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ABSTRACT
We introduce a new combinatorial problem referred to as the component set identification problem, arising in the context of
knowledge discovery, information integration, and knowledge source/service composition. The main motivation for studying
this problem is the widespread proliferation of digital knowledge sources and services. Considering a granular knowledge
domain consisting of a large number of individual bits and pieces of domain knowledge (properties) and a large number of
knowledge sources and services that provide mappings between sets of properties, the objective of the component set identifi-
cation problem is to select a minimum cost combination of knowledge sources that can provide a joint mapping from a given
set of initially available properties (initial knowledge) to a set of initially unknown properties (target knowledge). We position
the component set identification problem relative to other combinatorial problems and provide a classification scheme for the
different variations of the problem. The problem is next modeled on a directed graph and analyzed in terms of its complexity.
The directed graph representation is then augmented and transformed into a time-expanded network representation that is sub-
sequently used to develop an exact solution procedure based on integer programming and branch-and-bound. We enhance the
solver by developing preprocessing techniques. All findings are supported by computational experiments.

Keywords: Knowledge-based systems, information integration, knowledge source integration, service composition, integer
programming.

1 Introduction
In many areas, such as natural science, engineering and medicine, researchers are accumulating an ever-growing amount of domain

knowledge. Even though this is not a new phenomenon, the methodologies and tools to generate, store and utilize domain knowledge
have been changed fundamentally by the digital revolution. Disciplines such as data mining, knowledge discovery, machine learning,
and artificial intelligence are just a few examples of efforts that have been undertaken to successfully cope with and take full advantage
of an ever-increasing amount of knowledge and information.

While the methodologies and tools of knowledge management are continuously evolving, the fundamental concepts of accessing
knowledge and retrieving information remain unchanged. No matter whether information is being retrieved or requested from a living
organism, a printed log table, a finite element model, a neural network, a web service, or a sensor attached to a satellite, the basic
transaction required to obtain information or knowledge from any of these sources can be modeled as a function that converts a set of
input arguments (provided information) into a set of output arguments (sought information). Any such function can be defined as a
knowledge source. This very broad and rather loose definition of the notion of a knowledge source shows the wide reaching applicability
and relevance of the presented combinatorial problems.
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Digital knowledge sources have become a dominant concept for distributed computing and the use of communication networks as
an aggregation point for heterogeneous knowledge sources and services is becoming more and more important. One example for such
digital knowledge sources are web services. Web services are applications, which can be described, published, located and accessed from
anywhere in the network, McIlraith (2001). They are fully characterized by the messages they send and receive, and by the operations
or services they provide, Christensen et al. (2001). The aforementioned definition of a knowledge source includes the definition of web
services. A lot of work has been done on the description and the syntax of web services, Staab (2003), and the declared future plan is
to develop methodologies for automatic web services composition. Different approaches have been proposed to pursuit this objective,
including web service choreography, Arkin et al. (2002), and web service orchestration, Peltz (2003). Web service choreography tracks
the sequence of messages among multiple parties and multiple sources, and web service orchestration deals with the issue of how web
services can interact and communicate with each other at the message level, including the business logic and execution order of the
interactions.

Besides these relatively new and very specific efforts, an abundant amount of research has focused on the overarching problem of
logical and physical integration of heterogeneous information. A large number of different approaches (integration paradigms) have
been considered, including e.g. object orientated programming, reusable software modules, Cheng and Jeng (1997), ontology engi-
neering, Chandrasekaran et al. (1999), schema matching, Domshlak et al. (2007), and middleware standards, Bakken (2001). Schema
matching, for example, is the task of matching concepts describing the meaning of data from various data sources, Domshlak et al.
(2007). An automated schema matcher tries to identify a mapping between the elements (attributes) of two or more data sources that
maximizes the sum of the degree of similarity of the individual elements. Automated schema matching and the combinatorial problem
presented herein are fundamentally different for several reasons. The underlying graph or network of the schema matching problem
can be characterized by an n-by-n similarity matrix for all mappings between a set of attributes. The network structure of the problem
presented herein is characterized by a infinite number of inhomogeneous transformation matrices mapping sets of input to sets of output
attributes. Using appropriate data transformations, including a conversion of the notion of degree of similarity between data elements
(or the lack of it) to a general cost, the basic version of the schema matching problem can be transformed to a special, highly restricted
case of the problem presented here. In a paper recently presented by Saha et al. (2010) the notions of alignment scores and schema
covering problems are introduced. Neither the schema covering nor schema matching problem considers precedence constraints and
time expansion and thus they significantly differ from our work. The authors consider ambiguity of overlaps in the schema covering
problem, a problem that is very specific to the data exchange and data transformation domains. The approaches presented in this paper
are applicable to both problems. Despite these and many other efforts in the area of integration of heterogeneous knowledge sources,
there has, to the best of our knowledge, so far been no fundamental discussion of the underlying combinatorial problems that have to be
solved to automate the process of knowledge source/service selection and composition.

The objective of this work is to initiate this discussion and to provide an overview of the different combinatorial problems that
have to be addressed to automate knowledge source integration and service composition. We provide a characterization scheme and a
complexity analysis for these problems and develop suitable preprocessing and integer programming techniques for the component set
identification problem. Our discussion is not tied to any particular integration paradigm and hence it will not become obsolete as new
technologies for logical and physical information integration evolve.

The remainder of this paper is divided into five sections. In Section 2 we provide a description of the component set identification
(CSI) problem, introduce a characterization scheme, and state the problem formally using a graph/network representation. In the same
section we position the CSI problem relative to other combinatorial problems and present an overview of two other important aspects of
automated knowledge integration and service composition, including the component set scheduling problem and the combined selection-
and-scheduling problem. In Section 3 we elaborate on an example based on various potential knowledge sources from the world wide
web. Section 4 presents a detailed discussion of the complexity of the different variations of the CSI problem based on the developed
characterization scheme. In Section 5 the basic network representation of the CSI problem introduced in Section 2 is transformed
into a time-expanded network representation. Based on this representation an integer programming formulation for the CSI problem is
developed. In Section 6 we present several preprocessing techniques. Finally, Section 7 provides a summary of results obtained from
computational experiments designed to assess the performance of the developed solution procedures and preprocessing techniques.

2 The Component Set Identification Problem
Any knowledge domain can be represented by a finite set P = {p j : j = 1,2...,m} of knowledge bits or properties and a set of

services or knowledge sources K = {ki : i = 1,2, ...n}. The properties can be thought of as a granular representation of all relevant
domain knowledge and the set of knowledge sources represents all available mappings from certain subsets of required input properties
to certain subsets of output properties. Knowledge source ki maps input properties Pin

i ⊆ P to output properties Pout
i ⊆ P. Assuming
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a domain representation with a complete set of property and knowledge source libraries, every information or knowledge request that
can potentially be made in this domain, is characterized by two sets; a set PI ⊆ P of known properties (available knowledge) and a set
PT ⊆ P of target properties (sought knowledge). Let p̃I = |PI | and p̃T = |PT |. Assuming that each knowledge source has a non-negative
cost associated with it, the objective of the CSI problem is to find the minimum cost combination of knowledge sources that can provide
a joint mapping from PI to PT .

Depending on the knowledge source costs, and depending on whether a single cost criterion or a weighted combinations of multiple
cost criteria is used, minimum cost can correspond to fastest, most accurate, most affordable combination, or a combination of these cri-
teria. In addition, besides the true cost, we can combine the cost other attributes such as performance metrics (availability, reliability) or
quality of service. Ultimately, these various objectives could be addressed by means of goal programming, where we first optimize with
respect to the most important objective criteria, next we optimize with respect to the second most important criteria in the neighborhood
of the already obtained solution, and so forth. The formulation presented in Section 5 can easily be adopted to such a scheme.

The underlying decision problem can be modeled as a directed network consisting of a set P of m property nodes, a set K of n
knowledge source nodes, and a set of arcs A connecting property nodes with knowledge source nodes. More specifically, there exists
a directed arc (p j,ki) in the network if and only if property p j is an input property of knowledge source ki (p j ∈ Pin

i ). Furthermore,
there exist a directed arc (ki, p j) if and only if property p j is an output property of knowledge source ki (p j ∈ Pout

i ). The CSI problem is
formally stated as follows. Given the network G(P,K,A,c), consisting of the described property and knowledge source sets, a set of arcs
A, a set of root nodes PI , a set of terminals PT , and nonnegative knowledge source cost function c, the objective is to find the minimum
cost acyclic subnetwork rooted at PI that spans all target nodes PT and meets all input-property-induced precedence constraints. A
knowledge source node ki ∈ K can only be part of a feasible subnetwork if all property nodes p j ∈ Pin

i are connected with ki via a
directed path in the subnetwork starting at one of the root nodes. This is equivalent to requiring that

• if ki is in the subnetwork, then all p j, j ∈ Pin
i are in the subnetwork as well (if a knowledge source is used, all of its input

properties have to be known), and
• if p j ∈ P\PI is in the subnetwork, then at least one ki, j ∈ Pout

i is in the subnetwork (property has to be returned by at least one
knowledge source), and
• all p j ∈ PT are in the subnetwork.

Finding the minimum cost acyclic subnetwork corresponds to finding the combination of knowledge sources that can generate the sought
target properties PT in the most desirable fashion. Figure 1 shows an example problem with three initially known properties (root nodes)
and two target properties. The feasible solution marked in bold, provides paths from the initially known properties (PI

B, PI
C, PI

F ) to
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Figure 1. EXAMPLE CSI PROBLEM INSTANCE AND FEASIBLE SOLUTION.

both target properties (PT
x and PT

y ). The subnetwork consists of six (active) knowledge sources (KC, KG, KH , KK , KL, and KZ) and six
intermediate property nodes (PG, PQ, PL, PM , PR, and PS). A knowledge source is considered active if it is used within the solution
subnetwork. The example shows both, knowledge sources that require a single input property and knowledge sources that require
multiple input properties. Similarly, there are knowledge sources with a single output and knowledge sources with multiple outputs. The
depicted solution satisfies all input property-induced precedence constraints, i.e. it is an acyclic subnetwork.

We stress that the requirements of the subnetwork being acyclic is critical since it guarantees that the selected knowledge sources
are ‘implementable’, i.e. they satisfy the input-induced precedence constraints. We consider the example shown in Figure 2. At first

3



the depicted solution seems to be feasible since there exists a path from the initially known properties, P1 and P2, to the single target
property P9. However, knowledge source K2 generates property P5, a required input for knowledge source K3 and knowledge source K3
generates property P4, a required input property for knowledge source K2. This clearly results in a deadlock, causing the solution to be
infeasible. This solution clearly has a cycle. By definition, a knowledge source can only be used in a solution if all its required input
properties are available. The availability of these input properties is a function of the set of knowledge sources that have been used prior
to a knowledge source. The scheduling aspect is discussed later in Section 2.2.

K3 P8

P7K2
P3

P4

P5

P6

K4K1

Properties P1 and P2 are 
initially known

Properties P9 is the 
single target 
property

Deadlock P9
P2

P1

Figure 2. A DEADLOCK EXAMPLE.

The in- and out-degree pin
i , pout

i of knowledge source i is |Pin
i |, |Pout

i |, respectively. It corresponds to the in- and out-degree of ki
in G(P,K,A,c). Similarly, the in- and out-degree of a property corresponds to the in- and out-degree of the corresponding node in
G(P,K,A,c).

Based on the number of initially known properties, the number of target properties, the number of inputs and outputs per knowledge
source, and the cost associated with knowledge sources, we distinguish among several classes of CSI problem instances. The character-
ization scheme, Figure 3, that is used in the sequel consists of five fields, p̃I |p̃T |p̃in|p̃out |c̃, where p̃I represents the number of initially
known properties, p̃T denotes the number of target properties, p̃in refers to the number of input properties per knowledge source, and
p̃out represents the number of output properties per knowledge source. The last field, c̃, provides information about the knowledge source
costs. In the first four fields we differentiate between two settings, ‘M’ for multiple and ‘S’ for single. For example, if p̃I = M and p̃T = S
the problem instance has multiple initially known properties but only a single target property. If p̃in = S and p̃out = M, the instance has
a single input property for every knowledge source (pin

i =1 for every knowledge source i) while the number of output properties per
knowledge source can vary. For the last field characterizing the knowledge source costs, we differentiate between two settings, ‘U’ for
unit (ci = 1 for every i ∈K), and ‘G’ for general costs.

pI|pT |pin|pout|c
Target properties;
single (S) or multiple (M)

Inputs per knowledge source;
single (S) or multiple (M)

Knowledge source costs; 
unit (U) or general (G) 

~ ~ ~ ~

Initially known properties;
single (S) or multiple (M)

Outputs per knowledge source;
single (S) or multiple (M)

~

Figure 3. CHARACTERIZATION SCHEME FOR THE CSI PROBLEM.

2.1 The Two Aspects of Automated Knowledge Source Integration: Selection and Scheduling
Table 1 presents an overview of the different aspects of automated knowledge source selection and service composition. There are

two main problems that have to be dealt with, the component set identification and the component set scheduling (CSS) problem. The
CSI problem is only concerned with the identification of a suitable set of knowledge sources that provides a joint mapping from the set
of initially known properties to the set of target properties. Once such a set Ks has been identified, the second problem, referred to as
CSS, arises. Before focusing on the CSI problem for the rest of this paper, we will briefly discuss the CSS problem and also the combined
CSI+CSS problem as summarized in the second and third row of Table 1.
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Table 1. COMBINATORIAL PROBLEMS IN KNOWLEDGE SOURCE SELECTION AND SERVICE COMPOSITIONS.

NP-Hard

Must be solved 
simultaneously  

NP-Hard

Solving 
sequentially is 

optimal
NP-Hard

Problem (combined problem)
''Select and schedule a set of knowledge 
sources.  Solve problems simultaneously.''

P |prec|Cmax
Polynomial

Infinite # of 
Processors

Multiple 
Processors

Single 
Processor

# of Processors
Problem

|prec|Cmax
NP-Hard

P1|prec|Cmax
Polynomial

CSS Problem
''Schedule the set of knowledge sources''

p |pT|pin|pout|c (see Table 2 for details)

NP-Hard

CSI Problem
''Select a set of knowledge sources''

---

CSI + CSS

|Pm max
-

I

-

~ ~ ~ ~

oo

simultaneously  

~

Must be solved 

2.2 The Component Set Scheduling Problem
CSS is stated as follows. Given a set Ks ⊆ K of n knowledge sources with variable processing times di, and a set M of machines

or processors, the objective is to find a schedule that minimizes the makespan1, while satisfying all precedence constraints among the
selected knowledge sources. An arc i→ j in the precedence graph from knowledge source i to knowledge source j means that knowledge
source j requires a subset of the output properties of knowledge source i as input. Since we require the underlying subnetwork of the
solution to be acyclic, this precedence graph is acyclic. Assuming identical and parallel processors that can process exactly one knowl-
edge source at a time, and considering the standard notation developed to denote scheduling problems, see e.g. Lawler et al. (1993),
the CSS problem corresponds to the makespan minimization problem on parallel machines with precedence constraints (Pm|prec|Cmax).
The class of Pm|...|Cmax scheduling problems has been studied extensively and many variations of the problem have been proposed,
including preemption, processors with different speeds, and due dates. The most basic variation of the problem, Pm||Cmax, is equivalent
to partitioning and is therefore strongly NP -hard, Garey and Johnson (1979). There are two polynomially solvable cases, P1|prec|Cmax
and P∞|prec|Cmax. The first of these two problems is trivial because it is sufficient to keep the single processor busy at all times, result-
ing in a makespan equal to the sum of the processing times of all knowledge sources. The latter problem, P∞|prec|Cmax, features an
unlimited number of processors and corresponds to a classical problem in the field of project planning. Methods such as the critical path
method (CPM) and the project evaluation and review technique (PERT) can be used to solve the problem to optimality in polynomial
time, French (1982).

2.3 The Combined Problem
Formulating the selection problem and the scheduling problem as a single combinatorial problem and solving both problems simul-

taneously, is the ultimate objective of automated knowledge source selection and service composition (see the last row of Table 1). The
solution to the combined problem has to satisfy the objectives of both, the selection and the scheduling problem. In general, these two
objectives, including minimizing the makespan (CSS) and minimizing the sum of the costs of all knowledge sources and properties in
the selected subnetwork (CSI), impose a trade-off. Thus combining the two objectives into one single objective requires the definition of
weights or utilities associated with the total cost and the makespan. Except for the one-processor case, the two subproblems have to be
solved simultaneously to find the global optimal solution. In the single processor case the makespan is equal to the sum of the processing
times of all selected knowledge sources and the two objectives can simply be combined by defining appropriate joint knowledge source
costs. Given the complexity of the scheduling subproblem, it is obvious that the combined problem must be hard as well, no matter
whether the two subproblems can be solved sequentially (the single processor case) or must be solve simultaneously (all other cases).

In order to design good heuristics or approximation algorithms for the combined problem, a thorough understanding of the two indi-
vidual subproblems should first be obtained. As far as the scheduling subproblem is concerned a considerable amount of understanding
has already been gained. The opposite is true for the selection problem, which has not been given any attention until now. Among the
two subproblems, we focus on the CSI problem since its solution can be turned into a feasible solution to the combined problem.

1The makespan is the maximum completion time of all knowledge sources in Ks. More specifically, it represents the total time it takes to execute the schedule of all
Ks knowledge sources.
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3 Example Problem
This section presents an example of the CSI problem as applied to a real world problem. The example is concerned with the

development of an intelligent planning and decision support tool for relocation projects of private households and considers many facets
of relocation, including location preferences, job search, the real estate market, and the financial implications.

A wide range of knowledge sources specializing on particular aspects of relocation are available and since the objective of this
section is to demonstrate the structure of the problem formulation each type of a knowledge source will be briefly introduced. However,
since we are dealing with domain-specific knowledge sources, the details of which are beyond the scope of this example, we make
certain assumptions with respect to the costs and the input and output properties of the knowledge sources considered in this example.

3.1 Problem Statement
A couple would like to identify a suitable place to relocate to. They both want to be able to work full-time or part-time in their

respective fields and afford a certain lifestyle (afford a home with certain specifications). In addition to their qualifications, the couple is
further constrained by their desire to live in a country where the primary language is either English or Spanish. Furthermore, they want
to live within 100 miles of a major body of water (ocean, lake).

Known Properties: Advanced geographic properties, qualifications, job category, job type properties, personal financial information
properties, desired home characteristics (life-style properties).

Target Properties: Identified location, completed job application, identified future home, completed mortgage application.

Knowledge Sources and Domain specific CSI Network: Figure 4 provides an overview of the nine different types or clusters of
knowledge sources considered in this example. All properties shown to the left of a knowledge source represent input properties while
properties shown to the right are output properties. It is important to note that Figure 4 provides a generalized mapping for each cluster
of knowledge sources, i.e. a specific knowledge source instance might only require a subset of the depicted input properties and only
provide a subset of the output properties shown here.
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Figure 4. Knowledge Sources for the Relocation Domain

The knowledge sources of the first relevant cluster can best be described as geographic knowledge sources (Fig. 4-a). A geographic
knowledge source takes in certain input parameters and/or constraints and returns a geographic location or a geographic area. The geo-
graphical resolution of the output varies and can range from a specific street address to a large geographic region that, as a whole, meets
all input criteria. Besides the difference in output resolution, geographic knowledge sources also differ with respect to the array and level
of sophistication of allowed input properties (constraints), search mechanism, the accuracy of the solution, and the costs associated with
their use. Applications such as Google Earth [www.earth.google.com], MapQuest [www.mapquest.com], mapDex [www.mapdex.org],
GeoTags [www.geotags.com] already have most of the information necessary to qualify as a geographical knowledge source.
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The next cluster of knowledge sources are job locator knowledge sources, which allow users to search for job openings meeting
certain input criteria (Fig. 4-b). There are significant differences in terms of the nature and the number of search properties and informa-
tion required to perform the search. A very large number of internet-based job locator services are available. Most prominent examples
include Monster [www.Monster.com] and the job search engines provided by Yahoo or AOL. There are also more specialized search
engines serving only selected industries, geographical regions, degrees, etc.

Powerful mortgage broker knowledge sources are another critical ingredient when it comes to a thorough evaluation of a relocation
project (Fig. 4-c). Given the location, a loan amount, and certain information about the property these knowledge sources provide
information on suitable banks, rates, lending conditions, and contact information. The number of examples for readily available mortgage
related knowledge sources is pretty much endless.

The relocation example also assumes availability of a variety of different salary estimation knowledge sources (Fig. 4-d). These ser-
vices differ in the type and number of necessary input properties and vary greatly in terms of accuracy and cost. Many salary estimation
knowledge sources are available and examples include Salary.com [www.salary.com] or SalaryExpert [www.Salary-Expert.com]. Job
database providers such as Monster also offer salary estimation tools as separate services.

For the case study presented herein we also assume the existence of financial planning knowledge sources (Fig. 4-e). These tools
can answer questions such as “how much can I afford to borrow?” or “what type of a loan is best suited for my financial situation?”
Countless examples of financial planning knowledge sources that meets the above description can be found online.

Other important types of knowledge sources with respect to relocation are real estate locator knowledge sources (Fig. 4-f). An
extremely wide range of real estate knowledge sources are available on the world wide web. Some of these knowledge sources can be
used to automatically submit a bid on the desired property. Search parameters (input properties) vary considerably but usually include
location, property characteristics and desired price range. A few examples are: Realtor.com [www.realtor.com], RealEstateFinder.com
or [www.realestatefinder.com].

Furthermore we consider automated or semi-automated resume writing knowledge sources (Fig. 4-g). Similar to all previously
discussed knowledge source clusters resume writing knowledge sources vary in the type and number of necessary input properties and
have different price tags associated with them. Readily available examples of these type of knowledge sources include SeekingSuccess
[www.seekingsuccess.com] and E-Resume [www.e-resume.us].

Depending on the provider and the loan amount, the services of mortgage broker internet portals also include the option of automat-
ically initiating a mortgage request via an online application knowledge source (Fig. 4-h). Examples include [www.quickenloans.com;
www.MyLoanSeeker.com].

Most large employers offer online application processes that allow applicants to upload a resume and a cover letter to the employer’s
candidate database. These tools can best be described as job application knowledge sources 2 and represent the last cluster of a knowledge
source considered in the relocation example. Figure 4-i shows common property mappings for this type of knowledge sources.

Figure 5 depicts the resulting CSI network based on the mappings of the nine knowledge source clusters discussed above. Assuming
the availability of 10 to 15 knowledge sources per cluster the resulting CSI network consists of approximately 120 knowledge sources
and 35 properties. The leftmost column of properties shows all initially known properties and the four target properties (identified
target location, completed job application, identified future home, and completed mortgage application) are shown in dark ovals. The
network reveals some of the key intermediate properties that must be part of any feasible solution and indicates the complex nature of
the precedence constraints that exist among the various knowledge sources.

4 Complexity of the CSI Problem
According to the aforementioned characterization scheme, there are several variations of the CSI problem and depending on the

particular combination of network characteristics, the time complexity of the problem can vary considerably. This section provides a
detailed discussion of the complexity of all different classes of CSI problem instances.

The number of different combinations of network characteristics that have to be formally analyzed can be reduced based on the
following observation. Any CSI problem instance with more than one initially known property can be transformed into an equivalent
instance with a single initially known property by introducing a dummy property node and a set of zero cost dummy knowledge source
nodes as shown in Figure 6. Since this transformation can be performed in constant time and space, the complexity of CSIS|.|.|.|. and
CSIM|.|.|.|. can be analyzed together.

We start the discussion of the complexity of the various CSI problem variations with CSI.|S|S|S|G, which represents the most restricted
class of problem instances in terms of the network topography. Table 2 provides an overview of all classes of CSI problem instances.

2Examples include: Intel [jobs.intel.com/jobs], General Motors [www.gm.com/company/careers/job]
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CSI.|S|S|S|G can be found in the first row of this table. Having a single initially known property (p̃I = 1), a single target property ( p̃T = 1),
and a set of knowledge source nodes with in- and out-degree equal to one (p̃in = p̃out = 1), the solution to the CSI problem is simply
the shortest path from the initially known property to the target property of the problem instance. The shortest path problem is well
understood and many efficient polynomial algorithms are available, see e.g. Ahuja et al. (1993).

Dropping the single output restriction for the knowledge source nodes leads to CSI.|S|S|M|G, a slightly more general class of problem
instances (see second row of Table 2). Even though a knowledge source can now provide multiple outputs, we show next that there
exists an optimal solution consisting of a simple path from the single initially known property to the single target property. Let p∗j be the
single target property of the problem and let KT be the set of all knowledge sources that provide p∗j as output. Note that all properties
different from p∗j that represent leaf nodes3 in a given feasible solution to CSI.|S|S|M|G, can be removed without causing the solution to
become infeasible. It is also obvious that knowledge sources that represent leaf nodes in a solution can be removed as well. This removal
process of property and knowledge source leaf nodes can be performed repeatedly until no further simplification of the solution network
is possible. Furthermore, it is clear that the problem can be considered ‘solved’ as soon as p∗j is returned by a knowledge source. From
this it follows immediately that any solution that uses more than one ki ∈KT must be suboptimal. Based on these two observations, and

3A property leaf node is a property node that has no outgoing arc in a given solution, i.e. a property that is not used by any of the selected knowledge source.
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assuming that there are two partially disjoint paths in a solution to CSI.|S|S|M|G, the two paths have to merge somewhere ahead of reaching
the selected ki ∈KT . If this is not the case, at least one of the two paths does not end at p∗j and hence the corresponding leaf node can be
removed. According to the problem definition, each knowledge source takes only a single input. Therefore, two paths can only merge at
a property node. Having two paths merging at a property is clearly suboptimal because the disjoint portion of one of the two paths can be
removed without affecting feasibility (see Figure 7). This completes the argument that the optimal solution to an instance of CSI.|S|S|M|G

can be found in polynomial time by simply solving the shortest s-t path problem from the initially known property to the target property.

PK P K

P PK K

K PTPI PK

One of the disjoint 
paths is redundant and 
can be removed

Target
property

Initially
known 

property

Figure 7. STRUCTURAL CONSIDERATIONS FOR CSI.|S|S|M|G.

The next case that is being considered is CSI.|M|S|S|U (the third row in Table 2). According to the specifications for this class of CSI
problem instances, all knowledge source nodes have unit cost and exactly one incoming and one outgoing arc, but many target properties.
The decision version, denoted by CSI.|M|S|S|U

Π
, is to find a subgraph Ĝ consisting of a subset Ks of knowledge source nodes and a subset

Ps of property nodes that provide paths from elements in PI to all elements of PT and with |Ks| ≤ B, where B is a given integer.

Theorem 1. The decision problem CSI.|M|S|S|U
Π

is NP-complete.

Proof. CSI.|M|S|S|U
Π

is in NP. In order to prove the completeness a transformation from the Steiner arborescence problem is used. The
Steiner arborescence problem is a generalization of the Steiner tree problem, which is shown to be NP -complete by a reduction from the
vertex cover problem, Plesnı́k (1983).

The decision version of the Steiner arborescence problem (SAPΠ) in graphs is stated as follows. Given a directed graph G= (N,A)4,
a specified root p0 ∈ N, a set of terminals T⊆ N, and an upper bound B, the question is whether G contains a directed acyclic subgraph
with no more than B arcs, that connects root p0 with all terminals in T. An instance of the decision version of the Steiner arborescence
problem can be transformed in polynomial time to an instance of CSI.|M|S|S|U

Π
as follows. The first step is to set P = N, PI = {p0}, and

PT = T. In the second step every directed arc ad = (pi, p j) ∈ G is replaced by a knowledge source node kd connected in the graph of
CSI.|M|S|S|U

Π
by two directed arcs (pi,kd) and (kd , p j). Figure 8 illustrates this transformation.

p p
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pi p p

P P
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K K
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Target
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Figure 8. TRANSFORMATION FROM SAPΠ TO CSI.|M|S|S|U
Π

.

The transformation neither adds nor deletes any path from G and it maintains a one-to-one correspondence between paths in the
original and paths in the transformed problem. Note also that a subnetwork in G is acyclic if and only if the corresponding subnetwork
in CSI.|M|S|S|U

Π
is acyclic. Furthermore, the number of arcs on a path in G corresponds to the number of unit cost knowledge source nodes

4G does not have to be acyclic.
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on the corresponding path in the transformed CSI problem. Hence, it is obvious that a solution to SAPΠ of length B exists if and only if
there is a solution consisting of B knowledge sources in the transformed problem. This completes the proof.

The next three classes of CSI problem instances listed in rows 4-6 of Table 2 all have multiple target properties. Hence, these
problem instances are at least as hard as CSI.|M|S|S|U and no separate analysis of the complexity of these problem variations is needed. The
next interesting class of problem instances is CSI.|S|M|S|U . Let us denote by CSI.|S|M|S|U

Π
the corresponding decision problem, which is stated

in a very similar way as CSI.|M|S|S|U
Π

above.

Theorem 2. CSI.|S|M|S|U
Π

is NP-complete.

Proof. CSI.|S|M|S|U
Π

is clearly in NP. The completeness is shown using a transformation from CSI.|M|S|S|U
Π

,which is NP -complete by Theo-
rem 1.

An instance Q of CSI.|M|S|S|U
Π

can be transformed in linear time and space into an instance Q̂ of CSI.|S|M|S|U
Π

as follows. Initially, Q̂
is identical to Q. Next we add to Q̂ a dummy knowledge source KD, and a dummy property PD. As illustrated in Figure 9, the new
knowledge source is defined in such a way that it takes all target properties in Q as input and provides the dummy property PD as output.
The final step of the transformation is to define PD as the only target property in Q̂, while the set of initially known properties remains
unchanged. Having a single target property and a knowledge source with multiple input properties (KD), the transformed problem clearly
meets the characterization scheme of CSI.|S|M|S|U

Π
. Since the transformation does not modify the topography of the original instance, it

follows that a solution to CSI.|M|S|S|U
Π

with B knowledge sources exists if and only if there is a solution to CSI.|S|M|S|U
Π

consisting of B+ 1
knowledge sources. This completes the proof.
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Figure 9. TRANSFORMATION FROM CSI.|M|S|S|U
Π

to CSI.|S|M|S|U
Π

.

The last class of CSI problem instances that has to be considered is CSI.|S|M|M|U
Π

. Since the knowledge sources in this class can feature
multiple input properties, the class is ‘dominated’ by the complexity of CSI.|S|M|S|U

Π
and therefore it is at least as hard as CSI.|S|M|S|U

Π
. This

completes the discussion of the complexity of the CSI problem. Except for the two heavily restricted cases CSI.|S|S|S|G and CSI.|S|S|M|G,
which can be solved in polynomial time using existing shortest path algorithms, the CSI problem is NP-hard. Table 2 summarizes all
findings presented in this section and provides a list of the complexity of all classes of CSI instances.

5 An Integer Programming Formulation
In this section an integer programming (IP) formulation for the CSI problem is presented. The problem is modeled as a discretized

time-expanded network consisting of two types of nodes, nodes representing the knowledge sources and nodes representing the proper-
ties. An alternative IP formulation, which turned out to be on average less efficient, can be found in Bless (2004). As stated in Section
2.2, the complexity of the CSS problem is well understood and hence this paper focuses on the CSI problem.

5.1 Time Expansion
The problem of identifying a suitable combination of knowledge sources has an underlying temporal dimension. This temporal

dimension is needed to account for the precedence constraints in the CSI problem. Hence, to solve the CSI problem the directed network
from Section 2 has to be expanded.

One way of incorporating a temporal dimension is to develop a layered network representation of the directed graph that is capable
of accounting for the time-related precedence constraints. In order to construct such a network representation multiple copies of all
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Table 2. THE MAIN CLASSES OF THE CSI PROBLEM.
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knowledge source and property nodes have to be considered. Arcs that link the different copies across layers describe temporal linkages
in the system. Hence, each node in the resulting network has a time step or layer associated with it and the resulting structure will be
referred to as a time-expanded or layered network representation. The terms time step and layer will be used synonymously throughout
the remainder of this paper. It is easy to see that any feasible solution to the CSI problem that has a time step in which either no knowledge
source is active or no previously unknown property is newly generated has to be suboptimal. If there is a feasible solution with such
an idle layer, the solution can be improved by simply skipping the respective layer. Therefore, in each time step we generate a new
property and use a different knowledge source. Based on this observation a problem with n knowledge sources and m properties will
have a maximum of N =min{n,m} time steps.

Formally, the time-expanded network is defined as follows. For each t, 1 ≤ t ≤ N, for each knowledge source ki ∈ K, and for
each property p j ∈ P there are nodes nki,t and np j,t . We have an extra copy of property nodes denoted by np j,N+1, p j ∈ P. Ordered pair
(np j,t , nki,t), p j ∈P, ki ∈K, 1≤ t ≤N is an arc if and only if p j ∈Pin

i . In addition, there are arcs (nki,t , np j,t+1), ki ∈K, p j ∈P, 1≤ t ≤N
if and only if p j ∈ Pout

i . Nodes with the same time index t form a layer. Note that this network is acyclic and has O(N(n+m)) nodes. We
discuss in Section 6 possible refinements of this network based on preprocessing. Figure 10 provides an example of the time-expanded
network for the CSI problem.

In the following an IP formulation for the CSI problem is presented. The formulation explicitly selects knowledge sources, i.e.
nodes in the time-expanded network.

5.2 The Formulation
We use two types of variables Zit and X jt , where

Zit =

{
1 if knowledge source i is active in layer t,
0 otherwise,

X jt =

{
1 if property j becomes known in layer t,
0 otherwise.

In other words, Zit = 1 if node nki,t is used and X jt = 1 if node np j,t is used.
The objective function reads

min
N

∑
t=1

n

∑
i=1

ciZit . (1)

Next we give the constraints. To ensure that the required target properties are computed, we need

N+1

∑
t=1

X jt ≥ 1 j ∈ PT . (2)
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Figure 10. EXAMPLE OF A TIME-EXPANDED CSI NETWORK.

To model that the set of all properties in PI are initially known, we require

X j1 = 1 j ∈ PI , (3)

X j1 = 0 j /∈ PI . (4)

Let L = {1, ...,N}. To ensure that all input properties for knowledge source i are available in layer t∗ if knowledge source i is active in
in this layer, we need

t∗

∑
t=1

X jt ≥ Zit∗ t∗ ∈ L, i ∈K, j ∈ Pin
i . (5)

To guarantee consistency of the solution we need to enforce that property j is known in layer t +1, the layer following the determination
of property j by knowledge source i in layer t. Hence we need,

X j(t+1) ≥ Zit i ∈K, t ∈ L, j ∈ Pout
i . (6)

The following constraints enforce that an X j(t+1) can only be nonzero if at least one knowledge source with property j as an output is
nonzero at time step t. In absence of these constraints, X j(t+1) could be nonzero even if all Zit are zero and this would obviously result
in an infeasible solution. Hence, we require

∑
i: j∈Pout

i

Zit ≥ X j(t+1) t ∈ L, j ∈ P. (7)

Constraints (8) enforce that each knowledge source is used at most once throughout a particular solution and hence they prevent the
generation of suboptimal solutions. Therefore, we add

N

∑
t=1

Zit ≤ 1 i ∈K. (8)

Note that even without (8) the formulation is correct, however, these constraints are included since they were found to lead to an improved
performance of the branch-and-bound algorithm.

By definition we have

Zit ∈ {0,1} i ∈ P, j ∈K, t ∈ L, (9)

X jt ∈ {0,1} i ∈ P, j ∈K, t ∈ L∪{N +1}. (10)
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The integer programming formulation consists of the objective function (1), constraints (2)–(8), and integrality requirements (9) and (10).
The formulation has N(n+m) = O(N2) variables and N

(
∑i∈K

(
pin

i + pout
i
)
+m

)
+m+n+ p̃T = O(N3) constraints.

6 Preprocessing of Problem Instances
The proposed formulation is solved by branch-and-bound. The development and application of effective preprocessing techniques

has shown to lead to significant reductions in complexity and to considerable improvements of the performance of branch-and-bound
on difficult combinatorial problems. For an in-depth discussion of preprocessing techniques for integer problems see e.g. Savelsbergh
(1994) or Atamtürk et al. (2000).

To simplify instances of the CSI problem as much as possible before formulating and solving them by branch-and-bound, several
preprocessing techniques have been developed. Each of these techniques exploits certain characteristics of the network topography of
the CSI problem and most of them fall into one of the two main categories: reduction techniques and inclusion techniques. The former
rules reduce the network, while the latter detect knowledge sources and properties that are in any feasible solution.

6.1 Reduction Techniques
The first type of preprocessing technique is aimed at reducing the actual problem size before solving the problem. Reduction tech-

niques have successfully been applied to other network optimization problems with similar network topologies, including the travelling
salesman problem, Osorio Lama and Pinto (2004), and the Steiner tree problem, Duin (2000). Next we give three rules that eliminate
nodes or arcs.

1. Property Exclusion Test (PET):

(a) A property that is not in PI and has an in-degree of zero, is unobtainable and hence, can be removed from the network.
Properties that meet these criteria will be referred to as zero-in-degree properties.
(b) A property that does not belong to PT and has an out-degree of zero, is of no value for any feasible solution and hence it
can be removed from the network. These properties are referred to as zero-out-degree properties.

2. Knowledge Source Exclusion Test (KET): Knowledge sources that take one or more zero-in-degree properties as input can be
removed from the network (infeasible knowledge source).

3. Knowledge Source Domination Test (KDT): A knowledge source may be dominated by another knowledge source or by a com-
bination of knowledge sources. To determine whether knowledge source ki is dominated by knowledge source kg, the inputs, the
outputs, and the cost of ki and kg have to be considered. If Pin

g is a subset of Pin
i , Pout

g is a superset of Pout
i , and ci ≥ cg, then we

say that knowledge source kg dominates ki and ki can be removed from the network (dominated knowledge source). This rule can
be generalized by considering dominance between two disjoint sets of knowledge sources. Identifying these more complex cases of
dominance requires the development of suitable heuristics, Bless et al. (2006).

6.2 Inclusion Techniques
Here we discuss methods that are able to identify knowledge sources and properties that have to be present in every feasible solution.

1. Knowledge Source Inclusion Test (KIT): A knowledge source ki that is the sole provider of a property p j ∈ PT has to be included in
any solution. Knowledge sources that meet this criterion will be referred to as required knowledge sources.

2. Property Inclusion Test (PIT): This preprocessing rule is directly related to the previous rule. It is easy to see that all input properties
of required knowledge sources can be classified as additional target properties and hence have to be part of any feasible solution.

Each time KIT or PIT apply to a knowledge source or a property, additional constraints have to be introduced into the IP formulation.
For example, if KIT applies to knowledge source i, any feasible solution must satisfy

N

∑
t=1

Zit = 1.

It is important to note that the developed preprocessing techniques can be applied iteratively until no further simplification of the
problem is possible. This can be illustrated using an example that considers the elimination of a zero-in-degree property j based on
PET. After removing property j from the network it is possible to eliminate all knowledge sources that take j as an input using KET.
Eliminating these infeasible knowledge sources can result in new zero-in-degree properties, which can, once again, be removed using
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PET. This procedure can be repeated until no further simplification is possible (preprocessing loop). Another important aspect of the
presented preprocessing techniques is that the order in which these rules are applied within the preprocessing loop is irrelevant. Each
preprocessing technique described in this section exploits a unique characteristic of the underlying graph and hence, the techniques do
not cannibalize on each other or impact each other negatively.

7 Computational Experiments
This section provides a summary of computational experiments that have been performed to test the formulation and the preprocess-

ing techniques. Unless specifically stated, all experiments presented in this section were performed on personal computers with INTELr

Pentiumr 4 1.7GHz processors and with 256KB integrated level 2 cache, a bus speed of 100MHz, and 256MB ECC RDRAM system
memory. CPLEX 8.0 (www.ilog.com) is used as the integer programming solver. Furthermore, the problem instances are generated
randomly and unless stated otherwise all data points in all graphs are based on 100 runs (random problem instances).

7.1 Effectiveness of Preprocessing Techniques
To gain a complete understanding of the performance and effectiveness of preprocessing for different types of problem instances,

a variety of computational experiments have been conducted. The objective of the first set of experiments was to identify, among all
CSI network characteristics, those that have the most significant impact on the effectiveness of the various preprocessing techniques. To
accomplish this, a 27 full factorial design of experiments was performed. The network characteristics that are considered include the
number of knowledge sources, property saturation rs defined as m

n , knowledge source in- and out-degree distribution (D̃in and D̃out ),
knowledge source cost distribution, number of initially known properties, and number of target properties. Table 3 summarizes their
ranges. Here UD(l,u) represents the uniform distribution of integers in the interval [l,u], p̃in

max ( p̃out
max) is the maximum size of Pin

i (Pout
i ),

and cmax is the largest knowledge source cost. The ranges were chosen based on the expected characteristics of CSI problem instances.

Table 3. DESIGN SUMMARY OF PREPROCESSING DESIGN OF EXPERIMENTS.
Factor Symbol Low Actual High Actual

Number of knowledge sources n 100 200
Property saturation (rs = m/n) rs 0.35% 0.70%
Knowledge source in-degree distribution: D̃in =UD(1, p̃in

max) p̃in
max 3 4

Knowledge source out-degree distribution: D̃out =UD(1, p̃out
max) p̃out

max 3 4
Knowledge source cost distribution: ci =UD(1,cmax) cmax 100.00 500.00
Number of initially known properties in percentage of n p̃I 0.03% 0.10%
Number of target properties in percentage of n p̃T 0.03% 0.10%

The results obtained from these experiments indicate that the applicability of the different preprocessing rules is a function of
the network characteristics of the preprocessed problem instance. The four network characteristics with the most significant effect on
preprocessing are property saturation, knowledge source out-degree distribution, number of target properties, and knowledge sources
in-degree distribution. Table 4 provides a list of the three most significant network characteristics for each type of preprocessing rule.

Table 4. NETWORK CHARACTERISTICS WITH THE MOST SIGNIFICANT EFFECTS ON DIFFERENT PREPROCESSING RULES.
Ranking According to Significance of Estimated Effects on Performance

Rule 1st Place 2nd Place 3rd Place

PET rs ↑ p̃out
max ↓ P̃in

max ↓
PIT rs ↑ p̃out

max ↓ interaction of rs and P̃out
max ↓

KET rs ↑ p̃I ↑ P̃out
max ↓

KIT rs ↑ p̃I ↑ P̃out
max ↓

KDT rs ↓ n ↓ interaction of rs and n ↑
↑: positive effect (more successful) ↓: negative effect (less successful)

Property saturation has clearly the most decisive effect on preprocessing. This is expected since property saturation mimics the
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notion of density in graphs. In networks with relatively few knowledge sources and many properties the level of connectivity among
all the nodes (including knowledge sources and properties) is more likely to be low compared to the networks with many knowledge
sources and few parameters. Certain preprocessing rules, such as PET are expected to eliminate more nodes in networks with a low level
of connectivity. Since the performance of all preprocessing techniques is a function of the network characteristics, it is critical to include
the notion of property saturation and to perform the extensive computational experiments shown in Figures 11 and 12. Considering all
preprocessing rules knowledge source in- and out-degree distribution is the network characteristic with the second most significant effect
on preprocessing.

For all subsequent experiments the following assumption is made. To mimic the expected knowledge source in- and out-degree
distribution of CSI problem instances, Bless et al. (2005), a uniform distribution with a lower bound of 1 and an upper bound of 3 was
imposed on both distributions.

Using these settings for the knowledge source in- and out-degree, the number of knowledge sources was held constant at 100, while
the number of properties was gradually increased from 7 to 100, corresponding to a property saturation of 7% to 100%. The remaining
network characteristics were p̃I = 3, p̃T = 3, and ci = UD(1,500) for every ki ∈ K. Figure 11 summarizes the average performance
of all preprocessing rules for a set of 10,000 randomly generated problem instances. The results indicate that for problems with a low
property saturation (10%≤ rs ≤ 30%) the knowledge source domination test (KDT) is the most successful preprocessing technique. For
high values of rs, the property (PET) and knowledge source elimination rule (KET) is the most effective preprocessing rule. Depending
on the level of property saturation, up to 50% of all knowledge source and property nodes are eliminated from the randomly generated
problem instances. On average for rs = 25%,50%,75%,100% the percentage of eliminated knowledge source (property) nodes is 4%
(≤ 1%), 2.5% (8%), 15% (22%), and 40% (47%), respectively.

While preprocessing techniques KIT and PIT result in additional constraints, PET, KET, and KDT translate directly into a reduction
of the absolute problem size. As illustrated above, inclusion techniques do not share this effect but can be used to incorporate additional
constraints to the IP formulation. Figure 12 shows the effect of this reduction in terms of the absolute number of knowledge source and
property nodes that remain after preprocessing. Besides the immediate effect on the number of nodes in the network, preprocessing also
reduces the maximum number of layers, N, that have to be considered in the IP formulation. This secondary effect has generally an even
larger impact on the complexity of the resulting integer program.
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Figure 11. EFFECTIVENESS OF PREPROCESSING RULES AT DIF-
FERENT LEVELS OF PROPERTY SATURATION.
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Figure 12. ABSOLUTE PROBLEM SIZE AFTER CSI-SPECIFIC PRE-
PROCESSING.

To test the performance of the preprocessing rules in practice and to validate the results presented above, randomly generated test
instances with varying property saturation were solved with and without preprocessing. We compare default CPLEX, i.e. general
purpose integer programming preprocessing, with our CSI-specific preprocessing rules. The number of knowledge sources was held
constant at 30 and the property saturation was gradually increased from 23.3% to 100%. All other network characteristics were the same
as in the previous experiments. A time limit of one hour was imposed for each problem instance. The label “F1 w/o PP” denotes the
option without CSI-specific preprocessing and “F1 w. PP” corresponds to the case with enabled our problem specific preprocessing.
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Figures 13-18 provide an overview of the results obtained from these experiments. Figures 13 and 14 show the number of rows
and columns in the IP. The data indicate that the application of the developed preprocessing techniques reduces the number of rows
and columns at all levels of property saturation. The most significant reductions are realized at high property saturations. The main
reason why the maximum complexity in terms of number of rows and column occurs at around 70-80% property saturation and not
between 30-40%, where according to Figure 11 preprocessing is least successful, is the fact that the maximum number of layers peaks
at a property saturation of about 70-80% as shown in Figure 12.
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Figure 13. NUMBER OF ROWS (30 KNOWLEDGE SOURCES).
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Figure 14. NUMBER OF COLUMNS (30 KNOWLEDGE SOURCES).

Figure 15 shows the average optimality gap at the root node. We define the gap as (zIP− zLP)/zIP, where zIP is the optimal value
and zLP is the value of the LP relaxation. We observed that CPLEX was always able to find a feasible solution at the root node. This is
not surprising since feasible solutions with many knowledge sources are easily obtainable. In the preprocessed case, the gap peaks at a
property saturation of approximately 50%. Figures 16 and 17 provide plots of the average CPU time and the average number of evaluated
branch-and-bound nodes. Figure 16 also indicates how often CPLEX stopped after one hour without finding an optimal solution. To
ensure a fair comparison of the CPU times with and without preprocessing at different levels of property saturation, instances that
could not be solved to optimality within the one hour time limit were not considered for the determination of the average CPU time
and the average number of evaluated branch-and-bound nodes visited shown in Figures 16 and 17. The time reduction that can be
achieved by using the developed preprocessing rules is significant and becomes progressively larger with increasing property saturation.
At a property saturation of 70% the average reduction in CPU time due to preprocessing is 48.2%. The required CPU time peaks at
a property saturation of 60-80% when used in combination with the CSI-specific preprocessing rules. This is consistent with earlier
observations.

7.2 Limitations
The peak in problem complexity at a property saturation of 60-80% observed for relatively small problem dimensions becomes

more pronounced when solving larger problems instances. This is shown in Figure 18, which illustrates the average time required to
solve the root node of the branch-and-bound tree for problem instances with 100 knowledge sources and varying property saturation.

Having identified the range of property saturation that results in the most complex problem instances, the next step was to run
a set of experiments with a fixed property saturation and an increasing number of knowledge sources. The objective is to determine
the maximum problem size that can reliably be solved to optimality. These experiments were performed on a personal computer with
a Pentiumr 4 3.0GHz processor with 512KB integrated level 2 cache, a bus speed of 800MHz, and 1024MB DDR SDRAM system
memory.

We use the same network characteristics as before to generate the random problem instances with a property saturation of 70%
and an increasing number of knowledge sources. All available preprocessing rules are turned on, including the inclusion preprocessing
techniques described in Section 6.2. These inclusion techniques effectively represent cuts that are being added to the IP formulation.
To further reduce the average optimality gap at the root node the idea of adding cuts should be explored further. Previous work on
variants of the Steiner Tree problem has shown that adding cuts and applying cutting plane algorithms can help to further reduce the
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optimality gap, Grotchel et al. (1996). Figure 19 shows the gap at the root node over all levels of knowledge sources. It is clear that the
gap increases with the number of knowledge sources. Figure 20 shows the average CPU time together with an exponential function fit.
Figure 21 shows the relative frequency with which the formulation was unable to find the optimal solution within the 1 hour time limit.

8 Summary
This paper addressed the combinatorial aspects of automated knowledge source selection and service composition. It mainly fo-

cuses on the component set identification problem, a combinatorial problem arising in the context of knowledge discovery, information
integration, and knowledge source/service composition. Using a transformation from the Steiner arborescence problem, it was shown
that the CSI problem is NP -hard. We give an IP formulation for solving the problem. It was found that problem-specific preprocessing
can lead to considerable reductions in problem complexity, amounting to more than 50% reduction in CPU time even for small problem
instances. Property saturation, knowledge source in- and out-degree distribution, and the number of initially known properties were
identified as the network characteristics with the most significant effect on the success of preprocessing. Assuming a knowledge source
in- and out-degree distribution of D̃in =UD(1,3) and D̃out =UD(1,3), it was found that the property saturation of 60-80% leads to the
most complex problem instances. Unfortunately the formulation yields large optimality gaps at the root node. Problem instances with
up to 35 knowledge sources and a property saturation of 70% can reliably be solved to optimality within one hour of CPU time in over
97% of all cases. Slightly larger instances with more than 40-50 knowledge sources on the other hand can only be solved to optimality
in about 50% of all cases within the same time limit. The exponential increase in execution time suggests that problem instances beyond
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Figure 19. AVERAGE OPTIMALITY GAP AT THE ROOT NODE.
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Figure 20. EXPONENTIAL FIT FOR AVERAGE CPU TIMES.
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Figure 21. AVERAGE PERCENTAGE OF PROBLEMS THAT CAN NOT BE SOLVED TO OPTIMALITY WITHIN 1 HOUR TIME LIMIT.

60 knowledge sources and a property saturation of 70% are generally impossible to solve within a reasonable time frame using the IP
formulation.
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