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Abstract—Esports are complex computer games that are
played competitively. DOTA 2 is one of the most popular esports
titles worldwide and field a rapidly evolving gameplay across
a large virtual arena. Due to this complexity, commentators,
audiences, and players can miss events happening during live
matches. This makes it necessary to utilize esports analytics
to bring attention to important events that can aide in match
outcome prediction. One of the most important events are team
fights, when players from opposing teams encounter and battle
each other. Despite their importance across strategy, gameplay
and audience experience, team fights remain relatively unex-
plored. Their role and potential to support match prediction
models not well understood. This paper presents a definition of
team fights in DOTA 2 and proposes an algorithm to extract
and quantify them. Deep learning models were then used to
analyze the influence of team fights on overall match outcomes.
Results from eight different types of Recurrent Neural Network
(RNN) models revealed that given a minimum of 2 team fights
within 5 minutes of game play, our models were able to correctly
classify the outcome in over 50% of all games. This accuracy
increased to over 70% if given 32 minutes of game time to
train the model. These results highlight the use of team fights to
inform and improve match prediction models. Furthermore, the
work presented contributes to the development and automation
of in-game camera movements to guide spectators, and provide
commentators with real-time data-derived predictions.

Index Terms—Esports Analytics, Deep Learning, Neural Net-
work, DOTA2, Team Fight

I. INTRODUCTION

Esports is a term used to describe video games which are
played competitively [1], [2]. Esports are varied in their form
and gameplay, and today attract audiences and players in the
hundreds of millions worldwide [3]. Uniquely for esports, as
compared with traditional sports, there is a large degree of
overlap between audiences and players. As a sub-sector of the
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games industry, esports has grown immensely in recent years,
and today comprise a multi-billion dollar sector [4]. Due to
the high degree of innovation and technology adoption in the
sector, and the detailed data available from many titles, esports
has become a test bed for research across many domains, not
the least data science [1], [5]–[7].

In recent years, esports has also become a focus for research
on how to enhance sports broadcasting in the future, and how
to utilize data to enhance the viewing experience, or provide
interactivity [2], [7]. One of the most popular genre of esports
games, in terms of audience numbers and academic research,
is the Multi-Player Online Battle Arena (MOBA). This genre
include titles such as Dota 2 and League of Legends, each
with major tournaments sporting price pools in the dozens of
millions, often driven fully or partly by the community [8].

Similar to the traditional sports, the tacit collaborations
within each team are always the highlight of the game and
at times can be the turning point for the match. For example,
each team fight in MOBA game such as DOTA 2 is significant
since it might determine the landscape for the rest of the match
[9]. The commentators could easily tell whether a team fight
happens, but it requires years of experiences to understand the
impact of each team fight and convey it clearly to audiences
[2]. Furthermore, although previous studies have focused on
player encounter interactions [1], no detailed analysis exists
that explores whether team fights can predict match outcome.

Previous research within esports analytics tends to focus
on the whole game as a unit of analysis, as compared to
investigating events occurring within matches [6]. The work
here builds on previous analyses and extends it by focusing
on the impact of team fights on match outcome prediction.
With DOTA 2 as the case study subject, a team fight detection
algorithm is deployed, and match outcome predictions based



on the team fight features were conducted.
This paper analyzes the impact of individual team fights

in a DOTA 2 match to the match outcome. The purpose is
not to build the most accurate real-time match predicting
model, but to explore if team fights on their own provides
a foundation for prediction models. These models will then
contribute towards integrating machine learning and audience
engagement, allowing for a context grounded approach to
match outcome commentary and analysis.

It consists of two main components: a) The team fight de-
tection algorithm would separate all individual team combats
and aggregate the relevant team fight statistics; and b) the
predictive model would then analyze the impact of each team
fight and make the match outcome prediction.

A. Contribution

This paper contributes to two current areas of research in
esports analytics, 1) esports match outcome prediction and
2) esports audience engagement along with machine learning
powered match analysis for commentators [2], [7]. It does
through the following areas:

1) Build on DOTA 2 team fight detection algorithms de-
veloped in past research [1]. Refine past encounter
algorithms to focus on team fights to speed up data pre-
processing and extract the most important information
from a match.

2) Utilizing team fight features to predict overall match
outcome through deep learning models. This paper
employed extensions of the Recurrent Neural Network
model to predict the outcome of a DOTA 2 match.

3) Developing the basis for a machine learning powered
match analysis tool for audience and commentator en-
gagement. This paper experimented with various data
masking variations to simulate the progress of a live
match in order to identify models that are capable of
providing match outcome predictions with limited data.

B. Ethics Approval

Ethics approval was granted by the computer science de-
partment at the University of York. Data was collected through
readily and freely available means and no personal or other-
wise identifiable information was collected, stored or utilised
at any stage beyond the publicly available replay game files.
No identifiable information was extracted from those files
and data was stored in an aggregate format to prevent de-
anonymization.

II. BACKGROUND: DOTA 2 GAME-PLAY

In DOTA 2, there are two opposing teams, named Ra-
diant and Dire. These fight against each other in a virtual
arena, seeking to destroy the opposing teams’ base (called
the ”ancient”), and protect their own ancient at the same
time. Each team consists of five players and each player
control a different hero with unique abilities and skills to fight
within this closed environment. The bases of both teams are
distributed diagonally and the map is divided into different

sections for each team (Figure 1). There are three major lanes
across the map and are designated as top lane, middle lane,
and bottom lane. Except for the three major lanes, there are
jungle areas, including various properties (outposts, shops,
effigy buildings), as well as neutral enemies, often referred
as neutral creeps or neutral monsters. There are also multiple
towers protecting each team’s ancients and lanes. Each team
has to take down some of the towers in order to eventually
destroy the base of enemy team. At the home base of each
team, there is a fountain where heroes would revive after
being killed and waiting for the revive countdown. Another
interesting feature of the DOTA 2 map is the fog of war. The
fog blocks the sight of heroes so that each player would only
have vision within a given range around the hero they control,
friendly heroes/units, or buildings, and cannot observe other
places on the map. However, players could obtain additional
vision on the map by purchasing and placing items such as
”wards”.

At the time of writing, there are 121 heroes for players
to choose. Each hero possesses distinct abilities and skills.
Different combination of heroes would build a team with
unique strengths and weaknesses. Each player would control
their respective hero/units to engage in combat until the enemy
ancient is exposed and destroyed. During the match, heroes
would kill enemy creeps, heroes, or units to gain gold and
experience. The gold enables players to buy more powerful
items and the experience enables players to level-up or learn
new abilities so that they could outperform the enemy team.

In a typical DOTA 2 match, each player would farm by
collecting gold and gaining experience by killing enemy creeps
in their respective lane in the early game. As the game
progresses, players tend to gather together and fight against
the enemy team in a group. We call this type of group fight
a team fight. Team fights are always the highlights for both
players and audiences since the effects of group spell casting
are splendid and the winning team in the team fight would
gain huge advantages, especially in the late game. This is one
of the reasons we chose to focus this research on team fights.
Most of time, team fights would have a tremendous impact
to the game and the result of a team fight might change the
landscape of the entire match [9].

III. RELATED WORK: ESPORTS ANALYTICS

The domain of esports analytics emerged over the past
decade, and has expanded rapidly since. The literature contains
a broad area of work and has seen an accelerating pace of
publications in recent years [11]. Esports analytics was defined
by Schubert et al. [1] as: “the process of using esports related
data, [...], to find meaningful patterns and trends in said data,
and the communication of these patterns using visualization
techniques to assist with decision-making processes.” The
definition of Schubert et al. [1] highlights a fundamental
challenge in esports, namely making complex and fast-paced
games comprehensible to players and audiences alike.

Thanks to the ready availability of data from esports games
from public API systems provided by the game publishers,



Fig. 1: The map of DOTA 2. Towers are highlighted in blue,
Racks (”barracks”) are highlighted in yellow, and the Ancients
are highlighted in purple. The three lanes are marked with the
names associated with their corresponding teams [10]

esports analytics has become a fertile ground for research in
machine learning, AI, and sports, with high-dimensional and
high-volume data across amateur to professional levels being
utilized [6], [12]–[14].

Predicting the result of esports matches has emerged as a
key topic in esports analytics. Not only does such predictions
provide interesting material for broadcasting and audience
engagement [2], [7], but are also of use to inform players
and teams for the purpose of training.

Prior studies demonstrated the application of machine learn-
ing algorithms in DOTA 2 match analysis. Demedium et
al. [12] utilized unsupervised machine learning algorithm to
classify the role of players in DOTA 2 games, while Eggert et
al. [9] used supervised learning algorithms instead to identify
player roles in DOTA 2 game. Sifa et al. [14] detected outliers
occurring during a game for improving the commentator-
driven storytelling experience. Drachen et al. [15] investigated
the relationship between team skill and spatio-temporal be-
haviour of the team using time series clustering. Katona et
al. [11] utilized a feedforward neural network with shared
weights to predict the probability of a player hero being
killed within a five second window. Yang et al. [16] modeled
DOTA 2 games using graphs and constructed Decision Trees
using extracted patterns to predict the match outcome with
80% accuracy. Semenov et al. [13] experimented with the
possibility of predicting DOTA 2 match outcome from draft
picks using Factorization Machines (0.66 AUC) and XGBoost
classifier (0.65 AUC).

More relevant to our research, Yang et al. [17] performed
real-time match outcome prediction using individual players’
match history and real-time features and achieved up to
93.73 percent accuracy when including up to 40 minutes of
game data. Hodge et al. [6] also examined real-time game
result prediction for DOTA 2 using standard machine learning
models and achieved 85 percent accuracy after 5 minutes of
gameplay.

Past literature, as summarized above, deal with different
aspects of an esports match. Although various researches focus
on match prediction and analysis [6], [13], none have dealt
with the influence of team fights, which are important events
that could drastically alter the outcome of an entire match [9].
Our work aims to bridge this gap in the existing literature and
does so by focusing on real-time game outcome prediction
for DOTA 2. However, different from prior researches, our
prediction models are based on the concept of team fight
adapted from encounter components defined by Schubert et
al. [1]. The goal of our work is to provide an innovative
way of retaining spectator engagement by providing match
outcome predictions after each team fight. This framework
would generate data-driven insights to assist commentators and
augment the audience experience [7].

IV. DATA COLLECTION AND PREPROCESSING

A. Data

In this study, a dataset comprising a total of 1,493
professional-level DOTA 2 matches, from the time the game
was in patch 7.27, was gathered using the OpenDota API [18].
The data contains all behavioral actions of players during
matches, as replay files need to be detailed enough for the
game client to rerun games, providing highly granular data
about DOTA 2 matches. The Clarity Analyzer Library was
used to parse match replay files into JSON format [19]. Spatio-
temporal information was extracted on a per-second level.

B. Preprossessing for Team Fight Detection

We first parsed the raw JSON data using SQL queries into
tabular format and removed games that were only partially
recorded. The remaining data consisted of 1,456 games with
747 won by the Radiant and 709 won by the Dire. Each row
consisted of a hero action and/or performance at a certain time
within the game. This data was then fed into our team fight
detection algorithm.

C. Feature Engineering for Game Prediction

We detected all team fights in our data, using the team fight
detection algorithm defined and explained in the next section
(V-B Team Fight Definition), and created an output table. We
then joined the processed data with the output table to label
each row of the data based on the following rules: First, if the
data entry is during a team fight, label it with a team fight
number in the order the fight happened in that specific game.
For example, if it is the first team fight that occurred in a game,
label it as 1. Second, if the data entry is not during a team
fight, the label will be Null. Once we have successfully labeled



the entire data set with the according team fight number, we
filtered out the rows that were labeled as Null because we only
need team fight relevant data for our subsequent use.

Next, we aggregated the data set by team fight for each of
the 1,456 unique DOTA 2 games and summarized team fight
statistics. For the purpose of building predictive models that
can predict the final winner of the game (the Radiant team or
the Dire team), we performed another level of aggregation to
summarize team fight statistics by faction. More specifically,
for each team fight we calculated the number of hero kills,
assists, deaths, total damage dealt during team fight, total gold
obtained during team fight, and the number of players who
participated in the team fight for both the Radiant and the Dire
teams [10]. Besides these general statistics, we also generated
additional features from the data, defined below, that can be
helpful for our predictive models.

1) Total Crowd Control Time: In most modern role-playing
games and MOBA games, crowd control time (or disable time)
is defined as effects that cause affected players to partially
or fully lose control of their heroes [20] [12]. The effects
include but are not limited to stun, slow, silence, mute, break,
hex, and disarm. Each of these effects can be caused by a
variety of hero spells and items. Crowd control has important
strategic influence in a DOTA 2 team fight, because preventing
enemy heroes from moving, attacking, and casting spells
can greatly increase the likelihood of killing enemy heroes
or preventing teammates from dying, thus helping the team
to gain advantages for the overall game. We generated this
features by summing up the total disable time applied to a
team and used that as the total crowd control time for the
opposing team.

2) Total Spell Damage: Spell damage makes up the major-
ity of damage in the early game team fights because players
have not yet gained enough gold to purchase items that boost
up their attack damage. Therefore, total spell damage dealt
during team fights is a crucial feature for early game success.
We calculated this feature by summing up all damages labeled
as a spell damage event.

3) Total Auto Attack Damage: Auto attack damage refers to
damage dealt using a hero’s regular attack. Attack damage can
be amplified by abilities or by purchasing items that directly
increase a hero’s attacking power or provide on-hit effects,
such as critical strike [21]. Auto attack damage makes up the
majority of damage in late game team fights where the carries
of each team are equipped with valuable items. Therefore, total
auto attack damage dealt by a team represents how effectively
the carries can put pressure on the enemy heroes to stay
alive during team fights. This is a crucial feature for late
game success because dying in the late game in DOTA 2 has
severe penalties. We calculated this feature by summing up all
damages labeled as an auto-attack damage event.

4) Total Item Damage: The remaining component of dam-
age dealt to the enemy team during team fights is item damage.
We need this feature for our predictive model because some
DOTA 2 heroes heavily rely on key items to deal damage, such
as Dagon for Tinker. We calculated this feature by summing

up all damages that were incurred by items during a team
fight.

5) Total Distance Traveled: There can be a lot of moving
during a team fight for many different purposes. Here we
explain two different scenarios. One possibility is that one
team is winning the team fight, so they are chasing the enemy
heroes in order to reap more kills. Another possibility is that
one team has more ranged heroes while the other team has
more melee heroes, so the ranged team performed a lot of
”kiting”, which means they are constantly moving to prevent
the melee heroes from landing attacks on them. We want to
capture these types of information in our predictive models
and therefore we generated this total distance traveled feature
by summing up heroes’ total displacement in the DOTA 2
arena for each team during a team fight.

6) Number of Buildings Destroyed: As we discussed in
Section II Background: DOTA 2 Game-play, players have
to destroy the ancients of the opposing team as well as the
buildings protecting the ancients to win the game. One of the
goals when engaging in a large scale team fight in a DOTA
2 match is to destroy one or more of the enemy buildings.
Thus, the number of destroyed enemy buildings during a team
fight has strategic influence for the final match outcome and
therefore we want to include this feature in our predictive
models. We generated this number of buildings destroyed
feature by counting the number of buildings on the map that
deplete to zero health during a team fight.

V. METHODOLOGY AND RESULTS

The aim of this research is to create a model that is capable
of predicting a DOTA 2 match outcome using only features
within team fights. To achieve this goal, we first developed a
team fight detection algorithm to identify team fights. We then
utilized this algorithm to extract and aggregate features used in
our supervised prediction modeling. This section describes our
team fight detection algorithm and match outcome predictions.

Fig. 2: Density plot of the number of team fights during
matches. The majority of matches have 20 to 25 team fights



Fig. 3: Barchart showing the distribution of team fight start
time. Most team fights are within the first 30 minutes of game
time

A. Team Fights

Before carrying on with our research, we should first
understand what are team fights. Although the specific details
vary across definitions, team fights occur when players from
opposing teams meet within the arena of DOTA 2. Team
fights are viewed as important to determining the outcome of
matches [9] and also form central components of the narrative
developed by commentators and casters [2]. However, while
team fights have been utilized conceptually in multiple esports
research publications [9], [22], a formal definition has not
been widely agreed upon in the esports community [1]. In this
section, we attempt to provide a flexible, broadly applicable
definition and model of team fights which takes into account
the spatio-temporal nature of DOTA 2 as highlighted by
previous work, e.g. Schubert et al. [1] and Eggert et al. [9].

Past research utilized rules based algorithms to detect hero
encounters within DOTA 2 [1]. In our research, we referenced
this paper’s definition of encounter as the basis for our
team fight definition and constructed our own approach for
identifying team fights by further enhancing the encounter
detection algorithm as described in Section V-B Team Fight
Definition.

B. Team Fight Definition

Generally speaking, we define a team fight as an encounter
of player units from both teams with one side of the encounter
having at least two players from the same team, and at
least one killing event happened during the encounter. This
definition filters out 1-on-1 and 2-on-1 trades and trades, while
focusing on fights that have a more significant impact on both
teams.

We first define the two teams are T1 and T2, each with
five player units, which are represented as ui. We also define
a function called D(ui, uj) to calculate the distance of two
player units. In addition, we define a player link L(ui, uj) to

describe the player units relationships. There are three kinds
of player links we think are essential in defining a team fight,
which are combat link, support link and kill link.

1) Combat Link: We define a combat link as a player units
relationship where the two player units are from different
teams and the distance between them are within the general
attack range ϵa (700 units) of player units in DOTA 2. It is
represented as a Lc(ui, uj) where ui ∈ T1 and uj ∈ T2 and
D(ui, uj) <= ϵa.

2) Support Link: We define a support link as a player units
relationship where the two player units are from the same
team and the distance between them are within the general
healing range ϵh (400 units) of player units in DOTA 2. It is
represented as a Ls(ui, uj) where ui ∈ T1 and uj ∈ T1 and
D(ui, uj) <= ϵh.

3) Kill Link: We define a kill link as a player units
relationship where the two player units are from different
teams and one player unit kills the other player unit. It is
represented as a Lk(ui, uj) where ui ∈ T1 and uj ∈ T2 and
ui has killed u2.

4) Encounter Component: We define an encounter compo-
nent ECt as a subset of player units where each player unit
is connected to all other units via a path which consists of
combat and support links. For an encounter component, there
should be at least one combat link and one support link, which
indicates that there are at least two player units from the same
team and at least two player units from different teams, shown
in Figure 4. An Encounter Component depicts a kind of cross-
team interaction of player units at a specific time tick t. We
represent an encounter component as a graph called G(U,E)
where U is a set of nodes or player units and E is a set of
edges or player links. For player units, there ∃ui ∈ U from
T1 and ∃uj ∈ U from T2; for player links, there ∃ei ∈ E is
Lc and there ∃ej ∈ E is Ls.

5) Successor: We define a successor ECt+∆t as a sub-
sequent encounter component to a sequence of encounter
components whose last component is ECt. The time differ-
ence between the successor and the last previous encounter
component ∆t should not exceed a time threshold τ . And an
additional requirement is that there should ∃ui ∈ ECt from
T1 such that ui ∈ ECt+∆t and ∃uj ∈ ECt from T2 such that
uj ∈ ECt+∆t.

6) Encounter: We define an encounter as a sequence of
encounter components where each encounter component at
time tick t is a successor of a previous encounter component.
An encounter is dynamic in terms of its components, since
player units can join and leave during the entire time span of
an encounter.

7) Team Fight: Finally, we define a team fight as an
encounter which contains at least one kill link, or to say
a team fight should be a special form of encounter which
involves killing activity. The reason for making this definition
is that team fights with kills are more consequential than non-
kill team fights. If someone dies in a fight, there is a clear
punishment to the team – gold and experience (XP) gain to
the other team as the most direct consequence. While there can



be many ”encounters”, we believe the ones that involve killing
have a more tangible impact on the game and can provide us
with useful information for making predictions on game result.

Fig. 4: Illustration of Combat Link (red) and Support Link
(blue) during Encounter. When there exist at least one Combat
Link and at least one Support Link, the algorithm detects it
as one encounter Component [23].

C. Algorithm Design

After defining team fights, we followed and implemented
an algorithm outlined in the paper Esports Analytics Through
Encounter Detection [1] to automatically detect encounter
components from raw game data. We then added an extra
constraint of requiring a kill event to happen during the
encounter to classify it as a team fight.

The algorithm works by reading in a stream of player
unit positions, and at each tick, we constantly updated the
position and the distance, and identified the possible combat
components. Then, we identified the possible predecessors of
the combat components, and try to link components together
as encounters based on specific conditions described above.
Finally, we filtered out the encounters that contain one or more
kill links and identified them as team fights. A list of team fight
encounters is outputted by the algorithm.

D. Team Fight Detection Results

The output of our team fight detection algorithm given
a single DOTA 2 game is a list of team fight encounters
as defined in Section V-C Algorithm Design. This list is a
homogeneous list of Encounter objects, i.e. the team fight
encounters that we detected from a given DOTA 2 game.
We can convert the list of team fights into an output table as
comma-separated values. The output table has N number of
rows with respect to the total number of team fight we detected
from the input DOTA 2 game. Each row has the following
attributes: team fight number (first team fight of the game,
second team fight of the game, etc.), team fight start time and
end time, a list of players who participated in the team fight,
and whether there is any death during the team fight. We can
then use the generated output table for our predictive models.

E. Match Outcome Prediction

The cleaned data was further aggregated by game, team
fight number, and team faction. The resulting data containing
the generated features discussed previously were then used to
classify the overall outcome of the match.

F. Logistic Regression

We first utilized a logistic regression model, a linear clas-
sification algorithm [24], on the entire data set to understand
the association between different team fight features and the
odds of a team winning or losing the entire match. Our results
revealed that teams who achieved higher number of kills (Odds
ratio, OR: 1.412) and assists (OR: 1.025) during team fights
had a higher probability of winning the entire match. On the
other hand, teams that destroyed more buildings during team
fights (OR: 0.697) and participated in team fights with longer
duration (0.978) were less likely to win the overall match. The
logistic regression model managed to only achieve a training
accuracy of 57.1%, despite using all available data, indicating
the existence of significant non-linear associations between
team fight features and the overall outcome of the match. Thus,
we also employed random forest algorithms to verify any non-
linear associations between team fight performance and match
outcome.

G. Random Forest

Next, we fitted two random forest models [25] with two
different data treatment approaches:

1) Each record is representative of a team fight. We defined
a binary response variable where 1 indicates Radiant
wins and 0 indicates Dire wins. Each column is the
difference between two teams for each variable.

2) Using a combination of two records (one for Radiant and
one for Dire) to represent one team fight. Each record
contains the exact values of team fight variables for each
team.

The two approaches resulted in similar training accuracy, but
quite different feature importance outcomes. Since the first ap-
proach returns a combination of the two teams’ performances,
its model accuracy (Test Accuracy: 66%) is 2% higher than
the second data treatment (Test Accuracy: 64%). As we can
see from the feature importance plot, compared to the first
model, the second model devalues the importance of Total
Auto Attack and emphasizes the importance of Team Fight
duration for both teams.

As shown in the data treatment 1 column in Table I, the
first approach emphasized the importance of total auto attack
damage, change in net worth, and total distance traveled as
the three variables most influential in determining whether a
match is classified as Radiant or Dire winning.

Data treatment 2’s feature importance can be seen in the
data treatment 2 column in Table I. Although change in net
worth and total distance traveled are still extremely important,
total auto attack damage’s importance was eclipsed by team
fight duration.



TABLE I: Top 6 important features for random forest models

Features Importance Score
Data Treatment 1 Data Treatment 2

Total Auto Attack 0.118 0.099
Change In Net Worth 0.117 0.150

Total Distance Traveled 0.113 0.134
Total Spell Damage 0.106 0.112

Total Damage During team fight 0.104 0.098
Team Fight Duration 0.096 0.125

Though we’ve obtained higher accuracies from using Ran-
dom Forest models, there is still room for model improvements
considering that the random forest model is unable to treat the
performance of each team fight sequentially. In the next section
we employ deep learning algorithms to model the sequential
nature of the team fights.

H. Recurrent Neural Networks

In our logistic regression and random forest models, we
treated each team’s performance in a team fight as an isolated
(a.k.a. independant) event. Although this allowed us to use
less sophisticated and computationally faster models, it does
not take into account the sequential and ordered nature of each
team fight within a match. Recurrent neural networks (RNN)
are a type of deep learning model that retains the memory of
previous inputs within the network’s internal state [26]–[29].
This construction allows past inputs or contextual information
to influence the model’s output. This makes RNNs some of the
best deep learning algorithms to model sequential data [30].

However, RNN models suffer from the problem of vanishing
gradients. The influence of an input would decay or explode
exponentially as the RNN model trains. In order to address
this issue, we have chosen to utilize two different algorithms
that extends the simple RNN model [26], [27].

1) Bidirectional RNNs: Bidirectional RNNs are a type of
RNN that allows the model to access both past and future
context. The input data sequence is fed to two separate
recurrent hidden layers that are connected to the same output
layer [26]. In terms of DOTA 2, the use of a bidirectional
construction allows the model to utilize team fight information
in the past and future. Bidirectional model constructions also
work with RNN extensions such as LSTM and GRU.

2) Long Short-Term Memory: Long Short-Term Memory
(LSTM) [29] is a neural network that is a special RNN, that
replaces summation units in the hidden layers with memory
blocks, which are a type of recurrently connected subnets.
Multiplicative gates within LSTM memory cells allow the
algorithm to store and utilize information over long periods
of time [26]. LSTMs are able to decide whether the content
derived from an input should be overwritten at each time step.
Thus, it is better able to retain important features over a long
distance [27].

3) Gated Recurrent Unit Networks: A gated recurrent unit
(GRU) is a recurrent unit that can adapt and capture dependen-
cies from different time scales. GRUs also have gating units
similar to LSTM, but they do not have separate memory cells.

Thus, GRUs do not control the exposure of hidden memory
content. Other units in the network can use the full content
within the memory. GRUs are simpler in design compared to
LSTM (i.e. containing a reduced number of parameters to be
learned) without sacrificing model performance [27].

4) RNN Model Results: We applied four different RNN
models to our data: LSTM, GRU, bidirectional LSTM, and
bidirectional GRU. These four models were also tested using
two different architecture variants with either one layer or
two layers. All features were standardized to between 0 and
1 before modeling. The model consisted of an initial layer
with 256 nodes. If the architecture tested had two layers, the
output of the first layer was then fed into a second layer
with 128 nodes. This was followed by a fully connected layer
with softmax activation. Loss was calculated using categorical
entropy with an Adam learning rate optimizer. Early stopping
was applied if the model’s validation accuracy did not improve
in 20 epochs. All models were trained up to a maximum of
51 epochs using a batch size of 256. Ten percent of the entire
data was used as the holdout test set. The remaining training
data was further split into training and validation sets (90:10).

We first tested all models using the complete training and
test data. Results can be seen in Table II. All eight models
were re-trained 10 times and their performance on the hold
out test set was calculated. It can be seen that the bidirectional
GRU model with two layers out performed all other models
with an average test set accuracy of 79.2%. However, this
accuracy is achieved only with the complete training and test
data available.

TABLE II: RNN model performance with all available team
fight data in training and test set

Model Type GRU 1 GRU 2 LSTM 1 LSTM 2

Regular 0.712 0.759 0.711 0.753
Bidirectional 0.734 0.792 0.738 0.742

Note: Training sample size: 2,622. Test sample size: 290. Value shown
are the average test accuracies over 10 runs.

DOTA 2 games can vary widely with some games filled with
frequent but inconsequential skirmishes, and others dominated
by a few game changing team fights. In order to ensure that
our models are not dominated by outliers, we also trained each
model on either a filtered training set or the entire training
set. All models were then compared using the holdout test set
accuracy. The holdout test set was also filtered accordingly to
simulate incomplete real time match data. In the first part of
each analysis, we trained models using the complete training
data set, but tested them using a hold out test set that has
been filtered according to different criteria. We then trained the
same model again, but this time also using incomplete training
data filtered according to the same criteria as the test set. The
goal of this evaluation is to identify weaknesses within the
models if they were given incomplete match data to train with.
This is especially important for predicting match outcomes
immediately after patch changes to DOTA 2.



We start with the number of team fights as the filter/cut-off
criteria. In Figure 5a test data sets were filtered according to
the number of team fights. Only matches that have at least the
corresponding number of team fights will be included in the
model predictions. The eight lines within the figure are the
prediction accuracy for the test set by various RNN models.
The stacked bar chart in the background provide information
on the size of the train and test sets. The y-axis for model
accuracy are on the right and the y-axis for sample size are
on the left. X-axis values indicate the cutoff for train and/or
test datasets, using either minutes of game time or the number
of team fights. Results revealed that by ensuring only games
with two or more team fights are used in the holdout test, the
accuracy for all models would be increased to 70% or higher.
However, this benefit does not increase if we were to limit our
predictions to only games with a high number of team fights.

(a) RNN model performance using number of team fights as cutoff
for test data

(b) RNN model performance using number of team fights as cutoff
for training and test data

Fig. 5: RNN model performance with restricted team fight data

In Figure 5b both training and test data sets were filtered
according to the number of team fights. Only matches that
have at least the corresponding number of team fights will
be included in the model predictions. Results revealed that
by ensuring only games with two or more team fights are

used in the holdout test, the accuracy for all models would
be increased to 80% or higher. However, this benefit did not
resulted in large increases if we were to limit our predictions
to only games with a high number of team fights.

Next, we evaluated each model using game time as the
cut-off criteria. Performances of the eight models tested using
team fights that started before a certain game time are shown
in Figure 6a. Performances for all eight models increased
drastically as the the number of minutes increased. As more
team fight data is added into model training, accuracy changes
from lower than 50% to over 70%. Most model performances
were similar, although the two layer bidirectional GRU model
had the highest performance when all team fights up to the 32
minute mark are included for the test data.

Performances of the eight models trained and tested using
team fights that started before a certain game time are shown in
Figure 6b. Similar to the models trained using the full data set,
performances for all eight models increased drastically as the
the number of minutes increased. As more team fight data is
added into model training, accuracy changes from lower than
49% to slightly over 70%. Most model performances were
also similar, but the two layer bidirectional GRU model had
the highest overall performance when team fights up to the 20
minute mark are included for both the training and test data.

Results in Figures 5a and 6a indicated that having both a
team fight number cutoff combined with a game time cutoff
would result in a model that is best able to generalize to future
matches. The results of all eight models with the test data
filtered by game time and containing at least two team fights
are shown in Figure 6c. The results indicate that by having
two filters the number of test data is drastically reduced. This
resulted in stronger initial performance compared to 6a, but
similar performance afterwards until the 20 minute game time
cutoff with the requirement of also having at least two team
fights. Best model performances at 32 minutes of game time
increased to over 72%.

The results of all eight models with both the training and
test data filtered by game time and containing at least two
team fights are shown in Figure 6d. The results indicate that
by having two filters the number of training and test data is
reduced. This resulted in poorer initial performance compared
to 6a, but similar, if slightly higher, performance afterwards
until the 32 minute game time cutoff with the requirement of
also having at least two team fights. Model performances at
32 minutes of game time is slightly higher than 72%.

To verify the effect of having both filters, we also tested
the same model configurations with a more stringent number
of team fights. The results of all eight models with the test
data filtered by game time and containing at least three team
fights are shown in Figure 6e. Similar to what was observed
with the requirement of two team fights, training the model
on filtered data resulted in better initial performance, but no
accuracy improvements afterwards. Best model performance
at 32 minutes of game time is around 72%.

The results of all eight models with both the training and test
data filtered by game time and containing at least three team



fights are shown in Figure 6f. Similar to what was observed
in Figure 6d, training the model on filtered data resulted in
poorer initial performance, but a slight improvement after 20
minutes of game time. Model performance at 32 minutes of
game time is slightly higher than 72%.

Overall, results in Figure 6 indicate that single layer models
tend to achieve higher accuracy with less data. However, two
layer models are able to provide better results as more training
and/or test data becomes available.

VI. DISCUSSION

In this research we first expanded on the encounter detection
algorithm developed by Schubert et al. [1] by defining team
fight as encounters with at least one kill. Our approach allowed
us to extract important team fight based attributes to use in our
match outcome prediction models.

Match outcome prediction results revealed that RNN models
were able to predict the outcome of an ongoing DOTA
2 match. Our results indicate that it is possible to utilize
deep learning models in predicting the outcome of real-time
ongoing matches. Accurate predictions also do not necessitate
the use of all game related data, but only features related to
team fights. By leveraging only team fight performance in the
first 5 minutes of a match, our models were able to achieve
over 50% accuracy in predicting final match outcome. If an
additional filter requiring a specific number of team fights to
be included were added, the model’s accuracy would improve
to over 50% using only the first 5 minutes of data.

The performance of all eight models were similar in terms
of accuracy. No model performed best in all scenarios. GRU
models, especially two layer bidirectional GRUs were able
to achieve slightly higher performance when there were more
data due to game time cutoffs. This is especially evident when
both training and test data were filtered according to game
time. However, all eight models had less than 1% difference
in accuracy when only 5 minutes of data were included. This
indicates that if ample computation resources are available,
all eight models could be used to create a more accurate
prediction. Different models should be deployed for different
stages of the game in order to maximize the advantages of
each given limited data. Based on our results, to achieve the
highest possible prediction accuracy, both a one layer model
and a two layer model should be employed. The one layer
model would be used to predict match outcome if less than
10 minutes of data is available. Once the match has progressed
beyond 10 minutes a two layer model, preferably a two layer
bi-directional GRU model, should be used.

The implications of our results are twofold. First, we have
established that it is possible to build a real-time prediction
system for ongoing DOTA 2 matches using RNN models
only trained on team fight data. The accuracy improves as the
match unfolds and more team fights occur, similar to the result
obtained by Hodge et al. [6]. Although our models did not
achieve better accuracy compared to past research [6], these
results do indicate that team fights serves as an important data
point for predicting overall match outcomes.

The model presented could be repeatedly updated in real
time to provide an esports audience and/or commentator with
progressively more accurate predictions of the overall match
outcome, similar to models proposed by others, e.g. Hodge et
al. [6] and Schubert et al. [1].

On a further note, due to the varied nature of DOTA 2
matches, restricting the model to only utilize games with up
to a certain number of team fights would result in overfitting,
due to the smaller sample size. Restricting the model to only
using the features within a certain number of fights would also
result in lower accuracy. This implies that it does not matter
how many team fights a match contains, what matters are the
features within the fights, the match time at which they are
fought, and the order they are in.

A limitation of our research is the exclusive use of aggre-
gated data. By aggregating all team fight performance data
to the faction and team fight level, we were able to ensure
that our models were trained efficiently. However, a more
granular approach to the modeling, by focusing on player level
performance could potentially increase the overall accuracy of
our model [6], [10], [12], [13].

Previous prediction models for esports, to the best knowl-
edge of the authors, did not integrate team fights as a factor.
As shown here, team fights alone provide a signal for match
prediction, and therefore appear to be a contender for inclusion
in match prediction models as a novel feature. Therefore,
to improve match prediction models in esports analytics, a
potential venue for future exploration could be the integration
of both in-game player team fight performance with traditional
performance statistics [6]. A third line of data that could be
explored to enhance prediction systems are player physiolog-
ical characteristics [31]. Another area that could be expanded
upon is the identification of players/heroes with exceptional
contributions within team fights (Most Valuable Player, MVP).
This would involve leveraging player role identification and
individual player performance to enhance our existing models
[12]. Of course, the influence of team hero combinations could
also be added to enhance the performance of our models [13].

VII. CONCLUSION AND FUTURE WORK

In this research, we identified and defined the core concept
of team fights in DOTA 2 esports. Team fights occur when
players from opposing teams encounter each other on the
playfield, and are important elements of an esports match that
can be decisive for the match outcome. We utilized data from
team fights in the esports game Dota 2 to explore the potential
use of team fight information in real-time match prediction
models in such multi-player online battle arena games. This
involved defining a team fight detection algorithm to filter
and aggregate faction level (i.e. each team) features within
each team fight. We then utilized the resulting data to train
eight different types of RNN models to predict overall match
outcome. Our models were able to achieve an accuracy of over
70% when including all team fight data up to 32 minutes into
a match. Model performances were over 50% when trained on
the first 5 minutes of each match and at least 2 team fights.



(a) performance using match time as cut-off for test data (b) performance using match time as cut-off for training and test data

(c) performance for games with at least 2 team fights using match
time as cutoff for test data

(d) performance for games with at least 2 team fights using match
time as cutoff for training and test data

(e) performance for games with at least 3 team fights using match
time as cutoff for test data

(f) performance for games with at least 3 team fights using match
time as cutoff for training and test data

Fig. 6: RNN model performance with restricted data by game time

These results indicate that team fights alone contain a signal
useful for predicting match winners, and indicates that team
fight data could potentially be used as a new source of features
to improve match prediction models in esports. Nevertheless,
our results were not as strong as that obtained in previous
research [6]. The performance of our models could potentially

be improved by incorporating further signals, as suggested by
adding player roles in Demediuk et al. [12].

The deep learning models presented here can be utilized
in real-time, allowing commentators to note the impact of
each team fight on the overall match outcome. The team fight
detection algorithm could also be extended to automate the in-



game camera to focus on detecting team fight events. Given
the nature of Dota 2 and similar games, ensuring the in-game
camera is always focused on events that are of interest to the
audience is a key challenge in esports, where the in-game
action can take place in multiple places of the map at the
same time [7]. Esports commentators can easily tell whether
a team fight happens, but it requires years of experiences
to understand the impact of each team fight and convey it
clearly to audiences [2]. Furthermore, there is no quantitative
way for measuring the influence of each team fight over the
whole match. Our models, by solely leveraging team fight
information, allows any prediction updates in live matches to
be a direct reflection of the last team fight. Hence, the focus on
only team fight information allows the RNN model predictions
to be intimately tied to game context. This makes any changes
to the predicted overall match outcome easily interpretable by
commentators and audiences alike.

As would be expected, model performance in a team fight-
based prediction model increases as more match time elapses,
consistent with previous work (e.g. [6]. By adding team fight
data to prediction models, it is possible their performance and
accuracy could be enhanced. Future studies could thus extend
previous work, and the work presented here, by integrating
team fights data with player level performance features [6],
[13], [31], hero role identification [12], spellcasting and ability
use, (currently not explored in the esports analytics literature,
but could be treated as text tokens that can be utilized with
Transformer models [32]) and potentially even physiological
characteristics [31].
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