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A Simple and Fast Algorithm
for L1-norm Kernel PCA

Cheolmin Kim, Diego Klabjan

Abstract—We present an algorithm for L1-norm kernel PCA and provide a convergence analysis for it. While an optimal solution of
L2-norm kernel PCA can be obtained through matrix decomposition, finding that of L1-norm kernel PCA is not trivial due to its
non-convexity and non-smoothness. We provide a novel reformulation of it through which an equivalent, geometrically interpretable
problem is obtained. Based on geometric understandings, we present a “fixed-point” type algorithm that iteratively computes a binary
weight for each observation. As the algorithm requires only inner products of data vectors, it is computationally efficient and the kernel
trick is applicable. In the convergence analysis, we show that the algorithm converges to a local optimal solution in a finite number of
steps. Moreover, we provide a rate of convergence analysis, which has never been done for any L1-norm PCA algorithm, proving that
the sequence of objective values converges to a local optimal value at a linear rate. In numerical experiments, we show the robustness
of the algorithm in the presence of entry-wise perturbations and introduce an application to outlier detection where the model based on
the proposed algorithm outperforms. Also, we provide a runtime comparison, attesting the scalability of the proposed algorithm.

Index Terms—Principal Component Analysis, Robustness, Kernel, Outlier Detection.
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1 INTRODUCTION

P RINCIPAL Component Analysis (PCA) is one of the
most popular dimensionality reduction techniques [1].

Given a large set of possibly correlated features, it attempts
to find a small set of features (principal components) that
retain as much information as possible. To generate such
new dimensions, it linearly transforms original features by
multiplying loading vectors in a way that newly generated
features are orthogonal and have the largest variances.

In traditional PCA, variances are measured using the L2-
norm. This has a nice property in that although the problem
itself is non-convex, the optimal solution can be easily found
through matrix factorization. With this property, together
with its easy interpretability, PCA has been extensively used
in a variety of applications. However, despite of its success,
it still has some limitations. First, since it generates new di-
mensions through a linear combination of features, it is not
able to capture non-linear relationships between features.
Second, as it uses the L2-norm for measuring variance,
its solutions tend to be substantially affected by influential
outliers. To overcome these limitations, the following two
approaches have been proposed.

Kernel PCA The idea of kernel PCA is to map original
features into a high-dimensional feature space, and perform
PCA in that high-dimensional feature space [2]. With non-
linear mappings, we can capture non-linear relationships
among features, and this computation can be done effi-
ciently using the kernel trick. With the kernel trick, com-
putations of principal components can be done without an
explicitly mapping.

L1-norm PCA To alleviate the effects of influential ob-
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servations, L1-norm PCA uses the L1-norm instead of the
L2-norm to measure variance. The L1-norm is more advan-
tageous than the L2-norm when there are outliers having
large feature values since it is less influenced by them. By
utilizing this property, more robust results can be obtained
through the L1-norm based formulation in the presence of
influential outliers.

In this paper, we combine the two approaches for the
variance maximization version of L1-norm PCA (which
is not the same as minimizing reconstruction error with
respect to the L1-norm). In other words, we tackle a kernel
version of L1-norm PCA. Unlike L2-norm kernel PCA, the
kernel version of L1-norm PCA is a hard problem in that
it is not only non-convex but also non-smooth. However,
through a reformulation, we make it a geometrically in-
terpretable problem where the goal is to minimize the L2-
norm of a vector subject to a linear constraint involving the
L1-norm terms. For this reformulated problem, we present
a “fixed point” type algorithm that iteratively computes a
weight of −1 or 1 for each observation based on the kernel
matrix and previous weights. We show that the kernel trick
is applicable to this algorithm. Moreover, we prove the
efficiency of the algorithm through a convergence analysis.
We show that the proposed algorithm converges to a local
optimal solution in a finite number of steps and the se-
quence of objective values converges to a local optimal value
at a linear rate. Also, we computationally investigate the
robustness of the algorithm and introduce an application to
outlier detection. Lastly, we provide a runtime comparison
of the proposed algorithm to other L1-norm kernel PCA
algorithms and L2-norm kernel PCA.

Our work has the following contributions.
1. We provide a novel reformulation of L1-norm ker-

nel PCA to a geometrically interpretable problem and
present an iterative algorithm based on geometric un-
derstandings. This framework is not specific to L1-
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norm PCA since it can be applied to a more general
problem. Particularly, the application of this framework
to L2-norm PCA results in Power iteration [3].

2. We not only prove convergence but also provide a
rate of convergence analysis of the algorithm. Although
many algorithms have been proposed for L1-norm
PCA, none of them provided a rate of convergence
analysis. We stress that our analysis is for the kernel
version which clearly provides an analysis for L1-norm
PCA. Through a novel analysis, we show that the
algorithm attains a linear rate of convergence.

3. We introduce a methodology based on L1-norm kernel
PCA for outlier detection.

In what follows, we always refer to the variance maxi-
mization version of L1-norm kernel PCA and assume that
every variable in the input data is standardized with a mean
of 0 and standard deviation of 1.

This paper is organized as follows. Section 2 reviews
related works and points out how our work is different.
Section 3 covers various formulations of L1-norm kernel
PCA. Through the reformulations, we offer geometric un-
derstandings of the problem and based on them we present
an algorithm in Section 4. Section 5 gives a convergence
analysis of the algorithm and experimental results are fol-
lowed in Section 6.

2 RELATED WORK

Extracting a low-rank representation from a large matrix is
an important problem in machine learning and statistics. In
a variety of contexts, many previous works [4], [5], [6], [7]
have been proposed to address this problem. Recovering a
low-rank matrix from a sampling of its entries is studied in
[4]. Given that the number of sampled entries is sufficiently
large, exact recovery is guaranteed with high probability
by solving a simple convex optimization problem [4]. As-
suming that a data matrix can be decomposed into the sum
of a low-rank matrix L0 and a sparse matrix S0, a convex
program (known as robust PCA) that minimizes a weighted
combination of the nuclear norm of L0 and the L1 norm
of S0 is presented in [5]. Also, a variant of robust PCA
that identifies outliers by additionally imposing a column-
sparse structure on S0 is considered in [6]. Under some mild
conditions, exact recovery can be shown for both models
[5], [6]. Moreover, exact recovery of mixture data is studied
in [7], [8], [9], [10]. By utilizing a dictionary matrix, low-
rank representation (LRR) [7] can better handle mixture data
than robust PCA. While matrix recovery is the main focus of
theses works, our work considers dimensionality reduction
with emphasis on robustness, especially focusing on PCA
with the L1-norm.

To reduce the number of features in a robust manner, the
L1-norm has been involved in many PCA studies [11], [12],
[13], [14], [15], [16], [17] or subspace estimation formulations
[18], [19]. Finding a subspace onto which the L1 projec-
tions of data vectors have the smallest sum of distances
to the original data vectors is studied in [11]. Based on
the observation that the L1 projection occurs along an axis,
it presents an algorithm for projecting d-dimensional data
into the (d − 1)-dimensional subspace, which minimizes
the sum of distances of data vectors to their L1 projections.

In order to find the optimal axis and subspace, it solves d
least absolute deviation regression problems, each having
one dimension as a dependent variable while having the
other dimensions as independent variables. With the use of
linear programming, this algorithm finds a global optimal
solution in polynomial time [11].

Minimizing reconstruction error with respect to the L1-
norm is considered in [13], [14], [18]. While the PCA prob-
lem of minimizing ‖M − XXTM‖1 subject to XTX = I
is considered in [13], the subspace estimation problem of
minimizing E(U, V ) = ‖M −UV ‖1 is studied in [18] where
M is a data matrix. In order to solve the former problem,
an iterative algorithm that computes a weight for each data
vector and applies L2-norm PCA on the weighted data ma-
trix is presented in [13]. On the other hand, the latter prob-
lem is solved using alternative convex minimization based
on the observation that E(U, V ) becomes a convex function
once U or V is known. It alternatively optimizes one matrix
at a time while keeping the other one fixed, repeating
this process until convergence. Also, a subspace estimation
formulation that minimizes the reconstruction error with
respect to the R1-norm, ‖M − UV ‖R1

=
∑n
i=1 ‖xi − Uvi‖2

where the ith column vector of M is xi and that of V is vi,
is presented in [19]. This formulation minimizes the sum
of reconstruction error with respect to the L2-norm, and
therefore it is different from L2-norm PCA which minimizes
the sum of squared reconstruction error with respect to
the L2-norm. Nonetheless, they share the same property in
that they have a unique global solution which is rotational
invariant [19].

Maximizing variance of projected data vectors with re-
spect to the L1-norm, which we refer to as L1-norm PCA,
is studied in [12], [15], [16], [17]. Our work also considers
this formulation rather than the previous two since it has
a favorable structure in that the optimal solution can be
represented as a linear combination of data vectors with a
weight of −1 or 1, making it possible to develop a kernel
version. L1-norm PCA is shown to be NP-hard in [17] and
[16]. Nevertheless, an algorithm finding a global optimal
solution is proposed in [17]. Utilizing the auxiliary-unit-
vector technique [20], it computes a global optimal solution
with complexity O(npr+p−1) where n is the number of
observations, r is the rank of the data matrix, and p is the
desired number of principal components. Assuming r and
p are fixed, the runtime of this algorithm is polynomial in
n. However, if n, p, r are large, its computation time can
be prohibitive. Instead of finding a global optimal solution
which is intractable in general, our work focuses on devel-
oping an efficient algorithm finding a local optimal solution
for L1-norm kernel PCA.

Recognizing the hardness of L1-norm PCA, an approx-
imation algorithm is presented in [16] based on the known
Nesterov’s theorem [21]. In this work, L1-norm PCA is
relaxed to a semi-definite programming (SDP) problem and
alternatively, the SDP relaxation is considered. After solving
the relaxed problem, it generates a random vector and uses
randomized rounding to produce a feasible solution. This
randomized algorithm is a

√
2/π-approximate algorithm

in expectation. To achieve this approximation guarantee
with high probability, it performs randomized rounding
multiple times and takes the one having the best objective
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value. Rather than providing an approximation guarantee
by solving a relaxed problem, our work directly considers
the L1-norm kernel PCA problem, and develops an efficient
algorithm finding a local optimal solution.

Another approach utilizing a known mathematical pro-
gramming model is introduced in [12]. Specifically, it pro-
poses an iterative algorithm that solves a mixed integer pro-
gramming problem in each iteration. Given an orthonormal
matrix of loading vectors, it perturbs the matrix slightly
in a way that the resulting matrix yields the largest ob-
jective value. After the perturbation, it uses singular value
decomposition to recover orthogonality. The algorithm is
completely different from the one proposed herein, since
the objective values of the iterates do not necessarily im-
prove over iterations. Our algorithm guarantees monotone
convergence of the sequence of objective values as well as
its linear convergence to a local optimal value.

A simple numerical algorithm finding a local optimal
solution is proposed in [22]. In this work, the optimal
solution is assumed to have a certain form, and weights
involved in that form are updated at each iteration im-
proving the objective values. A similar algorithm and its
extended version that finds multiple loading vectors at once
are derived in [15] utilizing an optimization algorithm for
general L1-norm maximization problems. In the case of
linear kernel, our algorithm utilizes the same framework
as the ones in [22] and [15]. However, while the algorithm
in [22] is derived without any justification, we provide an
understanding behind the algorithm, which is different from
the derivation in [15]. Moreover, as opposed to [22] and [15],
we provide a rate of convergence analysis and introduce a
kernel version.

On other hand, the kernel version of L1-norm PCA has
been rarely studied. Due to the difficulty of applying the
kernel trick to L1-norm kernel PCA, an alternative method
named nonlinear projection trick is applied to solve L1-norm
kernel PCA in [23]. Based on the finding that an optimal
loading vector lies in the span of an orthonormal basis of
Φ(A)TUΛ−1/2 where Φ(A) is a high-dimensionally mapped
data matrix and UΛUT is the eigenvalue decomposition
of the kernel matrix K , it substitutes UΛ1/2 in place of
Φ(A). Noting that the reformulated problem has the same
form as L1-norm PCA, it is solved by the algorithm in [22].
Another kernel extension of L1-norm PCA is studied in [24].
In this algorithm, a linear system involving a kernel matrix
is solved at each iteration and the resulting solution is used
to update the iterate. The algorithms in [23] and [24] entail
either eigenvalue decomposition or solving a linear system,
which can be computationally costly in a large-scale setting.
As opposed to them, our algorithm only requires a matrix-
vector multiplication at each iteration, making it suitable in
a large-scale setting.

3 KERNEL-BASED L1-NORM PCA FORMULATIONS

We consider L1-norm PCA in a high-dimensional feature
space F . Suppose we map data vectors ai ∈ Rd, i = 1, . . . , n
into a feature space F by a possibly non-linear mapping
Φ : Rd → F . Assuming |Φ(ai)

TΦ(aj)| < ∞ for every

i, j = 1, . . . , n, the kernel version of L1-norm PCA can be
formulated as follows.

maximize
x∈F

f(x) =
n∑
i=1

|Φ(ai)
T x|

subject to ‖x‖2 = 1

(1)

This formulation extends the variance maximization ver-
sion of L1-norm PCA and is also studied in other L1-norm
kernel PCA works [23], [24]. As shown in (1), we only
consider extracting the first loading vector. This assumption
is justifiable since subsequent loading vectors can be found
by iteratively running the same algorithm. Specifically, each
time a new loading vector is obtained, we update the kernel
matrix K defined by Kij = Φ(ai)

TΦ(aj) by projecting
Φ(ai), i = 1, . . . , n onto the space orthogonal to the most
recently obtained loading vector and apply the same algo-
rithm on the updated kernel matrix K̃.

The problem (1) has a convex non-smooth objective
function to maximize and the Euclidean unit ball constraint.
To better understand this problem and derive an efficient
algorithm, we reformulate (1) in the following way.

minimize
x∈F

g(x) = ‖x‖2

subject to
n∑
i=1

|Φ(ai)
T x| = 1

(2)

Two optimization problems are said to be equivalent if
there exists some mapping h such that if x∗ is an optimal
solution to one problem, then h(w∗) is an optimal solution
to the other problem, and vice versa [25] for a possible
different mapping function. Therefore, in order to prove the
equivalence of (1) and (2), we show that an optimal solution
of one formulation can be derived from an optimal solution
of the other formulation by means of some mapping.

Proposition 1. The followings hold.
a) If x∗1 is optimal to (1), then

x∗2 =
x∗1∑n

i=1 |Φ(ai)T x∗1|
is an optimal solution to (2).

b) If y∗2 is optimal to (2), then

y∗1 =
y∗2
‖y∗2‖2

is an optimal solution to (1).

Proof. a) It is easy to check that x∗2 is a feasible solution to
(2). Suppose that x∗2 is not optimal to (2). Then, there exists
some z such that

‖z‖2 < ‖x∗2‖2.

As z is feasible to (2), we have
n∑
i=1

|Φ(ai)
T z| = 1.

Now, we consider w = z
‖z‖2 . Then,

f(w) =
n∑
i=1

|Φ(ai)
Tw| =

∑n
i=1 |Φ(ai)

T z|
‖z‖2

=
1

‖z‖2
.
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In the same way, we have

f(x∗1) =
1

‖x∗2‖2

from x∗1 =
x∗2
‖x∗2‖2

. This leads to

f(x∗1) < f(w),

which contradicts the assumption that x∗1 is an optimal
solution of (1).

b) Again, it is easy to check y∗1 is feasible to (1). To derive
a contradiction, suppose that y∗1 is not optimal to (1). Then,
there exists some w such that

n∑
i=1

|Φ(ai)
Ty∗1| <

n∑
i=1

|Φ(ai)
Tw|.

Since ‖w‖2 = 1, for

z =
w∑n

i=1 |Φ(ai)Tw|
,

we have

g(z) =
‖w‖2∑n

i=1 |Φ(ai)Tw|
=

1∑n
i=1 |Φ(ai)Tw|

.

On the other hand,

y∗2 =
y∗1∑n

i=1 |Φ(ai)Ty∗1|

follows from y∗1 =
y∗2
‖y∗2‖2

resulting in

g(y∗2) =
1∑n

i=1 |Φ(ai)Ty∗1|
.

Therefore, we obtain

g(y∗2) > g(z)

contradicting the assumption that y∗2 is optimal to (2).

To understand formulation (2), we first examine the
constraint set,

∂P =
{

x
∣∣ n∑
i=1

|Φ(ai)
T x| = 1

}
.

Geometrically, this constraint set is symmetric with respect
to the origin and represents the boundary of the polytope

P =
{

x
∣∣ n∑
i=1

|Φ(ai)
T x| ≤ 1

}
.

It is easy to check that P is a polytope as it can be repre-
sented by the intersection of a finite set of linear inequal-
ities each having the form of

∑n
i=1 ciΦ(ai)

T x ≤ 1 where
ci ∈ {−1, 1}. Therefore, formulation (2) can be understood
as a problem of finding the closest point to the origin from
the boundary of the polytope ∂P . The following proposition
proves that an optimal solution x∗ must be perpendicular to
one of the faces of P .

Proposition 2. An optimal solution x∗ is perpendicular to the
face which it lies on.

Proof. Suppose that an optimal solution of (2) is x∗. Letting

c∗i = sgn(Φ(ai)
T x∗) =

{
1, if Φ(ai)

T x∗ ≥ 0

−1, otherwise

for i = 1, . . . , n, we consider the face

E =
{

x
∣∣ n∑
i=1

c∗iΦ(ai)
T x = 1

}
∩ P.

If x∗ is not perpendicular to face E, then

w =

∑n
i=1 Φ(ai)c

∗
i

‖
∑n
i=1 Φ(ai)c∗i ‖22

is the closest point to the origin from{
x
∣∣ n∑
i=1

c∗iΦ(ai)
T x = 1

}
having ‖w‖2 < ‖x∗‖2. Now, let us define its scalar multiple

z =
w∑n

i=1 |Φ(ai)Tw|
.

By construction, z is a feasible solution to (2) and has the
objective value of

g(z) =
‖w‖2∑n

i=1 |Φ(ai)Tw|
.

From
n∑
i=1

|Φ(ai)
T (

n∑
j=1

Φ(aj)c
∗
j )| − ‖

n∑
i=1

Φ(ai)c
∗
i ‖22

=
n∑
i=1

|Φ(ai)
T (

n∑
j=1

Φ(aj)c
∗
j )| −

n∑
i=1

Φ(ai)
T c∗i (

n∑
j=1

Φ(aj)c
∗
j )

=
n∑
i=1

[
|Φ(ai)

T (
n∑
j=1

Φ(aj)c
∗
j )| − Φ(ai)

T c∗i (
n∑
j=1

Φ(aj)c
∗
j )
]

≥ 0,

we have
n∑
i=1

|Φ(ai)
Tw| =

∑n
i=1 |Φ(ai)

T (
∑n
j=1 Φ(aj)c

∗
j )|

‖
∑n
i=1 Φ(ai)c∗i ‖22

≥ 1.

As a result,

g(z) ≤ ‖w‖2 < ‖x∗‖2
follows. This contradicts the assumption that x∗ is an opti-
mal solution to (2). Therefore, an optimal solution must be
perpendicular to face E.

Proposition 2 is important since it provides a way to
characterize the form of an optimal solution. Specifically,
we obtain the following corollary from Proposition 2.

Corollary 1. An optimal solution x∗ of (2) must have the form
of

x∗ =
y∗∑n

i=1 |Φ(ai)Ty∗|
for some y∗ and c∗ such that

y∗ =
n∑
i=1

Φ(ai)c
∗
i



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

and

c∗i = sgn(Φ(ai)
Ty∗),

for i = 1, ..., n.

The characterization of an optimal solution x∗ using
a sign vector c∗ = [c1, . . . , cn]T is first proposed in [22]
without any justification. We provide a derivation based on
the geometry of the set ∂P , which is different from the one
in [15] utilizing the KKT conditions. Moreover, from

‖x∗‖2 =
‖y∗‖2∑n

i=1 |Φ(ai)Ty∗|

=
‖y∗‖2∑n

i=1 c
∗
iΦ(ai)Ty∗

=
‖
∑n
i=1 Φ(ai)c

∗
i ‖2∑n

i=1

∑n
j=1 c

∗
i c
∗
jΦ(ai)TΦ(aj)

=
‖
∑n
i=1 Φ(ai)c

∗
i ‖2

‖
∑n
i=1 Φ(ai)c∗i ‖22

=
1

‖
∑n
i=1 Φ(ai)c∗i ‖2

, (3)

we can further show that an optimal solution of formulation
(2) can be derived from an optimal solution of the following
binary problem,

maximize
c∈{−1,1}n

‖
n∑
i=1

Φ(ai)ci‖22. (4)

Proposition 3. Let an optimal solution of binary formulation (4)
be c∗. Then,

y∗ =
n∑
i=1

Φ(ai)c
∗
i

satisfies

c∗i = sgn(Φ(ai)
T y∗),

for i = 1, . . . , n. Moreover, it follows that

x∗ =
y∗∑n

i=1 |Φ(ai)T y∗|)

is an optimal solution of formulation (2).

Proof. To deduce a contradiction, let us assume that there
exists some nonempty set J ⊂ {1, . . . , n} such that

c∗j = −sgn(Φ(aj)
Ty∗)

for j ∈ J . Since c∗ is an optimal solution of (4), flipping
the sign of c∗j for any j ∈ J must not improve the objective
value, ‖

∑n
i=1 Φ(ai)c

∗
i ‖22. However, for any j ∈ J , flipping

the sign of c∗j gives

‖
n∑
i 6=j

Φ(ai)c
∗
i − Φ(aj)c

∗
j‖22 > ‖

n∑
i=1

Φ(ai)c
∗
i ‖22.

The above strict inequality follows from

n∑
i 6=j

Φ(ai)c
∗
i − Φ(aj)c

∗
j = y∗ − 2Φ(aj)c

∗
j

and

‖y∗ − 2Φ(aj)c
∗
j‖22 = ‖y‖22 − 4yT

(
Φ(aj)c

∗
j

)
+ 4‖Φ(aj)‖22

= ‖y‖22 + 4|yT (Φ(aj))|+ 4‖Φ(aj)‖22
> ‖y‖22.

This contradicts the assumption that c∗ is an optimal solu-
tion to (4). Therefore, y∗ must satisfy

c∗i = sgn(Φ(ai)
Ty∗)

for i = 1, . . . , n. Since c∗ maximizes ‖
∑n
i=1 Φ(ai)c

∗
i ‖22,

x∗ =
y∗∑n

i=1 |Φ(ai)Ty∗|
is a minimizer of (2) due to Corollary 1 and (3).

The following result has been shown in [17] for the linear
kernel case but here we generalize it.

Corollary 2. Formulation (2) is equivalent to formulation (4).

Proof. Based on Corollary 1 and (3), we can formulate (2) as

maximize
c∈{−1,1}n

‖
n∑
i=1

Φ(ai)ci‖22

subject to y =
n∑
i=1

Φ(ai)ci

ci = sgn(Φ(ai)
Ty), i = 1, ..., n.

Since an optimal solution c∗ to (4) satisfies the constraints
by Proposition 3, the two formulations are essentially the
same.

It is interesting to note that we can reduce formulation
(4) to the weighted max-cut problem. From

‖
n∑
i=1

Φ(ai)ci‖22 =
n∑

i,j=1

Kij +
n∑

i,j=1

(−2Kij)
(1− cicj

2

)
, (5)

we can alternatively consider the weighted max-cut prob-
lem on a complete graph with weight wij = −Kij . From
the above reduction, we can apply a popular approximation
algorithm [26] for the weighted max-cut problem to solve
(4). However, due to the additional constant terms in (5),
this does not imply a constant worst case approximation
ratio algorithm for (4).

4 ALGORITHM

In this section, we develop an efficient algorithm that finds
a local optimal solution to problem (1) based on the findings
in Section 3. Before giving the details of the algorithm, we
first provide an idea behind the algorithm.

The main idea of the algorithm is to move along the
boundary of P so that the L2-norm of an iterate xk succes-
sively decreases. Figure 1 illustrates a step of the algorithm.
Starting with an iterate xk, we first identify a hyperplane
hk which the current iterate xk lies on. After identifying
the equation of hk, we find the closest point to the origin
from hk, which we denote by zk. After that, we obtain xk+1

by projecting zk to the constraint set ∂P , which is done by
multiplying an appropriate scalar. We repeat this process
until the sequence of iterates {xk} converges.
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x𝑘 

x𝑘+1 

𝑧𝑘 

ℎ𝑘 

Fig. 1. Geometric interpretation of the algorithm

Now, we develop an algorithm based on the above idea.
Let Kij = Φ(ai)

TΦ(aj). From Corollary 1, we know that an
optimal solution x∗ has the form of

x∗ =
y∗∑n

i=1 |Φ(ai)Ty∗|

=
y∗∑n

i=1 ciΦ(ai)Ty∗

=

∑n
i=1 Φ(ai)c

∗
i∑n

i=1

∑n
j=1 cicjΦ(ai)TΦ(aj)

=

∑n
i=1 Φ(ai)c

∗
i

(c∗)TKc∗
.

Noting that the optimal solution x∗ can be characterized by
the sign vector c∗, we characterize the initial iterate x0 with
the sign vector c0 as

x0 =

∑n
i=1 Φ(ai)c

0
i

(c0)TKc0
.

Since

yk =
n∑
i=1

Φ(ai)c
k
i , (6)

we can represent the equation of the hyperplane hk by

(yk)T (x− xk) = 0. (7)

The closest point zk to the origin among points in hk has the
form of zk = syk. By plugging zk = syk into (7), we have

s =
(yk)T (xk)

(yk)T (yk)
, zk =

(yk)T (xk)

(yk)T (yk)
yk.

Dividing zk by
∑n
i=1 |Φ(ai)

T zk|, we obtain

xk+1 =
zk∑n

i=1 |Φ(ai)T zk|
. (8)

From

(yk)T (xk) =
n∑
i=1

Φ(ai)
T xkcki =

n∑
i=1

|Φ(ai)
T xk| = 1, (9)

we get

zk =
yk

‖yk‖22
, (10)

xk+1 =
yk∑n

i=1 |Φ(ai)Tyk|
. (11)

By plugging (6) into (11), we finally represent xk+1 as

xk+1 =
yk∑n

i=1 |Φ(ai)Tyk|
=

∑n
i=1 Φ(ai)c

k
i

(ck)TKck
. (12)

As xk+1 is a function of ck, it is only necessary to update ck

at each iteration. From

ck+1
i = sgn((Φ(ai))

T xk+1)

= sgn((Φ(ai))
Tyk)

= sgn
( n∑
j=1

Kijc
k
j

)
,

we can update ck+1 by

ck+1 = sgn(Kck).

From

‖xk+1 − xk‖22 = 0 ⇐⇒ (ck − ck+1)TK(ck − ck+1) = 0,

we get the termination criteria

(ck − ck+1)TK(ck − ck+1) = 0,

as the update needs to be repeated until xk+1 = xk.
As the problem is non-convex, the algorithm can be

stuck at a local optimum unless it is initialized close to the
global optimum. In order to obtain a good initial iterate c0,
we consider each data vector aj and select the one where
Φ(aj)/‖Φ(aj)‖2 yields the largest objective value, which is
computed by

Σni=1|Φ(ai)
TΦ(aj)|

‖Φ(aj)‖2
=

Σni=1|Kij |√
Kjj

.

Once we obtain the optimal data vector aj∗ , we set the initial
sign vector

c0 = sgn(K·j∗)

where K·j represents jth column-vector of matrix K . Since
the optimal loading vector must be located somewhere
between data vectors, the above initialization scheme often
yields an initial iterate near the optimal solution.

Summarizing all the above, we get Algorithm 1.

Algorithm 1 L1-norm Kernel PCA

Input: data vectors ai, kernel matrix Kij = Φ(ai)
TΦ(aj)

Find j∗ = arg max1≤j≤nΣni=1|Kij |/
√
Kjj

Initialize the sign vector c0 as c0i = sgn(Kij∗)
k ← −1
repeat
k ← k + 1
Compute ck+1 = sgn(Kck)

until (ck − ck+1)TK(ck − ck+1) = 0

After getting the output c∗ from Algorithm 1, we can
compute principal scores without explicit mapping Φ(ai).



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

For example, the principal component of ith observation can
be computed by

Φ(ai)
T x∗

‖x∗‖2
=

Φ(ai)
Ty∗

‖y∗‖2

=

∑n
j=1 Φ(ai)

TΦ(aj)c
∗
j√∑n

i=1

∑n
j=1 Φ(ai)TΦ(aj)c∗i c

∗
j

=
Ki·c∗√

(c∗)TKc∗
.

where Ki· represents the ith row vector of the kernel matrix
K . We can further proceed to find more principal com-
ponents without explicit mapping Φ(ai). As computing a
loading vector and principal components only require the
kernel matrix, it suffices to update the kernel matrix each
time a new loading vector is found. We can update the
kernel matrix without explicit mapping Φ(ai) by

K̃ij =

(
Φ(ai)−

Φ(ai)
T x∗

‖x∗‖22
x∗
)T(

Φ(aj)−
Φ(aj)

T x∗

‖x∗‖22
x∗
)

= Φ(ai)
TΦ(aj)−

Φ(ai)
T x∗Φ(aj)

T x∗

‖x∗‖22

= Kij −
(∑n

k=1Ki,kc
∗
k

)(∑n
k=1Kj,kc

∗
k

)(∑n
i=1

∑n
j=1Kijc∗i c

∗
j

)
= Kij −

Ki·c∗Kj·c∗

(c∗)TKc∗
,

which is equivalent to

K̃ = K − (Kc∗)(Kc∗)T

(c∗)TKc∗

in matrix form.
Since yk = ∇f(xk), update rule (11) can be understood

as projecting a gradient ∇f(xk) to the constraint set ∂P in
each iteration. In this sense, Algorithm 1 resembles Power
iteration [3] for solving the eigenvalue problem, and inter-
estingly, the application of our framework to the eigenvalue
problem yields the same algorithm. Moreover, as the frame-
work developed in this work such as the reformulation,
geometric interpretation and algorithm derivation is not
specific to our problem, we can actually extend it to solve
more general problems. For example, our approach can be
used to solve

maximize f(x) subject to ‖x‖2 = 1

for any function f that is scale-invariant (homogeneous or ho-
mothetic). The application of our framework to this problem
yields the following update rule

xk+1 ← ∇f(xk)/‖∇f(xk)‖2.

Compared to the other L1-norm kernel PCA algorithms
[23], [24], which consider the same formulation (1), Al-
gorithm 1 is simpler and computationally efficient as it
involves just one matrix-vector multiplication in each iter-
ation. In the case of L1-KPCA [24], it requires to solve a
system of linear equations having the form of

Kη = Σnj=1ckjK·j

in addition to one matrix-vector multiplication. Solving the
above linear system is not only computationally costly but
also numerically unstable since it is singular due to the pres-
ence of non-trivial solution ck. On the other hand, KPCA-
L1 [23] requires only one matrix-vector multiplication but
it does not directly utilize the kernel matrix K . Instead, the
eigenvalue decomposition of the kernel matrix K = UΛUT

is computed before finding each principal component and
UΛ1/2 is considered in the computation rather than the
kernel matrix K . As Algorithm 1 entails neither solving a
linear system nor computing the eigenvalue decomposition
of K , it is computationally more efficient than the other
algorithms.

When it comes to the initial starting point, the optimal
solution of L2-norm kernel PCA is chosen by L1-KPCA [24].
While KPCA-L1 [23] finds the data vector having the largest
norm and let its normalized vector be the initial starting
point, Algorithm 1 sets the data vector whose normalization
has the largest objective value to be the initial point. As our
initialization scheme is based on the objective function while
the others are not, it is more likely to be initialized near a
global optimal solution.

5 CONVERGENCE ANALYSIS

In this section, we provide a convergence analysis of Al-
gorithm 1. We first prove that the algorithm converges in
a finite number of iterations, and then provide a rate of
convergence analysis. Before proving the finite convergence
of the algorithm, we first show that the sequence {‖xk‖2}
generated by Algorithm 1 is non-increasing.

Lemma 1. Let {xk} be a sequence of iterates generated by
Algorithm 1 and {zk} be a sequence of vectors defined by (10).
Then, we have ‖xk+1‖2 ≤ ‖zk‖2 ≤ ‖xk‖2.

Proof. The inequality ‖zk‖2 ≤ ‖xk‖2 follows from

‖xk‖22 − ‖zk‖22 = ‖xk‖22 −
1

‖yk‖22

= ‖xk‖22 −
((yk)T (xk))2

‖yk‖22

=
‖xk‖22‖yk‖22 − ((yk)T (xk))2

‖yk‖22
≥ 0. (13)

Here, the second equality is from (9) and the last inequality
follows from Cauchy-Schwarz inequality where the equality
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holds if xk is a scalar multiple of yk. Next, from
n∑
i=1

|Φ(ai)
T zk| =

n∑
i=1

|Φ(ai)
T (yk)|

(yk)T (yk)

=
1

(yk)T (yk)

n∑
i=1

|Φ(ai)
Tyk|

=

∑n
i=1 |Φ(ai)

T (
∑n
j=1 Φ(aj)c

k
j )|∑n

i=1

∑n
j=1 Φ(ai)TΦ(aj)cki c

k
j

=

∑n
i=1 |(Φ(ai)c

k
i )T (

∑n
j=1 Φ(aj)c

k
j )|∑n

i=1

∑n
j=1 Φ(ai)TΦ(aj)cki c

k
j

=

∑n
i=1 |

∑n
j=1 Φ(ai)

TΦ(aj)c
k
i c
k
j |∑n

i=1

∑n
j=1 Φ(ai)TΦ(aj)cki c

k
j

(14)

≥ 1, (15)

we have

‖xk+1‖22 =
‖zk‖22

(
∑n
i=1 |Φ(ai)T zk|)2

≤ ‖zk‖22.

Lemma 2. If

‖xk‖2 = ‖xk+1‖2,

then, we have

xk =
yk

‖yk‖22
,

yk =
xk

‖xk‖22
,

resulting in

xk = xk+1.

Proof. From Lemma 1, we have ‖zk‖2 = ‖xk‖2. Then, by
(13), xk is a scalar multiple of yk. Letting xk = ryk, we have

r =
1

‖yk‖22
from (9) resulting in

xk =
yk

‖yk‖22
.

In the same way, we are able to show

yk =
xk

‖xk‖22
.

Since zk = xk holds by (10), we have

xk+1 =
zk∑n

i=1 |Φ(ai)T zk|

=
xk∑n

i=1 |Φ(ai)T xk|
= xk

where the last equality follows from the feasibility of xk.

Theorem 1. The sequence {xk} converges in a finite number of
steps.

Proof. Suppose the sequence {xk} does not converge. As
an iterate xk is solely determined by a sign vector ck ∈
{−1,+1}n, the number of possible vectors that xk can take
is finite. Therefore, if the sequence {xk} does not converge,
some vectors must appear more than once. Without loss of
generality, let xl = xl+m. By Lemma 1, we have

‖xl+m‖2 = ‖xl‖2 ≥ ‖xl+1‖2 ≥ ... ≥ ‖xl+m‖2
forcing us to have

‖xl‖2 = ‖xl+1‖2 = ... = ‖xl+m‖2.

As this implies

xl = xl+1 = ... = xl+m

by Lemma 2, we get a contradiction to the assumption
that the sequence {xk} does not converge. Therefore, the
sequence {xk} generated by Algorithm 1 must converge in
a finite number of steps.

Next, we show that the sequence of objective values
{‖xk‖2} generated by Algorithm 1 converges at a linear rate.
While finite convergence ensures that the algorithm con-
verges in a finite number of steps, due to the combinatorial
structure of the problem, it may take an exponential number
of steps to converge, making it not appropriate in a large-
scale setting. To address this issue, we additionally prove
linear convergence of the algorithm. Linear convergence
ensures that the optimality gap decreases no worse than
a certain rate ρ < 1 and this implies that an ε-optimal
local solution can be attained after O( 1

1−ρ log(1/ε)) itera-
tions. With linear convergence, we are ensured to obtain a
near-optimal solution after a sufficient number of iterations
without waiting for an exponential number of steps.

Theorem 2. Let Algorithm 1 start from x0 and terminate with
x∗ at iteration k∗. Then, for some ρ < 1, we have

‖xk‖2 − ‖x∗‖2 ≤ ρk(‖x0‖2 − ‖x∗‖2)

for k < k∗.

Proof. From (8), we have

‖xk‖2 =
‖zk−1‖2∑n

i=1 |Φ(ai)T zk−1|
.

As ‖zk−1‖2 ≤ ‖xk−1‖2 holds by Lemma 1, we obtain

‖xk‖2 ≤
‖xk−1‖2∑n

i=1 |Φ(ai)T zk−1|
. (16)

Subtracting ‖x∗‖2 to (16), we obtain

‖xk‖2 − ‖x∗‖2 ≤
‖xk−1‖2∑n

i=1 |Φ(ai)T zk−1|
− ‖x∗‖2

≤ 1∑n
i=1 |Φ(ai)T zk−1|

(‖xk−1‖2 − ‖x∗‖2)

(17)

where the last inequality follows from (15). By induction on
(17), we have

‖xk‖2 − ‖x∗‖2 ≤ (‖x0‖2 − ‖x∗‖2)
k∏
l=1

1∑n
i=1 |Φ(ai)T zl−1|

.

(18)
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From (15), we know that
n∑
i=1

|Φ(ai)
T zl−1| ≥ 1.

If
n∑
i=1

|Φ(ai)
T zl−1| = 1,

by (14), we have
n∑
i=1

n∑
j=1

Φ(ai)
TΦ(aj)c

l−1
i cl−1j =

n∑
i=1

|
n∑
j=1

Φ(ai)
TΦ(aj)c

l−1
i cl−1j |

resulting in

cl−1i = sgn
( n∑
j=1

Φ(ai)
TΦ(aj)c

l−1
j

)
.

As this implies

cl = sgn(Kcl−1) = cl−1,

we have

xl = xl+1

from (12). Therefore, as long as l < k∗, we must have
n∑
i=1

|Φ(ai)
T zj−1| > 1.

For c ∈ {−1, 1}n, let

ρ(c) =

∑n
i=1

∑n
j=1 Φ(ai)

TΦ(aj)cicj∑n
i=1 |

∑n
j=1 Φ(ai)TΦ(aj)cicj |

and

ρ = maxc∈{−1,1}nρ(c) subject to ρ(c) < 1.

Then, for l < k∗, we have
1∑n

i=1 |Φ(ai)T zj−1|
= ρ(cj−1) < ρ < 1

where the first equality follows form (14). By combining it
with (18), we get the desired result.

As shown in Theorem 2, no matter where the algorithm
starts, the sequence of objective values converges at a linear
rate. Now, we show that we can obtain a local optimal
solution of (1) by scaling the output of Algorithm 1.

Theorem 3. Let the output of Algorithm 1 be x∗. Then,

x̄∗ =
x∗

‖x∗‖2
is a local optimal solution of (1).

Proof. It is easy to see that x̄∗ is feasible. Since x∗ is the
output of Algorithm 1,

y∗ =
x∗

‖x∗‖22
holds by Lemma 2. Next, consider

L(λ, x) =
n∑
i=1

|Φ(ai)
T x| − λ(‖x‖22 − 1).

From

∇xL(λ, x) =
n∑
i=1

sgn(Φ(ai)
T x)Φ(ai)− 2λx,

we have

∇xL(λ, x̄∗) =
n∑
i=1

sgn(Φ(ai)
T x̄∗)Φ(ai)− 2λx̄∗

=
n∑
i=1

sgn(Φ(ai)
T x∗)Φ(ai)− 2λx̄∗

= y∗ − 2λx̄∗

=
x∗

‖x∗‖22
− 2λx̄∗

=

(
1

‖x∗‖2
− 2λ

)
x̄∗.

Therefore, with

λ∗ =
1

2‖x∗‖2
,

we have

∇xL(λ∗, x̄∗) = 0

meaning that (λ∗, x̄∗) satisfies the first-order necessary con-
ditions. Moreover, from

∇xxL(λ∗, x̄∗) = −2λ∗I ≺ 0,

the second-order sufficient condition is also satisfied. As
(λ∗, x̄∗) satisfies the first and second order conditions, by
the theory of constrained optimization, x̄∗ is a local optimal
solution of (1).

6 EXPERIMENTAL RESULTS

In this section, we assess the robustness and scalability of
Algorithm 1 by running it on several tasks together with
other kernel PCA algorithms. First, we run the kernel PCA
algorithms on datasets having entry-wise perturbations and
investigate how well each algorithm extracts principal com-
ponents in a noisy setting. Next, we introduce an outlier
detection model based on kernel PCA algorithms and com-
pare their performance with other popular outlier detection
models. Lastly, we provide a runtime comparison to assess
scalability.

In addition to Algorithm 1, the two other L1-norm kernel
PCA algorithms (KPCA-L1 [23], L1-KPCA [24]), the kernel
version of R1-norm PCA (R1-KPCA [19]) and L2-norm ker-
nel PCA (L2-KPCA [2]) are considered in the experiments.
While R1-norm PCA [19] was not originally designed to
incorporate kernels, we include it as it is straightforward
to develop a kernel variant. We considered other L1-norm
PCA algorithms as well but they are excluded as it is not
simple to develop a kernel version for them.

6.1 Robust Extraction of PCs
To measure robustness, we first run kernel PCA algorithms
on datasets having entry-wise perturbations (noisy datasets)
to obtain loading vectors. After that, we compute how
much variation in the perturbation-excluded datasets (nor-
mal datasets) is explained by the loading vectors obtained
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from the noisy datasets. For this experiment, we generate
synthetic datasets that contain entry-wise perturbations in a
way that the loading vectors obtained by running L2-norm
kernel PCA on noisy and normal datasets are different from
each other.

To generate synthetic datasets, we first construct a
1000×50 data matrix with the rank of 10 following the data
generation procedure in [13]. While the largest size in [13] is
300× 50, we choose the size of 1000× 50 to consider larger
datasets. In order to generate entry-wise perturbations, we
corrupt r% of observations by adding some random noises.
We refer to the resulting dataset as a noisy dataset and
the noisy dataset without the entry-wise perturbations as a
normal dataset. For each value of r ∈ {5, 10, 15, 20, 25, 30},
we generate 10 instances.

Let K denote a kernel matrix of a normal dataset and
x1, . . . , xp be the p loading vectors obtained by running L2-
norm kernel PCA on K . Also, let K̃ be a kernel matrix of a
noisy dataset and x̃1, . . . , x̃p be the loading vectors obtained
by running one of the kernel PCA algorithms (Algorithm 1,
KPCA-L1, L1-KPCA, R1-KPCA, L2-KPCA) on K̃ . Assuming
that the normal dataset is standardized,

p∑
j=1

n∑
i=1

(Φ(ai)
T x̃j)2 =

p∑
j=1

x̃Tj Kx̃j (19)

represents the amount of variation of the normal dataset
explained by the p loading vectors x̃1, . . . , x̃p where n is the
number of observations in the normal dataset. After divid-
ing (19) by

∑p
j=1 xTj Kxj , which is the maximum amount of

variation p orthogonal vectors can explain, and multiplying
by 100, we get the following measure:

(Total Explained Variation) 100×
∑p
j=1 x̃Tj Kx̃j∑p
j=1 xTj Kxj

. (20)

Metric (20) captures how well the loading vectors ob-
tained from the noisy dataset explain variation of the normal
dataset with respect to the L2-norm, and therefore it can be
used to measure robustness of a kernel PCA algorithm in
the presence of entry-wise perturbations. For example, if an
algorithm has a value close to one, then it is robust with
respect to entry-wise perturbations. Using this metric, we
compare the robustness of Algorithm 1 with that of KPCA-
L1, L1-KPCA, R1-KPCA, and L2-KPCA. For each value of
r, we compute (20) for the ten datasets with p = 4 and
average them. We arbitrarily choose p = 4 since the result is
consistent regardless of the choice of p. Figure 2 shows the
results for the linear kernel and Figure 3 shows the results
for the Gaussian kernel with the width parameter σ varying
from 10 to 25.

In the case of the linear kernel, R1-KPCA achieves the
best performance for all values of r followed by the L1-norm
kernel PCA algorithms and L2-KPCA. While the loading
vectors from L2-KPCA explain about 90% of the variation,
those from R1-KPCA, Algorithm 1, KPCA-L1, and L1-KPCA
explain around 96%,95%,94%, and 93% of the variation, re-
spectively. This demonstrates the robustness of the R1-norm
and L1-norm based kernel PCA models with respect to
the presence of entry-wise perturbations. Among the three
L1-norm kernel PCA algorithms, Algorithm 1 consistently
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Fig. 2. Robust Extraction of PCs (Linear Kernel)

outperforms KPCA-L1 and L1-KPCA by 1% and 2%, re-
spectively. As the percentage of corrupted observations (r%)
increases, the total explained variation tends to decrease for
every model but the gaps between them remain the same.

When the Gaussian kernel is used, the results are slightly
different depending on the value of r and σ. If r and σ are
small, the effects of entry-wise perturbations are relatively
small so that all the algorithms give pretty similar results.
However, if r or σ is large, the influences of entry-wise
perturbations are clearly present in the kernel matrix, and
therefore, the results are different depending on the robust-
ness of each algorithm. As shown in Figure 3, the three
L1-norm kernel PCA algorithms and R1-KPCA outperform
L2-KPCA as in the case of the linear kernel. However,
while R1-KPCA achieves the best performance for the linear
kernel, the L1-norm kernel PCA algorithms work better
than R1-KPCA when the Gaussian kernel is used. Especially,
Algorithm 1 outperforms the other algorithms if r exceeds
20. The superior performance of Algorithm 1 ranges from
1% to 5% in these cases.

6.2 Outlier Detection
L2-norm PCA has been shown to be effective for anomaly
detection [27]. The idea is to extract loading vectors using
datasets consisting of only normal samples and use these
loading vectors for developing a detection model. Specifi-
cally, a boundary of the normal samples is derived from the
loading vectors and the boundary is used to discriminate
normal and abnormal samples.

We extend this principle to outlier detection, i.e. its unsu-
pervised counterpart. In the outlier detection setting, sample
labels are not given when the model is built. Therefore, it
is not possible to build a detection model solely based on
normal samples. Given this context, we run a robust kernel
PCA algorithm on the entire dataset (with outliers) and use
the resulting loading vectors to characterize a boundary
of normal samples. Since these loading vectors are less
influenced by outliers as illustrated in Section 6.1, we expect
that they would better construct a normal boundary. We
compare the performance of our algorithm based model to
that of KPCA-L1, L1-KPCA, R1-KPCA, and L2-KPCA based
models as well as other popular outlier detection models
[28] [29].
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Fig. 3. Robust Extraction of PCs (Gaussian Kernel with σ ranging from 10 to 25)

6.2.1 Toy Examples
We first illustrate the advantage of using robust PCA models
for outlier detection using the following two-dimensional
toy examples.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

0

5
Algorithm 1, KPCA-L1, L1-KPCA

R1-KPCA

L2-KPCA

Fig. 4. The first toy example - original space

Figure 4 shows the distribution of normal samples and
outliers with the first loading vectors of each algorithm. To
extract them, the linear kernel is used as the underlying
pattern is linear. As the three L1-norm kernel PCA algo-
rithms yield the same loading vectors for this example, we
express their loading vectors using a single dashed line. In
the figure, the normal samples are distributed forming a
linear pattern and the outliers are scattered exhibiting two
different patterns; the two triangle points are outliers due
to their scale and the six square points are outliers as they
do not follow the linear pattern. If a loading vector exactly

matches the linear pattern, outliers can be easily detected in
the principal space; the triangle points can be detected due
to the large first principal component and the square points
can be detected from the large second principal component.
However, due to the presence of the outliers, it is hard
to find such loading vector. Given this context, we utilize
robust kernel PCA algorithms to obtain a loading vector
which deviates less from the linear pattern.

Figure 5 displays the PCA results of the five kernel PCA
algorithms. In the figure, the x-axis, y-axis represents the
first, second principal component, respectively. As shown in
the figure, the triangle outliers can be easily separated by the
first principal component of each algorithm. However, while
the square outliers can be discriminated by the second prin-
cipal components of L1-norm kernel PCA and R1-KPCA,
there exists some overlap between the normal samples and
the square outliers in the range of the second principal com-
ponent of L2-KPCA. Two outliers appear closer to the origin
than some normal samples making the circular boundary of
the normal samples include them as shown in Figure 5. On
the other hand, all the normal samples are clearly separated
from the outliers in the result of Algorithm 1 and R1-KPCA,
demonstrating the advantage of using Algorithm 1 or R1-
KPCA in outlier detection. This is consistent with findings
from Figure 2.

In order to see if the same result holds for the Gaussian
kernel, we consider another example. As shown in Figure
6, the second example has a spiral pattern consisting of
normal samples as well as two types of outliers. As in the
previous example, it has both the trivial outliers (the triangle
points) and more challenging outliers (the square points). In
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Fig. 5. The first toy example - principal space
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order to obtain nonlinear principal components, we apply
the five kernel PCA algorithms with the Gaussian kernel. As
Figure 7 displays, only Algorithm 1 succeeds to exclude the
square outliers from the boundary while the other kernel
PCA algorithms include them within the boundary. This
superior performance of Algorithm 1 with the Gaussian
kernel is consistent with the results in Section 6.1 and attests
the effectiveness of using it for outlier detection, especially
with the Gaussian kernel.

6.2.2 Real-world Datasets

For outlier detection, we use datasets from the UCI Machine
Learning Repository [30] and the ODDS Library [31], see
Table 1.

TABLE 1
Real-world Datasets for Outlier Detection

Data set # samples # features # outliers
WBC 378 30 21 (7.6%)
Ionosphere 351 33 126 (36%)
BreastW 683 9 239 (35%)
Cardio 1831 21 176 (9.6%)
Musk 3062 166 97 (3.2%)
Mnist 7603 100 700 (9.2%)

In this experiment, we use a similar detection rule as in
[27] where it is applied for anomaly detection. Let Y ∈ Rn×p
denote p principal components, and let mj and λj be the
mean and variance of jth principal components, respec-

tively. In order to detect outliers, we consider the following
model:

Classify ithsample as an outlier, if
∑

{j:λj≥α}

(Yij −mj)
2

λj
> c.

(21)

The metric appearing on the left-hand side of (21) rep-
resents the squared Euclidean distance to the origin in the
reduced standardized principal space consisting of principal
components whose variance is greater than or equal to
α. Our model can be understood as drawing a circular
boundary (as illustrated in Figures 5 and 7) on the reduced
standardized principal space. As we are assuming the out-
lier detection setting, sample labels are unknown at the stage
of building a model so that selecting an appropriate c is
not trivial. Therefore, we compute precision and recall with
varying c and evaluate the performance of a model using
AUC under the precision-recall curve. We compare AUC of
Algorithm 1 based model to that of KPCA-L1, L1-KPCA,
R1-KPCA, and L2-KPCA based models as well as that of the
two popular outlier detection models, Local Outlier Factor
(LOF) [28] and Isolation Forest (iForest) [29].

Since principal components having a small variance
contain minor information, we only consider the principal
components whose sample variance is greater than or equal
to α. We select α be to the largest α′ such that

0.8×
d∑
j=1

λj ≤
∑

{j:λj≥α′}
λj ,

where d is the number of features. In other words, we select
the top principal components which explain more than 80%
of variation in the dataset. For the choice of the kernel
function, we consider both linear and Gaussian kernels with
the width parameter σ of the Gaussian kernel to be d. On the
other hand, we set the number of nearest neighbors to 10 in
LOF, and set the number of trees, the size of subsample, and
the number of rounds to 100, 256, 10, respectively in iForest
since these parameter values are widely used.

Table 2 displays the AUCs of the 12 different models.
The numbers in bold present the highest AUC cases (there
can be several similar top performances). If the outliers
are obvious, every kernel PCA based model works well as
seen in the case of Breastw and Musk. However, when the
outliers are not obvious, Algorithm 1 based model tends
to outperform the other detection models. Especially, when
Algorithm 1 is used with the Gaussian kernel, it consistently
achieves top AUC values. Compared to the kernel PCA
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Fig. 7. The second toy example - principal space

TABLE 2
AUC of the Outlier Detection Models

Datasets
AUC

Linear Gaussian LOF iForest
Algo 1 KPCA

-L1
L1-

KPCA
R1-

KPCA
L2-

KPCA Algo 1 KPCA
-L1

L1-
KPCA

R1-
KPCA

L2-
KPCA

WBC 0.5208 0.5288 0.5320 0.4658 0.4798 0.5292 0.5340 0.5337 0.5072 0.5224 0.3451 0.5525
Ionosphere 0.6625 0.7319 0.6834 0.7642 0.7057 0.7238 0.6806 0.6887 0.7041 0.6992 0.7032 0.7067

Breastw 0.9250 0.9125 0.9218 0.9269 0.9152 0.9428 0.9287 0.9354 0.9521 0.9309 0.3750 0.9513
Cardio 0.5790 0.5551 0.5799 0.4265 0.5066 0.6096 0.5752 0.5963 0.5116 0.4664 0.1921 0.5114
Musk 0.9947 0.9947 0.9947 0.8055 0.9358 0.9947 0.9947 0.9947 0.9916 0.9947 0.0925 0.7596
Mnist 0.3985 0.4002 N/A N/A 0.3914 0.3966 0.3913 N/A N/A 0.3639 0.1924 0.3380

* N/A: The experiments can not be completed within the period of 12 hours.

based detection models, LOF and iForest do not work well.
LOF never achieves the top performance and iForest is
not competitive for high-dimensional datasets such Must
and Mnist although it yields the top AUC values for WBC
and Breastw. Unlike iForest, Algorithm 1 based model with
the Gaussian kernel consistently works well regardless of
the size of the problems, demonstrating its effectiveness in
outlier detection.

6.3 Runtime Comparison

Finally, we compare the runtime of Algorithm 1 to that
of KPCA-L1, L1-KPCA, R1-KPCA, and L2-KPCA. We run
them on the six real-world datasets presented in Table 1 and
measure the time taken to get all the principal components.

As shown in Table 3, the runtime largely varies across
the algorithms. Among the L1-norm kernel PCA algorithms,
Algorithm 1 has the smallest runtime for all datasets. Actu-
ally, it is much faster than the other two algorithms since
it requires only matrix-vector multiplication while the other
algorithms entail either eigen-decomposition or solving a
system of equations. R1-KPCA is also not as fast as Algo-
rithm 1 since it involves QR-decomposition at each iteration
to make the loading vectors orthogonal. Among the robust
kernel PCA algorithms, only Algorithm 1 is computationally
comparable to L2-KPCA, making it the best choice for robust
kernel PCA in a large-scale setting.

7 CONCLUSION

In this work, we propose a simple algorithm for L1-norm
kernel PCA and provide its convergence analysis. To derive
the algorithm, we first reformulate the problem so that it
can be geometrically understood. Based on the geometric

understanding, we derive an algorithm under which the
kernel trick is applicable. As this framework is not problem
specific, it can be applied to other problems as well and its
application to L2-norm PCA results in Power iteration [3].
In the convergence analysis, we prove that our algorithm
converges in a finite number of steps together with the
rate of convergence being linear. Moreover, we prove that
the output of our algorithm satisfies the local optimality
conditions.

Computational experiments demonstrate the robustness
of our algorithm and the runtime comparison shows that
the proposed algorithm takes much less time for L1-norm
kernel PCA than other robust kernel PCA algorithms. Also,
its application to outlier detection outperforms all outlier
detection algorithms. The model based on our algorithm is
not only better than that of the other kernel PCA algorithms
but also outperforms LOF and iForest, especially when the
high-dimensional datasets are considered.
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