
A New Subadditive Approach to Integer Programming: Theory and

Algorithms

Diego Klabjan

Department of Mechanical and Industrial Engineering

University of Illinois at Urbana-Champaign

klabjan@uiuc.edu

1 Introduction

The LP duality was established a long time ago. With each primal problem there is an associated
dual problem with the same objective value. Many algorithms compute both a primal and a dual
solution, e.g. simplex and primal-dual algorithms. Given a dual vector we define the reduced cost
of a column, which estimates how much would the addition of the column change the objective
value, and the sensitivity analysis can be carried out using the dual information. Large-scale LPs
can be efficiently solved with SPRINT, see e.g. Anbil et al. (1992). The idea of SPRINT is to solve
many small LP subproblems and gradually add columns to the subproblem based on the reduced
cost values. Columns with small reduced cost are more likely to improve the incumbent solution
and therefore they are appended to the subproblem.

This paper addresses the questions of a dual function, reduced cost, and sensitivity analysis
for IPs. The original motivation for this study was in designing an algorithm for large-scale IPs
that mimics SPRINT. Such an approach solves at each iteration an IP consisting of a small subset
of columns. Columns are then appended to the current IP and the problem is reoptimized. The
key question related to the success of this approach is what columns to append, i.e. what is the
equivalent notion to the LP reduced cost. Dual vectors are also used in the Benders decomposition
algorithms, see e.g. Nemhauser and Wolsey (1988). Currently these approaches can be applied
only to mixed integer linear programs since they require a dual vector. But if applied to IPs, they
raise the question of a dual function for IPs. In LP it is known that all the alternative optimal
solutions can be found among the columns with zero reduced cost. It would be very useful if we
can produce alternative IP solutions, e.g. among several optimal solutions we can select the most
robust one. Again, as shown in this work, an available dual function for IPs makes such a task
much easier.

For integer programs the subadditive duality developed first by Johnson (1973) gives us a partial
answer to these questions.

Definition 1. A function F : Rm → R is subadditive on Z ⊆ Rm if F (x + y) ≤ F (x) + F (y) for

1

all x ∈ Z, y ∈ Z such that x + y ∈ Z.

If Z is not specified, we assume Z = Rm. Johnson showed that for a feasible IP

min cx

Ax = b

x ∈ Zn
+

=

max F (b)

F (ai) ≤ ci i = 1, . . . , n

F subadditive ,

(1)

where A = (a1, . . . , an) ∈ Zm×n, b ∈ Zm, c ∈ Zn. We refer to the second problem as the subadditive
dual problem. At least theoretically the answer to all of the raised questions are in the optimal
subadditive function (OSF) F . In other words, the analog to the optimal dual vector in LP is the
OSF. The reduced cost of a column i can be defined as ci −F (ai) and most of the other properties
from LP carry over to IP, e.g. complementary slackness, F (b) provides a lower bound on the
optimal IP value, and the alternative optimal solutions can be found only among the columns i

with ci = F (ai). However there are still two fundamental issues that need to be addressed; how
to encode F and how to compute F . Theory tells us that an OSF can always be obtained as a
composition of C-G inequalities, see e.g. Nemhauser and Wolsey (1988), but such a function would
be hard to encode and hard to evaluate. Very little is known about how to compute an OSF.
Llewellyn and Ryan (1993) show how an OSF can be constructed from Gomory cuts. Our work
originates from the work done by Burdet and Johnson (1977), where an algorithm for solving an
IP based on subadditivity is presented. Both of these two works do not present any computational
experiments.

We give a new family of subadditive functions that is easy to encode and often easy to evaluate.
We present an algorithm that computes an OSF. As part of the algorithm we give several new
theorems that further shed light on OSFs. The contribution of this research goes beyond a novel
methodology for computing an OSF. There are many implications of having an OSF: the reduced
cost can be defined, the sensitivity analysis can be performed, we can obtain alternative optimal
solutions, and new approaches for large-scale IPs can be developed (‘integer’ SPRINT, Benders
decomposition for IPs).

In Section 2 we present a new subadditive function that is computationally tractable. We give
several interesting properties of this function. In addition we generalize the concept of reduced
cost fixing. Section 3 first outlines the algorithm that computes an optimal primal solution and an
OSF. We show how to obtain an OSF given an OSF of the preprocessed problem and we show how
to obtain an initial subadditive function from the LP formulation with clique inequalities. In this
section we also present the entire algorithm that computes an optimal primal solution and an OSF.
In the last section we report the computational experiments. We conclude with a brief description
of the Burdet-Johnson algorithm.

The Burdet-Johnson Algorithm

Burdet and Johnson show that there is a subadditive function π : Rn → R such that π(ei) ≤ ci for
every column i, and the optimal value zIP to the IP equals to minx feasible to IP

∑
i∈N πixi. Here ei

2

is the ith unit vector. Note that such a function does not serve our purpose since it is defined on
the set of all the columns and not rows. Based on π we do not see an appropriate way to define
the reduced cost. However we do use such a π to obtain a good starting point for our desired F .

Their subadditive function is based on the concept of generator subsets. Given a subinclusive
set E ∈ Zn

+, i.e. if y ∈ E then for every 0 ≤ x ≤ y it follows that x ∈ E, and a vector δ ∈ Rn they
define a function π(x) = maxy∈E∩S

¯
(x) cy + δ(x− y), where S

¯
(x) = {y ∈ Zn

+ : y ≤ x}. A candidate
set H is defined as H = {x ∈ Zn

+ : x /∈ E,S
¯
(x) \ {x} ⊆ E}. They showed that if

π(x1 + x2) ≤ cx1 + cx2 (2)

for all x1 ∈ E, x2 ∈ E and x1 + x2 ∈ H, then π is subadditive.
Their algorithm consists of two steps. The enumeration step selects an element from H and

appends it to E. This operation must be followed by an update of H and δ has to be scaled to
satisfy (2). The second step then further improves the dual objective value by adjusting δ. Given
fixed E and H the maximum dual objective value is obtained by solving the LP

max π0

π0 − δ(x− y) ≤ cy for all y ∈ E, x feasible to IP, and y ≤ x (3)

δx ≤ cx x ∈ H (4)

δ, π0 unrestricted .

It can be seen that (3) give the dual objective value and that (4) are equivalent to (2). These two
steps are then iterated until an optimal solution is found.

We have tried to implement this algorithm but we could not solve even very small problems.
We took their ideas and we have substantially enhanced them, e.g. among many elements in H

they do not specify which one to select. In addition we chose δ in such a way that we get a good
starting point for F . We present our algorithm in Section 3.3.

2 The Generator Subadditive Functions

Here we present the approach only for the set partitioning problems min{cx : Ax = 1, x binary},
where 1 is a vector with all components equal to 1. In addition, we assume that the problem is
feasible. The extension to general IPs, the theory for infeasible IPs, and additional results are given
in Klabjan (2001). All of the proofs can be found in this paper.

Given a vector α ∈ Rm, we define a generator subadditive function Fα : Rm → R as

Fα(d) = αd−max
∑
i∈E

(αai − ci)xi

AEx ≤ d

x binary ,

3

where E = {i ∈ N : αai > ci} is a generator set and AE is the submatrix of A corresponding to
the columns in E. The generator set E depends on α but for simplicity of notation we do not show
this dependence in our notation. Whenever an ambiguity can occur, we write E(α). In addition,
for simplicity of notation we write H = N \ E.

It is easy to see that Fα is a subadditive function. It is also easy to see that Fα(ai) ≤ αai ≤ ci

for all i ∈ H by taking x = 0 in max{(αAE−cE)x : AEx ≤ ai, x ∈ Z|E|
+ } and that Fα(ai) ≤ ci for all

i ∈ E by considering x = ei in max{(αAE − cE)x : AEx ≤ ai, x ∈ Z|E|
+ } and therefore Fα(ai) ≤ ci

for all i ∈ N . This shows that Fα is a feasible subadditive function and therefore Fα(1) provides a
lower bound on zIP. The vector α is a generalization of dual vectors of the LP relaxation. Every
dual feasible vector α to the LP relaxation has to satisfy αai ≤ ci for all i ∈ N , however α in the
definition of Fα can violate some of these constraints. Indeed, if y∗ is an optimal solution to the
dual of the LP relaxation of the IP, then E = ∅ and Fy∗ gives the value of the LP relaxation.

The equivalence (1) states that among all the subadditive dual functions there is one that
attains the equality however it does not say anything for specially structured subadditive functions
like Fα.

Theorem 1. There exists an α such that Fα is an OSF, i.e. Fα(1) = zIP.

Since potentially we want to use Fα to compute reduced costs ci−F (ai) for many columns i, e.g.
the idea of an integral SPRINT, it is desirable that the cardinality of E is small. Our computational
experiments show that this is indeed the case in practice. Even problems with 100,000 columns
have only up to 300 columns in E.

Next we give two theorems that have a counterpart in LP and are used in our algorithm.

Theorem 2 (Complementary slackness). Let x∗ be an optimal primal solution. If x∗i = 1, then
αai ≥ ci.

This theorem easily follows from the general complementary condition x∗i (ci − F (ai)) = 0.
Since Fα is always a valid subadditive function, F (1) is a lower bound on zIP. In IP the reduced

cost fixing based on an LP solution is a commonly used technique for fixing the variables to 0. The
next theorem establishes an equivalent condition based on a subadditive dual function.

Theorem 3 (Extended reduced cost fixing). Let F be a feasible subadditive dual function,
i.e. F is subadditive and F (ai) ≤ ci for all i ∈ N , and let z̄IP be an upper bound on zIP. If
ci − F (ai) ≥ z̄IP − F (1) for a column i ∈ N , then there is an optimal solution with xi = 0.

If F is a subadditive valid function, then
∑

i∈N F (ai)xi ≥ F (1) is a valid subadditive function,
Nemhauser and Wolsey (1988). Therefore for F = Fα we get that∑

i∈E

cixi +
∑
i∈H

(αai)xi ≥ Fα(1) (5)

is a valid inequality. These inequalities are used in our computational experiments.

4

2.1 Basic and Minimal Generator Subadditive Functions

Note that the generator subadditive functions form an infinite family of functions since α is arbi-
trary. In linear programming extreme points suffice to solve the dual problem and there are only
a finite number of them. A similar result holds for the generator subadditive functions. Namely,
it suffices to consider only those generator subadditive functions, called basic generator subadditive
functions, with α an extreme point of a certain polyhedra. These functions allows us to extend
the traditional Benders decomposition algorithm for mixed integer programs to integer programs.
The details are given in Klabjan (2001). In addition, if (5) is a facet, then Fα is a basic generator
subadditive function.

A valid inequality is minimal if is not dominated by any other valid inequality. A generator
subadditive function is minimal if (5) is a minimal valid inequality. Minimal generator subadditive
functions have two interesting properties. Consider the set packing problem max{(αAE − cE)x :
AEx ≤ 1, x binary}. Fα is a minimal generator subadditive function if and only if this set packing
problem has an optimal solution x∗ such that there is a binary vector x′ ≥ x∗ with A(x′ + x∗) = 1.
Perhaps a more interesting property is the following. If Fα is minimal generator subadditive
function, than for every i ∈ E there is an optimal solution x∗ to the set packing problem with x∗i = 1.
This statement shows that this set packing problem has a wide variety of optimal solutions. Since
a generator OSF is minimal, these properties can facilitate us in designing algorithms for obtaining
all optimal primal solutions.

3 Solution Methodology

We first briefly describe the main ideas of our algorithm that finds a primal optimal solution and
it simultaneously computes an OSF Fα.

We first preprocess the problem. We use all of the 9 preprocessing rules described in Borndorfer
(1998) except that we do not check for dominated columns. In addition, we have detected 2 more
preprocessing rules. In the next step we solve the LP relaxation of the preprocessed problem and
we apply clique inequalities, Nemhauser and Wolsey (1988). They are separated with a standard
heuristic. Next we form an initial E by considering the dual prices of the LP relaxation with
cliques. We show in Section 3.2 that this is a feasible step.

Computational experiments have shown that finding in one ‘attempt’ an OSF is not compu-
tationally tractable. Instead we gradually remove columns that do not change the optimal value
from the problem. This has an implication that the resulting OSF is not necessarily subadditive
in Rm but it is only subadditive on a subset of still active columns. The algorithm proceeds in
3 stages. In stage 1 an optimal primal solution and an optimal subadditive function is found.
However the subadditive function is only subadditive on a small subset of columns. In this stage
we use the Burdet-Johnson framework. In stage 2 we improve subadditivity by obtaining a sub-
additive function that satisfies the complementary slackness conditions. The resulting function is
still not necessarily subadditive on all the columns but it turns out that only few columns violate

5

subadditivity. In stage 3 we do the last correction to make the function subadditive on Rm.

3.1 Preprocessing and the Generator Subadditive Functions

The problem is first preprocessed and then a generator OSF is found. Since we want to obtain an
OSF to the original problem, we have to show how to get such a function given an OSF to the
preprocessed problem. In preprocessing the preprocessing rules are iteratively applied. All of the
10 preprocessing rules are applied in several passes until at the last pass we do not further reduce
the problem. To be able to construct an OSF of the original problem, we have to show how each
preprocessing rule affects the subadditive function. If we want to easily construct the function, then
we have to show how to obtain an OSF Fᾱ from an OSF Fα of the preprocessed problem, after
one step of a given preprocessing rule. It is crucial here that the new function is again a generator
subadditive function since otherwise we loose the structure and it would be hard to successfully
unwind the preprocessing steps.

Fortunately for most of the preprocessing rules we can apply the following proposition. For an
i ∈ N let Ai = {j ∈ M : aji = 1}, where M = {1, . . . ,m} is the set of all the rows, and similarly
for j ∈ M let Aj = {i ∈ N : aji = 1}.

Proposition 1. Let Fα be an OSF for min{cx : Ax = 1, x binary} and let r be a row of A. Let
an+1 be a new column with the cost cn+1. Furthermore, let r /∈ An+1, let

∑
i∈Ar xi + xn+1 ≤ 1

be a valid inequality for {(x, xn+1) : Ax + an+1xn+1 ≤ 1, x binary, xn+1 binary}, and let us define
Fα(an+1) = αan+1. Then the LP

min 1y

aiy ≤ ci − Fα(ai) i ∈ N −Ar

(ai − 1)y ≤ ci − Fα(ai) i ∈ Ar and i = n + 1

1y ≥ 0

has an optimal solution y∗ and Fα+y∗ is an OSF for min{cx + cn+1xn+1 : Ax + an+1xn+1 =
1, x binary, xn+1 binary}.

Let us show how to use the theorem for dominated rows. If r, n + 1 are two rows such that
Ar ⊆ An+1, then we can fix to 0 all the variables in An+1 \Ar and we can remove row n + 1 from
the problem. Suppose now that Fᾱ is an OSF for the problem without row n + 1 and the columns
in An+1 \Ar. First we can append back row n + 1 without the columns in An+1 \Ar to the matrix
and define α = (ᾱ, 0) − (ᾱr/2)er + (ᾱr/2)en+1. It is easy to see that Fα is an OSF for the new
problem. Now we can handle the removed columns from An+1 \Ar by Proposition 1 to get an OSF
for the original problem.

3.2 Clique Inequalities and the Generator Subadditive Functions

Consider the LP relaxation together with some clique inequalities. The LP value gives a lower
bound on zIP. The next theorem shows how to obtain a generator subadditive function from such

6

an LP.

Theorem 4. Let
zclq = min{cx : Ax = 1,

∑
i∈Cj

xi ≤ 1 j ∈ J, 0 ≤ x} ,

where Cj , j ∈ J , are cliques in the conflict graph. Let α be the optimal dual vector corresponding
to constraints Ax = 1. Then Fα has the value at least zclq, i.e. Fα(1) ≥ zclq.

If we can solve a set partitioning problem to optimality by adding clique inequalities, then the
generator OSF is readily available.

We show in Klabjan (2001) that the theorem holds for any IP min{cx : Ax = b, x ≥ 0, x integer},
if we add valid inequalities for min{cx : Ax = b, x ≥ 0, x integer}. Combining this theorem and
Theorem 3 we obtain that we can fix xi = 0 if ci − αai ≥ z̄IP − zclq, where α is as in the theorem.
This is a strong result since it allows to reduce the size of an IP by reduced cost fixing. We are not
aware of any such variable fixing in past literature.

In our implementation we first run a primal heuristic to obtain z̄IP . Then we solve the LP
relaxation with cliques and we run the primal heuristic again but this time with the strengthen
formulation with cliques. At the end we apply reduced cost fixing.

3.3 Stage 1: Obtaining an Optimal Primal Solution with the Use of Subadditive

Functions

In this stage we find an optimal primal solution and an approximate subadditive dual function by
using the Burdet-Johnson framework. Since we are interested in obtaining a subadditive function
in Rm, we choose δ = αA, where α is an unknown vector. This mapping also substantially simplifies
(3) since now they read π0 − 1α + α(Ay) ≤ cy for all y ∈ E.

We first enhance their algorithm with a concept that is the equivalent to pruning in branch-and-
bound algorithms. Instead of searching for a subadditive function in all Rn we require subadditivity
only on {x : Ax = 1, cx < z̄IP , x binary}, where z̄IP is the best known upper bound on zIP. It
means that we can remove from H all the elements that yield an objective function value larger
than z̄IP . Namely, if h ∈ H and

min{cx : Ax = 1, xi = 1 for all i with hi = 1, x ≥ 0} (6)

is greater or equal to z̄IP , then h can be removed from H. However computing this LP for every
element in H is too expensive and therefore we compute the exact value only for the element that
is selected to be added to E. Note that the cardinality of H can double each iteration. For the
candidate element h, if the objective value of (6) is greater or equal to z̄IP , then h is permanently
removed from consideration and the selection process is repeated.

The second major enhancement we employ is the selection of an element from H that is added
to E. In view of the above discussion, we would like to append to E such an element that introduces
the fewer number of new elements in H. Note that the elements in H yield constraints (4) and

7

therefore it is desirable to have only a small number of them. It can be seen that this is equivalent
to maximizing (6) and therefore selecting an element from H that has the highest objective value
of (6) is beneficial for both goals, i.e. pruning and having a small H. We avoid computing (6) for
every element in H by using pseudo costs, Nemhauser and Wolsey (1988). On the other hand, when
an element is moved from H to E, the corresponding constraint (4) is relaxed into a constraint (3).
Therefore we would like to relax the most binding constraint, i.e. a constraint with αAh = ch.

The overall selection can be summarized as follows. Among all the elements h in H that satisfy
αAh = ch, we select the element with the largest pseudo cost since such an element is most likely
to be pruned and it keeps H small. Next we solve (6) and if the element can be pruned, we
permanently delete it and we repeat the selection procedure. Otherwise the element is added to E.
If the solution to (6) is integral and better than the best known primal solution so far, we update
the best known solution.

At every iteration we apply the extended reduced cost fixing and we add to the problem (6)
the subadditivity cut resulting from the current subadditive function.

Note that at the end we assert that there are no feasible solution, i.e. the current solution is
optimal. We are optimal when {x : Ax = 1, cx < z̄IP , x binary} is empty, which implies that there
is a subadditive function with infinity objective value. Therefore the stopping criteria is when the
dual objective π0 becomes greater or equal to the best optimal primal value z̄IP .

3.4 Stage 2: Improving the Feasibility of the Subadditive Dual Function

The goal of this stage is to obtain a subadditive function that is subadditive on the set {x : Ax =
1, cx ≤ zIP, x binary}. Such a function has to satisfy the complementary slackness conditions.

This stage is very similar to stage 1. In stage 1 we record E and H every time we obtain a
better primal solution. The last recorded E and H are used as a warm start for stage 2. The
algorithm follows closely the algorithm in stage 1 with a few changes. The selection of an element
from H that is added to E is now more targeted toward improving the dual objective.

3.5 Stage 3: Computing a Generator Optimal Subadditive Function

In this stage we obtain a generator OSF. We take α from stage 2 as a starting point. Fα is an OSF
on all the columns that have not been pruned in stage 2. This Fα is not necessarily an OSF since
the columns i that have been pruned may have αai > ci. In this case we would have to add i to E,
which can potentially decrease F (1). We call the columns that have been pruned in stage 2 and
have αai > ci infeasible columns. Typically we have several thousand infeasible columns. Stage 3
makes these columns feasible by modifying E and α.

First we try to increase the number of feasible columns by slightly adjusting α. The procedure
is based on the following theorem.

Theorem 5. Let Fα be a generator OSF for the set partitioning problem with the input data c and
A, let cn+1, an+1 be a column with αan+1 > cn+1, and assume that min{

∑
i∈N (ci − Fα(ai))xi +

8

(cn+1 − αan+1)xn+1 : Ax + an+1xn+1 = 1, x ≥ 0, xn+1 ≥ 0} = 0. If ᾱ is an optimal dual vector to
this LP, then Fα+ᾱ is a generator OSF for the set partitioning problem with the input data (c, cn+1)
and (A, an+1).

Note that if xn+1 = 0 in the above LP, then the objective value is 0 since all of the coefficients
are nonnegative and the optimal IP solution gives a solution with 0 objective value. Therefore the
condition in the theorem is likely to hold. We apply this theorem iteratively for all the infeasible
columns. If the condition is not met, then we leave the column infeasible. This procedure reduces
the number of infeasible columns from several thousand to only a dozen.

Obtaining feasibility for remaining infeasible columns is the most computationally intensive part
of the entire algorithm. For each infeasible column i we proceed as follows. We add i to E to obtain
a generator subadditive function that satisfies the complementary slackness but it is not necessarily
optimal since the addition of a new column to E can reduce the value of max{

∑
i∈E(αai − ci)xE

i :
AExE ≤ 1, xE binary}. Given E we maximize the dual value by solving the LP

max π0

π0 − 1α + αAEx ≤ cEx for all binary x,AEx ≤ 1 (7)

αai ≤ ci i ∈ H .

Given a solution to this LP, we choose a column from H with the largest dual value and we move
it from H to E. The process is repeated until the objective value π becomes zIP. This LP is solved
by row generation.

4 Computational Experiments

The computational experiments were carried out on the set partitioning instances used by Hoffman
and Padberg (1993) and Eso (1999). They were performed on an IBM Thinkpad 570 with a 333
MHz Pentium processor and 196 MBytes of main memory.

The results are presented in Table 1. Instances with an integral solution at the root node are
left out as are some other hard instances that we are currently working on. All the times are CPU
execution times in seconds. The column ’inf’ shows the number of infeasible columns before starting
the final step of the feasibility improvement. We observe that there are only a few instances where
this final adjustment is needed, however, stage 3 is computationally expensive. It is important
to note that the cardinality of E is always small and therefore evaluating Fα(d) should not be
computationally hard, which makes approaches such as the integer SPRINT algorithm potentially
computationally tractable. In the last two instances we have exceeded the maximum execution
time of 2 hours in stage 3. The instance denoted by † is infeasible and our algorithm establishes
this property by finding an unbounded LP (7).

The overall computational times are acceptable for a methodology that reveals much more
information about an IP instance, e.g. we can perform the sensitivity analysis, alternative optimal
solutions can be found only among the columns with Fα(ai) = ci. It is unreasonable to expect

9

that the computational times are lower than branch-and-cut computational times since the latter
algorithm finds only a primal optimal solution. Nevertheless this computational results show that
obtaining an optimal subadditive dual is possible.

size preprocessing time CPLEX
rows cols rows cols time stage 1 stage 2 stage 3 | E | inf time
825 8627 537 6695 30 25 7 164 142 0 88
55 7479 47 5915 49 12 63 523 93 13 14
59 43749 53 38958 6 29 0 0 19 0 48
50 6774 37 5964 45 10 0 0 58 0 8

124 10757 81 7861 90 100 0 0 292 0 13
22 685 22 536 1 1 0 0 13 0 0
19 711 15 416 1 4 0 0 52 0 2
19 1366 19 926 2 1 0 0 52 0 0
18 2540 18 2034 6 3 5 14 50 4 0
26 2653 26 1877 22 1 0 0 27 0 0
26 2662 26 1728 14 1 0 0 13 0 0
19 294 17 250 1 2 0 0 28 0 0
23 3068 23 2308 26 2 2 3 16 1 0
20 1783 20 1244 15 5 0 14 67 12 0
23 1079 20 791 4 1 0 0 30 0 0

100 13635 44 5197 289 247 0 0 287 0 17
163 28016 95 4080 53 3 0 0 25 0 68
†104 2775 63 519 47 438 240
173 3686 150 3528 59 39 0 0 223 0 5
111 1668 73 967 26 3 0 0 97 0 18
801 8308 521 6236 21 106 19 ? ? 1 97
646 7292 486 5858 23 52 23 ? ? 5 39

Table 1: Computational Results

References

Anbil, R., Johnson, E. and Tanga, R. 1992. A global approach to crew pairing optimization.
IBM Systems Journal 31, 71–78.

Borndorfer, R. 1998. Aspects of Set Packing, Partitioning, and Covering. PhD thesis. Technical
University of Berlin.

10

Burdet, C. and Johnson, E. 1977. A subadditive approach to solve integer programs. Annals of
Discrete Mathematics 1, 117–144.

Eso, M. 1999. Parallel Branch and Cut for Set Partitioning. PhD thesis. Cornell University.

Hoffman, K. and Padberg, M. 1993. Solving airline crew scheduling problems by branch-and-
cut. Management Science 39, 657–682.

Johnson, E. 1973. Cyclic groups, cutting planes and shortest path. In T. Hu and S. Robinson

(eds), Mathematical Programming. Academic Press. 185–211.

Klabjan, D. 2001. A new subadditive approach to integer programming: Theory and al-
gorithms. Technical report. University of Illinois at Urbana-Champaign. Available from
http://www.staff.uiuc.edu/∼klabjan/professional.html.

Llewellyn, D. and Ryan, J. 1993. A primal dual integer programming algorithm. Discrete
Applied Mathematics 45, 261–275.

Nemhauser, G. and Wolsey, L. 1988. Integer and combinatorial optimization. John Wiley &
Sons.

11

http://www.staff.uiuc.edu/$sim $klabjan/professional.html

	Introduction
	The Generator Subadditive Functions
	Basic and Minimal Generator Subadditive Functions

	Solution Methodology
	Preprocessing and the Generator Subadditive Functions
	Clique Inequalities and the Generator Subadditive Functions
	Stage 1: Obtaining an Optimal Primal Solution with the Use of Subadditive Functions
	Stage 2: Improving the Feasibility of the Subadditive Dual Function
	Stage 3: Computing a Generator Optimal Subadditive Function

	Computational Experiments

