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Abstract. Open world video games are designed to offer free-roaming virtual
environments and agency to the players, providing a substantial degree of free-
dom to play the games in the way the individual player prefers. Open world
games are typically either persistent, or for single-player versions semi-persistent,
meaning that they can be played for long periods of time and generate substan-
tial volumes and variety of user telemetry. Combined, these factors can make it
challenging to develop insights about player behavior to inform design and live
operations in open world games. Predicting the behavior of players is an impor-
tant analytical tool for understanding how a game is being played and understand
why players depart (churn). In this paper, we discuss a novel method of learn-
ing compressed temporal and behavioral features to predict players that are likely
to churn or to continue engaging with the game. We have adopted the Relaxed
Tensor Dual DEDICOM (RTDD) algorithm for bipartite tensor factorization of
temporal and behavioral data, allowing for automatic representation learning and
dimensionality reduction.
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1 Introduction

Game Analytics research has in recent years advanced rapidly. In the span of a decade,
analytics has moved from a supporting role to a cornerstone of game development.
Despite the commercial and academic interest, the domain is still in its explorative
phase, with maturity of the knowledge, technology and models applied varying across
business models, game genres and platforms [6, 5, 17].

Two key challenges in Game Analytics are player profiling and churn prediction.
These are important for different reasons: Behavioral profiling is an important process
in game development as it allows the complexity space of player behavior to be con-
densed into a specific set of profiles, which showcase how a game is being played. Be-
havioral profiling is notably important for persistent and semi-persistent games, where
live operations utilize profiling to understand how the community is playing the game
[17, 19]. Churn prediction is a key process in Game Analytics for many different types
of games, not the least those that use a freemium revenue model [4, 8, 10, 16, 20].
Churn prediction basically attempts to predict when a specific player will stop playing
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the game. With accurate churn prediction, it is possible for analytics teams to pinpoint
players who may not be enjoying the game or experiencing problems progressing. Un-
derstanding when a player might leave the game provides the ability to explore why
that might be happening via behavioral analysis [4, 8, 15, 16]. Churn prediction in
open-world games, whether single-player or massively multi-player online (MMOG) is
virtually unexplored, with very few publications on this problem [3, 21].

1.1 Objective and Contribution

While methodologically there are different possible approaches towards building pro-
files and classification models (see e.g. [19, 17, 16]), the approach adopted here is bipar-
tite tensor factorization, due to prior successful application of tensor models in OWGs
[21] and freemium games [22]. This paper is, to the best knowledge of the authors,
the first to propose the use of bipartite tensor factorization for learning temporal repre-
sentations for behavior prediction in games. The work presented directly extend prior
Game Analytics research churn prediction, by showing incorporating low dimensional
and automatically extracted temporal features can provide similar and for some metrics
better prediction performance than models trained solely on aggregate behavioral data
(that the majority of the previous work adopts) omitting the temporal information.

The test case used here is the open world game (OWG) Just Cause 2 (JC2). JC2
features a massive freely navigable environment with missions, objectives and other
activities spread across the environment. While AAA (major commercial) OWG titles
like JC2 vary in their design (e.g. Skyrim, Grand Theft Auto, in general these feature
spatio-temporal navigation, and tactical combat. Freedom is a characteristic of OWGs,
and space/time are both important dimensions for assessing the user experience, and
thus for behavioral analysis [6, 19]. On a final note, while MMOGs are typically also
OWGs, the presence of many players within the same virtual world, a compared to just
one for JC2, mean that the analyses presented here may not translate directly to these
types of games.

1.2 Related Work

The work presented here builds on previous research in Game Analytics on prediction
modeling, behavioral profiling and spatio-temporal behavioral analytics (e.g. [3, 12, 19,
15, 4, 8, 13, 25].

With respect to prediction in games, previous work has primary targeted either pre-
dicting future behavior [15, 12, 3, 13] or sought to inform situations related to agent
modeling in Game AI [28]. In terms of the former, the emphasis has been on persistent
or semi-persistent games where live operations are important to the financial success of
a title. A variety of machine learning-based approaches have been adopted, including
pattern recognition, regression, decision trees [8], support vector machines [27], Hid-
den Markov Models [16, 3] and deep learning [15]. Runge et al. [16] and Hadiji et al.
[8] benchmarked multiple methods in churn prediction.

Behavioral profiling in games has a substantial history, recently summarized by Sifa
et al. [19], and will therefore not be covered in detail here. The key objective of profiling
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Fig. 1: Our bipartite tensor factorization based representation framework to compress
multidimensional player information for future behavior prediction. Each slice of the
extracted tensor encodes a player’s observations and for training our predictors we con-
sider the vectorized version (denoted by vec(·)) of the low dimensional factors. In real
life scenarios the learned basis matrices A and B can be easily used to infer the low
dimensional representations from new players (for orthogonal basis matrices this boils
down to matrix multiplication), which can be fed to the trained classifiers for future
behavior predictions.

is to act a means for managing complex user data and building meaning from them, dis-
covering underlying patterns in the behavior of the players [18, 19]. Profiling allows for
a condensation and modeling of a complex behavioral space, exemplified in MMOGs
and OWGs. Spatio-temporal analytics is comparative infrequent, notably compared to
the strong tradition in Game AI where e.g. agent models require consideration of both
dimensions [28]. However, although several papers exist on the topic of visualizing be-
havioral data from games, e.g. Wallner et al. [26]. Another key precursor paper is Sifa
et al. [21], who adapted different tensor models, that factorizes asymmetric waypoint
matrices to learn spatio-temporal features, for churn prediction at the individual player
level, achieving up to 81% accuracy for Just Cause 2, using the same dataset as applied
here. The work by Sifa et al. [21] also highlighted the importance of spatio-temporal
features in predicting retention in OWGs, possibly because these dimensions are inte-
gral to the user experience of these games. This result contrasted prediction work in
mobile games where highly successful classification work has shown that spatial fea-
tures are not important to predicting retention (see [25, 3, 12, 15, 4, 8]).

The work presented here extends [21] by considering a more general factorization
model to be able to automatically learn temporal features from a set of bipartite player
matrices. To this end, we will present how we can design a bipartite temporal behavioral
player tensor and introduce the use of Relaxed Tensor Dual DEDICOM (RTDD) to
extract features that can be later used in further analytics applications, which for our
case will be about predicting the future arrival behavior of a set of JC2 players
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2 Relaxed Tensor Dual DEDICOM

We devote this section to explain the tensor factorization model called Relaxed Tensor
Dual DEDICOM (RTDD) model [11, 24, 22], which generalizes the matrix and ten-
sor factorization models INDSCAL and DEDICOM [9, 21, 22] to decompose bipartite
tensors into combinations of low ranked matrices. We will use this model in our ex-
periments to factorize a data tensor that encodes temporal player interactions to learn
compact player representations for retention prediction.

Formally, given a bipartite data tensor Y ∈ Rm×n×d containing a collection d
bipartite m × n matrices or slices (i.e. Y = {Y1, . . . ,Yd} for Yi ∈ Rm×n) and the
dimensionalities of the hidden components p and q, the RTDD model yields a left basis
matrix A ∈ Rm×p, a right basis matrix B ∈ Rn×q and a coefficient tensor W ∈
Rp×q×d to represent each slice Yi of the data tensor as

Yi = AWi B
T , (1)

where Wi ∈ Rp×q is the ith slice ofW .
It is worth mentioning that, akin to two factor matrix factorization models (see [17]),

for a given set of factors {A,B,W} and the model parameters p and q, which are typ-
ically chosen to be p, q � min(m,n), the representation in (1) compresses factorized
tensor as the space complexities for the data and the factorized representation respec-
tively are O(mnd) and O(mp + nq + dpq), where the latter reduces down to O(dpq)
when the coefficient tensors are used in further analytics applications (as we will show
in our case study). Finding the RTDD factors of a given bipartite tensor Y can be ob-
tained by minimizing the sum of the reconstruction error of each slice defined as

E(A,B,W) =

d∑
i=1

∥∥Yi −AWi B
T
∥∥2, (2)

where
∥∥·∥∥ is defined as the Frobenius norm [22], and cannot be directly solved due to

the unconvexity of the factors in (2). A popular alternative to solve such problems is to
consider a set of iterative optimization updates, in which objective function is optimized
for each factor (for RTDD A B and each slice ofW) independently keeping the other
factors fixed (see examples in [1, 11, 17]).

In summary, an alternating algorithm to come up with optimal RTDD factors starts
with random factors4 and iteratively optimizes the minimized objective E from (2) by
consecutively

– minimizing E for A with fixed B andW ,
– minimizing E for B with fixed A andW as well as
– minimizing E for each slice ofW with fixed A and B

until a predefined stopping condition (e.g. a maximum number of iterations or stabiliza-
tion of E) is met.

4 The initial factors also has to follow the same constrains (if any imposed) for a converging
optimization process.
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(a) a look at the game world (b) a fighting scene

Fig. 2: Just Cause 2 is an action-adventure sandbox (open world) game that takes place
in an imaginary island Panau with a total coverage about 1000 square kilometers. Im-
ages are copyright of Square Enix (2009).

Another important aspect in tensor factorization is to impose constraints to the fac-
tors for efficiency in variety of aspects such as representability, interpretability or speed-
up [17]. In this work we will consider the constraints introduced in [22]5 that force the
basis matrices of RTDD A and B to be column orthonormal (i.e. ATA = Ip and
BTB = Iq , where Ih is the h × h identity matrix). These constraints cannot only
speedup the factorization process (as empirically shown in [23]) but also allow us to
easily obtain coefficient matrices for a new set of players from the previously trained
models. The latter is particularly beneficial in continuous profiling and prediction en-
vironments, in which behavioral representations are learned from a (typically) large
player base and can be used to infer ones for newly observed data units.

For the case of RTDD, once a data tensor Y is decomposed into a combination of
the factors {A,B,W} as in (1) we can obtain a coefficient tensor for an unseen data
tensor Ŷ ∈ Rm×n×d̂ (e.g. containing d̂ players) by considering the global minimizers
of (2) for each slice as Ŵi ← AT Ŷi B, where Ŵi is the ith slice of the new coefficient
tensor Ŵ corresponding to the ith slice of Ŷ (see Fig. 1 for more details)..

3 Data and Pre-processing

In this section we will briefly explain the game, whose players we analyzed in this
work, the important steps we considered for preprocessing our dataset and the way we
designed our tensor for factorization with the goal predicting future player behavior.

3.1 Just Cause 2: Gameplay

Just Cause 2 is a third-person action-adventure game which allows players to explore
an open world map, with the overarching goal of overthrowing the dictatorship govern-
ment of the fictional nation of Panau (see Figure 2). The playable world is an area which
covers about 1000 virtual square kilometers. The game allows players to use weapons

5 We used the authors’ original Python implementation from https://tinyurl.com/rtddcode in our
experiments.

https://tinyurl.com/rtddcode
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from a vast arsenal while giving them access to different kinds of sea, air, and land
modes of transportation. To advance through the game, players can earn chaos points
by completing missions or destroying select government properties, causing the govern-
ment to collapse. The chaos system provides the players freedom to progress through
the game in a number of different ways besides main mission completion.

3.2 Behavioral Features and Temporal Aggregations

The data set used in this analysis consists of in-game statistics of 5331 randomly sam-
pled players. The dataset has more than 10 million records with actions, timestamps,
and locations that were normalized and stored in a relational database for easier query-
ing and processing. Based on an initial exploratory data analysis, nine unique players
were removed from the dataset as they consisted of erroneous records with abnormal
values of in-game statistics. The users are allowed to play the game at four different
levels of difficulty. Since the dataset contains player statistics for each of the difficulty
levels in which the player can engage the game; we considered a composite key of
player id and difficulty level as a unique player. Thus, unlike the previous work analyz-
ing this game, this analysis comprises of 6598 individual data points.

Similar to many of the previously mentioned early work in behavioral analytics
in games, we extracted 93 features from our player base, which comprised our entire
expanded behavioral space of interest. These features were recorded in the database
as either cumulative statistics over the player’s lifetime, or description of events that
take place during gameplay. We note that these features can be categorized into four
distinct groups. The largest group is comprised of the lifetime counter statistics of the
game, which includes different kinds of kills, structures destroyed, chaos caused, mis-
sions completed, and many more; these values are recorded as lifetime totals at each
increment. The next set of features is made of player actions not included in the statis-
tics, such as entry and exit of vehicles and parachutes; these actions are both geo- and
timestamped and are given as single, point-in-time observations. The third group of fea-
tures pertains to the cause of deaths, and finally, the fourth group of features provides
extraction (a form of transport) information.

To aggregate the behavioral features for each player, we required a common tempo-
ral feature space. Since the amount of time spent by a player for each session can vary
considerably, we sought to design a temporal unit which would hold equivalence across
players with minimal loss of information. To accomplish this, we divided the data by
playtime (seconds played since starting) into Time Buckets, periods of 1000 seconds
for the first 10, 000 seconds of game play, followed by periods of 50, 000 seconds until
1, 000, 0000 seconds in total.

3.3 Labeling for Retention Analysis

Previous studies covering churn and retention analysis usually defined the prediction
setting as observing the player within a predefined time interval and predicting his fu-
ture behavior again in a predefined time interval (see [8, 21] for examples). Similar to
[21] we also define a churning player as one who after an observation period of 14 days
beginning with their first session, failed to return to the game in the 7 days following
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Model Precision Recall F-Score

Random Forest 0.605 0.657 0.631
Logistic Regression 0.450 0.675 0.541
Gradient Boosting 0.617 0.635 0.626

Table 1: Cross validation prediction performance of our baseline setting that omits the
temporal features and only incorporates the behavioral features. We obtain up to 0.63
F-Score for predicting future player retention.

(days 15-21). Accordingly, we created a churn flag assigned to any player IDs who
fit this definition. By this measure, roughly 30% of the unique players in our dataset
were retained, and the other 70% churned. We note that since the number of churners
is significantly high, it is of considerable benefit if we can rightly identify returners and
churners using their gameplay data from the initial gaming sessions.

3.4 Final Tensor Design

After pre-processing the data, extracting behavioral features, and aggregating over the
temporal units described above, the next step was to design the tensor for bipartite tensor
factorization using the Relaxed Tensor Dual DEDICOM model which is the focus of
this paper and will be subsequently discussed in greater detail. The processed dataset,
had been aggregated to a long matrix format (or matricized) consisting of the records
at the temporal unit (session/time bucket) for all players. Following that, the data were
then scaled using the standard and minmax scaling. The former normalizes each feature
to have 0 mean and standard deviation of 1, wheras, the latter normalizes every data
feature to live in the same predefined range (we have chosen the most standard method
to transform every feature to reside in the unit hypercube). This scaled long-format
dataset was then converted back into a tensor with m × n × d dimensions where d is
the number of unique players, m is the number of temporal units, and n is a column for
each behavioral feature.

Another important aspect of our tensor design was related to censoring. That is,
the decomposition model requires each of it’s d slices to have the same dimensions;
however, the amount of time played by each player was widely varied. To remedy this,
the value of m was chosen sufficiently large to capture the longest-playing player. All
other player matrices were padded with rows of zeros for time units which exceeded
their maximum playtime.

4 Prediction Results

In this section we will present our retention prediction results by first explaining the set-
ting we considered for our baseline. Following that we will take a look at the prediction
results using RTDD as input features from the perspectives of data normalization and
parametrization.
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RTDD Random Forest Logistic Regression Gradient Boosting

p q Reconstruction Error Iterations Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

25 15 1367.01 19 0.613 0.756 0.677 0.599 0.677 0.636 0.639 0.678 0.658
25 25 954.19 20 0.613 0.766 0.681 0.584 0.691 0.633 0.643 0.670 0.656
25 50 362.26 54 0.609 0.767 0.679 0.552 0.723 0.626 0.648 0.668 0.658
50 25 919.18 13 0.603 0.777 0.679 0.57 0.694 0.626 0.638 0.679 0.658
50 50 299.97 100 0.610 0.778 0.684 0.544 0.729 0.623 0.646 0.683 0.664

(a) prediction results incorporating minmax scaling for Y

RTDD Random Forest Logistic Regression Gradient Boosting

p q Reconstruction Error Iterations Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

25 5 71959.72 6 0.582 0.793 0.671 0.632 0.543 0.584 0.602 0.689 0.643
25 25 49984.64 13 0.579 0.797 0.671 0.568 0.667 0.613 0.629 0.625 0.627
50 5 72793.53 35 0.601 0.761 0.672 0.643 0.526 0.579 0.614 0.672 0.642
50 25 49714.19 100 0.593 0.791 0.678 0.568 0.672 0.616 0.621 0.646 0.634
50 50 21707.29 55 0.587 0.805 0.679 0.533 0.707 0.608 0.642 0.628 0.635

(b) prediction results incorporating standard scaling for Y

Table 2: A more detailed comparison of the retention prediction results of our player-
base for different parametrization of the tensor factorization model and normalization
methods, where we obtained results that are better than our baselines (see Table 1).

In order to set a baseline, we analyze the performance of predicting retention using
only the behavioral features ignoring the temporal axis. For this analysis we create a
matrix with PlayerID as rows and the behavioral features aggregated over the 14 day
activity period of a player to be the columns. We trained a 5-fold cross-validated Logis-
tic Regression [14], Random Forest [2] and Gradient Boosting Classification [7] models
with 93 aggregated behavioral features as predictors and retention flag as response to
predict player retention. Among these models, Random Forest predicted retention the
best with precision of 0.605, recall of 0.657 and F-Score of 0.63 (see Table 1). In the
following we will use these results as our baseline.

We incorporated the temporal behavior of the players with their behavior over the
14 day period by creating a tensor Y as described above with time periods (tempo-
ral feature) as its rows, behavioral features as column and each individual players as
slices. The behavioral features are aggregated across time periods from only 1-14 days
in their playing life of each player. Following that we used RTDD to factorize tensor
Y into temporal basis matrix A, behavioral basis matrix B and coefficient tensorW .
RTDD embeds the temporal and behavioral dimensions into their respective loading
matrices. Each slice of the coefficient tensorW is then vectorized and used as compact
temporal-behavioral features to predict future user behavior. In order to evaluate the
improvement in retention prediction brought about by the compact features, we predict
retention probability of players using Random Forest, Logistic Regression and Gradient
Boosting Classifiers.

As in our case the choice for the number of latent factors affects the representa-
tional power [17] and thus the follow-up applications using the latent representations,
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5 10 15 25 50
q

5
10

15
25

50
p

0.655 0.663 0.664 0.653 0.663

0.670 0.671 0.671 0.671 0.668

0.672 0.673 0.679 0.673 0.677

0.674 0.680 0.682 0.684 0.686

0.676 0.680 0.680 0.683 0.683

(a) minmax scaling for Y

5 10 15 25 50
q

5
10

15
25

50
p

0.648 0.643 0.635 0.640 0.620

0.657 0.660 0.657 0.663 0.648

0.667 0.669 0.672 0.672 0.676

0.680 0.677 0.678 0.680 0.678

0.679 0.675 0.676 0.679 0.680

(b) standard scaling for Y

Fig. 3: Exploring the retention prediction quality in terms of F-Score for two popular
scaling techniques and different parametrization of RTDD using the Random Forest
classifier. For the former we chose the standard scaling, that normalizes the data to have
zero mean and standard deviation one, and minmax scaling, that compresses all the
features to a predefined range (usually to the unit hypercube). We ran a grid search for
predicting retention in JC2 for RTDD parameters defined as q, p ∈ [5, 10, 15, 25, 50].
Our results indicate that, although for both of the utilized normalization methods the
best results are obtained for larger values of p and q, compared to standard scaling,
minmax normalization yielded more stable prediction results.

we utilized a grid search on the RTDD parameters p and q. We particularly chose the
values of p and q to be respectively as p ∈ [5, 10, 15, 25, 50] and q ∈ [5, 10, 15, 25, 50],
while assuring p, q � min(m,n) to consider a compressed factor representation for
each player. We trained Random Forest classifier with the compressed features as pre-
dictors and retention flag as response to predict retention probability of players. 5-fold
cross validation was used to evaluate the Random Forest Model on various settings of
tree depth and maximum features used to split the decision nodes in the trees while
building the ensemble model. All the resulting models were evaluated based on their
cross-validated F-score value. We present the prediction results for different values of
p and q in Figure 3. We note that the models ran with compact features from minmax
scaled tensors predicted retention slightly better than standard scaled tensors for the
same p and q setting. After our explorative analysis, we then created a smaller subset
of optimal p and q settings based on highest 5 settings with cross-validation F-score
from the Random Forest output (that we show in Table 2). For p value of 50 and q value
of 50, Random Forest predicted player retention best with precision, recall and F-score
of 0.61, 0.778 and 0.684 respectively. Following that, to compare the Random Forest
results against other standard classification models, we trained Logistic Regression and
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Gradient Boosting classifier for the smaller subset of optimal p-q settings (see Table 2
for cross validation precision, recall and F-score comparisons).

Overall, our results do indeed indicate that, compared to the baseline model, the
compact temporal behavioral features learned with RTDD have improved the retention
prediction results substantially, where observed improvements more than 0.8%, 14%
and 5% for respectively the values of precision, recall and F-score. This implies that
bipartite tensor factorization not only allows for learning compact temporal represen-
tations but also informative representations that help us predict future behavior better
than the non-temporal behavioral features.

5 Conclusion and Future Work

In this work we presented a novel approach that is based on the work of [21] to auto-
matically learn useful representations from temporal and behavioral features in sandbox
games by utilizing bipartite tensor factorization. Unlike the static feature definitions that
are mostly utilized in the previous work (e.g. as in [8, 15]) our approach easily allows
to incorporate the temporal player behavior into any prediction framework. Our case
study with JC2 empirically showed that incorporating the coefficient matrices that are
automatically learned by factorizing our tensor (encoding information about players,
time periods and behavioral features) for each player can improve predicting the future
arrivals. Our future work involves evaluating our behavior prediction models for the
cases of enforcing different constraints (than orthogonality of the basis) on our tensor
factorization model. In addition to that, we will explore how adding such constraints
impacts the interpretability of the resulting factors.
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