
Lot Sizing with Minimum Order Quantity

Young Woong Park and Diego Klabjan
Department of Industrial Engineering and Management Sciences

Northwestern University, Evanston, IL, USA.
ywpark@u.northwestern.edu, d-klabjan@northwestern.edu

Jan 19, 2013; revised June 9, 2014

Abstract

We consider single item lot sizing with minimum order quantity where each period has an additional
constraint on minimum production quantity. We study special cases of the general problem from the
algorithmic and mathematical programming perspective. We exhibit a polynomial case when capacity is
constant and minimum order quantities are ordered in non-increasing order. Linear programming extended
formulations are provided for various cases with constant minimum order quantity.

1 Introduction

The single item economic lot sizing problem is to find the production lot sizes of one item over several periods
with the minimum cost. In this paper, we consider the single item lot sizing problem with minimum order
quantity (MOQ). MOQ is an order requirement imposing that the amount of the production has to be at
least a certain quantity when the period has a positive production. The MOQ requirement can be a hard
constraint if it is due to business requirements such as the product required to be shipped in containers or
pallets. However, it can be used as an alternative to fixed ordering cost or setup cost, as both of them prevent
small orders that cause high per unit fixed or setup cost [1]. Hence, the MOQ requirement is an alternative
way to achieve economies of scales in production and transportation [2]. Musalem and Dekker [1] and Zhao
and Katehakis [2] provide real world cases where MOQ is used.

Given T periods, demands d1, · · · , dT must be satisfied by a sequence of production schedules, where the
production level in period t must be at least lt and no more than ut, if it is positive, for all t = 1, · · · , T . For
notational convenience, let di,j =

∑j
t=i dt be the summation of the demand from period i to j for 1 ≤ i ≤ j ≤ T .

The feasibility set of the single item lot sizing problem with MOQ is a set S(lt, ut) ⊆ RT defined as

S(lt, ut) =

 x ∈ RT :

j∑
t=1

xt ≥ d1,j , j = 1, · · · , T

xt ∈ {0} ∪ [lt, ut], t = 1, · · · , T

,

where xt is the production level in period t. When there is no MOQ, we denote the set as S(∅, ut) and when
the MOQ’s are constant, we denote the set as S(l, ut). When there exists no upper bound, we denote the
set as S(lt,∞). Similarly, S(l, u), S(l,∞), S(∅, u) are defined. In the literature, based on our convention,
S(∅, ut) and S(∅, u) is referred as capacitated lot sizing, and S(∅,∞) is referred as uncapacitated lot sizing.
Any feasibility set with a lower bound such as S(lt, u), S(l, u), or S(lt,∞) is referred as lot sizing with MOQ.

In our work, we consider time-dependent and constant MOQ with constant capacity on a finite time
horizon. For the lot sizing problem with time dependent MOQ, we present a polynomial algorithm for the
single item lot sizing problem with non-constant and non-increasing MOQ with non-increasing linear costs.
The algorithm is based on the well-known dynamic programming algorithm of Florian and Klein [3], and it
iterates over a set of tuples of parameters to find a solution to a production sequence. For each tuple, it
preprocesses the demand and finds the production schedule greedily. For the lot sizing problem with constant
MOQ, we present linear programming extended formulations for the lot sizing problem with constant MOQ
and upper bound with non-increasing linear costs.

Since the seminal works of Manne [4] and Wagner and Whitin [5], the lot sizing problem has been extensively
studied. In this review, we focus on the lot sizing problem such that demand is deterministic and order quantity
is the only decision. To decrease the scope of the review further and to align it with the work presented herein,
we consider

1

1. polynomial algorithms for the single item lot sizing problem with MOQ, and

2. polyhedral study and linear programming extended formulations for the lot sizing problem and related
problems.

Since Anderson and Cheah [6] introduced the MOQ constraint for the multi-item lot sizing problem, there
have been several studies on polynomial algorithms for the single item lot sizing problem with MOQ. Lee [7]
provided the first polynomial algorithm for S(l,∞). Li et al [8] exhibit a polynomial algorithm for S(lt,∞)
with non-increasing cost and MOQ. Okhrin and Richter [9] also studied an algorithm for S(l,∞). Okhrin and
Richter [10] provided a polynomial algorithm for S(l, u) with constant holding cost. Hellion et al [11] also
studied S(l, u) with concave costs. Our polynomial case for S(lt, u) is different from the other polynomial
cases as no previous study considered non-constant MOQ together with upper bounds. The polynomial cases
for the lot sizing problem with MOQ are summarized in Table 1, considering only the different capacity and
MOQ requirements.

Constant capacity Uncapacitated

Constant MOQ
S(l, u) : Hellion et al [11] S(l,∞) : Lee [7]

Okhrin and Richter [10] Okhrin and Richter [9]
Non-constant MOQ S(lt, u) : Section 2 in this paper S(lt,∞) : Li et al [8]

Table 1: Polynomial cases with MOQ

Polyhedra and LP extended formulations for the lot sizing problem also have been studied in the literature.
Pochet [12] studied valid inequalities and facets of S(∅, u). Pochet and Wolsey [13] gave a tight and compact
reformulation for S(∅, u) in the presence of the Wagner-Whitin cost. Constantino [14] studied the polyhedron
of a relaxation of S(l, u). Van Vyve [15] provided LP extended formulations for S(∅, u) with backlogging.
Anily et al [16] provided an LP extended formulation for multi-item lot sizing where each item belongs to
S(∅, u). Pochet and Wolsey [17] proposed a compact mixed integer programming reformulation whose linear
programming relaxation solves S(∅, ut) when capacities ut’s are non-decreasing over time. To the best of our
knowledge, an LP extended formulation for the single item lot sizing problem with MOQ has not yet been
studied. Recently, Angulo et al [18] studied the semi-continuous inflow set of a single node of the type S(lt,∞).
They provided an LP extended formulation for the semi-continuous inflow set. Our work is distinguished from
the work in [18], since S(l, u) is very different from the set they considered.

Our contribution can be summarized as follows.

1. In addition to the cases that are already proved to be polynomial, we identify that S(lt, u) with non-
increasing linear costs and non-increasing lt’s can be solved in polynomial time, by providing a polynomial
algorithm for the first time in the literature.

2. We provide various LP extended formulations for S(l, u) and S(l,∞) with non-increasing costs. The
proposed formulations are the first LP extended formulations for the single item lot sizing problem with
the presence of MOQ.

The rest of the paper is organized as follows. Section 2 provides a polynomial time algorithm for S(lt, u) with
additional assumptions on the orders of the lower bounds and objective cost coefficients. Section 3 develops the
linear programming extended formulations for S(l, u) and S(l,∞) with non-increasing production and fixed
costs. In Section 4, we present the computational experiments for the proposed algorithm and formulations.

2 Polynomial Case

In this section, we show that S(lt, u) with a linear cost function can be solved in polynomial time if we
additionally assume the following.

Non-increasing cost p1 ≥ p2 ≥ · · · ≥ pT
Non-increasing lower bound l1 ≥ l2 ≥ · · · ,≥ lT

2

We also assume that the demand satisfies dt ≤ u for all t. The reader is referred to the book by Pochet and
Wolsey [19] for the justification of this assumption after an appropriate preprocessing of dt’s. The key idea
of the preprocessing is that, when dt > ut, the amount of demand dt − ut exceeding ut in time t must be
fulfilled prior to t, and forwarding dt − ut units of demand from t to t − 1 does not affect the solution space
and optimality. For our problem, we execute dt−1 := dt−1 + max{dt − u, 0} and dt := min{u, dt} for t = T
down to 2. We refer to this procedure as DemandForward.

Demand assumption 0 ≤ dt ≤ u for all t = 1, · · · , T

In the rest of the paper, we consider an optimal solution x∗ and the corresponding inventory I∗ defined as
I∗ = {I∗1 , I∗2 , · · · , I∗T } with I∗t =

∑t
i=1 x

∗
i −d1,t. We assume that x∗ delays the production as much as possible.

Hence, among all optimal solutions, we select the one that delays the production as much as possible.

Delayed optimal assumption Optimal solution x∗ delays production the most among all possible
choices of optimal solutions

We stress that this is not really an assumption but we single it out here since we will often refer to it.
In the lot sizing literature, many polynomial algorithms use the concept of a production sequence and the
dynamic programming algorithm proposed by Florian and Klein [3]. We next briefly summarize the concepts
and terms. Let period t with It = 0 be a regeneration point and let Sab be a subset of a feasible production
plan between two consecutive regeneration points a and b. We call Sab a production sequence. Note that Sab
has Ia = Ib = 0 and It > 0 for t = a + 1, · · · , b − 1. We assume that Sab cannot be broken into two or more
production sequences with equal or lower cost. Note also that any optimal production plan can be decomposed
into a set of consecutive production sequences. Hence, a dynamic programming algorithm can be used to find
an optimal set of production sequences.

However, for lot sizing with MOQ, we cannot assume zero ending inventory for every production sequence.
The authors in [11] pointed out that the production sequence including last period T can have strictly positive
ending inventory. They also proposed a modified network by adding nodes for production sequence SaT , for
a ≤ T , with positive ending inventory.

The rest of this section is organized as follows. In Section 2.1, we present an algorithm that gives an
optimal solution for production sequence Sab with I∗b = 0. In Section 2.2, we present an algorithm that gives
an optimal solution for production sequence SaT with I∗T > 0. Finally, we summarize the overall algorithm in
Section 2.3.

2.1 Case: Sab with I∗b = 0

Let us consider the case when Sab ends with zero inventory. In this section, we show that an optimal solution
has a certain structure. The overall algorithm enumerates all possible cases, and for each case the best solution
is obtained. For constant MOQ and capacity, Okhrin and Richter [10] presented a similar structure.

We first describe some properties of a production sequence Sab of an optimal solution x∗. Similar properties
are presented for constant MOQ in [7, 8, 10], whereas the following two lemmas are for non-constant MOQ.

Lemma 1. For a period i such that li < x∗i ≤ u, we must have x∗t ∈ {0, u} for t > i.

Lemma 2. Let i be the first period such that x∗t̄ > lt̄. Then, x∗t ∈ {0, lt} for t < i.

The proofs, which are given in Appendix A, are based on contradictions to the delayed optimal assumption.
Based on Lemmas 1 and 2, we extend the result in [10] to non-constant and non-increasing MOQ. That is,
Sab can be decomposed into up to three phases based on the quantity produced by x∗:

1. periods producing either 0 or lt,
2. a period with lt < x∗t < u, and
3. periods producing either 0 or u.

Let r∗ be the last period with positive but strictly less than u production, q∗ be the first period with production
of u, and k∗ be the last period with positive production. We also define n∗ to be the number of periods such

3

that x∗t = u for a+ 1 ≤ t ≤ b, or equivalently for q∗ ≤ t ≤ k∗. We note that n∗ is equivalent to K in [10] for
lot sizing with constant MOQ. Based on r∗, q∗, and k∗, we decompose Sab into four sub-sequences:

A∗r = {a+ 1, · · · , r∗}, A∗0 = {r∗ + 1, · · · , q∗ − 1}, A∗q = {q∗, · · · , k∗}, A∗k = {k∗ + 1, · · · , b}.

Figure (1a) illustrates these concepts. Observe that A∗r , A
∗
0, A

∗
q , or A∗k might not be defined depending on

r∗, q∗, or k∗, as depicted in Figure (1b). Detailed cases for the existence of the sub-sequences and all possible
combinations of (r∗, q∗, k∗) are available in Appendix C.

𝑎 + 1 𝑟∗ − 1 𝑟∗ 𝑟∗ + 1 𝑞∗ − 1 𝑞∗ 𝑘∗

⋯ ⋯ ⋯

𝑥𝑡
∗ ∈ {0, 𝑙𝑡}

𝑥𝑟
∗ ∈ [𝑙𝑟∗ , 𝑢)

𝑥𝑡
∗ = 0

𝑥𝑡
∗ ∈ {0, 𝑢} 𝑥𝑡

∗ = 0

𝑏

𝐴𝑟
∗ 𝐴0

∗ 𝐴𝑞
∗ 𝐴𝑘

∗

(a) x∗ with A∗
r , A

∗
0, A

∗
q , and A∗

k

𝑎 + 1 𝑟∗ − 1 𝑟∗ 𝑘∗ + 1

⋯ ⋯ ⋯

𝑥𝑡
∗ ∈ {0, 𝑙𝑡}

𝑥𝑟
∗ ∈ [𝑙𝑟∗ , 𝑢)

𝑥𝑡
∗ = 0

𝑏

𝐴𝑘
∗ 𝐴𝑟

∗

(b) x∗ only with A∗
r and A∗

k

Figure 1: Sub-sequences of Sab defined by x∗

Note that we know the existence of (r∗, q∗, k∗, n∗) but we cannot derive them explicitly. To find this
unknown tuple (r∗, q∗, k∗, n∗), we consider all possible choices of (r, q, k, n). Given a solution x, let Ar, A0, Aq,
and Ak be the partition of the periods in Sab based on r, q, and k, defined similar to A∗r , A

∗
0, A

∗
q , and A∗k,

respectively. That is, Ar = {a+ 1, · · · , r}, A0 = {r+ 1, · · · , q− 1}, Aq = {q, · · · , k}, and Ak = {k+ 1, · · · , b},
in which the existence of each set depends on r, q, and k. Let n be the number of periods such that xt = u for
t ∈ Aq.

Let us assume that we are given a tuple (r, q, k, n). Note that Ar, A0, Aq, and Ak require further structure
on demand in addition to dt ≤ u for all t, which is assured by the execution of DemandForward. Hence, we
modify the demand further by Algorithm 1. The main principle of Algorithm 1 hinges on the same arguments
that let us assume dt ≤ ut. Using this principle with lt, 0, u, and 0 as upper bounds for the demand in
Ar, A0, Aq, and Ak, respectively, we modify the demand while we also consider the fact that exactly nu units
are produced in Aq. In summary, the modified demand d̄ after Algorithm 1 satisfies

upper bound requirement: d̄t ≤ lt for t ∈ Ar, d̄t = 0 for t ∈ A0 ∪Ak, d̄t ≤ u for t ∈ Aq,
same total demand:

∑
t∈Ar

d̄t +
∑
t∈Aq

d̄t = d̄a+1,r + d̄q,k = d̄a+1,b = da+1,b,

total demand in Aq:
∑
t∈Aq

d̄t = d̄q,k = nu,

while not affecting the solution space with respect to the original demand d given (r, q, k, n). In detail, in Step
0, we first copy d to d̄ and check if the tuple (r, q, k, n) can give a feasible solution. The algorithm returns a
null set if the tuple is not valid. In Step 1 (for Ak), we forward demand d̄k+1,b to period k. In Step 2 (for Aq),
the algorithm returns a null set since d̄qk < nu implies positive inventory. Otherwise, we forward the extra
demand d̄qk − nu to period r. In Step 4 (for A0), we forward d̄a+1,q−1 to period r. In Step 4 (for Ar), if the
tuple is valid, we forward the demand to satisfy d̄r ≤ u and d̄t ≤ lt for t ∈ Ar \ {r}.

Example. Let us illustrate Algorithm 1 with an example. Consider production sequence Sab with d =
{4, 2, 3, 4, 11, 12}, r = 3, q = 5, k = 5, and n = 1. For simplicity, let us assume constant lower and upper
bounds l = 7 and u = 12. Note that we have Ar = {1, 2, 3}, A0 = {4}, Aq = {5}, and Ak = {6}. See Figure 2
for the illustration of each step. In this illustration, we omit the calculation for returning a null set, as all of
the conditions are not satisfied.

Step 1 We forward the demand in Ak to period k. Hence, d̄5 := d̄5 + d̄6 = 11 + 12 = 23 and d̄6 := 0.
Since d̄5 > u, we apply DemandForward and obtain d̄ = {4, 2, 6, 12, 12, 0}.

4

Algorithm 1 PreGREEDY(d, r, q, k, n)

Input: d (original demand), (r, q, k, n) (defining Ar, A0, Aq, and Ak)
Output: either (i) d̄ (modified demand) or (ii) ∅

Step 0 d̄ := d, if u+
∑
t∈Ar\{r} lt < da+1,q−1 or u(n+ 1) +

∑
t∈Ar\{r} lt < da+1,b return ∅

Step 1 d̄k := d̄k + d̄k+1,b, d̄t := 0 for t ∈ Ak, DemandForward(d̄)

Step 2
if d̄qk < nu return ∅
else if d̄qk ≥ nu

∆ := d̄qk − nu, t := q
while ∆ > 0
δ := min{∆, d̄t}, d̄r := d̄r + δ, d̄t := d̄t − δ, ∆ := ∆− δ, t := t+ 1

end while
end if

Step 3 d̄r := d̄r + d̄r+1,q−1, d̄t := 0 for t ∈ A0.

Step 4
if d̄a+1,r > u+

∑r−1
t=a+1 lt return ∅

else
d̄r−1 := d̄r−1 + max{d̄r − u, 0}, d̄r = min{u, d̄r}
for t = r − 1, · · · , a+ 2, d̄t−1 := d̄t−1 + max{d̄t − lt, 0}, d̄t = min{lt, d̄t}

end if
if d̄a+1 > la+1 return ∅

Step 2 We check if the total demand in Aq is equal to nu = 12. Since d̄qk = d̄5,5 = 12 ≥ nu, we set
β := 0 and forward nothing. The modified demand remains d̄ = {4, 2, 6, 12, 12, 0}.
Step 3 We want to have d̄t = 0 for t ∈ A0 and forward the demand in A0 to period r. Hence,
d̄3 := d̄3 + d̄4,4 = 6 + 12 = 18 and d̄4 := 0. The modified demand is now d̄ = {4, 2, 18, 0, 12, 0}.
Step 4 We want d̄ to satisfy d̄r = d̄3 ≤ u and d̄t ≤ lt for all t ∈ Ar \{r} = {1, 2}. Hence, we sequentially
set (i) d̄3 := min{d̄3, u} = min{18, 12} = 12 and d̄2 := d̄2 +(18−12) = 2+6 = 8, (ii) d̄2 := min{d̄2, l2} =
min{8, 7} = 7 and d̄1 := d̄1 + (8− 7) = 4 + 1 = 5, (iii) d̄1 := min{d̄1, l1} = min{5, 7} = 5.

Hence, we obtain d̄ = {5, 7, 12, 0, 12, 0} given (r, q, k, n) = (3, 5, 5, 1). �

𝐴𝑟 𝐴0 𝐴𝑞 𝐴𝑘

2

4

6

8

10

12

14

16

18

UB

LB

Time

𝑑 𝑡

1 2 3 4 5 6

(a) Original demand

𝐴𝑟 𝐴0 𝐴𝑞 𝐴𝑘

2

4

6

8

10

12

14

16

18

Time

𝑑 𝑡

1 2 3 4 5 6

(b) After Steps 1 and 2

𝐴𝑟 𝐴0 𝐴𝑞 𝐴𝑘
𝑑 𝑡

2

4

6

8

10

12

14

16

18

Time 1 2 3 4 5 6

(c) After Step 3

𝐴𝑟 𝐴0 𝐴𝑞 𝐴𝑘
𝑑 𝑡

2

4

6

8

10

12

14

16

18

Time 1 2 3 4 5 6

(d) After Step 4

Figure 2: Illustration of PreGREEDY

After obtaining the modified demand d̄, we find the best solution for the given tuple (r, q, k, n), based on
a greedy strategy. The algorithmic framework is presented in Algorithm 2. In Algorithm 2, Steps 1-7, 8, 9-12,
and 13 tackle Ar, A0, Aq, and Ak, respectively. In detail, for periods in A0 and Ak (in Steps 8 and 13), the
production is set to zero to satisfy the property of A0 and Ak. For periods in Ar (in Steps 1-7), the algorithm
is based on a greedy strategy. Starting from t = a+ 1 up to r, the production xt is set to lt only when there
is not enough inventory to cover the demand in period t. Observe that we check if lr ≤ d̄r − Īr−1 in Step 6.

5

This is because given tuple (r, q, k, n) cannot produce a solution for Sab if lr > d̄r − Īr−1. See Lemma 18 in
Appendix B for the proof. For periods in Aq in Steps 9-12, the algorithm is based on a backward strategy.
Starting from t = k down to q, the production xt is set to u only when the productions up to period k cannot
cover d̄t,k.

Algorithm 2 GREEDY(d̄, r, q, k, n)

Input: d̄ (modified demand), (r, q, k, n) (defining Ar, A0, Aq, and Ak)
Output: either (i) (x, z) (solution and objective value) or (ii) ∅
1: xa+1 ← max{la+1, d̄a+1}, Īa+1 ← xa+1 − d̄a+1

2: for t = a+ 2 to r − 1 do
3: if Īt−1 ≥ d̄t then xt ← 0, Īt ← Īt−1 − d̄t
4: else xt ← lt, Īt ← Īt−1 + lt − d̄t
5: end for
6: if lr ≤ d̄r − Īr−1 then xr ← d̄r − Īr−1, Īr ← Īr−1 + xr − d̄r
7: else return ∅
8: xt ← 0, Īt ← Īr for t = r + 1, · · · , q − 1

9: m← 0 (counter)
10: for t = k down to q do
11: if d̄tk > u ·m then xt ← u, m← m+ 1
12: end for

13: xt ← 0 for t = k + 1, · · · , b, update Ī

Example (continued). Let us illustrate GREEDY with the previous example. We are given Ar = {1, 2, 3},
A0 = {4}, Aq = {5}, Ak = {6}, and the modified demand d̄ = {5, 7, 12, 0, 12, 0}.

1. For period 1 of Ar in Step 1, x1 := max{l1, d̄1} = 7 and Ī1 = x1 − d̄1 = 2.
2. For period 2 of Ar, we check Ī1 = 2 < 7 = d̄2 in Step 3. Hence, in Step 4, x2 := l2 = 7 and
Ī2 := Ī1 + x2 − d̄2 = 2.

3. For period 3 of Ar, we check l3 = 7 ≤ d̄3− Ī2 = 12−2 = 10 in Step 6. Hence, x3 := d̄3− Ī2 = 12−2 = 10
and Ī3 := Ī2 + x3 − d̄3 = 2 + 10− 12 = 0.

4. For period 4 of A0 in Step 8, we set x4 := 0 and Ī4 := Ī3 + x4 − d̄4 = 0.
5. For period 5 of Aq in Step 9, we set x5 := u = 12 and Ī5 := Ī4 + x5 − d̄5 = 0 + 12− 12 = 0.
6. For period 6 of Ak in Step 13, we set x6 := 0 and Ī6 := Ī5 + x6 − d̄6 = 0.

Hence, we obtain x = {7, 7, 10, 0, 12, 0} and Ī = {2, 2, 0, 0, 0, 0} from GREEDY with d̄ = {5, 7, 12, 0, 12, 0}, r =
3, q = 5, k = 5, and n = 1. Observe that the inventory based on the original demand d is I = {3, 8, 15, 11, 12, 0}.
�

In the following two lemmas, we establish feasibility of the solution produced by GREEDY and then show
that GREEDY with optimal parameters (r∗, q∗, k∗, n∗) produces an optimal solution, where the proofs are
available in Appendix A.

Lemma 3. Suppose that d̄ is from Algorithm 1 and lr ≤ d̄r − Īr−1 is ensured in Algorithm 2. Then, given
(r, q, k, n) and d̄, Algorithm 2 produces a feasible solution.

Lemma 4. Let x∗ and Ī∗ be an optimal solution and the corresponding inventory with underlying values d̄
and (r∗, q∗, k∗, n∗). Then, GREEDY (d̄, r∗, q∗, k∗, n∗) produces an optimal solution.

Example (continued). Let us consider GREEDY with optimal parameters r∗, q∗, k∗, n∗. The optimal
solution that satisfies the delayed optimal assumption is x∗ = (7, 0, 7, 0, 10, 12). Hence, we obtain r∗ = 5,
q∗ = 6, k∗ = 6, and n∗ = 1. Let us consider r = 5, q = 6, k = 6, and n = 1. Note that the parameters
fit Case 7 of (16) in Appendix C and we are given Ar = {1, 2, 3, 4, 5}, A0 = ∅, Aq = {6}, and Ak = ∅.
Note that d̄ = (4, 2, 3, 4, 11, 12) is obtained by PreGREEDY with these parameters and is different from

6

the previous example since before we used r = 3, q = 5, k = 5 and n = 1. By executing GREEDY with
(r, q, k, n) = (5, 6, 6, 1), we obtain x = {7, 0, 7, 0, 10, 12}, which is equivalent to x∗. �

The overall algorithm is presented in Algorithm 3, where we simply iterate through all possible combinations
of (r, q, k, n). For each (r, q, k, n), we obtain a feasible solution x with objective function value z by GREEDY
and update the best solution and objective function value during the algorithm. Observe that, by Algorithm 3,
we consider all possible cases of (16) in Appendix C. The ’for’ loop in Algorithm 3 is constructed in such a
way that combinations of r, q, k, n not fitting into one of the eight cases are automatically discarded by the
loop itself.

Algorithm 3 EnumerateMOQ

Input: (da · · · , db) (demand), Sab
Output: xbest (best solution), zbest (best objective function value)

xbest ← ∅, zbest ←∞
for n ∈ [0, k − q + 1], q ∈ [r + 1, k], k ∈ [r, b], r ∈ [a+ 1, b] do
d̄← PreGREEDY (d, r, q, k, n)
if d̄ is returned successfully then (x, z)← GREEDY (d̄, r, q, k, n)
if x 6= ∅ and z < zbest then update xbest and zbest

end for

We are ready to show the optimality of the solution produced by Algorithm 3.

Lemma 5. For a production sequence Sab, either (i) the optimal solution is xa+1 = da+1 if da+1 ∈ {0}∪[la+1, u]
and a+ 1 = b; or (ii) the solution xbest from Algorithm 3 is an optimal solution.

Proof. The statement is trivial if b = a+ 1 since there is only one period in this production sequence. Hence,
for the rest of the proof, let us assume that b > a+1. Let x∗ be an optimal solution. Observe that we can pick
r, q, k and n such that Ar = A∗r , A0 = A∗0, Aq = A∗q , Ak = A∗k, and n = n∗, since we enumerate all possible
choices of r, q, k and n in Algorithm 3. Then, by Lemma 4, xbest is an optimal solution.

2.2 Case: I∗T > 0 for SaT

Let us consider production sequence SaT with I∗T > 0. We start with a property of x∗, which is similar to the
property described by Hellion et al [11] for constant MOQ.

Lemma 6. For production sequence SaT with I∗T > 0, we have x∗t ∈ {0, lt} for t ∈ SaT .

The proof is omitted and is similar to the proof of Lemma 2. Let d̄ the modified demand obtained by
executing DemandForward where lt’s are the upper bounds. Based on Lemma 6, we present a greedy algorithm
that returns an optimal solution for production sequence SaT with I∗T > 0.

Lemma 7. Let us consider the following greedy algorithm: for t = a + 1, · · · , T , (i) xt = lt if Īt−1 < d̄t, (ii)
xt = 0 otherwise. This algorithm gives an optimal solution to SaT with IT > 0.

Proof. By Lemma 6, we must have x∗t ∈ {0, lt} for t ∈ SaT . Observe that the structure is the same as the
structure of A∗r in Section 2.1. The same proof technique of Lemma 4 can be applied to show that the greedy
algorithm produces an optimal solution.

2.3 Summary of Overall Algorithm

In Sections 2.1 and 2.2, we developed the algorithms that find an optimal solution for Sab with I∗b = 0 and
SaT with I∗T > 0. Now, the dynamic programming algorithm of Hellion et al [11] can be used to solve the
overall problem with Algorithm 3 and Lemma 7 as subroutines. The modification from the conventional DP
of Florian and Klein [3] is that for each SaT , we have two types of nodes: one with I∗T = 0 and the other one
with I∗T > 0. Using this approach, we can solve the overall problem optimally.

7

We end this section by deriving the run time analysis of the overall algorithm. For Algorithm 3, the
complexity of the for loop for r, k, q, n is O(T 4). Since the run times of GREEDY and PreGREEDY are linear
in T , we conclude O(T 5) for Sab with I∗b = 0. For the greedy algorithm in Lemma 7, it is easy to show that
we have O(T) steps. For the overall problem based on the DP, since we have O(T 2) production sequences, the
time complexity is O(T 7). We summarize all of the findings of this section in the following theorem.

Theorem 1. Algorithm 3 and Lemma 7 provide a polynomial algorithm that finds an optimal solution for
the capacitated lot sizing problem with non-increasing linear costs and non-increasing MOQ in O(T 7) steps.

3 Linear Programming Extended Formulation

In this section we present LP extended formulations for the single item lot sizing problem with MOQ in
presence of constant lower and upper bounds l and u. We also extend the result to the case when fixed
cost is present. The reader is referred to the works in [13, 20] for LP extended formulations of other cases
without MOQ. Our LP extended formulations for S(l, u) and S(l,∞) are different from all known results as
the previous works study S(∅, u).

We again employ the non-increasing cost structure, the demand assumption, and the delayed optimal
assumption from Section 2 for an optimal solution. Let us define the quotient and the remainder of the
division of u by l:

k =
⌊u
l

⌋
and ε = u− kl.

We study four special cases:

Case 1: S(l, u) with u = l.
Case 2: S(l, u) with u = kl, where k ≥ 2.
Case 3: S(l, u) with u = kl + ε, where k ≥ 2 and 0 ≤ ε < l.
Case 4: S(l,∞)

For each case, the complete formulation is derived as follows. Recall that lot sizing with MOQ can have
an optimal solution with positive ending inventory. For SaT with I∗T > 0, we can use an explicit formula,
proposed by Hellion et al [11], to calculate the optimal objective function value. For Sab with I∗b = 0, we
formulate an LP. Then, using the structured shortest path techniques from [20], the LP can be extended into
a larger LP that solves the entire problem. Since all four cases can be extended using the shortest path based
formulation and SaT with I∗T > 0 case can be solved easily, in this section we focus on the LP formulation for
production sequence Sab with I∗b = 0 for the four cases.

We start with Case 1. Suppose that l = u. In this case, any positive production is equal to l. Note that, if
da+1,b is not a multiple of l, we cannot have zero ending inventory at b. Hence, we assume da+1,b mod l = 0.
For t ∈ Sab, let yt be a decision variable defined by yt = 1 if production is positive in period t. Note that we
have

∑j
t=a+1 lyt ≥ da+1,j for period j in order to have non-negative inventory. Since l is constant and yt’s

are binary, the constraint can be strengthened to
∑j
t=a+1 yt ≥

⌈
da+1,j

l

⌉
. Hence, we formulate the following

integer program for production sequence Sab.

β = min l(
∑
t∈Sab

ptyt) (1a)

s.t.

j∑
t=a+1

yt ≥
⌈da+1,j

l

⌉
, j ∈ Sab, (1b)

yt ∈ {0, 1}, t ∈ Sab (1c)

It can be easily shown that the LP relaxation of (1) is integral, since the matrix of (1) is a lower triangle
matrix and the right hand side of (1b) is integer. A rigorous argument is provided later in Lemma 25 for a
more general case.

8

The rest of this section is organized as follows. In Section 3.1, we consider the case u = kl which is then
extended to u = kl + ε in Section 3.2. In Section 3.3, we derive the LP extended formulation for S(l,∞).
Finally, in Section 3.4, we consider fixed cost for all the LP extended formulations derived in this section.

3.1 Case: S(l, u) with u = kl

Let us assume that u is a multiple of l. Suppose that we know the last period i such that the production is
positive but strictly less than u. Then, we can decompose production sequence Sab into two sub-sequences:
Al = {a+ 1, · · · , i} and Au = {i+ 1, · · · , b}. Note that xt ∈ {0, l} for t ∈ Al \ {i}, l ≤ xi < u, and xt ∈ {0, u}
for t ∈ Au. We first formulate an LP based on the assumption that we know period i. Later, we extend the
LP with fixed i to a larger LP for production sequence Sab by letting the model choose i.

Let us first derive the LP based on the assumption that we know period i. The main idea of the derivation
of the LP given fixed i is as follows. First, we derive the amount of the demand that must be forwarded from
Au to Al, by considering the fact that xt ∈ {0, u} for t ∈ Au. Next, we calculate the fractional amount of the
demand that cannot be covered by multiple l’s in Al, by considering the fact that xi ∈ {0, l} for t ∈ Al \ {i}.
Finally, the exact fractional production in period i is derived. Let us define

δ̄i = di+1,b mod u. (2)

If δ̄i = 0, we need to produce u units prior to i+ 1 in order to make positive inventory at period i. If δ̄i > 0,
by delaying the production as late as possible, we need to have δ̄i units of inventory in period i. We show that
x∗ satisfies certain property based on the value of δ̄i.

Lemma 8. An optimal solution x∗ must satisfy

∑
t∈Au

x∗t =

{
di+1,b − δ̄i =

⌊
di+1,b

u

⌋
u if δ̄i > 0,

di+1,b − u = (
di+1,b

u − 1)u if δ̄i = 0.

The proof is available in Appendix A. By Lemma 8, we forward δ̄i from Au to Al. Hence, δ̄i must be
covered in Al and δ̄i can be also interpreted as the amount of forwarded demand from Au to Al.

Next, let us consider the production up to period i − 1. Recall that the production is either 0 or l up to

period i− 1. Hence, any feasible solution must produce at least
⌈
da+1,i−1

l

⌉
periods producing l up until period

i− 1. Let us define

ϕi =
⌈da+1,i−1

l

⌉
l − da+1,i−1 = l − (da+1,i−1 mod l) (3)

to be the minimum inventory possible in period i − 1 for i > a + 1. If i = a + 1, then ϕi = 0. Lemma 24 in
Appendix A shows that ϕi is the optimal inventory in period i− 1 if period i has infinite capacity.

For now, let us assume that period i has infinite capacity. We ensure the upper bound requirement for
period i by a constraint later. Considering the definition of ϕi and Lemma 24, we can interpret di + δ̄i − ϕi
as the exact amount to be produced in period i, if we forward δ̄i. However, there are cases δ̄i in (2) may not
be the exact quantity to be forwarded. Hence, we define, if i < b,

δi =

 δ̄i if δ̄i > 0 and di + δ̄i − ϕi ≥ l,
δ̄i + u if δ̄i > 0 and di + δ̄i − ϕi < l,
u if δ̄i = 0,

(4)

to be the forwarded demand from Au to Al. If i = b, we set δi = 0. The derivation of δi in (4) is available in
Appendix D.

Next, let ρi be the fractional amount of demand that cannot be covered by multiple l’s in Al. Recall that
δi units of demand has been forwarded to Al. We define

ρi = (da+1,i + δi) mod l. (5)

For t ∈ Sab, let yt be a decision variable defined by

9

yt =

{
1 if there is positive production in t
0 otherwise.

We derive the following constraints to satisfy the demand.

1. For j ∈ Al \ {i}, we produce either 0 or l while total production by period j is greater than or equal to

da+1,j . This can be written as
∑j
t=a+1 lyt ≥ da+1,j . Since l is constant and yt’s are binary, the constraint

can be strengthened to
∑j
t=a+1 yt ≥

⌈
da+1,j

l

⌉
.

2. In period i, we must satisfy
∑i
t=a+1 xt = da+1,i + δi. Recall that ρi is the amount that cannot be

covered by multiple of l’s. Hence, ρi must be covered in period i. Before we derive the constraint, we
first strengthen the upper bound of xi.

(a) The upper bound of xi can be strengthened from u = kl to (k − 1)l + ρi.

(b) In period i, we must satisfy
∑i
t=a+1 xt = da+1,i + δi. Recall that ρi is the amount that cannot be

covered by multiple of l’s. Hence, ρi must be covered in period i. This implies xi ≤ (k − 1)l + ρi.

Then from (
∑i−1
t=a+1 xt) + xi = da+1,i + δi, we derive

∑i−1
t=a+1 xt = da+1,i + δi − xi ≥ da+1,i +

δi − ρi − (k − 1)l. Dividing by l, we obtain
∑i−1
t=a+1

xt

l ≥
da+1,i+δ

i−ρi
l − (k − 1). Hence, we have∑i−1

t=a+1 yt =
∑i−1
t=a+1

xt

l ≥
da+1,i+δ

i−ρi
l − (k − 1). Since we assume yi = 1, we obtain

∑i
t=a+1 yt ≥

da+1,i+δ
i−ρi

l − k + 2.

3. For j ∈ Au, we can derive Ij = Ii +
∑j
t=i+1 xt − di+1,j = δi +

∑j
t=i+1 xt − di+1,j ≥ 0 to ensure feasible

inventory, since Ii = δi. This gives
∑j
t=i+1 xt ≥ di+1,j − δi. Dividing by u, we obtain

∑j
t=i+1 yt =∑j

t=i+1
xt

u ≥
di+1,j−δi

u . Since u is constant and yt’s are binary, the constraint can be strengthened to∑j
t=i+1 yt ≥

⌈
di+1,j−δi

u

⌉
.

Finally, we define

λi = da+1,i + δi −max{
⌈da+1,i−1

l

⌉
,
da+1,i + δi − ρi

l
− k + 1}l (6)

to be the amount of production in period i, where λi ≥ l. It is worth to note that λi is correctly defined only
for a valid choice of i.

Example. Let us consider production sequence {1, 2} with d = {6, 3}, l = 5, and u = 10. If i = 1, then
ρ1 = 4, δ1 = 3, and λ1 = 9. However, if i = 2, then ρ2 = 4, δ2 = 0, and λ2 = −1. Based on the definition of i,
setting i = 2 implies that x1 ∈ {0, 5}, which is infeasible since d1 = 6. �

Observe that da+1,i is the demand we must satisfy by the end of period i, since δi is forwarded from Au.
The maximum operator is the minimum inventory we need by the end of period i − 1. In the maximum
operator, the first term ensures the fulfillment of demand up until period i− 1, while the second term defines
the minimum quantity to satisfy the upper bound constraint in period i. Note also that the second term has
da+1,i+δ

i−ρi
l − k + 1 instead of

da+1,i+δ
i−ρi

l − k + 2 since we are assuming xi ≥ l. Hence, λi is the amount we
need to produce in period i.

With all the parameters and constraints derived, we obtain the following integer program.

αi = min l(
∑
t∈Al

ptyt) + pi(λ
i − l) + u(

∑
t∈Au

ptyt) (7a)

s.t.

j∑
t=a+1

yt ≥
⌈da+1,j

l

⌉
, j ∈ {a+ 1, · · · , i− 1}, (7b)

i∑
t=a+1

yt ≥
da+1,i + δi − ρi

l
− k + 2, (7c)

10

j∑
t=i+1

yt ≥
⌈di+1,j − δi

u

⌉
, j ∈ {i+ 1, · · · , b}, (7d)

yi = 1, (7e)

yt ∈ {0, 1}, t ∈ Sab (7f)

Observe that period i appears twice in the objective function. The first term captures lpi with yi = 1 from
(7e), while the second term calculates the cost of the additional production beyond l in period i.

In the following two lemmas, we first present that a feasible solution to (7) has a matching feasible solution
to the original problem, where the proof is given in Appendix A. Then we show integrality of (7).

Lemma 9. Let y be a feasible solution to (7) with given i. Then, there exists a corresponding feasible solution
x with the same objective function value. Further, for an optimal solution y∗ to (7), the corresponding solution
x̄∗ and Ī∗ satisfy Ī∗i = δi and Ī∗b = 0.

Lemma 10. The LP relaxation of (7) is integral.

Proof. Note that the RHS of (7b) and (7d) are integer. Also, by the definition of ρi in (5), the RHS of (7c) is
integer. Finally, it can be shown that the matrix of (7) is totally unimodular. See Lemma 25 in Appendix B.
Therefore, the LP relaxation of (7) is integral.

We can extend the formulation using the shortest path network to solve the entire Sab without the assump-
tion that we know i. Let us redefine variables and sets. For i ∈ Sab, let

zi =

{
1 if period i is fractional,
0 otherwise,

and, for t ∈ Sab, i ∈ Sab, let

yit =

{
1 if period i is fractional and period t has a positive production,
0 otherwise.

In addition we define

Ail = {a+ 1, · · · , i}, for i ∈ Sab, and Aiu = {i+ 1, · · · , b}, for i ∈ Sab.

We extend the IP formulation (7) by adding constraint to select only one zi and forcing yit’s to be zero for zi’s
equal to zero. The integer program for production sequence Sab is defined as follows.

β = min

b∑
i=a+1

[l(
∑
t∈Ai

l

pty
i
t) + pi(λ

i − l)zi + u(
∑
t∈Ai

u

pty
i
t)] (8a)

s.t.

j∑
t=a+1

yit ≥
⌈da+1,j

l

⌉
zi, j ∈ {a+ 1, · · · , i− 1}, i ∈ Sab, (8b)

i∑
t=a+1

yit ≥
(
da+1,i + δi − ρi

l
− k + 2

)
zi, i ∈ Sab, (8c)

j∑
t=i+1

yit ≥
⌈di+1,j − δi

u

⌉
zi, j ∈ {i+ 1, · · · , b}, i ∈ Sab, (8d)

yii = zi, i ∈ Sab, (8e)

yit ≤ zi, t ∈ Sab, i ∈ Sab, (8f)

b∑
i=a+1

zi = 1, (8g)

11

yit ∈ {0, 1}, t ∈ Sab, i ∈ Sab, (8h)

zi ∈ {0, 1}, i ∈ Sab, (8i)

where the costs assiciated with period i with λi < l is replaced with ∞.

Lemma 11. The LP relaxation of (8) solves production sequence Sab.

The proof is given in Appendix A. As mentioned earlier in this section, we use the shortest path formulation
given in [20] for the entire time horizon. With Lemma 11, it is easy to apply their model and extend the
formulation for the entire time horizon t = 1, · · · , T .

3.2 Case: S(l, u) with u = kl + ε

In this section, we study the case u = kl+ε, where ε > 0 is allowed. The formulation and the other settings are
almost identical to the model in Section 3.1, except for (7c) and (6) the constraint for period i and parameter
λi, respectively. This is because the derivations of (7b) and (7d) are independent of whether u is multiple of
l. For this reason, we describe only the changes from the model in Section 3.1.

We start with the constraint for period i. Note that we must satisfy
∑i
t=a+1 xt = da+1,i + δi. Recall that

ρi is the amount that cannot be covered by multiple of l’s and ρi must be covered in period i. Before we derive
the constraint, we first strengthen the upper bound on xi.

1. If ε < ρi, then the upper bound on xi can be strengthened from u = kl + ε to (k − 1)l + ρi.
2. If ε ≥ ρi, then the upper bound on xi can be strengthened from u = kl + ε to kl + ρi.

Hence, we consider the two cases ε < ρi and ε ≥ ρi to derive the constraint for period i.

1. Case: ε < ρi

From (
∑i−1
t=a+1 xt) + xi = da+1,i + δi, we derive

∑i−1
t=a+1 xt = da+1,i + δi − xi ≥ da+1,i + δi − ρi − (k − 1)l,

where the inequality holds since xi ≤ (k− 1)l+ ρi. Dividing by l, we obtain
∑i−1
t=a+1

xt

l ≥
da+1,i+δ

i−ρi
l −

(k − 1). Hence, we have
∑i−1
t=a+1 yt =

∑i−1
t=a+1

xt

l ≥
da+1,i+δ

i−ρi
l − (k − 1). Since we assume yi = 1, we

obtain
∑i
t=a+1 yt ≥

da+1,i+δ
i−ρi

l − k + 2.

2. Case: ε ≥ ρi

We obtain
∑i
t=a+1 yt ≥

da+1,i+δ
i−ρi

l − k + 1 by using the same approach as in the previous case except

by using inequality xi ≤ kl + ρi instead of xi ≤ (k − 1)l + ρi.

Finally, we define

λi =

 da+1,i + δi −max{
⌈
da+1,i−1

l

⌉
,
da+1,i+δ

i−ρi
l − k + 1}l if ε < ρi,

da+1,i + δi −max{
⌈
da+1,i−1

l

⌉
,
da+1,i+δ

i−ρi
l − k}l if ε ≥ ρi,

(9)

to be the amount of production in period i, where λi ≥ l. The main principle of this definition is the same as
the one in Section 3.1. Hence, we obtain the following mathematical program.

αi = min l(
∑
t∈Al

ptyt) + pi(λ
i − l) + u(

∑
t∈Au

ptyt) (10a)

s.t.

j∑
t=a+1

yt ≥
⌈da+1,j

l

⌉
, j ∈ {a+ 1, · · · , i− 1}, (10b)

12

i∑
t=a+1

yt ≥
da+1,i + δi − ρi

l
− k + 1 + 1{ε<ρi}, (10c)

j∑
t=i+1

yt ≥
⌈di+1,j − δi

u

⌉
, j ∈ {i+ 1, · · · , b}, (10d)

yi = 1, (10e)

yt ∈ {0, 1}, t ∈ Sab, (10f)

where indicator function 1{ε<ρi} is defined to distinguish the two cases. For the feasibility of a solution to
(10), we present the following analogous lemma to Lemma 9.

Lemma 12. Let y be a feasible solution to (10) with given i. Then, there exists a corresponding feasible
solution x with the same objective function value. Further, for an optimal solution y∗ to (10), the corresponding
solution x̄∗ and Ī∗ satisfy Ī∗i = δi and Ī∗b = 0.

The proof is omitted and is similar to the proof of Lemma 9. Observe that (7) and (10) have exactly the
same structure except (i) the right hand side of (7c) and (10c) and (ii) λi in the objective functions. Hence,
using the results in Section 3.1, (10) can be extended to formulate an integer program for Sab in the same way
as (7) is extended to (8). Further, the LP relaxation of the new integer program solves production sequence
Sab by Lemma 11.

3.3 Case: S(l,∞)

In this section, we present the LP extended formulation for S(l,∞), where xt ∈ {0} ∪ [l,∞). Recall that we
only consider production sequence Sab with I∗b = 0. We start this section by describing some properties of an
optimal solution x∗ that are similar to Lemmas 1 and 2 in Section 2, where the proofs are omitted and are
similar to the proofs of Lemmas 1 and 2.

Lemma 13. For a period i such that x∗i > l, we must have x∗t ∈ {0, l} for t < i.

Lemma 14. For a period i such that x∗i > l, we must have x∗t = 0 for t > i.

From Lemmas 13 and 14, we observe that Sab can be decomposed up to three phases:

1. periods producing either 0 or l,
2. one period with x∗t > l, and
3. periods with no production.

Suppose now that we know the period such that x∗t > l, and let i be such a period. If there is no such
period, then we define i to be the last period with positive production. Hence, for x∗, we have either of the
following cases:

1. x∗t ∈ {0, l} for t < i, x∗i > l, x∗t = 0 for t > i, or
2. x∗t ∈ {0, l} for t < i, x∗i = l, x∗t = 0 for t > i

We show two properties of x∗ in the following two lemmas, where the proofs are given in Appendix A.

Lemma 15. Given period i such that x∗i > l, we must have
∑i−1
t=a+1 x

∗
t = l

⌈
da+1,i−1

l

⌉
. Further, I∗i−1 =

l
⌈
da+1,i−1

l

⌉
− da+1,i−1.

Lemma 16. Given period i such that x∗i > l, we must have x∗i = da+1,b − l
⌈
da+1,i−1

l

⌉
.

13

Formulations Number of variables Number of constraints
Case Reference Sab Overall Sab Overall
S(l, u) with l = u (1) O(T) O(T 3) O(T) O(T 3)
S(l, u) with l > u (8) O(T 2) O(T 4) O(T 2) O(T 4)
S(l,∞) (12) O(T 2) O(T 4) O(T 2) O(T 4)

Table 2: Size of the LP extended formulations

Let us define

λi = da+1,b − l
⌈da+1,i−1

l

⌉
(11)

to be the amount of production in period i. Let yt, for t < i, be a decision variable defined by

yt =

{
1 if there is positive production in t,
0 otherwise.

For the constraints, we use the same principle from the previous sections for each period j < i. Hence, we
obtain the following integer program.

αi = min l(

i∑
t=a+1

ptyt) + piλ
i (12a)

s.t.

j∑
t=a+1

yt ≥
⌈da+1,j

l

⌉
, j ∈ {a+ 1, · · · , i− 1}, (12b)

yt ∈ {0, 1}, t ∈ {a+ 1, · · · , i− 1} (12c)

We present the feasibility of a solution to (12).

Lemma 17. Let y be a feasible solution to (12) with given i. Then, there exists a corresponding feasible
solution x with the same objective function value.

The proof is omitted and is similar to the proof of Lemma 9. Observe that it can be easily shown that
the LP relaxation of (12) is integral. Identical techniques to those in Section 3.1 can be used to obtain an LP
formulation over the entire time horizon.

We end this section with a comparison of (12) and the previous formulations. Recall that (7) of S(l, u)
with u = kl, (10) of S(l, u) with u = kl+ ε, and (12) of S(l,∞) are comparable since all of them are assuming
that we know period i. Observe that (7b), (10b), and (12b) have the same form. This is because all of them
are related to the periods producing 0 or l. Let us compare (12) and (7) in detail. Recall that we assume
xt = 0 for t > i for S(l,∞) and xt ∈ {0, u} for t > i for S(l, u). For this reason, λi, the production quantity
in period i, in (6) and (11) are defined differently. Hence, it is not trivial to obtain (12) from (7) by setting
u =∞ and by dropping (7c) − (7e).

3.4 Fixed cost

We consider fixed cost for all of the previous results in this section. Let ft be the fixed cost in period t for
t = 1, · · · , T . If production is positive in period t, then cost ft occurs regardless of and in addition to the
quantity produced in the period. Recall that all the models presented in the previous sections rely on the
fact that it is best to delay the production, due to the non-increasing cost. Hence, in order to use the same
principle, we employ the following assumption on the fixed cost.

Non-increasing fixed cost f1 ≥ f2 ≥ · · · ≥ fT

Observe that, for all the models in this section, the parameters and constraints do not rely on the production
cost p1, · · · , pT and the binary variables yt’s represent whether positive production occurs in each period.

14

Hence, we can easily include the fixed cost in the objective functions without modifying the parameters and
constraints. The new objective functions for each case are as follows:

min
∑
t∈Sab

(ft + lpt)yt for (1a),

min
∑
t∈Al

(ft + lpt)yt + [fi + pi(λ
i − l)] +

∑
t∈Au

(ft + upt)yt for (7a) and (10a), and

min
∑i
t=a+1(ft + lpt)yt + (fi + piλ

i) for (12a).

4 Computational Experiment

In this section, we present a computational study of Algorithm 3 for S(lt, u) and the LP extended formulation
for S(l, u) with k = 2. All experiments were performed on Intel Xeon X5660 2.80 GHz dual core server with
32 GB RAM, running Windows Server 2008 64 bit. All algorithms are implemented in C#, where the LP
extended formation is solved by CPLEX.

To test the performance of the algorithms, we randomly generate 10 instances for each T ∈ {50, 60, 70} for
S(lt, u) and 10 instances for each T ∈ {20, 30, 40, 50, 60, 70} for S(l, u). Hence, we have 30 instances for S(lt, u)
and 60 instances for S(l, u). The instance generation procedure is similar to those in [10, 11]. Given mean
and standard deviation of the demand µd = 100 and σd = 60, respectively, we generate dt ∼ N(µd, σd) for t =

1, · · · , T , while we make sure dt ≥ 0. In order to generate non-increasing cost, we set pt = Round
(

5(10− t
T)
)
/5

for t = 1, · · · , T . For MOQ and capacity of S(lt, u), we set u = µd + σd and lt = µd − Round
(
t·0.2·σd

T

)
for

t = 1, · · · , T . For MOQ and capacity of S(l, u) with k = 2, we set l = µd and u = 2l.
Due to the large size of the LP extended formulation, for S(l, u) with T ≥ 50, we only consider variables

and constraints associated with production sequences Sab with |Sab| ≤ 10. In Table 3, we present the execution
times (in seconds) of (i) Algorithm 3 for S(lt, u) and (ii) Algorithm 3 and the LP extended formulation for
S(l, u) with k = 2. For each instance class and each algorithm, we report the minimum, average, maximum
execution times over 10 instances.

S(lt, u) S(l, u) with u = 2l
Algorithm 3 Algorithm 3 LP LP with Sab, |Sab| ≤ 10

T Min Avg Max Min Avg Max Min Avg Max Min Avg Max
20 0.1 0.1 0.2 1.1 1.4 4.2
30 0.7 1.0 1.4 6.9 7.7 8.2
40 3.5 4.7 6.7 39.9 43.3 48.9
50 7.5 9.0 11.8 8.8 11.4 16.1 3.1 3.5 4.3
60 23.4 26.6 34.2 26.9 32.9 46.3 4.8 6.1 8.1
70 62.0 68.4 85.4 71.0 82.7 114.2 8.5 9.8 10.3

Table 3: Performances of Algorithm 3 and the LP extended formulation

The execution times of Algorithm 3 grow slower than its theoretical bound O(T 7) for both S(lt, u) and
S(l, u) instances, where the execution times for S(lt, u) instances are smaller than those for S(lt, u) instances.
This is because the production bounds [lt, u] are tighter for the generated S(lt, u) instances and this enables
the algorithm to skip the calculation for several shortest path nodes. By comparing the execution times of
Algorithm 3 and the LP extended formulation for S(l, u), we observe that Algorithm 3 outperforms. However,
if we solve the LP extended formulation only with production sequences Sab with |Sab| ≤ 10, the execution
times of the LP extended formulation reduce substantially. Even though we consider only production sequences
with less than 10 time periods, the obtained solution was always optimal.

5 Conclusions

We identified the first polynomial case for the lot sizing problem with time dependent MOQ. On the practical
side, the non-increasing cost and non-increasing MOQ often occurs in procurement contracts. Note that these

15

non-increasing assumptions on cost and MOQ play important role in our proofs. However, a future research
could consider to relax one of the assumptions.

We also proposed the first LP extended formulations for the lot sizing problem with the presence of MOQ
requirement. The proposed formulations only work with constant MOQ and capacity and non-increasing cost
assumptions. Hence, LP extended formulations with time dependent setting or non-ordered costs could be a
future research direction.

6 Acknowledgment

We appreciate the helpful comments of the referees and an anonymous referee for finding a flaw in a proof.

References

[1] E. Musalem, R. Dekker, Controlling inventories in a supply chain: A case study, International Journal of
Production Economics 93–94 (2005) 179–188.

[2] Y. Zhao, M. Katehakis, Controlling inventories in a supply chain: A case study, Probability in the
Engineering and Informational Sciences 20 (2006) 257–270.

[3] M. Florian, M. Klein, Deterministic production planning with concave costs and capacity constraints,
Management Science 18 (1971) 12–20.

[4] A. Manne, Programming of economic lot sizes, Management Science 4 (1958) 115–135.

[5] H. Wagner, T. Whitin, Dynamic version of economic lot sizing model, Management Science 5 (1958)
89–96.

[6] E. Anderson, B. Cheah, Capacitated lot-sizing with minimum batch sizes and setup times, Physica 30–31
(1993) 137–152.

[7] C.-Y. Lee, Inventory replenishment model: lot sizing versus just-in-time delivery, Operations Research
Letters 32 (2004) 581–590.

[8] L. Li, C. Pun, D. Klabjan, Single item lot-sizing problem with minimum order quantity, Available from
http://www.klabjan.dynresmanagement.com.

[9] I. Okhrin, K. Richter, The linear dynamic lot size problem with minimum order quantity, International
Journal of Production Economics 133 (2011) 688–693.

[10] I. Okhrin, K. Richter, An O(t3) algorithm for the capacitated lot sizing problem with minimum order
quantities, European Journal of Operational Research 211 (2011) 507–514.

[11] B. Hellion, F. Mangione, B. Penz, A polynomial time algorithm to solve the single-item capacitated
lot sizing problem with minimum order quantities and concave costs, European Journal of Operational
Research 222 (2012) 10–16.

[12] Y. Pochet, Valid inequalities and separation for capacitated economic lot-sizing, Operations Research
Letters 7 (1988) 109–116.

[13] Y. Pochet, L. Wolsey, Polyhedra for lot-sizing with wagner-whitin costs, Mathematical Programming 18
(1994) 767–785.

[14] M. Constantino, Lower bounds in lot-sizing models: A polyhedral study, Mathmatics of Operations
Research 23 (1998) 101–118.

[15] M. V. Vyve, Linear-programming extended formulations for the single-item lot-sizing problem with back-
logging and constant capacity, Mathematical Programming 108 (2006) 53–77.

16

http://www.klabjan.dynresmanagement.com

[16] S. Anily, N. Tzur, L. Wolsey, Multi-item lot-sizing with joint set-up costs, Mathematical Programming
119 (2009) 79–94.

[17] Y. Pochet, L. Wolsey, Single item lot-sizing with non-decreasing capacities, Mathematical Programming
42 (2010) 142–150.

[18] G. Angulo, S. Ahmed, S. Dey, Semi-continuous network flow problems, Mathematical Programming
145 (1-2) (2014) 565–599.

[19] Y. Pochet, L. Wolsey, Production planning by mixed integer programming, Springer, 2006.

[20] Y. Pochet, L. Wolsey, Lot-sizing with constant batches: Formulation and valid inequalities, Mathematics
of Operations Research 67 (1993) 297–323.

APPENDIX

A Proof of Lemmas

Proof of Lemma 1

For a contradiction, let us assume that there exists a period j such that lj ≤ x∗j < u and i < j. Let us define
δ = min{x∗i − li, I∗i , · · · , I∗j−1, u − x∗j} > 0. Observe that (i) x∗i − δ ≥ li, (ii) x∗j + δ ≤ u, and (iii) I∗t − δ ≥ 0
for t = i, · · · , j. Hence, we can postpone δ units of production from period i to period j. This contradicts the
delayed optimal assumption. �

Proof of Lemma 2

We have two cases.

1. Case: li < x∗i < u
For a contradiction, let us assume that there exists a period j such that lj < x∗j = u and j < i. Let us
define δ = min{x∗j − lj , I∗j , · · · , I∗i−1, u− x∗i } > 0. Observe that (i) x∗j − δ ≥ lj , (ii) x∗i + δ ≤ u, and (iii)
I∗t − δ ≥ 0 for t = j, · · · , i− 1. Hence, we can postpone δ units of production from period j to period i.
This contradicts the delayed optimal assumption.

2. Case: x∗i = u
For a contradiction, let us assume that there exists a period j before i such that lj < xj ≤ u. This
contradicts the selection of period i.

Therefore, we have x∗t ∈ {0, lt} for t < i. �

Proof of Lemma 3

We need to show xt ∈ {0} ∪ [lt, u] and Īt ≥ 0 for all t. Note that we are given Īa ≥ 0. We use induction to
show Īt ≥ 0 based on Īt−1 ≥ 0.

1. For t ∈ Ar \ {r}, if Īt−1 ≥ d̄t, then Īt = Īt−1 − d̄t ≥ 0. If Īt−1 < d̄t, then Īt = Īt−1 + lt − d̄t ≥ Īt−1 since
d̄t ≤ lt. Hence, for both cases, Īt ≥ 0 for t ∈ Ar \ {r}. Also, clearly xt ∈ {0, lt} for t ∈ Ar \ {r}.

2. For period r, we only consider the case lr ≤ d̄r − Īr−1. It follows xr = d̄r − Īr−1 ≥ lr, xr = d̄r − Īr−1 ≤
d̄r ≤ u, and Īr = Īr−1 + xr − d̄r = Īr−1 + (d̄r − Īr−1)− d̄r = 0.

3. For t ∈ A0, we have d̄t = 0. Also, Īr = 0. Hence, we have Īt = Īt−1 = 0 and xt = 0.

4. For t ∈ Aq, we have d̄t+1,k ≤
∑k
i=t+1 xi by Algorithm 2. Also, Īq−1 ≥ 0. Then, for t ∈ Aq, we have

Īt =
∑t
i=q xi − d̄qt = (nu− d̄qk) +

∑t
i=q xi − d̄qt =

∑k
i=t+1 xi − d̄t+1,k ≥ 0. Also, xt ∈ {0, u} for t ∈ Aq.

5. For t ∈ Ak, we have d̄t = 0. Also, Īk = 0, and we have Īt = Īt−1 = 0 and xt = 0.

We showed that Īt ≥ 0 for all t. Note that Algorithm 2 produces x satisfying xt ∈ {0}∪ [lt, u] for all t. Hence,
Algorithm 2 produces a feasible solution. �

17

Proof of Lemma 4

Let x and Ī be the solution and the corresponding inventory from Algorithm 2 with input parameters
d̄, r∗, q∗, k∗, and n∗. Note that we must have xt = x∗t for t ∈ A∗0 ∪ A∗k by the definition of A∗0, A

∗
k. Hence, it

suffices to check the periods in A∗r and A∗q .
Let us first consider A∗q . Observe that Steps 9-12 of Algorithm 2 postpone the production as late as possible

while ensuring the inventories are non-negative. Observe also that x produces exactly n times in A∗q . Hence,
Algorithm 2 produces an optimal solution in A∗q .

Let us next consider A∗r . Let h be the number of periods such that x and x∗ are different, and let
H = {i1, i2, · · · , ih} be the set of periods such that x and x∗ are different. We consider several cases.

1. If xi1 = li1 and x∗i1 = 0, then we have Īi1−1 < d̄i1 from Algorithm 2. Then, Ī∗i1 = Ī∗i1−1 − d̄i1 =
Īi1−1 − d̄i1 < 0 implies x∗ is infeasible.

2. If xi1 = 0 and x∗i1 = li1 , we consider the case when xi2 = li2 and x∗i2 = 0. We generate a new solution x̂
such that (i) x̂t = x∗t for t 6= i1, i2, (ii) x̂i1 = 0, (iii) x̂i2 = li1 . Solution x̂ is the same as x∗ except that
the production of x∗ in period i1 is postponed to period i2. We have x̂t = xt for t ≤ i2−1, which implies
Ît ≥ 0 for t ≤ i2 − 1. Further, since Îi2 = Ī∗i2 and x̂t = x∗t for t > i2, we also have Ît = Ī∗t for t ≥ i2.
Observe that x̂i2 = li1 ∈ [li2 , u] since li1 ≥ li2 . Therefore, x̂ is a feasible solution and x∗ is postponed.
This contradicts the delayed optimal assumption. This case shows that xi2 = 0 and x∗i2 = li2 .

We next consider period i3 with the given remaining case xi1 = xi2 = 0, x∗i1 = li1 , and x∗i2 = li2 . Consider the
following procedure started with c = 3 (corresponding to ic).

Step 1 Let xt = 0 and x∗t = lt for t ∈ {ij |j = 1, · · · , c − 1}. If c = h, we terminate the procedure.
Otherwise go to Step 2.
Step 2 If xic = lic and x∗ic = 0, then we generate x̂ by postponing the production of x∗ in period ic−1

to period ic.
Step 3 If xic = 0 and x∗ic = lic , we increase c by 1 and go to Step 1.

Observe that the above procedure asserts that xt = 0 and x∗t = lt for t ∈ H \{ih}. Next, we have the following
sub-cases.

1. Let ih < r∗.

(a) Let xih = lih and x∗ih = 0. In this case, we can postpone the production in period ih−1 to period
ih using the same technique as in the previous case when xi1 = 0, x∗i1 = li1, xi1 = li2, and x∗i1 = 0.
This contradicts the delayed optimal assumption.

(b) The remaining case is xih = 0 and x∗ih = lih . Observe that xt = 0 and x∗t = lt for t ∈ H, xt = x∗t
for t ∈ A∗r \H. By Lemma 19 in Appendix B, we must have Ī∗r = 0 and Īr = 0 since now we are
executing GREEDY with optimal parameters. However, since xt < x∗t for t ∈ A∗r \H, we cannot
have Īr = Ī∗r . This contradicts Lemma 19.

2. Let ih = r∗. Again, note that xt = 0 and x∗t = lt for t ∈ H \ {ih}. In order to have the same inventory
Ī∗r = Īr, we must have xr > x∗r . Observe that xt ≤ x∗t for t ≤ r∗ − 1, and xr > x∗r . By Lemma 20 in
Appendix B, x and x∗ have the same cost in A∗r .

Therefore, Algorithm 2 produces an optimal solution for A∗r , and x has as low cost as x∗, and thus x is an
optimal solution. �

Proof of Lemma 8

Note that
∑
t∈Au

x∗t must be a multiple of u by the definition of Au. Hence, we can write
∑
t∈Au

x∗t =

di+1,b − δ̄i − qu, where q is an integer. We have two cases.

1. Let us first consider the case δ̄i > 0.

(a) If q = 0, we have nothing to prove.

18

(b) If q < 0, then
∑
t∈Au

x∗t = di+1,b−δ̄i+|qu| > di+1,b implies I∗b > 0, which contradicts the assumption
of a production sequence.

(c) If q ≥ 1, then we have I∗i > qu = qkl. Since dt ≤ u for every t, we derive
∑
t∈Au

x∗t = di+1,b − δ̄i −
qu ≤ (b− i− q)u− δ̄i < (b− i)u. This implies that x∗ must have at least one period in Au such that
x∗ = 0. Then, by Lemma 23 in Appendix B, x∗ can be postponed. This contradicts the delayed
optimal assumption.

2. Let us now consider the case δ̄i = 0. Recall that
∑
t∈Au

x∗t = di+1,b − δ̄i − qu = di+1,b − qu for this case.

(a) If q = 1, we have nothing to prove.
(b) If q = 0, then

∑
t∈Au

x∗t = di+1,b and I∗b = 0 imply I∗i = 0. Hence, Sab can be broken into two
sequences. This contradicts the definition of a production sequence.

(c) If q < 0, then
∑
t∈Au

x∗t = di+1,b−qu = di+1,b+ |qu| > di+1,b implies I∗b > 0. This is a contradiction
since Sab would not be a production sequence.

(d) If q ≥ 2, since dt ≤ u for every t, we can derive
∑
t∈Au

x∗t = di+1,b − qu ≤ (b − i − q)u < (b − i)u.
This implies that x∗ must have at least one period r in Au such that x∗r = 0. Then, by Lemma 23
in Appendix B, x∗ can be postponed. This contradicts the delay assumption.

The above two cases end the proof. �

Proof of Lemma 9

Let us define x by

xt =

 lyt for t ∈ Al \ {i}
λi for t = i
uyt for t ∈ Au.

The proof of the first statement consists of two parts: (i) upper and lower bound constraints of x and (ii)
non-negative inventory over all periods.

1. For the upper and lower bound constraints, observe that xt satisfies the constraint for all t, t 6= i. For
xi, we have to distinguish four cases based on (6).

(a) Case:
⌈
da+1,i−1

l

⌉
≤ da+1,i+δ

i−ρi
l − k + 1

The upper bound of xi is derived from

xi = da+1,i + δi − l(da+1,i+δ
i−ρi

l − k + 1) = ρi + kl − l ≤ l + kl − l = kl = u,

where the inequality holds since ρi ≤ l. The lower bound of xi follows from

xi = da+1,i + δi − l(da+1,i+δ
i−ρi

l − k + 1) = ρi + kl − l ≥ kl − l = (k − 1)l ≥ l,

where the two inequalities hold since ρi ≤ l and k ≥ 2, respectively.

(b) Case:
⌈
da+1,i−1

l

⌉
>

da+1,i+δ
i−ρi

l − k + 1

The upper bound of xi is established by

xi = da+1,i + δi −
⌈
da+1,i−1

l

⌉
l < da+1,i + δi − l(da+1,i+δ

i−ρi
l − k + 1) = (ρi − l) + kl ≤ kl = u,

where the last inequality holds since ρi ≤ l. For the lower bound of xi, we have two cases.

i. If (i) δ̄i = 0 or (ii) δ̄i > 0 and di + δ̄i − ϕi < l, then we have δi ≥ u. We also have

xi = da+1,i + δi −
⌈da+1,i−1

l

⌉
l ≥ da+1,i−1 + δi −

⌈da+1,i−1

l

⌉
l > −l + δi ≥ u− l = (k − 1)l ≥ l,

where the first strict inequality holds by the property of the ceiling function.

19

ii. If δ̄i > 0 and di + δ̄i − ϕi ≥ l, then di + δi − ϕi ≥ l. We derive

xi = da+1,i + δi −
⌈
da+1,i−1

l

⌉
l = da+1,i−1 + di + δi −

⌈
da+1,i−1

l

⌉
l

≥ da+1,i−1 + ϕi + l −
⌈
da+1,i−1

l

⌉
l

= da+1,i−1 +
⌈
da+1,i−1

l

⌉
l − da+1,i−1 + l −

⌈
da+1,i−1

l

⌉
l = l,

where the third equality (third line) holds by the definition of ϕi in (3).

Hence, we showed l ≤ xi ≤ u for all cases.

2. To establish non-negativity of inventory, we have three parts.

(a) For j ∈ Al \ {i}, we have
∑j
t=a+1 xt =

∑j
t=a+1 lyt ≥ da+1,j , where the inequality holds by (7b).

(b) For period i, let us consider (7b) for period i− 1 and (7c). By plugging (7e) into (7c), we have∑i−1
t=a+1 yt ≥

⌈
da+1,i−1

l

⌉
and

∑i−1
t=a+1 yt ≥

da+1,i+δ
i−ρi

l − k + 1.

Note that a feasible solution y must satisfy∑i−1
t=a+1 yt ≥ max{

⌈
da+1,i−1

l

⌉
,
da+1,i+δ

i−ρi
l − k + 1}.

By multiplying by l, we derive∑i−1
t=a+1 xt =

∑i−1
t=a+1 lyt ≥ max{

⌈
da+1,i−1

l

⌉
,
da+1,i+δ

i−ρi
l − k + 1}l.

Hence, we obtain

Ii−1 =
∑i−1
t=a+1 xt − da+1,i−1 ≥ max{

⌈
da+1,i−1

l

⌉
,
da+1,i+δ

i−ρi
l − k + 1}l − da+1,i−1.

Now, we derive

Ii = Ii−1 + xi − di

≥
[
max{

⌈
da+1,i−1

l

⌉
,
da+1,i+δ

i−ρi
l − k + 1}l − da+1,i−1

]
+
[
da+1,i + δi −max{

⌈
da+1,i−1

l

⌉
,
da+1,i+δ

i−ρi
l − k + 1}l

]
− di

= da+1,i − da+1,i−1 + δi − di = δi ≥ 0.

Hence, Ii ≥ δi ≥ 0.

(c) Let us consider j ∈ Au. Since we know Ii ≥ δi, we obtain Ii +
∑j
t=i+1 xt ≥ δi +

∑j
t=i+1 xt =

δi +
∑j
t=i+1 uyt ≥ da+1,j , where the last inequality holds by (7d).

Hence, any feasible y has a corresponding feasible solution x.
Let us next consider the second statement. From case 2(b) of this proof, we know Ī∗i ≥ δi. Since we want

to show Ī∗i = δi, let us assume Ī∗i > δi for a proof by contradiction. We derive

Ī∗b =
∑
t∈Al

x̄∗t +
∑
t∈Au

x̄∗t − da+1,b

= (
∑
t∈Al

x̄∗t − da+1,i) + (
∑
t∈Au

x̄∗t − di+1,b)

= Ī∗i + (
∑
t∈Au

x̄∗t − di+1,b)

> δi + (
∑
t∈Au

x̄∗t − di+1,b)

= 0.

Note that Ī∗b > 0 contradicts the property of a production sequence. Also, we consider SaT with I∗T = 0.
Hence, we must have Ī∗i = δi. We can also show Ī∗b = 0 by changing the inequality to equality in the above
derivation. �

20

Proof of Lemma 11

Observe that (8) can be decomposed into b − a sub-problems given zi’s satisfying (8g). Let us define linear
program LP (z̄i) for given period i and z̄i ∈ [0, 1], and let LP ∗(z̄i) be the optimal objective function value of
LP (z̄i).

LP ∗(z̄i) = min l(
∑
t∈Ai

l

pty
i
t) + pi(λ

i − l)z̄i + u(
∑
t∈Ai

u

pty
i
t) (13a)

s.t.

j∑
t=a+1

yit ≥
⌈da+1,j

l

⌉
z̄i, j ∈ {a+ 1, · · · , i− 1}, (13b)

i∑
t=a+1

yit ≥
(
da+1,i + δi − ρi

l
− k + 2

)
z̄i, (13c)

j∑
t=i+1

yit ≥
⌈di+1,j − δi

u

⌉
z̄i, j ∈ {i+ 1, · · · , b}, (13d)

yii = z̄i, i ∈ Sab, (13e)

yit ≤ z̄i, t ∈ Sab, i ∈ Sab, (13f)

0 ≤ yit ≤ 1, t ∈ Sab, i ∈ Sab (13g)

We first show that, given i and z̄i ∈ [0, 1], we have LP ∗(z̄i) = αiz̄i. Let us consider LP (z̄i) based on three
different values of z̄i.

1. Case: z̄i = 1
Observe that LP (1) is equivalent to (7). Hence, LP ∗(1) = αi = αiz̄i.

2. Case: z̄i = 0
Due to (13f), we have LP ∗(0) = 0 = αiz̄i.

3. Case: 0 < z̄i < 1
Let y∗i be an optimal solution to LP (1). We claim that ȳi = αiy∗i is an optimal solution to LP (z̄i).
For a contradiction, suppose that ȳi is not an optimal solution and, instead, ỹi is an optimal solution

to LP (z̄i) with ȳi 6= ỹi. Let us define ŷi = ỹi

αi . By plugging ỹi = αiŷi into (13), we obtain a problem

equivalent to (7), and thus ŷi is an optimal solution to LP (1). Note that we have y∗i = ȳi

αi 6= ỹi

αi = ŷi.

(a) If ỹi has strictly greater optimal objective function value than ȳi, then ŷi also has strictly greater
optimal objective function value than y∗i. Hence, y∗i is not an optimal solution to LP (1). This is
a contradiction.

(b) If ỹi and ȳi have the same optimal objective function value, then both ŷi and y∗i are optimal to
LP (1). Hence, ȳi is an optimal solution to LP (z̄i).

We obtain LP ∗(z̄i) = z̄iLP ∗(1) = αiz̄i for 0 < z̄i < 1.

Hence, we conclude that LP ∗(z̄i) = αiz̄i for given i and any z̄i ∈ [0, 1].
Next, observe that the LP relaxation of (8) can be rewritten as

min{
b∑

i=a+1

LP ∗(zi)zi : (8g), 0 ≤ zi ≤ 1}. (14)

Further, since we have LP ∗(z̄i) = αiz̄i, (14) is equivalent to

min{
b∑

i=a+1

αizi :

b∑
i=a+1

zi = 1, 0 ≤ zi ≤ 1}, (15)

which is clearly integral. Hence, the LP relaxation of (8) gives an optimal solution for production sequence
Sab. �

21

Proof of Lemma 15

Let us consider the first statement. For a contradiction, suppose
∑i−1
t=a+1 x

∗
t > l

⌈
da+1,i−1

l

⌉
, or equivalently,∑i−1

t=a+1 x
∗
t ≥ l

(
1 +

⌈
da+1,i−1

l

⌉)
= l
⌈
da+1,i−1

l

⌉
+ l. Let r be the last period with positive production before i.

Then, we know that
∑i−1
t=a+1 x

∗
t =

∑s
t=a+1 x

∗
t ≥ l

⌈
da+1,i−1

l

⌉
+ l for any period s such that r ≤ s ≤ i− 1. Let

x̄ be the same solution as x∗ except that x̄ postpones l unites of production of x∗ from period r to i. Then,
for period s such that r ≤ s ≤ i− 1,∑s

t=a+1 x̄t = −l +
∑s
t=a+1 x

∗
t ≥ l

⌈
da+1,i−1

l

⌉
≥ l
⌈
da+1,s

l

⌉
holds, which proves feasibility of x̄. Hence, x∗ is postponed and this contradicts the delayed optimal assump-
tion.

The second statement can be derived from I∗i−1 =
∑i−1
t=a+1 x

∗
t − da+1,i−1. �

Proof of Lemma 16

From Lemma 15, we know that
∑i−1
t=a+1 x

∗
t = l

⌈
da+1,i−1

l

⌉
. From Lemma 14, we know that x∗t = 0 for t > i.

Hence, we must have x∗i = di,b − I∗i−1 = di,b −
(
l
⌈
da+1,i−1

l

⌉
− da+1,i−1

)
= da+1,b − l

⌈
da+1,i−1

l

⌉
, where I∗i−1 is

substituted from Lemma 15. �

B Additional Lemmas

Lemma 18. If lr > d̄r − Īr−1 in Algorithm 2, then GREEDY cannot produce a solution for production
sequence Sab.

Proof. Note that lr > d̄r− Īr−1 implies that we must produce at least lr in order to prevent negative inventory.
Hence, we have Īr = Īr−1 + lr− d̄r > 0. However, since d̄ from Algorithm 1 satisfies

∑
t∈Aq

d̄t = nu and d̄t = 0

for t ∈ A0 ∪ Ak, we know that Īr > 0 implies Īb > 0. Since the ending inventory Īb is positive, the algorithm
fails to produce a solution for production sequence Sab.

Lemma 19. Let x∗ be an optimal solution with parameters d̄, r∗, q∗, k∗, and n∗, and let Ī∗ the corresponding
inventory with the modified demand d̄. Then, Ī∗r = 0, Ī∗k = 0, Ī∗t = 0 for t ∈ A∗0 ∪A∗k.

Proof. Observe that we have
∑b
t=a+1 dt =

∑b
t=a+1 d̄t =

∑k
t=a+1 d̄t since there is no demand after period k for

d̄. Hence, we must have Ī∗k = 0. Since x∗t = 0 for t ∈ A∗k, Ī∗k = 0 implies Ī∗k = Ī∗t = 0 for t ∈ A∗k. Similarly,
since d̄qk = n∗ · u =

∑
t∈A∗

q
x∗t , we must have Ī∗q−1 = 0. This implies Ī∗r and Ī∗t = 0 for t ∈ A∗0 since x∗t = 0 for

t ∈ A∗0. Therefore, given d̄, r∗, q∗, k∗, and n∗, we must have Ī∗r = 0, Ī∗k = 0, Ī∗t = 0 for t ∈ A∗0 ∪A∗k.
Note that Lemma 19 does not contradict the requirement that inventory is positive in a production sequence

for an optimal solution. This is because Lemma 19 is based on d̄ while the production sequence requirement
is with respect to d.

Lemma 20. Let x̃ and x be feasible solutions. If there exist two periods i and j such that (i) x̃t ≥ xt for
t ≤ i, (ii) x̃t = xt for i < t < j, and (iii) x̃t ≤ xt for t ≥ j, then x̃ cannot have lower cost than x.

Proof. Let A = {t|x̃t > xt, t ≤ i} and B = {t|x̃t < xt, t ≥ j}. Let also εt = x̃t − xt > 0 for t ∈ A and
δt = xt− x̃t > 0 for t ∈ B. Observe that, since we consider a production sequence, x̃t and x have same ending
inventories of 0, which implies

∑
t∈A εt =

∑
t∈B δt. Then, we derive∑

i∈Sab
pix̃i −

∑
i∈Sab

pixi =
∑
t∈A ptεt −

∑
t∈B ptδt

≥ pi
∑
t∈A εt − pj

∑
t∈B δt (pt ≥ pi for t ≤ i and pt ≤ pj for t ≥ j)

= pi
∑
t∈A εt − pj

∑
t∈A εt (since

∑
t∈A εt =

∑
t∈B δt)

= (pi − pj)
∑
t∈A εt

≥ 0.

22

Hence, x̃ cannot have lower cost than x.

Lemma 21. Let h be a period in Al such that I∗h > l and x∗h = 0. Let r < h be the latest period such that
x∗r = l and x∗t = 0 for t = r + 1, · · · , h. Let x̄ be the same solution as x∗ except x̄r = 0 and let Ī be the
corresponding inventory. Then, Īt > 0 for t = a+ 1, · · · , h.

Proof. Since h ∈ Al, we know that I∗h > l implies x∗ has at least two periods with positive production up until
period h. Hence, we have periods with positive production that can be reduced to zero.

1. For period t ∈ {a+ 1, · · · , r− 1}, observe that Īt = I∗t since x∗ and x̄ are the same up until period r− 1.
2. For period t ∈ {r, · · · , h}, we know I∗r ≥ I∗r+1 ≥ · · · ≥ I∗h−1 ≥ I∗h > l since I∗h > l and x∗t = 0. Then, we

derive Īt = I∗t − l ≥ I∗h − l > 0 for t = r, · · · , h.

Hence, x̄ has positive inventories up to period h.

Lemma 22. For q ≥ 1, if I∗i > qkl, then we can reduce qkl units of replenishments of x∗ in Al while
maintaining non-negative inventory up to period i.

Proof. Let x̄ be a solution, which initially is set to x∗. We alter x̄ iteratively. We can first reduce the production
of x̄ in period i by setting x̄i = l+ (x∗i mod l). Observe that, in order to reduce qkl units total, the remaining
amount to be reduced is qkl − (x∗i − x̄i) ≥ (q − 1)kl + 2l, where the inequality holds since x∗i − x̄i ≤ (k − 2)l.
Observe also that Īi > qkl− (x∗i − x̄i) ≥ (q− 1)kl+ 2l > l. Hence, we satisfy the condition of Lemma 21 with
h = i and additional restriction r < i, and we can reduce the production by l at a period in {a+ 1, · · · , i− 1}.
By iteratively applying Lemma 21 and continuously updating x̄, we can reduce the production by l at each
iteration until we have 0 ≤ Īi < l. This implies that we can reduce qkl units of x∗ in Al with non-negative
inventories up to period i.

Lemma 23. For q ≥ 1, suppose I∗i > qkl. Then there cannot exist a period in Au with no production.

Proof. Let us assume that there is a period in Au with no production. As in the proof of Lemma 22, let x̄
be a solution initially set to x∗. By Lemma 22, we can reduce up to qkl units of x∗ in Al while maintaining
feasible inventories up to period i. Let us reduce kl of x̄ in Al and let B be the periods that are reduced, i.e.,
B = {t|0 = x̄t < x∗t = l, t ∈ Al}. Let r be the earliest period that has zero production in Au. Let us set
x̄r = kl.

1. We have Īt ≥ 0 for t = a+ 1, · · · , i by Lemma 22.
2. Note that x∗t = u for t = i+1, · · · , r−1 by the definition of r and Au. Note also that, by the assumption,
dt ≤ u. Hence, we have 0 ≤ Īi ≤ Īi+1 ≤ Īi+2 ≤ · · · ≤ Īr−1 since Īi ≥ 0.

3. Observe that
∑r
t=a+1 x̄t =

∑r
t=a+1 x

∗
t since we postpone kl in B to period r. This implies Īt = I∗t > 0

for t = r, · · · , b.

Therefore, x̄ is feasible and x∗ is postponed. This contradicts the delayed optimal assumption of x∗.

Lemma 24. If period i has infinite capacity, and thus di + δ̄i can be covered in period i, then I∗i−1 = ϕi.

Proof. Suppose I∗i−1 6= ϕi for a contradiction. Since I∗i−1 must be at least ϕi, I∗i−1 < ϕi implies that x∗ is
infeasible. Hence, let us assume I∗i−1 > ϕi. Since all productions in Al \ {i} are l, inequality I∗i−1 > ϕi implies
I∗i−1 ≥ ϕi + l. Let r be the earliest period before i− 1 such that x∗r > 0 and I∗t ≥ l for t = r, · · · , i− 1.

1. If such an r exists, we can postpone l from period r to i− 1. Let x̄ and Ī be the postponed new solution
and the corresponding inventory. Then, it is easy to see that (i) Īt = I∗t − l ≥ 0 for t = r, · · · , i− 1, and
(ii) x̄r = x∗r + l = l or 2l since x∗r ∈ {0, l} for r ∈ Al \ {i}, satisfying upper bound constraints. Hence, x∗

can be postponed and this contradicts the delay assumption.
2. If r does not exist, we consider two cases.

(a) Case: x∗i−1 = l
We move l units from period i − 1 to i. Since we assume period i has infinite capacity, x∗ can be
postponed. This contradicts the delayed optimal assumption.

23

(b) Case: x∗i−1 = 0
Let s be the last period before i − 1 such that x∗s > 0. Note that I∗s ≥ I∗s+1 ≥ · · · ≥ I∗i−1 ≥ ϕi + l
since x∗t = 0 for t = s+1, · · · , i−1 and dt ≤ l for t = s+1, · · · , i−1 by the demand assumption. Let
us generate x̄ by postponing l units from period s to i−1. Then, it is easy to see that Īt = I∗t − l ≥ 0
for t = s, · · · , i− 2 and Īi−1 = I∗i−1 ≥ 0. Hence, x∗ can be postponed and this contradicts the delay
assumption.

Hence, we must have I∗i−1 = ϕi.

Lemma 25. The matrix of (7) is totally unimodular.

Proof. Let us add slack variables sa+1, · · · , sb to (7). By (7e), we have yi = 1. Plugging this into (7c), we
obtain an equation system with (b − a) rows and 2(b − a) columns. Let A be the corresponding (b − a) by
2(b− a) matrix. In other words, A is the augmented form of the matrix of (7) with slack variables. A has the
structure depicted in Figure 3a. The gray, lined, and the empty cells represent the elements with 1,−1, and
0, respectively. Observe that each row of A represents a period. Let us generate matrix B by the following
elementary row operations on A:

1. new jth row := jth row - (j − 1)th row, for j = a+ 2, · · · , i
2. new jth row := jth row - (j − 1)th row, for j = i+ 2, · · · , b.

This yields matrix B with the structure presented in Figure 3b. To generate A from B, we execute

1. new jth row := jth row + (j − 1)th row, for j = a+ 2, · · · , b− 1 such that j 6= i+ 1.

Since A and B can be generated from each other only by elementary row operations, matrices A and B are
row equivalent. By a well-known result, B is totally unimodular since it contains no more than one 1 and no
more than one −1 in each column. Therefore, A is totally unimodular.

1 -1

⋮ ⋱ -1

⋮ ⋯ 1 ⋱

1 ⋯ 1 ⋱

1 ⋱

⋮ ⋱ ⋱

⋮ ⋱ ⋱ -1

1 ⋯ ⋯ 1 -1

𝑎 + 1

𝑖 − 1

𝑖

𝑖 + 1

𝑏

⋮

⋮

⋮

𝑎 + 1 𝑖 − 1 𝑖 𝑖 + 1 𝑏
Slack variables

⋯ ⋯ ⋯

(a) Augmented matrix of (7)

1 -1

⋱ 1 -1

1 1 ⋱

1 ⋱

1 1 ⋱

⋱ 1 ⋱

⋱ 1 -1

1 1 -1

𝑎 + 1

𝑖 − 1

𝑖

𝑖 + 1

𝑏

⋮

⋮

⋮

𝑎 + 1 𝑖 − 1 𝑖 𝑖 + 1 𝑏
Slack variables

⋯ ⋯ ⋯

(b) Row equivalent matrix of (7)

Figure 3: Structure of the matrices

C Possible Cases of A∗r, A
∗
0, A

∗
q, and A∗k

In this section, we present all possible cases of A∗r , A
∗
0, A

∗
q , and A∗k based on r∗, q∗, k∗. Observe that we have

r∗ ≤ q∗ ≤ k∗ based on the definitions of r∗, q∗, k∗. Hence, we have

1. if q∗ = a+ 1, then r∗ is not defined and A∗r = A∗0 = ∅,
2. if r∗ + 1 = q∗, then A∗0 = ∅,
3. if r∗ = k∗, then q∗ is not defined and A∗0 = A∗q = ∅, and
4. if k∗ = b, then A∗k = ∅.

24

Considering the above cases together, we have the following all possible combination of (r∗, q∗, k∗) and the
existence of A∗r , A

∗
0, A

∗
q , and A∗k.

Case 1. If r∗ = k∗ < b, then A∗r and A∗k are naturally defined.
Case 2. If r∗ = k∗ = b, then A∗r is defined.
Case 3. If r∗ < k∗ < b, a+ 1 < q∗, and r∗ + 1 < q∗, then A∗r , A

∗
0, A

∗
q , and A∗k are defined.

Case 4. If r∗ < k∗ < b, a+ 1 < q∗, and q∗ = r∗ + 1 then A∗r , A
∗
q , and A∗k are defined.

Case 5. If r∗ < k∗ < b and a+ 1 = q∗, then A∗q , and A∗k are defined.
Case 6. If k∗ = b, a+ 1 < q∗, and r∗ + 1 < q∗, then A∗r , A

∗
0, and A∗q are defined.

Case 7. If k∗ = b, a+ 1 < q∗, and q∗ = r∗ + 1, then A∗r and A∗q are defined.
Case 8. If k∗ = b and a+ 1 = q∗, then A∗q is defined.

(16)

D Derivation of δi

In this section, we derive δi in (4). We have the following three cases.

1. If δ̄i > 0 and di + δ̄i − ϕi ≥ l, then the actual amount needed in period i is greater than or equal to the
lower bound l. Hence, we can satisfy the lower bound requirement. The upper bound requirement is
assured by a constraint later. Therefore, in this case, we do not need to adjust the forwarded demand.

2. If δ̄i > 0 and di + δ̄i − ϕi < l, then positive production in period i implies I∗i = I∗i−1 + x∗i − di ≥
ϕi +x∗i − di ≥ ϕi + l− di > δ̄i. Note that I∗i > δ̄i ≥ 0 implies I∗b = I∗i +

∑
t∈Au

xt− di+1,b = I∗i − δ̄i > 0.
Hence, we have positive ending inventory and Sab is not a production sequence. To prevent this, we
need to forward more demand from Au to Al. Since the productions of Au are a multiple of u, we can
only forward a multiple of u. Hence, we forward the minimum amount u to Al. This increases the total
amount of forwarded demand from δ̄i to δ̄i + u.

3. If δ̄i = 0, then we have I∗i = 0 and this contradicts the definition of a production sequence. To prevent
this, we forward u to Al. Observe that we must have di+u−ϕi ≥ di+u− l ≥ di+(k−1)l ≥ (k−1)l ≥ l.
Hence, forwarding u instead of δ̄i = 0 satisfies the lower bound constraint.

Based on the arguments above, we define δi in (4). Note that, if δ̄i = 0, then we have di+δ
i−ϕi = di+u−ϕi ≥ l

regardless of the relationship of di + δ̄i − ϕi with respect to l. For this reason, we do not have to have two
cases for δ̄i = 0.

25

	Introduction
	Polynomial Case
	Case: S(ab) with I(b)=0
	Case: I(b)>0 for S(aT)
	Summary of Overall Algorithm

	Linear Programming Extended Formulation
	Case: S(l,u) with u = kl
	Case: S(l,u) with u = kl + e
	Case: Infinite capacity case
	Fixed cost

	Computational Experiment
	Conclusions
	Acknowledgment
	Proof of Lemmas
	Additional Lemmas
	Possible Cases of A(r),A(0),A(q),(A(k)
	Derivation of delta(i)

