
Algorithms for Lot-sizing with Supplier Selection

Diego Klabjan
Department of Industrial Engineering and Management Sciences

Northwestern University
Evanston, IL

d-klabjan@northwestern.edu

June 20, 2008

Abstract
The traditional lot-sizing problem is to find the least cost production lot-sizes in several time
periods. We consider the lot-sizing model together with simultaneous selection of suppliers,
which have variable and fixed cost. We first show that the resulting problem is polynomially
solvable in presence of equal capacities on production and supply. We also develop a fully
polynomial time approximation scheme.

1 Introduction

The lot-sizing problem has been extensively studied in the past. Wagner and Whitin’s dynamic
programming algorithm for solving the single-item single-stage lot-sizing problem was one of the
first important results on the subject, Wagner and Whitin (1958). Since this seminal work, the
model has been enhanced mostly in the direction of considering multi-item multi-stage problems.

In this work we consider the single-item single-stage lot-sizing problem with supplier selection.
We assume that a set of suppliers is given and in each time period we decide lot-sizes and a subset
of suppliers to use. With each supplier we associate the variable cost corresponding to the actual
cost of the material and the fixed cost of using a particular supplier. Let T = {1, . . . , t} be the
set of production periods and let N = {1, . . . , n} be the set of suppliers. The single-item lot-sizing
problem with supplier selection (LSSS) is formulated as the following mixed integer program

min
∑
i∈T

hisi +
∑
i∈T

∑
j∈N

(pi + cji)wji +
∑
i∈T

fpiyi +
∑
i∈T

∑
j∈N

fsjizji

si−1 + xi = di + si i ∈ T
xi ≤ Ciyi i ∈ T (1)

xi =
∑
j∈N

wji i ∈ T (2)

wji ≤ Kjizji i ∈ T, j ∈ N (3)
s0 = st = 0

x ≥ 0, w ≥ 0, s ≥ 0
y binary, z binary.

1

Here, xi, si represent the lot size and stock in period i, yi indicates whether a production set-up
cost must be incurred in period i, wji represents the amount sourced from supplier j in period
i, and zji indicates whether a fixed sourcing cost must be incurred with supplier j in period i.
Quantities hi, pi, fpi, and di are the holding cost, variable production cost, production set-up cost,
and demand in period i, respectively. Values cji and fsji represent the variable and fixed sourcing
set-up cost for supplier j in period i. C’s and K’s are production and supplying capacities, which
without loss of generality we assume are integral. This model assumes that for each unit we need
one unit of supply. Note that this is without loss of generality since otherwise we scale w and adjust
K’s accordingly. We assume that di is a positive integer for each i ∈ T . If Ci =∞ for every i, we
say that the problem is production uncapacitated. Similarly, if Kji =∞ for every i and j, we say
that the problem is supplier uncapacitated.

This model is clearly an extension of the single-item single-stage model. On the other hand,
it is a special case of the two stage model, where inventory at the second stage is not present.
We first present a polynomial algorithm for the case where all production capacities are equal
and all supplier capacities are identical. We also develop a fully polynomial time approximation
scheme (FPTAS). The scheme is an extension of the FPTAS for lot-sizing given by Van Hoesel
and Wagelmans (2001). Several non-trivial extensions are required since the sourcing problem
itself is NP-hard. We first give conditions under which a lot-sizing problem with non-polynomially
computable production and holding cost functions exhibits an FPTAS. Next we argue that these
conditions hold for our problem.

Our model without the fixed production cost, and supplier and production uncapacitated is
studied in Aghezzaf and Wolsey (1994). Bhatia and Palekar (2001) give a description of the extreme
vertices for the same case. Belvaux and Wolsey (2001) introduced models for various practical
lot-sizing problems and a specialized branch-and-cut optimization system. Federgruen and Tzur
(1991), Wagelmans et al. (1992), and Aggarwal and Park (1993) give improved algorithms with
a O(t log t) running time for the general uncapacitated problem, where t is the number of time
periods. Although the general case is NP-hard as shown in Florian et al. (1980), Florian and Klein
(1971) and van Hoesel and Wagelmans (1996) show that there exists a polynomial algorithm if the
order capacities are constant.

In Section 2 we give a polynomial algorithm for the equal capacities case. The FPTAS is given
in Section 3.

2 Polynomial Algorithm for Production and Supplier Equal Ca-
pacitated Case

We start with two observations that establish the computational complexity of LSSS.

Proposition 1. If LSSS is production uncapacitated and Kji = Kj for every time period i, i.e.
the suppliers capacities do not vary with time, then LSSS is NP-hard.

Proof. Given rational vectors u, v, a and a rational number b, the single node fixed-charge problem

2

reads

min
∑
j∈M

ujwj +
∑
j∈M

vjzj∑
j∈M

wj = b (4)

wj ≤ ajzj j ∈M
w ≥ 0,z binary.

This problem is NP-hard, see, e.g., Klose (2008).
Consider now a single time period, i.e. t = 1. Then the production uncapacitated LSSS problem

is equivalent to the single node fixed-charge problem. In (4) it suffices to consider M = N , aj = Kj ,
b = d1, and uj = p1 + cj1, vj = fsj1.

Proposition 2. If LSSS is supplier uncapacitated but production capacitated, the problem is NP-
hard.

Proof. Consider now a single supplier. Then the supplier uncapacitated LSSS problem is equiva-
lent to the single-item lot-sizing problem with production cost pi + c1i during time period i and
production setup cost fpi + fs1i for every time period i. This problem is NP-hard as shown in
Florian et al. (1980).

In the reminder of this section, we focus on the case where Ci = C for all i and Kji = K for
all j and i. If K > C, then we can set K = C without affecting optimality. Thus, without loss of
generality, we assume K ≤ C. For any i ∈ T, j ∈ T, j ≥ i we denote dij =

∑j
k=i dk.

Our polynomial algorithm relies on the Wagner-Whitin algorithm and it is based on dynamic
programming. It is also an extension of the equal capacity dynamic program presented in Florian
and Klein (1971), i.e. in their work K = ∞ or n = 1. Florian and Klein’s algorithm is based
on dynamic programming and a network representation of the myopic production cost. We follow
this framework; however, the myopic production cost problem in our case is more complicated and
special treatment is required.

Definition 1. Time periods u, v, u < v form a production sequence, denoted by Puv, if every optimal
production schedule in time periods u, u + 1, . . . , v with su = sv = 0 has positive inventory in the
intermediate time periods, i.e., su+1 > 0, su+2 > 0, . . . , sv−1 > 0.

A regeneration point is a time period u with su = 0 for an optimal solution. It is clear that the
production decision for periods after a regeneration point is independent of the production decision
prior to that regeneration point. Every regeneration point essentially decomposes the problem into
two sub-problems. If u is a regeneration point, then an optimal solution to the problem can be
found independently by finding solutions to the problem for the first u periods and the last t − u
periods. Furthermore, every optimal solution can be decomposed to several production sequences
(each production sequence starts and finishes with a regeneration point). Let Fu be the cost
associated with an optimal solution over periods u + 1, . . . , t, and buv be the cost associated with
a production sequence over periods u+ 1, . . . , v. We have the following recursion:

Ft = 0
Fu = min

u<v≤t
{buv + Fv} u = 0, . . . , t− 1.

3

If we can calculate buv in polynomial time for given u and v, we can unwind this recursion
to calculate F0, which yields an optimal solution to LSSS. The Wagner-Whitin algorithm and
the algorithm from Florian and Klein (1971) use the same recursive relationship. In these two
algorithms it is relatively easy to derive a polynomial algorithm for evaluating buv. In our case,
due to the presence of several suppliers, it is more difficult to derive such an algorithm. Next we
present a polynomial algorithm for calculating buv.

Lemma 1. For each production sequence Puv there exists an optimal solution such that there is at
most one time period i with u+ 1 ≤ i ≤ v in which xi does not equal either 0, C, or some multiple
of K.

Proof. First we model production sequence Puv as a network, see Figure 1. Nodes u + 1, . . . , v
correspond to the production periods, and nodes SP1, . . . , SPn correspond to the suppliers. The
flow differences in the former nodes u+1, . . . , v equal to du+1, . . . , dv. For each period i, u+1 ≤ i ≤ v,
we add node i′ and arc (i′, i) to the network. The flow on such an arc corresponds to the production
lot xi. The production period nodes are connected in the usual way. Every node SPj is connected
with every node i′, and the flow on this arc corresponds to the amount of supply wji. Next we add
to the network a node 0 connected to all SPj nodes with du+1,v amount of flow going out of it. The
remaining nodes must preserve flow. The cost of every arc is assigned according to the underlying
decision variable.

Figure 1: Network

We consider an optimal production sequence Puv. Let x∗, w∗, s∗, y∗, z∗ be the corresponding
optimal solution. Arcs (i′, i) with y∗i = 1 have capacity C and arcs (SPj , i′) with z∗ji = 1 have
capacity K. All remaining (i′, i) and (SPj , i′) arcs have 0 capacity. All other arcs have an infinite
capacity. Flow implied by s∗, x∗ and w∗ corresponds to a solution to the minimum cost network
flow problem given in Figure 1.

There must exist an extreme or basic feasible solution to this minimum cost network flow model,
and therefore there exists an optimal solution in which x and w correspond to a cycle free solution.
Since Puv is a production sequence, the corresponding inventory levels satisfy su+1 > 0, su+2 >
0, . . . , sv−1 > 0. Suppose we have two periods i and j, i < j with xi and xj strictly between 0

4

and C, and K divides neither xi nor xj . Since xi =
∑

k∈N wki, it follows that K does not divide∑
k∈N wki. Together with 0 ≤ wki ≤ K for each k, we conclude that there exists a supplier a such

that 0 < wai < K. Similarly, there exists a supplier b such that 0 < wbj < K. By definition of a
production sequence positive flow is present on all arcs corresponding to sp, i ≤ p < j (the subset of
inventory arcs for time periods p). The cycle consisting of arcs (0, SP a), (SPa, i′), (i′, i), (p, p+ 1)
for i ≤ p < j, (j′, j), (SPb, j′) and (0, SP b) is composed entirely of arcs neither at the lower bound
nor at the upper bound. This is a contradiction to the cycle free property.

Let Puv be a production sequence and Xj =
∑j

i=u+1 xi, j = u + 1, . . . , v. We assume we have
a solution satisfying the property in Lemma 1. A consequence of Lemma 1 is that each Xj can
only take on a finite number of values. More importantly, this finite number is polynomial with
respect to v − u and n. The total production du+1,v equals to Cm+Km+ ε for unknown integers
m,m, and ε with 0 ≤ m ≤ v − u, 0 ≤ m ≤ n(v − u), 0 ≤ ε < K. Observe that ε = (du+1,v − Cm)
mod K. Since 0 ≤ m ≤ v−u, there are at most v−u possible values of ε, which depend on m. We
write εm = (du+1,v−Cm) mod K to reflect this. We conclude that there is an optimal production
schedule that produces C in m time periods, K in m time periods, and εm in a single time period.
All other lot sizes are 0.

Let Lj be the set of feasible values for Xj . This set includes all values of the form Cm+Km′+εm̄
such that 0 ≤ m ≤ j − u, 0 ≤ m′ ≤ n(j − u), and 0 ≤ m̄ ≤ v − u.

In order to calculate buv, we construct an auxiliary acyclic network in which s−t paths represent
feasible solutions to the production sequence Puv that satisfy the property in Lemma 1. If the
length of an s − t path equals to the total cost of the corresponding production feasible solution,
then solving the shortest path problem on this auxiliary network yields an optimal solution to the
production sequence Puv.

There is a one-to-one correspondence between each node in the auxiliary network and Xj = l,
where l ∈ Lj , u+1 ≤ j ≤ v. We label this node as (j, l). For each node (j, l) with l = C ·m+K ·m′,
we add an arc from (j, l) to (j + 1, l′) for each

l′ ∈ {C(m+ 1) +K ·m′} ∪ {C ·m+K(m′ + i)|0 ≤ i ≤ n}
∪ {C ·m+K(m′ + i) + εm̄|0 ≤ i ≤ n, 0 ≤ m̄ ≤ j − u} .

The first option corresponds to the case of producing C units in time period j+1, and the remaining
two options correspond to the case when the lot size is less than C. In the latter case, we can either
produce a multiple of K (the second case), or a multiple of K and the fractional part εm̄ for an
unknown m̄, 0 ≤ m̄ ≤ j − u (the third case). For each node (j, l) with l = C ·m+K ·m′ + εm̄ for
some m̄, we add an arc from (j, l) to (j + 1, l′) for

l′ ∈ {C(m+ 1) +K ·m′ + εm̄} ∪ {Cm+K(m′ + i) + εm̄|0 ≤ i ≤ n} .

The first case corresponds to producing exactly C units and the second case corresponds to pro-
ducing less than C, which implies that the production must be a multiple of K. Since l already
includes εm̄, it means that the “fractional” production εm̄ has already occurred before time period
j. Therefore by Lemma 1 in the remaining time periods we can produce only C or a multiple of
K.

To complete the construction, we add to the network a source node s and a sink node t. Node s
has outgoing arcs to every node (u+1, l), l ∈ Lu+1. In order to obtain s−t paths that correspond to
feasible production sequences, there is an arc from (v, l), l ∈ Lv, to node t only if l = Cm+Km′+εm̄

5

with m′ = bdu+1,v−Cm
K c (this guarantees that the total production is du+1,v). This network has at

most O(nt4) nodes (there are at most t options for j and nt3 possible values for l) and therefore at
most O(n2t8) edges. By construction, this network is acyclic.

If a node (j, l) with l = C ·m + K ·m′ + εm̄ for some m̄ is on an s − t path, any subsequent
node (j′, l′), j′ > j along the path will have l′ = C(m + i) + K(m′ + i′) + εm̄ for some i, i′. Thus
our construction guarantees that each s − t path has at most one node (j, C · m + K · m′ + εm̄)
and therefore each s− t path corresponds to a solution satisfying the property in Lemma 1 of the
production sequence Puv.

If we assign to arc ((j, a), (j + 1, b)), a ∈ Lj , b ∈ Lj+1 a weight corresponding to the minimum
cost to produce b − a units in period j + 1, solving the shortest path problem from the source to
the sink gives us an optimal solution to production sequence Puv.

The cost of producing b− a units in period j+ 1 is the sum of the sourcing cost and the cost of
actually manufacturing b−a units. The latter equals to hj+1·(b−du+1,j+1)+pj+1·(b−a)+σa,b·fpj+1,
where σa,b is 1 if b > a and 0 otherwise. The sourcing cost is obtained by solving

min
∑
k∈N

ck,j+1wk,j+1 +
∑
k∈N

fsk,j+1zk,j+1∑
k∈N

wk,j+1 = b− a

wk,j+1 ≤ K · zk,j+1 k ∈ N
w ≥ 0, z binary.

This problem can be solved in O(n2) time, see e.g. Padberg et al. (1985).

Example. To illustrate the construction of the auxiliary network, consider the following example
with just 2 periods in the production sequence. Let the production sequence be the periods u+ 1
and u + 2 with du+1 = 6, du+2 = 5, and C = 10,K = 4, n = 3. Let fs1,u+i = 1, fs2,u+i = 2,
fs3,u+i = 3, c1,u+i = 6, c2,u+i = 8, c3,u+i = 10 for i = 1, 2. In addition, hu+1 = 3, pu+1 = 8, pu+2 =
10, fpu+1 = 5, fpu+2 = 6. We obtain the following Lu+1 and Lu+2:

Lu+1 = {(1, 0, 0), (1, 0, 1), (0, 1, 2), (0, 1, 3), (0, 2, 0)(0, 2, 1), (0, 2, 2), (0, 2, 3)},
Lu+2 = {(1, 0, 1), (0, 2, 3)}.

Here the triplet (m,m′, ε) encodes Cm + Km′ + ε. We do not show elements of Lu+1 and Lu+2

whose value exceeds the total demand in the production sequence (11 in our case).
The complete auxiliary network is shown in Figure 2. The cost calculation is tedious and we

give only numbers. Nodes (u + 1, (0, 1, 2)), (u + 1, (0, 2, 1)), (u + 1, (0, 2, 2)) do not have outgoing
arcs since there are no arcs connecting two nodes with a positive ε. The highlighted path is the
shortest s− t path with total cost 186. This corresponds to producing 7 units in period u+ 1 and
4 units in period u+ 2.

The overall running time of our dynamic programming algorithm for solving LSSS is O(n6t8).
For each buv we need O(n4t8) steps to construct the network. The shortest path problem can be
solved in the same amount of time since the network is acyclic. We need an extra O(n2) to solve
the dynamic program. This algorithm is therefore polynomial.

6

Figure 2: Auxiliary Network

3 A Fully Polynomial Time Approximation Scheme

In this section we present an FPTAS for the lot-sizing problem with supplier selection. The scheme
relies on the FPTAS for standard lot-sizing developed by Van Hoesel and Wagelmans (2001). How-
ever, the extension to handle suppliers is nontrivial. The FPTAS from Van Hoesel and Wagelmans
(2001) requires that given a lot size we can determine in polynomial time the production and hold-
ing costs. This is not the case for our problem. Given x, y satisfying (1), it is NP-hard to minimize
an arbitrary objective function subject to constraints (2) and (3).

More recently Chubanov et al. (2006) developed a different FPTAS for the single-item lot-sizing
problem. They also require that the production and holding costs can be determined in polynomial
time and therefore their FPTAS cannot be directly applied to our variant of lot-sizing.

We first extend the FPTAS for standard lot-sizing. The new FPTAS requires only an existence
of a pseudo polynomial algorithm for evaluating the production and holding costs. However, it
does not allow backlogging. In the second part we show that our problem fits into this framework
by exhibiting a pseudo polynomial algorithm.

The main idea behind the work of Van Hoesel and Wagelmans (2001) is to develop a dynamic
program for the “dual problem” of the lot-sizing problem. The dual problem maximizes the inven-
tory level while keeping cost below a given budget. In their algorithm, first an upper bound on the
optimal objective value is obtained. Next the dual problem is solved by dynamic programming on
a subset of all possible states. The resulting solution is then output.

7

3.1 A Fully Polynomial Time Approximation Scheme for Lot-Sizing with Pseudo
Polynomial Production and Holding Cost Algorithms

Here we consider the lot-sizing problem

Z∗ = min
t∑
i=1

p̄i(xi) +
t∑
i=1

h̄i(si)

si = si−1 + xi − di i ∈ T
0 ≤ xi ≤ Ci i ∈ T
s0 = st = 0
s ≥ 0, x integer.

We require the following assumptions.

Assumption A1. The production cost function p̄i is non-decreasing on [0, Ci] and p̄i(0) = 0 for
every i ∈ T .

Assumption A2. The holding cost function h̄i is non-decreasing on [0,∞) and h̄i(0) = 0 for every
i ∈ T .

Assumption A3. For any integer xi ∈ [0, Ci] and integer M ≥ 0, the problem “Is p̄i(xi) ≤
lM for l ∈ Z+?” can be answered in time O(P (l)), where P is a polynomial.

Assumption A4. For every integer si ∈ [0,∞) and integer M > 0, the problem “Is h̄i(si) ≤
lM for l ∈ Z+?” can be answered in time O(H(l)), where H is a polynomial.

Assumption A5. There exists a constant 1 > Λ ≥ 0 and a polynomial Λ-approximation algorithm
for evaluating p̄i. Formally, given x, the polynomial approximation algorithm returns an integer
p̃i(x) such that |p̃i(x)−p̄i(x)|

p̄i(x) ≤ Λ.

Assumption A6. There exists a constant 1 > Ω ≥ 0 and a polynomial Ω-approximation algorithm
for evaluating h̄i. Formally, given x, the polynomial approximation algorithm returns an integer
h̃i(x) such that |h̃i(x)−h̄i(x)|

h̄i(x)
≤ Ω.

By using the framework from Van Hoesel and Wagelmans (2001), we give an FPTAS. Assump-
tions A1 and A2 are used by Van Hoesel and Wagelmans (2001), but, instead of Assumptions
A3-A6 they require a polynomial evaluation of p̄i and h̄i. Note also that in their setting, they allow
backlogging while we do not. Assumptions A3 and A4 require that there exists a pseudo polyno-
mial algorithm for evaluating p̄i and h̄i, respectively. We point out that assumptions Assumptions
A3-A6 are weaker than requiring that h̄i, p̄i exhibit an FPTAS.

3.1.1 The Dynamic Program

Let B be an integer upper bound on Z∗. For every i ∈ T and b ∈ [B], let Fi(b) be the maximum
inventory at the end of time period i given the maximum budget b available for time periods 1 up
to i. The budget is the sum of the production and holding cost. Van Hoesel and Wagelmans (2001)
give the following recursion with the initial condition F0(b) = 0 for every b ≥ 0.

Fi(b) = max
0≤a≤b

{max{ max
max{0,di−Fi−1(a)}≤xi≤Ci

{Fi−1(a) + xi − di|p̄i(xi) + h̄i(Fi−1(a) + xi − di)

≤b− a}, max
0≤si≤Fi−1(a)−di

{si|h̄i(si) ≤ b− a}}}
(5)

8

Let a be a certain budget allocation to the first i− 1 time periods. In order for the budget in
the first i time periods to be less than or equal to b, the cost incurred in time period t must not
exceed b− a.

Consider first the case when there exists a production quantity xi such that p̄i(xi)+h̄i(Fi−1(a)+
xi − di) ≤ b− a. Then clearly the inventory level after i time periods equals to Fi−1(a) + xi − di.
If di−Fi−1(a) > xi, then Fi−1(a) +xi− di < 0 and thus we would incur a negative inventory level,
which is not allowable by Assumptions A2. We conclude that max{0, di−Fi−1(a)} ≤ xi ≤ Ci. This
establishes the first term in (5).

Let now

p̄i(xi) + h̄i(Fi−1(a) + xi − di) > b− a for every production quantity xi, 0 ≤ xi ≤ Ci . (6)

Let s̃i−1, x̃i be the inventory after the first i−1 time periods and the corresponding production plan
in time period i, respectively, under the condition of not exceeding budget b in the first i time periods
and budget a in the first i−1 time periods, and such that s̃i−1 + x̃i−di is maximized. By definition
s̃i−1 ≤ Fi−1(a). If s̃i−1 + x̃i > Fi−1(a), then consider an alternative plan with s̄i−1 = Fi−1(a) and
x̄i = x̃i − Fi−1(a) + s̃i−1. Then 0 ≤ x̄i ≤ x̃i ≤ Ci. We also have p̄i(x̄i) + h̄i(Fi−1(a) + x̄i − di) ≤
p̄i(x̃i) + h̄i(Fi−1(a) + x̃i−di) ≤ b−a. The first inequality follows from the non-decreasing property
of production costs and the second one by the choice of s̃i−1, x̃i. This is a contradiction to (6). We
conclude that s̃i−1 + x̃i ≤ Fi−1(a).

Since s̃i−1 + x̃i ≤ Fi−1(a), it is easy to see that there is a production plan in the first i − 1
time periods that does not exceed budget a and with si−1 = s̃i−1 + x̃i. Since a + h̄i(s̃i−1 − di) ≤
a+ h̄i(s̃i−1 + x̃i− di) + p̄i(x̃i) ≤ b, it follows that by not producing anything in time period i we do
not exceed budget b. This establishes the second term in (5).

Let now M be an integer with 0 < M ≤ B and let l ∈ Z+. We define also F̄i(l) to be the
maximum inventory level si in the first i time periods such that the budget does not exceed lM
and in each time period the production cost does not exceed a multiple of M and the holding cost
does not exceed a multiple of M .

If follows from (5) that we can compute F̄i based on the following recursion (F̄0(l) = 0 for every
l ≥ 0).

F̄i(l) = max
0≤q≤l

{max{ max
0≤p≤l−q
0≤w≤l−q
p+w≤l−q

max
max{0,di−F̄i−1(q)}≤xi≤Ci

{F̄i−1(q) + xi − di|p̄i(xi) ≤ pM,

h̄i(F̄i−1(q) + xi − di) ≤ wM}, max
0≤si≤F̄i−1(q)−di

{si|h̄i(si) ≤ (l − q)M}}}

Let l = 0, 1, . . . , L for an integer L. Then F̄i(l) can be computed in time

O(L4(P (L) +H(L)) ·
t∑
i=1

logCi + L2 ·H(L) ·
t∑
i=1

log(
i∑
ī=1

Cī))

= O(tL4(P (L) +H(L)) logCmax,

(7)

where Cmax = maxiCi. To see this, note that

max
max{0,di−F̄i−1(q)}≤xi≤Ci

{F̄i−1(q) + xi − di|p̄i(xi) ≤ pM, h̄i(F̄i−1(q) + xi − di) ≤ wM}

9

can be computed in O(logCi ·(P (L)+H(L))) time by bisection. Likewise, since F̄i−1(q) ≤
∑i

ī=1Cī,
the optimization problem max0≤si≤F̄i−1(q)−di{si|h̄i(si) ≤ (l−q)M} can be solved inO(log(

∑i
ī=1Cī)·

H(L)) time.
The following proposition extends the result from Van Hoesel and Wagelmans (2001).

Proposition 3. Let
l∗ = min

l=0,1,...,L
{l|F̄t(l) ≥ 0}

where L =
⌊
B
M

⌋
+ t+ 1. Then l∗M ≤ Z∗ + tM .

Proof. Consider an optimal solution and let prodi, holdi be the underlying production and holding
cost in time period i. Note that prodi ≤ Vi = (

⌊
prodi
M

⌋
+ 1)M and holdi ≤ Ui = (

⌊
holdi
M

⌋
+ 1)M .

Thus allocating a production budget of Vi and a holding cost of Ui in each time period yields
positive inventory at the final time period t. The total cost of the optimal solution is

t∑
i=1

(prodi + holdi) = M

t∑
i=1

prodi + holdi
M

≤M
t∑
i=1

(bprodi + holdi
M

c+ 1) = M(
t∑
i=1

bprodi + holdi
M

c+ t) .

Setting l̃ =
∑t

i=1b
prodi+holdi

M c+ t, it is clear that F̄t(l̃) ≥ 0. We also have

l̃ ≤
t∑
i=1

prodi + holdi
M

+ t =
Z∗

M
+ t ≤ B

M
+ t ≤

⌊
B

M

⌋
+ t+ 1 . (8)

From this we first conclude that l̃ ≤ L, which combined with the fact F̄t(l̃) ≥ 0 yields l∗ ≤ l̃.
From (8) we derive l∗M ≤ Z∗ + tM .

3.1.2 A Polynomial Approximation Algorithm

Here we show how to find an upper bound on Z∗ in polynomial time. We use the framework from
Van Hoesel and Wagelmans (2001). Given xi, from Assumption A5, we obtain (1 − Λ)p̄i(xi) ≤
p̃i(xi) ≤ (1 + Λ)p̄i(xi), and given si, from Assumption A6 we have (1 − Ω)h̄i(si) ≤ h̃i(si) ≤
(1 + Ω)h̄i(si).

Let w be a number, which specifies the maximum production and holding cost in every time
period. For every i ∈ T let xi(w) be any production quantity with production cost not exceeding
w. Similarly, let si(w) be any inventory level in time period i not exceeding holding cost w. Given
w, we can check if the specified xi(w) and si(w) lead to a feasible solution, i.e., then do not imply
any backlogging, by solving the following recursion:

Mi = min{Mi−1 + xi(w)− di, si(w)}, (9)

where M0 = 0. If Mi ≥ 0 for every i ∈ T , then we can find such a plan.
The key idea is to find the smallest such w by bisection and using p̃i(xi), h̃i(si) to approximate

the production and holding costs. An upper bound on w is

max
i∈T
{p̃i(Ci), h̃i(

t∑
ī=i+1

dī)} ≤ max
i∈T
{(1 + Λ)p̄i(Ci), (1 + Ω)h̄i(

t∑
ī=i+1

dī)} = U

10

and thus the bisection is performed on the interval [0, U].
Let now w be fixed. In what follows we assume that all function arguments are integer values.

Ideally we would like to solve

x̃∗i (w) = max
0≤xi≤Ci

{xi|p̃i(xi) ≤ w}

s̃∗i (w) = max
0≤si
{si|h̃i(si) ≤ w} .

The difficult is that even though h̄i, p̄i are monotone, their approximations h̃i, p̃i might not be.
Nevertheless, we obtain xi(w), si(w) by applying a variant of bisection on p̃i, h̃i, respectively. The
modification requires forcing the sequence of obtained function values to be nondecreasing.

Let us consider the production cost case for time period i. We start by considering the initial
interval [0, Ci] and computing p̃i(Ci) (since p̄i(0) = 0 we define p̃i(0) = 0). The algorithm generates
a sequence of approximate function values p′i with p′i(0) = 0, p′i(Ci) = p̃i(Ci). In a given iteration
let the current interval be [a, b] and x = b(a+ b)/2c. We first compute p̃i(x) and then define

p′i(x) =


p̃i(x) p′i(a) ≤ p̃i(x) ≤ p′i(b)
p′i(a) p̃i(x) < p′i(a)
p′i(b) p̃i(x) > p′i(b) .

Finally, if p′i(x) > w, then the next interval is [a, x], or [x, b] if p′i(x) ≤ w. Since we consider only
integer points, the procedure finishes in a finite number of steps with value xi(w).

In the same way we obtain si(w) with respect to h̃i. In this case the initial interval is[
0,
∑

i∈T Ci
]
. This completely describes the approximation algorithm.

In order to analyze the algorithm, let us focus on the production cost case and the above
variant of bisection. We first show that there exists a nondecreasing function p̂i such that xi(w) =
max0≤xi≤Ci{xi|p̂i(xi) ≤ w} and (1 − Λ)p̄i(x) ≤ p̂i(x) ≤ (1 + Λ)p̄i(x) for any x ∈ [0, Ci]. We show
this in three steps.

Claim 1. If x, y, x < y were generated during the variant of bisection, then p′(x) ≤ p′(y), and for
every generated x we have (1− Λ)p̄i(x) ≤ p′i(x) ≤ (1 + Λ)p̄i(x).

Proof. The nondecreasing property is easily shown by induction. If by the induction hypothesis,
p′i(a) ≤ p′i(b), then by definition p′i(a) ≤ p′i(x) ≤ p′i(b).

The second property is also shown by induction. Let (1 − Λ)p̄i(a) ≤ p′i(a) ≤ (1 + Λ)p̄i(a) and
(1−Λ)p̄i(b) ≤ p′i(b) ≤ (1+Λ)p̄i(b). If p′i(a) ≤ p̃i(x) ≤ p′i(b), then (1−Λ)p̄i(x) ≤ p′i(x) ≤ (1+Λ)p̄i(x)
since p̃i is a Λ-approximation algorithm.

Let us now assume that p̃i(x) < p′i(a). On the one hand we have (1− Λ)p̄i(x) ≤ p̃i(x) ≤ p′i(a),
and on the other hand due to monotonicity of p̄i and induction hypothesis for a we have p′i(a) ≤
(1 + Λ)p̄i(a) ≤ (1 + Λ)p̄i(x). Since in this case p′i(x) = p′i(a), we obtain the desired result.

Finally, let us assume that p̃i(x) > p′i(b). Then from monotonicity of p̄i and by the induction
hypothesis for b we obtain (1 − Λ)p̄i(x) ≤ (1 − Λ)p̄i(b) ≤ p′i(b). We also have p′i(b) ≤ p̃i(x) ≤
(1 + Λ)p̄i(x) ≤ (1 + Λ)p̄i(b). Since p′i(x) = p′i(b), this completes the proof.

Claim 2. Let 0 ≤ n < m ≤ Ci be two integers and we consider the interval [n,m]. We are also
given two numbers α, β, α ≤ β such that (1 − Λ)p̄i(n) ≤ α ≤ (1 + Λ)p̄i(n) and (1 − Λ)p̄i(m) ≤
β ≤ (1 + Λ)p̄i(m). Then there exists a nondecreasing function fi such that (1− Λ)p̄i(x) ≤ fi(x) ≤
(1 + Λ)p̄i(x) for every x ∈ [n,m] and fi(n) = α, fi(m) = β.

11

Proof. We explicitly define

fi(x) =

{
max{α, (1− Λ)p̄i(x)} n ≤ x ≤ m− 1
β x = m .

It is easy to see based on the statement conditions that fi(n) = α, fi(m) = β. Since p̄i
is nondecreasing, it follows that fi is nondecreasing on [n,m− 1]. We also have α ≤ β and
(1− Λ)p̄i(m− 1) ≤ p̄i(m− 1) ≤ p̄i(m) ≤ β, which implies

fi(m− 1) = max{α, (1− Λ)p̄i(m− 1)} ≤ β = fi(m) ,

showing that fi is nondecreasing.
It is clear that fi(x) ≥ (1−Λ)p̄i(x) for every x ∈ [n,m]. Since p̄i is nondecreasing, there exists

m̄, n ≤ m̄ ≤ m such that

fi(x) =


α n ≤ x ≤ m̄
(1− Λ)p̄i(x) m̄ ≤ x ≤ m− 1
β x = m.

If m̄ ≤ x ≤ m, then it follows from definition that fi(x) ≤ (1 + Λ)p̄i(x). If n ≤ x ≤ m̄, then

fi(x) = α ≤ (1 + Λ)p̄i(n) ≤ (1 + Λ)p̄i(x)

where the last inequality follows from monotonicity of p̄i. This completes the proof.

Claim 3. There exists a nondecreasing function p̂wi such that xi(w) = max0≤xi≤Ci{xi|p̂wi (xi) ≤ w}
and (1− Λ)p̄i(x) ≤ p̂wi (x) ≤ (1 + Λ)p̄i(x) for any x ∈ [0, Ci].

Proof. Let 0 = x1(w) ≤ x2(w) ≤ · · · ≤ xu−1(w) ≤ xu(w) = Ci be the ordered sequence of values
generated by the variant of bisection. Note that the indices do not reflect the order encountered
during the actual execution of the algorithm.

Based on Claim 1, we have p′i(x
1(w)) ≤ p′i(x

2(w)) ≤ · · · ≤ p′i(x
u−1(w)) ≤ p′i(x

u(w)) and
(1− Λ)p̄i(xj(w)) ≤ p′i(xj(w)) ≤ (1− Λ)p̄i(xj(w)) for every j = 1, 2, . . . , u.

Now we can apply Claim 2 consecutively for
[
x1(w), x2(w)

]
,
[
x2(w), x3(w)

]
, . . . ,

[
xu−1(w), xu(w)

]
to obtain a nondecreasing function p̂wi with the property (1 − Λ)p̄i(x) ≤ p̂wi (x) ≤ (1 + Λ)p̄i(x) for
any x ∈ [0, Ci].

From Claim 2 we also obtain p̂wi (xj(w)) = p′i(x
j(w)) for every j. As a result, the bisection ap-

plied on p̂wi yields the same sequence of values with the final value xi(w). Since p̂wi is nondecreasing,
the bisection finds an optimal value and thus xi(w) = max0≤xi≤Ci{xi|p̂wi (xi) ≤ w}.

The overall algorithm applies bisection with respect to w starting with [0, U]. For each fixed w
we execute the recursion (9). In each step of the recursion, we apply the variant of bisection with
respect to p̃i and h̃i to compute xi(w), si(w), respectively.

Even though we developed Claim 3 only for the production cost, it clearly holds also for the
holding cost (nondecreasing property is the only property used). To justify bisection with respect
to w we have the following claim.

Claim 4. If w1 < w2, then xi(w1) ≤ xi(w2).

12

Proof. Let a, b be the last interval where the sequence of generated values is identical for the two
different w values. If p′i(x) ≤ w1 and p′i(x) > w2, then p′i(x) ≤ w1 < w2 < p′i(x), which is clearly a
contradiction. We conclude that for w1 the next interval is [a, x] and for w2 it is [b, x]. Then clearly
xi(w1) ∈ [a, x] and xi(w2) ∈ [b, x].

Claim 4 implies that if there is no backlogging for w, then there is no backlogging for any
w1 ≥ w, which justifies the bisection algorithm with respect to w.

It is easy to check that the running time of this procedure is O(t · logU ·
∑t

i=1(logCi +
log
∑i

ī=1Cī)) = O(t3 logU · logCmax), which is polynomial in the input size. Here we assume
without loss of generality that the approximation algorithms from Assumptions A5 and A6 take 1
unit of time.

Let w̃ be the computed optimal w and let w∗ be the smallest number such that in each time
period the production budget of w∗ and holding cost budget of w∗ yields a solution without back-
logging (these quantities are based on the true production and holding costs). Clearly the optimal
solution of value Z∗ does not exceed the production and holding cost budgets of Z∗ in each time
period. We conclude that w∗ ≤ Z∗.

Let

x̄∗i = max
0≤xi≤Ci

{xi|p̄i(xi) ≤ w∗}

s̄∗i = max
0≤si
{si|h̄i(si) ≤ w∗}

and ŵ = max{1 + Ω, 1 + Λ} · w∗. We have

p̂ŵi (x̄∗i) ≤ (1 + Λ) · p̄i(x̄∗i) ≤ (1 + Λ)w∗ ≤ max{1 + Ω, 1 + Λ} · w∗ = ŵ .

Similarly
ĥŵi (s̄∗i) ≤ max{1 + Ω, 1 + Λ} · w∗ = ŵ .

Since xi(ŵ) = max0≤xi≤Ci{xi|p̂wi (xi) ≤ ŵ}, it follows that x̄∗i ≤ xi(ŵ) for every i. Similarly we
obtain s̄∗i ≤ si(ŵ).

Clearly, by definition, x̄∗i , s̄
∗
i yield no backlogging and thus the larger xi(ŵ), si(ŵ) also do not

require any backlogging. Since w̃ is the smallest w with respect to all p̂wi , ĥ
w
i , we obtain that w̃ ≤ ŵ.

The approximation algorithm returns production quantities xi(w̃) and inventory levels less than
si(w̃). From Claim 3 we obtain

p̄i(xi(w̃)) ≤ p̂w̃i (xi(w̃))
1− Λ

≤ w̃

1− Λ

and likewise
h̄i(si(w̃)) ≤ w̃

1− Ω
.

The cost of this approximate solution is less than or equal to∑
i∈T

(p̄i(xi(w̃)) + h̄i(si(w̃))) ≤ tw̃(
1

1− Λ
+

1
1− Ω

) ≤ tŵ(
1

1− Λ
+

1
1− Ω

)

= tmax{1 + Ω, 1 + Λ} · w∗(1
1− Λ

+
1

1− Ω
)

≤ tmax{1 + Ω, 1 + Λ} · (1
1− Λ

+
1

1− Ω
)Z∗ .

13

Let Θ = max{1 + Ω, 1 + Λ} · (1
1−Λ + 1

1−Ω) − 1. The presented algorithm has the approximation
ratio of tΘ.

3.1.3 The Fully Polynomial Time Approximation Scheme

The scheme is given as follows, where ε > 0 and we want to find a solution that is within a relative
error of ε.

Step 1) Compute w̃ and denote by B the corresponding objective value.

Step 2) Let M = max{
⌊
εB
t2Θ

⌋
, 1}.

Step 3) Compute F̄t(l) for l = 1, . . . ,
⌊
B
M

⌋
+ t+ 1 and let l∗ = min{l : F̄t(l) ≥ 0}.

Step 4) Output Ml∗.

We first argue that the produced value has the desired property. From Proposition 3 we obtain
l∗M ≤ Z∗ + tM . Consider first the case of M =

⌊
εB
t2Θ

⌋
. Then tM ≤ εB

tΘ ≤ εZ∗, where we have
used B ≤ tΘZ∗. If M = 1, then in Step 3 all possible values are considered and thus in this case
l∗ = Z∗.

To establish that the running time is pseudo polynomial it suffices to argue that L =
⌊
B
M

⌋
+t+1

is pseudo polynomial (see (7)). If M = 1, then εB
t2Θ
≤ 1, which implies that B

M = B ≤ t2Θ
ε . On the

other hand, if M =
⌊
εB
t2Θ

⌋
, due to bxc ≥ x/2 for any x ≥ 1, we obtain B

M ≤
B

2 εB
t2Θ

= t2Θ
2ε . This shows

that in both cases B/M is upper bounded by t2Θ
ε and thus the algorithm has the desired running

time.

3.2 A Fully Polynomial Time Approximation Scheme for Lot-sizing with Sup-
plier Selection

In this section we show how to use the FPTAS from the previous section for the lot-sizing problem
studied in this work.

It is easy to see that as long as the input data are integral, the lot size is always going to be
integral, i.e. integrality of x is automatic.

Since the holding cost is linear, Assumptions A2, A4, and A6 clearly hold. We need to fulfill
Assumptions A1, A3, and A5.

For any i = 1, . . . , t and any lot size xi let

ri(xi) = min
∑
j∈N

cjiwji +
∑
j∈N

fsjizji∑
j∈N

wji = xi

wji ≤ Kjizji j ∈ N
w ≥ 0, z binary.

It is easy to see that ri(xi) is an increasing function of xi. The production cost is p̄i(xi) =
ri(xi) + σ(xi)fpi + pixi, where σ(xi) = 0 if xi = 0 and 1 if xi > 0. Assumption A1 clearly holds.

14

For ease of notation from now on we will omit subscript i. Without loss of generality we assume
0 < c1 ≤ c2 ≤ · · · ≤ cn. For any k = 1, . . . n and l ∈ Z+, let

ᾱk(l) = max
k∑
j=1

wj

k∑
j=1

cjwj +
k∑
j=1

fsjzj ≤ l (10)

wj ≤ Kjzj j = 1, . . . , k
w ≥ 0, z binary.

The following proposition relates ᾱn and r(x). Its proof is elementary.

Proposition 4. We have
r(x) = min{l|ᾱn(l) = x}. (11)

Next we design a dynamic program for computing ᾱn(lM) for any fixed number M and non-
negative integer l. For ease of notation, we denote αk(l) = ᾱk(lM). For any k ∈ N, u ∈ N, and
l ∈ Z+, we define

ruk (l) = max
k∑
j=1

(cuKj − cjKj − fsj)zj

k∑
j=1

(cjKj + fsj)zj ≤ lM − fsu − 1

k∑
j=1

(cjKj + fsj)zj ≥ lM − fsu −Kucu + 1

z binary.

If the underlying feasibility set is empty, we define ruk (l) = −∞. For each k ∈ N , let p(k) be
such an index that (p(k)− 1)M ≤ ckKk + fsk < p(k)M .

Theorem 1. For k = 2, . . . , n and l ∈ Z+, we have

αk(l) = max{αk−1(l), αk−1(l − p(k) + 1) +Kk,

max
1≤p≤p(k)−1

{pM − fsk
ck

+ αk−1(l − p)},
lM − fsk + rkk−1(l)

ck
}.

Proof. Consider αk(l). Let (w∗, z∗) be an optimal solution. In addition, let p be such that (p −
1)M ≤ ckw∗k + fskz

∗
k < pM for an integer p, 1 ≤ p ≤ l + 1. We consider several cases.

Case 1. w∗k = 0. Note that in this case we can assume z∗k = 0. Clearly then αk(l) ≤ αk−1(l).

Case 2. w∗k = Kk. Now we have z∗k = 1. We also have ckKk+fsk < pM and ckKk+fsk ≥ (p−1)M ,
which implies p = p(k). Hence

∑k−1
j=1 cjw

∗
j +

∑k−1
j=1 fsjz

∗
j ≤ lM − (ckKk + fsk) ≤ (l − p(k) + 1)M .

Therefore αk(l) ≤ Kk + αk−1(l − p(k) + 1).

15

Case 3. 0 < w∗k < Kk. It implies z∗k = 1. In this case either (10) is an equality or there is an
optimal solution with ckw

∗
k + fsk = pM . Otherwise, we can increase w∗k and either we have an

optimal solution satisfying Case 2, or (10) is at equality, or ckw∗k + fsk = pM .

We assume first that ckw∗k + fsk = pM . Clearly αk(l) ≤ pM−fsk
ck

+ αk−1(l − p). From wk =
pM−fsk

ck
≤ Kk, we obtain p ≤ p(k)− 1.

Let us assume now that (10) is at equality. We claim that w∗j = Kjz
∗
j for j = 1, . . . , k − 1.

Suppose that there is an m, 1 ≤ m ≤ k − 1 such that w∗m < Kmz
∗
m. Let ε = min{ ckcmw

∗
k,Kmz

∗
m −

w∗m} > 0. Consider w̄ = w∗+εem−ε cmck ek, z̄ = z∗. Then
∑k

j=1 w̄j =
∑k

j=1wj +ε−ε cmck ≥
∑k

j=1wj ,

since ck ≥ cm. We also have
∑k

j=1 cjw̄j =
∑k

j=1 cjwj + εcm − ε cmck · ck =
∑k

j=1 cjwj . (w̄, z̄) is a
feasible solution for αk(l) with the objective value not less than the objective value of (w∗, z∗).

If ck > cm, we obtain a contradiction since the objective value of (w̄, z̄) is strictly larger than
the objective value of (w∗, z∗). If ck = cm, then we either obtain an optimal solution with w∗k = 0
or w∗m = Kmz

∗
m. In the former case, the condition of Case 1 holds. In the latter case, we repeat

the procedure. This shows that we can assume w∗j = Kjz
∗
j for j = 1, . . . , k − 1. In this case we

have
∑k−1

j=1 cjKjz
∗
j + ckw

∗
k +

∑k−1
j=1 fsjz

∗
j + fsk = lM and therefore w∗k =

Ml−fsk−
∑k−1
j=1 (cjKj+fsj)z

∗
j

ck
.

Then αk(l) ≤
Ml−fsk+

∑k−1
j=1 (ckKj−cjKj−fsj)z∗j

ck
. The condition 0 < w∗k < Kk yields

k−1∑
j=1

(cjKj + fsj)z∗ ≤Ml − fsk − 1

k−1∑
j=1

(cjKj + fsj)z∗ ≥Ml − fsk − ckKk + 1 .

We conclude that αk(l) ≤ (Ml − fsk + rkk−1(l))/ck.
This shows that αk(l) is less than or equal to the right hand side in the theorem. It is easy

to see that any solution to the right hand side can be extended into a solution to αk(l) with the
appropriate value.

In order to compute αk(l) from Theorem 1, we need to develop a recursive relationship for rku.
To this end, for every k ∈ N, u ∈ N , and l ∈ Z+ we need to define

µuk(l) = max
k∑
j=1

(cuKj − cjKj − fsj)zj

k∑
j=1

(cjKj + fsj)zj ≤ (l + 1)M − fsu −Kucu + 1

k∑
j=1

(cjKj + fsj)zj ≥ lM − fsu − 1

z binary.

If the underlying feasibility set is empty, we define µuk(l) = −∞. It suffices to define µuk only
for those u with Kucu ≤M + 1.

16

Proposition 5. For k = 2, . . . , n, u ∈ N , and l ∈ Z+ we have

ruk (l) = max{ruk−1(l), cuKk − ckKk − fsk + max{ruk−1(l− p(k) + 1), ruk−1(l− p(k)), µuk−1(l− p(k))}}

and

µuk(l) = max{µuk−1(l), cuKk−ckKk−fsk+max{µuk−1(l−p(k)+1), µuk−1(l−p(k)), ruk−1(l−p(k)+1)}}.

Proof. Consider z∗, which is optimal to ruk (l). If z∗ = 0, then ruk (l) = ruk−1(l). Let now z∗k = 1.
Then

(l − p(k))M − fsu −Kucu + 1 ≤
k−1∑
j=1

(cjKj + fsj)z∗j ≤ (l − p(k) + 1)M − fsu − 1.

It is clear that

[(l − p(k))M − fsu −Kucu + 1, (l − p(k) + 1)M − fsu − 1]
= [(l − p(k))M − fsu −Kucu + 1, (l − p(k))M − fsu − 1]
∪ [(l − p(k))M − fsu − 1, (l − p(k) + 1)M − fsu −Kucu + 1]
∪ [(l − p(k) + 1)M − fsu −Kucu + 1, (l − p(k) + 1)M − fsu − 1].

The first and the third case yields ruk−1(l − p(k)), ruk−1(l − p(k) + 1) respectively, and the second
case yields µuk−1(l − p(k)). Similarly we can prove the second statement.

By definition

α0(l) = µu0(l) = ru0 (l) =

{
0 if l ≥ 0
−∞ if l < 0 ,

and all presented recursive formulas hold also for k = 1. We can now compute αn(l) for l = 1, . . . , l̃
as follows.

Step 1) For each l ∈ [l̃], k ∈ N , and u ∈ N we compute ruk (l), µuk(l) based on Proposition 5.

Step 2) For each l ∈ [l̃], k ∈ N , we compute αk(l) based on Theorem 1.

The running time of this algorithm is O(n2 l̃).
We can assert if p̄i(xi) = ri(xi) + δ(xi)fpi+pixi ≤ l̃M as follows. For every l1 = 0, 1, . . . , l̃, l2 =

0, 1, . . . , l̃ with l1 + l2 ≤ l̃, we check if δ(xi)fpi+pixi ≤ l1M and if xi ≤ αn(l2). If we find such l1, l2,
then p̄i(xi) ≤ l̃M , otherwise p̄i(xi) ≥ l̃M . From Proposition 4 and monotonicity of ᾱn it follows
that ri(xi) ≤ l2M if and only if xi ≤ αn(l2), which establishes the correctness of this procedure.
The running time is O(n4 l̃). This shows that Assumption A3 holds.

17

It remains to argue that Assumption A5 holds. To this end let

Z(x) = min
∑
j∈N

cjwj +
∑
j∈N

fsjzj∑
j∈N

wj = x

wj ≤ kjzj j ∈ N∑
j∈N1\C

wj +
∑

j∈N2\C

min{λ,Kj}zj ≥ λ C ⊂ N with λ = x−
∑
j∈C

Kj > 0,

N = N1 ∪N2, N1 ∩N2 = ∅
w ≥ 0, 0 ≤ z ≤ 1 .

Carr et al. (2000) show that z(x)
r(x) ≤ 2 and that z(x) can be computed in polynomial time by the

ellipsoid algorithm. The separation algorithm is polynomially solvable since it suffices to consider
C = {j ∈ N |w∗j ≥

Kj
2 }, where (w∗, z∗) is the current LP solution.

This gives a 2-approximation algorithm for Assumption A5.

References

Aggarwal, A. and Park, J. (1993). Improved algorithms for economic lot size problems. Operations
Research, 41, 549–571.

Aghezzaf, E. and Wolsey, L. (1994). Modelling piecewise linear concave costs in a tree partitioning
problem. Discrete Applied Mathematics, 50, 101–109.

Belvaux, G. and Wolsey, L. (2001). Modelling practical lot-sizing problems as mixed-integer pro-
grams. Management Science, 47, 993–1007.

Bhatia, M. and Palekar, U. (2001). Lot sizing problems with strong set-up interactions - a variable
redefinition approach. IIE Transactions, 33, 357–370.

Carr, R., Fleischer, L., Leung, V., and Phillips, C. (2000). Strengthening integrality gaps for
capacitated network design and covering problems. In D. Schmoys, editor, Proceedings of the
eleventh annual ACM-SIAM symposium on Discrete algorithms, pages 106–115, San Francisco,
CA. Society for Industrial and Applied Mathematics.

Chubanov, S., Kovalyov, M., and Pesch, E. (2006). An FPTAS for a single-item capacitated
economic lot-sizing problem with monotone cost structure. Mathematical Programming, 106,
453–466.

Federgruen, A. and Tzur, M. (1991). A simple forward algorithm to solve general dynamic lot
sizing models with n periods in O(n log n) or O(n) time. Management Science, 37, 909–925.

Florian, M. and Klein, M. (1971). Deterministic production planning with concave costs and
capacity constraints. Management Science, 18, 12–20.

Florian, M., Lenstra, J., and Kan, H. R. (1980). Deterministic production planning: algorithms
and complexity. Management Science, 26, 669–679.

18

Klose, A. (2008). Algorithms for solving the single-sink fixed-charge transportation problem. Com-
puters and Operations Research, 35, 2079–2092.

Padberg, M., Roy, T. V., and Wolsey, L. (1985). Valid linear inequalities for fixed charge problems.
Operations Research, 33, 842–861.

van Hoesel, C. and Wagelmans, A. (1996). An O(T 3) algorithm for the economic lot-sizing problem
with constant capacities. Management Science, 42, 142–150.

Van Hoesel, C. and Wagelmans, A. (2001). Fully polynomial approximation schemes for single-item
capacitated economic lot-sizing problems. Mathematics of Operations Research, 26, 339–357.

Wagelmans, A., van Hoesel, A., and Kolen, A. (1992). Economic lot sizing: An O(n log n) algorithm
that runs in linear time in the Wagner-Whitin case. Operations Research, 40, 145–156.

Wagner, H. and Whitin, T. (1958). Dynamic version of the economic lot size model. Management
Science, 5, 89–96.

19

	Introduction
	Polynomial Algorithm for Production and Supplier Equal Capacitated Case
	A Fully Polynomial Time Approximation Scheme
	A Fully Polynomial Time Approximation Scheme for Lot-Sizing with Pseudo Polynomial Production and Holding Cost Algorithms
	The Dynamic Program
	A Polynomial Approximation Algorithm
	The Fully Polynomial Time Approximation Scheme

	A Fully Polynomial Time Approximation Scheme for Lot-sizing with Supplier Selection

