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Abstract. We present our initial findings regarding the problem of the
impact that time series compression may have on similarity-queries, in
the settings in which the elements of the dataset are accompanied with
additional contexts. Broadly, the main objective of any data compression
approach is to provide a more compact (i.e., smaller size) representation
of a given original dataset. However, as has been observed in the large
body of works on compression of spatial data, applying a particular algo-
rithm “blindly” may yield outcomes that defy the intuitive expectations
– e.g., distorting certain topological relationships that exist in the “raw”
data [7]. In this study, we quantify this distortion by defining a measure
of similarity distortion based on Kendall’s τ . We evaluate this measure,
and the correspondingly achieved compression ratio for the five most
commonly used time series compression algorithms and the three most
common time series similarity measures. We report some of our obser-
vations here, along with the discussion of the possible broader impacts
and the challenges that we plan to address in the future.

1 Introduction and Motivation

Modern advances in sensing technologies – e.g., weather stations, satellite im-
agery, ground and aerial LIDAR, weather radar, and citizen-supplied observation
– have enabled representing the physical world with high resolution and fidelity.
The trend of Next Generation Sensor Networks and Environmental Science [9]
aims at integrating various data sources (e.g., offered by the state-of-the-art
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GEOS-5 data assimilation system [26]) and make them publicly available. An ex-
ample of such large scale dataset is the MERRA-2 data, provided by NASA [19]
– covering the whole time period of the modern era of remotely sensed data,
from 1979 until today, and recording a large variety of environmental param-
eters, e.g., temperature, humidity and precipitation; on a spatial resolution of
0.5 degrees latitude times 0.67 degrees longitude produced at one-hour intervals.
This, in turn, enables access to many Terabytes of historic evolution in time of
environmental data.

Fig. 1: Simplification and Topological Distortions (based on [7])

Although the focus of this work is on the peculiarities of compressing time
series and the interplay with other contexts, to better understand the motivation
we briefly turn the attention to compression in spatial data. In the mid 1990s,
concurrently with the advances in cartography and maps management [30], the
multitude of application domains depending on geographic properties (e.g., dis-
tributions) of various phenomena in agriculture, health, demographics, etc. [11],
brought about the field of Spatial databases [24]. Most of the compression tech-
niques applied in spatial datasets rely on some kind of a line simplification ap-
proach, and many variants have also been extensively studied by the Computa-
tional Geometry (CG) community [3, 28]. Among of the most popular line sim-
plification approaches is Douglas-Peuker4 (DP) [6]. However, as demonstrated
in [20], applying the DP algorithm to reduce the polylines bounding the polygons
in a given subdivision, may often cause topological inconsistencies, as illustrated
in Figure 1, in the following sense:
• Boundaries of regions which were not intersecting in the original representa-
tion may end up intersecting after the simplification is applied. Similarly, the
simplified polylines corresponding to different regions may intersect each other.
• Relative position of point-locations with respect to a boundary or a polyline
may change after the simplification is applied – e.g., a city which was on the north
bank of the river may end up in its south bank after the polyline representing
the river has been simplified.

4 Around the same time, there were other algorithms developed for polyline simplifica-
tion, some of which had almost-identical methodologies with the DP algorithm. Most
notably [16] which is the reason that sometimes the name Ramer-Douglas-Peuker is
used in the literature.



One of the canonical problems in time series is the similarity search – i.e.,
given a collection/database of time series and a particular query-sequence, detect
which particular time series is most similar to the querying one, with respect to
a given distance function [5]. Since time series databases are large in size, much
research has been devoted to speeding up the search process. Among the bet-
ter known and used paradigms are the ones based on techniques that perform
dimensionality reduction on the data, which enables the use of spatial access
methods to index the data in the transformed space [14]. Many similarity mea-
surements and distance functions for time series have been introduced in the
literature [5] – however, what motivates our work is rooted at the observation
that large datasets that are time series by nature, are often tied with other con-
text attributes. Sources of such time series exist in many different domains –
such as location-aware social networks [8,31] and atmospheric and precipitation
data [21,23] (but two examples).

Fig. 2: Precipitation Time Series

Our key observations are:

O1: Given the size of such datasets, one would naturally prefer to store the data
in a compressed/simplified representation.

O2: Many queries of interest over such datasets may involve values from > 1
context/domain.



For example, Fig. 2(a) (cf. [21], [17]) illustrates the spatial distribution of the
measurements of precipitation in discrete locations. However, in each individual
location, the collection of the measurements from different time-instants actually
form a time series – as illustrated in Fig 2(b) which shows the detailed corre-
sponding precipitation time series. In the spirit of O1 and O2 above, consider
the following query:

Q1: Which location in the continental US has the most similar distribution
of monthly precipitation with Ames?

The main motivation for this work is to investigate the impact of different
compression approaches on variability of the answer(s) to Q1 above. While in
the case of Q1 the additional context is the location, we postulate that other
queries pertaining to time series with additional contexts may suffer from dis-
tortion of their answers. Such distortions, in turn, may affect the choice of a
particular compression algorithm to be used – e.g., as part of materializing the
data in dimensions-hierarchy of warehouses [27]. In this work, we report our
initial findings in this realm.

In the rest of the paper, Section 2 defines the problem settings and Section 3
reviews the compression approaches and respective measures. In Section 4 we
discuss in detail our observations to date, and in Section 5 we summarize and
outline directions for future work.

2 Problem Definition

In broadest terms, data compression can be perceived as a science or an art – or
a mix of both – aiming at development of efficient methodologies for a compact
representation of information [10, 22]. Information needs a representation – be
it a plain text file, numeric descriptors of images/video, social networks, etc. –
and one can rely on properties of structure, semantics, or other statistically-valid
features of that representation when developing the methodologies for making
the underlying representation more compact. Speaking a tad more formally, data
compression can be defined as any methodology that can take a dataset D with
a size β bits as an input, and produce a dataset D′ as a representation of D and
having a size β′ bits, where β′ < β (hopefully, β′ << β).

To measure the capability of a data compression algorithm to reduce the size
of a dataset, in this work we simply rely on the typical measure – the compression
ratio [10].

Definition 1 (Compression Ratio). Let D be a dataset represented by βD
bits. Let C be a compression function, which maps D to a compressed dataset
C(D) represented by βC(D) bits. We define the compression ratio of C on D as:

RC(D) =
βD
βC(D)

.

We note that the representation size βD is not necessarily equal to the entropy
E(D) of D [18]: The entropy of D is the smallest possible number of bits required



to represent D. Thus, it must hold that E(D) ≤ βD. The aim of this study is
not to evaluate the information aspects of time series theoretically, but rather,
to see the impact of the loss of a particular type of information incurred by
compression algorithm on practical queries related to similarity search on time
series.

Clearly, one can easily find a compression algorithm that maximizes the com-
pression ratio of Definition 1, by a “brute force” discarding any and all informa-
tion. However, such an approach would inhibit any meaningful similarity search
among the compressed time series, as all of them would be equally-valid candi-
dates for an answer. Thus, the challenge approached in this work is to maximize
the compression ratio while maintaining similarity search results as accurate as
possible.

To measure how a compression algorithm C can maintain similarity search
results among a set D of time series tied with other context attributes, we com-
pute similarity rankings between all the time series. A similarity ranking, using
a query time series T ∈ D, ranks all other time series in D \T by their similarity
to T . To quantify the similarity ranking before vs. after the compression, we
employ Kendall’s rank correlation coefficient τ [12], which measures how many
pairs of relative ranking positions are preserved and discordant between the two
rankings. Formally,

Definition 2 (Ranking Similarity). Let D be a set of time series. For a
query time series T ∈ D, let Rank(T,D) be the similarity ranking of T to all
other time series T ′ ∈ D\T . Further, let C be a compression algorithm, let C(D)
denote the compressed representation of D, and let Rank(T, C(D)) denote the
similarity ranking of T after the compression. Then, we describe the similarity
of these two rankings as:

τ(Rank(T,D), Rank(T, C(D))) =
∑

Ti,Tj∈D,i≤j

I(conc(Ti, Tj))− I(disc(Ti, Tj))

(|D|2 − |D|)/2
,

where either (I(conc(Ti, Tj))) or (I(disc(Ti, Tj))) is an indicator function that
returns 1 if time series Ti and Tj are concordant or discordant in both rankings
(that is, if the relative ranking order between Ti and Tj is maintained or not in
both rankings) and 0 otherwise.

As an example, consider a case where we have four time series T1, ..., T4, and
assume that the similarity ranking of T1 is (T2, T3, T4), implying that T2 is most
similar to T1, while T4 is the least similar one. Further, assume that after com-
pression, the ranking becomes (T2, T4, T3). In this case, the relative order between
T2 and T3 is preserved, as is the relative order between T2 and T4. The only “dis-
cordant” order is between T3 and T4, yielding τ((T2, T3, T4), (T2, T4, T3)) = 1

3 .
To quantify the overall information maintained between all of the time series,

we compute the average τ score of all time series in D.

Definition 3 (Average Ranking Similarity). Let D be a set of time series
and let C(D) denote the compressed representation of D. We define the average



ranking similarity between D and C(D) as

τ(D, C(D)) =

∑
T∈D τ(Rank(T,D), Rank(T, C(D)))

|D|
.

We reiterate that our goal is to evaluate how different compression algorithms C
affect the balance between compression ratio (Definition 1) and average ranking
similarity (Definition 3).

3 Compressions and Distances

For self-containment, we now briefly survey the compression techniques and dis-
tance measures used in this study.

3.1 Compression Approaches

We have used two broad categories of compression techniques, as described in
detail in the sequel.

Dimensionality Reduction Instead of being viewed as a collection of n
time-instant phenomenons, a time series, {t1, t2, ..., tn}, can be considered as
a point in n-dimensional space. Dimensionality reduction approaches focus on
reducing the dimensionality – from n in the “native”, to m (m < n) in the
lower dimensional space – while minimizing the loss of explained variance. We
use two representative techniques:

• Discrete Fourier Transform:
The key idea of Discrete Fourier Transform (DFT) [2] is based on the ob-

servation that that any n-length time series can be represented in the frequency
domain with n sine and cosine waves, that can be used to reconstruct the origi-
nal time series. The compression stems from the observation that the waves with
low amplitudes can be neglected without losing too much valuable information.
• Piecewise Aggregate Approximation:

The basic concept behind the Piecewise Aggregate Approximation (PAA) [14]
is dividing the original time series into N equally sized windows, where (N is
the desired dimensionality of transformed space. Then, each window/frame is
represented by the mean value of all the data within that particular frame. The
formula used for performing PAA on an n-dimensional time series and trans-
forming it into the N-dimensional space is shown in Equation 1:

ti =
N

n

N
n i∑

j=N
n (i−1)+1

tj , i = 1, 2, ..., N (1)

One may observe that a small window-size can achieve a better performance
on preserving information, but yields a poor compression ratio – e.g., when the
window size is equal to n, the transformed representation is identical to the
original time series.



Native-Space Compression Another kind of compression approaches reduces
the size of the initial time series in its “native space”:

• (Adapted) Douglas-Peucker Algorithm:

Given a sequence of time series and a user-defined tolerance threshold ε, the
Douglas-Peucker (DP) [6] algorithm recursively sub-divides the input sequence
based on an “anchor”. An “anchor” is a point that has a largest distance ex-
ceeding ε from the line segment connecting the initiator (first point initially)
and the terminus (last point initially). The DP algorithm is traditionally used
to compress polylines. To adapt it to time series, we use vertical (instead of per-
pendicular) distance in this study. Vertical distance between point tk and line

segment(ti, tj), i < k < j, is defined as
∣∣∣t′k − tk∣∣∣, where t

′

k is the intersection of

line segment(ti, tj) and the line passing tk and perpendicular to the time-axis.

• Visvalingam-Whyatt Algorithm:

The key aspect of Visvalingam-Whyatt (VW) [29] algorithm is the “effective
area”, which indicates the surface area of the triangle formed by a point with
its two neighbors. For a time series of lentgh n, a total (n-2) triangles can be
formed. The main idea behind the VW algorithm is to iteratively drop the middle
point of the triangle with the least “effective area” and keep on updating the
triangles related to that displaced point until the “effective area” is larger than
the user-given parameter ε.

• (Adapted) Optimal Algorithm:

The main idea of optimal algorithm (OPT) [4] is to consider two directions
(forward and backward), for each point of a time series. For instance, (ti+1,
ti+2, ..., tn) is forward for ti, and (ti−1, ti−2, ..., t1) is backward. The i-th (1 ≤
i ≤ n) pass of the algorithm draws circles with radius ε, centered at each the
forwards and backward points of ti – denoted Circlei+1, Circlei+2, ..., Circlen
and Circlei−1, Circlei−2, ..., Circle1. Take forward chain as instance. While
touching a new point, tk, i < k ≤ n, let Uk and Lk indicate the upper and
the lower ray emanating from ti, passing through the top and bottom point of
Circlek - in a sense, defining a wedge pertaining to tk and with the apex at ti.
For as long as the intersection of successive wedges is not empty, nothing needs to
be updated except of recording the lowest-upper and highest-lower boundary of
the intersection maintained so far. Otherwise, denote tk as the event point which
generates an empty intersection. We keep ti and tk−1 into the result and repeat
the procedure from the event point tk−1 forwards. Similarly for the backward
chain of ti.

3.2 Distance Measures

Existing literature has identified many scenarios where similarity cannot be sim-
ply evaluated by any single distance function [5]. Thus, for validity, we used
three measurements in this work, as described next.



Pearson Correlation Coefficient The Pearson product-moment correlation
coefficient [15] (denoted r) is a widely used lock-step measure for relationship.
By Cauchy-Schwartz inequality, the range of r is established to the interval [ -1,
+1], where +1 denotes total positive linear correlation, 0 is no linear correlation,
and -1 indicates negative linear correlation.

Dynamic Time Warping Dynamic Time Warping (DTW) [13] is an elastic
similarity measure between two temporal sequences. In general, it focuses on
calculating an optimal match between two given time series that may vary in
speed/frequency. Unlike lock-step methods, DTW alignment may match a point
from one sequence to one or more points of another sequence.

Cosine Similarity Cosine similarity [25] aims at evaluating the orientation
difference between two time series, and is independent of the magnitude of the
samples. If two sequences are with a same orientation, their cosine similarity will
be 1; and if their orientation difference is 90◦, then their similarity will be zero.

4 Experimental Observations

In this section, we present the experimental evaluations of the approaches dis-
cussed in Section 3 in terms of compression rate and average ranking similarity.
Our data sets are obtained from the University Corporation for Atmospheric
Research (UCAR) and the National Center for Atmospheric Research (NCAR)
at the Global Precipitation Climatology Centre [1].

Fig. 3: Location-Based Similarity Scores

Recall the motivational question stated in Section 1: Which location in the
continental US has most similar distribution of monthly precipitation with Ames?
In this spirit, we extract 50 years worth of monthly precipitation data for Ames
and other 500 land areas in the United States. Fig. 3 shows the top five lo-
cations having highest similarity with Ames measured by Pearson Correlation



Location Abbreviation Location Abbreviation

Wheeler, IA WH Massena, IA MA

Hartford, IA HA Boyer, IA BO

Grant, IA GR Garfield, IA GA

South Kidder, ND SK Union County, NM UC

Otter Creek, IA OC Courtland Township, MN CT

Anoka County, MN AC Grant Township, SD GT

Grantsburg, WI GB Scott, WI SC

Hazelhurst, WI HH

Table 1: Locations used in the reported experiments

Coefficient, DTW and Cosine Similarity, respectively. The horizontal axis shows
the abbreviation of each locations, and the corresponding full name can be found
at Table 1. The vertical axis shows the similarity score of each locations. As dis-
cussed in Sec. 3, higher score means better performance for Pearson Correlation
Coefficient and Cosine Similarity, and DTW pursues lower distance. We can fig-
ure out that the five locations listed in Fig. 3(a), Fig. 3(b) and Fig. 3(c) are
same though the ranking has some differences.

Fig. 4 states the effect of two Dimensionality Reduction methods on ranking.
0.7 in terms of multiples of the maximum value of each time series is defined as
error tolerances. We can discover the only half of the locations have no difference
with Fig. 3.

Fig. 5 illustrates the influence of three different Native-Space compression
approaches mentioned in Section 3 on ranking of similarity. For DP and VW
approaches, the error tolerances are set to be 5. For the OPT algorithm, the
values of tolerance are set to be the half of those of DP and VM algorithms.

Fig. 4: Dimensionality Reduction Compression



Fig. 5: Native-Space Compression

As can be seen from results, though the compression do influence the ranking
of top five locations, all the locations in the result are the same as the ranking
of ground truth except of Grant, IA. And performance is similar to Fig. 3 and
better than Fig. 4 while checking the similarity score

To evaluate the influence of different compression approaches on time series in
a more general way, we randomly samples 100 land areas in the United States,
and fetched 50 years of monthly precipitation data for each location in our
work. Similarly to the above experiment, for each selected area, we can get
three different rankings of similarity across the rest of 99 locations measured by
Pearson Correlation Coefficient, DTW and Cosine Similarity. As mentioned in
Section 2, the goal is to evaluate the influence of different compression approaches
on compression ratio and impacts on the average ranking similarity. In order to
perform such comparison, we set the single parameter error tolerance for different
algorithms. For DFT and PAA approaches, the error tolerances are set to be
0.7, 0.75, 0.8, 0.85, 0.9, 1 in terms of multiples of the maximum value of each
dataset. For DP and VW approaches, the error tolerances are 5, 10, 15, 20, 25,
30. Lastly, for the OPT algorithm, the values of tolerance are set to be the half
of those of DP and VM algorithms.



Fig. 6: Global Similarity Distortions

Fig. 6 illustrates one more
of our experimental observa-
tions that we now discuss.
Note that, in a sense, we
have transformed the coordi-
nates and the respective val-
ues are: — the x-axis for each
of the three graphs represents
1/RC(D); — the y-axis in
each of the three graphs rep-
resents 1 − τ(D, C(D)). This
transformation was made to
ensure that a “good” ap-
proach is close to the ori-
gin of the chart. For instance,
a point at the (0, 0) origin
would correspond to a perfect
τ of 1, and a perfect compres-
sion rate of ∞.

Firstly, we observe that
there exists no single ap-
proach that clearly dominates
all the other approaches, in
terms of both τ -score and
compression rate. However,
we also observe that DFT per-
forms rather poorly in com-
parison with the other mea-

sures. Thus, we conclude that even when achieving a fairly low compression
rate, DFT looses most of information required to maintain the original similar-
ity ranking. This loss is not compensated by additional frequency features, as
these low amplitude features mostly incur additional noise.

Secondly, we observe that PAA achieves a relatively high compression rate,
but the averaging of consecutive time stamps yields a high loss of information
that drops τ to roughly 60% for all the other applied distance functions.

In contrast, we observe that all three native-space compression algorithms
have comparable performances. We note that the OPT algorithm generally
achieves worse results, and is dominated by DP and VW – which, in part, may
be a consequence of setting a lower error-threshold. We observe minor difference
between DP and VW, expect when DTW is used a distance measure: namely,
VW is able to maintain more ranking for the similarity-based semantics in the
DTW space.



We note that, for reproducibility, the source code for all the implementa-
tions used in our experiments, along with the corresponding dataset, is publicly
available5.

5 Summary and Future Directions

Satellites and other sensory devices have enabled a generation of extremely large
environmental time series datasets. Ultimately, this data has the potential to
transform our understanding of the world for a plethora of applications of so-
cietal relevance, such as meteorology, agriculture, urban development, traffic
management, etc. However, this understanding is hindered by the overwhelming
deluge of O(Petabytes) of such data. To reduce this data, the state-of-the-art
offers many time series compression algorithms.

In this study, we experimentally evaluated the trade-off between the data
reduction and the loss of semantics when an additional context – location in this
work – is associated with each time series. Rather than measuring the theoreti-
cal loss of entropy, we measured how the incurred distortion changes similarity
search results on environmental time series, using precipitation time series as a
case-study.

Our main experimental finding is that dimensionality reducing methods, such
as Discrete Fourier Transform and Piecewise Aggregate Approximation incur a
high loss of similarity between compressed time series, relative to the original
ones. In contrast, native space compression algorithms obtain similar compres-
sion rates, but maintain much more of the similarity information between time se-
ries. In particular, the Visvalingam-Whyatt algorithm and the Douglas-Peucker
algorithm yield the best trade-off. Moreover, when Dynamic Time Warping is
used as a similarity metric, Visvalingam-Whyatt has a significant advantage over
Douglas-Peucker.

Our main objectives for the future are: (1) extend this study to include
more compression algorithms, and include different types of environmental time
series other than precipitation; and (2) investigate the impact of compression
on semantics of other context attributes – e.g., in addition to location, exploit
the (joint) impact on other social networks features; (3) evaluate the potential
impacts of running time of the algorithms, especially in the sense of updating
the datasets from newly available observations.
Acknowledgments: We thank Praxxal Patel and Yash Thesia for their help in
finalizing part of the experiments.
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