithms. We use three dif-

ferent sizes of samples |S| = 300, 600, and 900, with samples in each set being

grouped into R = 15 based on their input sequence length. In addition, they

have inclusive relationships such that S300 ⊂ S600 ⊂ S900. In this context, we

have two strategies of initializing samples to be perturbed. First, we initialize

input features of samples in the larger set with previously obtained values from

the subset, and the rest of samples that are not in the subset are initialized

randomly. For example, we run an algorithm on S300, and then run the al-

gorithm on S600. When we run it on S600, we initialize samples from S300 in

S600 with obtained values from the run on S300, and samples from S600 \ S300
randomly. The other strategy is to initialize all samples randomly. Similar to

the budget experiments, all samples are originally labeled as one of negative

classes and correctly predicted by the trained classifier. We use the middle size

budget and the other hyperparameters are the same as those used in the budget

experiments.

Figure 3 shows the results of the scalability experiment. Note that a run

on S300 with subset initialization is denoted by 300-Sub, and one with random

initialization is denoted by 300-Ran in the figure. Similar to the budget experi-

ments, the algorithms with Gumbel’s method BCMS and CCMS perform better

than other algorithms. The count of samples successfully perturbed by them is

larger than the counts from other algorithms, and also the average consumption
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(a) Size of S̃ (b) Consumption per sample average

(c) Budget constraint residual (d) Prediction gap average

Figure 3: Real-world data: Scalability experiment

per sample is smaller. The relative improvement of the stochastic models BCMS

and CCMS over KL is 21% and 13% for |S| = 300, 31% and 17% for |S| = 600,

and 35% and 20% for |S| = 900 on average over different initialization strate-

gies. The observations from Section 5.1.1 apply to each individual sample size.

We find that the relative improvement of BCMS and CCMS over KL increases

linearly as sample size increases in Figure 4. In terms of the two initialization

strategies, both cases show similar results and thus the benefits of warm-start

are negligible. Regarding the budget and prediction confidence constraints, we

find similar results to the budget experiments. Budget constraint residuals for

BCMS and CCMS are lower than KL, and their prediction gaps are smaller than

for the other algorithm. The aforementioned conclusions apply to all of different

sizes of samples and thus we conclude that our algorithms scale efficiently.
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Figure 4: Real-world data: Relative improvement as the sample size increases

5.2. The MIMIC healthcare dataset

MIMIC is a public dataset that describes clinical information of patients

admitted to an Intensive Care Unit at the Beth Israel Deaconess Medical Center

in Boston, Massachusetts from 2001 to 2012. It contains 58,576 samples for

patient admissions. Descriptive statistics can be found in (Johnson et al., 2016;

Goldberger et al., 2000). In this study, we use 13 input features corresponding

to the health state for 30-day mortality predictions used in (Luo et al., 2018).

Since MIMIC is a time series dataset and has missing values, we use a recurrent

network based on Gated Recurrent Unit, called GRU-D, that is widely used

to deal with multivariate time series with missing values for imputation and

predictions (Che et al., 2018). Its AUC is around 0.78 which is comparable to

state-of-the-art. We conduct only a budget experiment for this dataset due to

its limited size.

We perturb 75 samples selected from the test set, i.e., |S| = 75. The 75

samples are originally labeled as “dead” and correctly predicted by the trained

classifier. Our purpose is to perturb the samples so that they are predicted as

“alive.” To decide the size of budgets which represent the per drug amount,

we first run Algorithm 4 with unlimited budget constraints to measure how

much perturbation is needed. Then, we determine small, middle, and large

sizes of budgets by imposing 40%, 60%, and 80% of the total budget achieved

by unlimited budgets.

Figure 5 shows the results of the budget experiment. Similar to the results
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(a) Size of S̃ (b) Consumption per sample average

(c) Budget constraint residual (d) Prediction gap average

Figure 5: MIMIC: Budget experiment

on the real-world data, stochastic algorithms for max samples models, BCMS

and CCMS perform better than KL and MS. They obtain a larger size of suc-

cessfully perturbed samples than the other algorithms, and also achieve smaller

consumption per sample. The relative improvement of our max samples models

MS, BCMS and CCMS over KL is 5%, 19% and 19% on average for all different

budget scenarios. It is interesting to observe that KL uses a much bigger portion

of the budget than the other algorithms.

5.3. A diabetes healthcare dataset

We experiment with another public dataset that describes clinical informa-

tion of diabetes patients, Diabetes 130-US hospitals for years 1999-2008 Data

Set from the UCI Machine Learning Repository (Dua & Graff, 2017). It con-

tains 100,000 samples and 50 features representing patient and hospital out-

comes, which were collected over 10 years at 130 US hospitals and integrated
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delivery networks. In this study, we use a subset of the total data provided by

(Li, 2018). It has 769 samples without missing values and eight input features

corresponding to the health state for diabetes patient predictions. We adopt a

feed-forward neural network as a classifier, which is the best model reported in

(Li, 2018). The neural network has four hidden layers with 100 units and the

Rectified Linear Unit is used as the activation function. The accuracy of the

model on the test set is around 80%. We conduct only a budget experiment for

this dataset due to its limited size.

We perturb 45 samples selected from the test set, i.e., |S| = 45. The 45

samples are originally labeled as “diabetes” and correctly predicted by the fitted

classifier. The goal is to perturb the samples so that they are predicted as

“no diabetes.” We perturb six features since the remaining features such as

“Pregnancy” and “Age” cannot be changed in practice. To decide the size of

budgets for each feature, we run algorithms with unlimited budget constraints

to measure the resulting budgets. Then, we determine small, middle, and large

sizes of budgets by imposing 40%, 60%, and 80% of the budget used by unlimited

budgets. Figure 6 shows the results of the budget experiment. Similar to the

results on the other two datasets, the stochastic algorithms for max samples

models, BCMS and CCMS perform better than KL and MS. They obtain a

larger size of successfully perturbed samples than the other algorithms with tight

bindings of the budget constraints from (a) and (c) in Figure 6. The relative

improvement of our max samples models MS, BCMS, and CCMS over KL is

13%, 22%, and 22%, respectively on average for all different budget scenarios.

5.4. Fitness of the classifier

Inverse classification requires a well-trained classifier since the trained clas-

sifier is used to determine whether candidate samples are successfully perturbed

as desired. Especially, in our study we are only interested in correctly classified

samples. We use the best classifier as reported in the previous literature for each

dataset under consideration; the real-world data in Stec et al. (2018), MIMIC

in Che et al. (2018), and the diabetes healthcare dataset in Li (2018). For the
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(a) Size of S̃ (b) Consumption per sample average

(c) Budget constraint residual (d) Prediction gap average

Figure 6: Diabetes: Budget experiment

real-world data, the Sparse Time LSTM model is selected as our classifier that

can deal with both static and sequential features efficiently as proposed in Stec

et al. (2018). It obtains 70% test accuracy. For MIMIC, a recurrent network

based on Gated Recurrent Unit (GRU-D) that is proposed for coping with mul-

tivariate time series with missing values is selected since it is reported as the

best model in Che et al. (2018) among Logistic regression (LR), Random Forest

(RF), and Support Vector Machine (SVM). The proposed GRU-D as the best

performer obtains the AUC of 0.78. For the diabetes healthcare dataset, a feed-

forward network (NN) is chosen as it is reported in Li (2018) that NN performs

the best among k-Nearest Neighbors, Decision tree, Gradient boosting, LR, RF,

and SVM. The best NN with four hidden layers achieves 80% accuracy on the

test dataset.
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5.5. Optimization aspects

In this part we discuss optimization aspects of the algorithms. Figure 7

shows sizes of S̃ (successfully perturbed samples) for each algorithm at each

outer iteration. We observe that the number of S̃ increases with iterations

and stays at the highest point, which implies that the algorithms converge to

a (local) optimal value. We also find that BCMS converges faster than CCMS

in all cases. We also note that KL converges faster than CCMS, however, the

largest |S̃| from KL is not larger than the one from CCMS and BCMS.

Figure 9 shows the values of Lagrangian multipliers at each outer iteration

for the MIMIC dataset. The average values of λ with respect to the budget con-

straint decrease as each algorithm iterates, which implies that the amount of

constraint violation decreases. Regarding µ that is associated with the predic-

tion confidence constraint, KL values decrease as the algorithm proceeds while

the max sample algorithms drive them higher. In Figure 8 we further observe

that the norm of gradients of µ for the max samples algorithms shrink to zero,

which implies that the algorithms reduce the amount of constraint violation.

MS shows erratic behaviors in some cases and its performance is unstable. We

reason this is due to the presence of constraints and binary variables in MS.

5.6. Complexity analysis

Here, we discuss complexity of the algorithms. Given the number of inner

and outer loops, I in and Iout, the dimension of the input feature vector p, and

the number of samples |S|, the number of total iterations of Algorithm 1 (MS)

is Iout(I in(IX̂ + |S|) + p+ |S|), Algorithm 2 (BCMS) requires Iout(I in(N |S|) +

p+ |S|), Algorithm 3 (CCMS) needs Iout(I in(N |S|K) + p+ |S|), and Algorithm

4 (KL) has Iout(I in +p+ |S|) steps where IX̂ is the number of iterations to solve

argmax for MS, and N and K are the number of samples and categories used for

BCMS and CCMS. Algorithms MS, BCMS, and CCMS require a larger number

of iterations than KL if I in and Iout are the same. However, we found that

runtimes of BCMS and CCMS are shorter. Table 1 shows the actual runtime

of the algorithms on the larger, real-world dataset. The maximum number of
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iterations is set large enough to ensure the algorithms converge as discussed

in Section 5.5 (Figure 7). Algorithms for stochastic models BCMS and CCMS

take longer to update variables per iteration in the inner loop than KL requires

since the Gumbel’s simulation is implemented. However, the total runtime of

BCMS and CCMS does not necessarily take longer than others. Based on the

runtime, and the convergence and size of S̃ we conclude that BCMS is the best

performer among all the algorithms considered herein. Algorithms CCMS is a

close second.

Algorithm
Runtime per iteration (No. of max iterations)
Outer loop Inner loop Total runtime

MS 20 sec (10) 700 sec (10) 19 hr
BCMS 25 sec (10) 18 sec (100) 5 hr
CCMS 25 sec (20) 15 sec (100) 8 hr

KL 20 sec (10) 0.9 sec (5,000) 10 hr

Table 1: Runtime of algorithms

6. Conclusion

In this paper, a new framework for inverse classification is proposed. We for-

mulate a constrained optimization problem that maximizes the number of suc-

cessfully perturbed samples with budget and prediction confidence constraints.

In addition, we formulate a stochastic problem with chance constraints. To

solve the constrained problems, algorithms based on Lagrangian and subgradi-

ent methods are developed. Based on the computational study, we find that the

algorithms perform well in various budget settings and are scalable.
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(a) MIMIC: Budget experiment

(b) Real-world data: Budget ex-
periment

(c) Real-world data: Scalability
experiment

Figure 7: Size of S̃ at each outer iteration

(a) ||∇µ L|| of MS

(b) ||∇µ L|| of BCMS

(c) ||∇µ L|| of CCMS

Figure 8: Norm of Lagrangian multipliers of
max samples algorithms at each outer itera-
tion of MIMIC
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(a) λ (b) µ

Figure 9: Lagrangian multipliers at each outer iteration of MIMIC
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