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Abstract. A simple way to calculate the number of k-matchings, k ≤ 5, in
hexagonal systems is presented. Some relations between the coefficients of the
characteristic polynomial of the adjacency matrix of a hexagonal system and
the number of matchings are obtained.

1. Introduction

A hexagonal system is a 2-connected plane graph G such that every interior
face of G is a regular hexagon. A k-matching (or a matching of order k) of a
graph G is a set of k pairwise nonadjacent edges of G.

A hexagonal system has only vertices of degree 2 or 3. Note also that each
hexagonal system H is a bipartite graph. It is also easy to see that H does not
contain cycles of lengths 4, 8.

Let G be a hexagonal system. Throughout the paper, n will denote the
number of vertices whereas m will stand for the number of edges of G. By
A = {aij}ni,j=1 we will denote the adjacency matrix of G, that is

aij =

½
0, ij /∈ E (G)
1, ij ∈ E (G) .

Since every hexagonal system is bipartite, coefficients of the characteristic
polynomial of A at xn−1, xn−3, . . . are zero.

The following result is also well known (cf. [1]) and easily follows from the
permutation expansion of the determinant det (xI−A).
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1.1. Lemma. Let G be a hexagonal system. Then its characteristic polyno-
mial is of the form

det (xI−A) = xn − a2xn−2 + a4xn−4 − a6xn−6 + · · · ,

where a2, a4, a6, . . . are all nonnegative. If H is a subgraph of G, whose com-
ponents are either cycles or edges, then we define α (H) as 2c(H), where c (H)
is the number of cycles in H . Then for each k, 1 ≤ k ≤ bn/2c, a2k is equal to
the sum of α (H) over all subgraphs H of G with exactly 2k vertices such that
each component of H is either a cycle or an edge.

Let mk denote the number of k-matchings in a hexagonal system G. It is
well known that in case when n is even

mn/2 =
√
an .

This is the connection between the number of perfect matchings and the deter-
minant of the adjacency matrix in hexagonal systems (see, for example [1] or
[2]).

In Sections 1, 2, and 3 some further relations will be obtained among the
coefficients a2, a4, a6 and m1, m2, m3, respectively. In Proposition 2.2, and
Theorems 3.1, 4.1, 5.1 we get simple formulas expressing m2, m3, m4, m5,
respectively, in terms of simple parameters of the hexagonal system. Theorems
2.3, 3.2, 4.2 show how to compute a4, a6, a8. Also, a linear time algorithm for
computing mk, k = 2, 3, 4, 5 is presented. The reader is referred to [2, 3, 4, 5]
for some further results on matchings in hexagonal systems.

We will need some additional notation. Let G be a hexagonal system. Let
Πk be the number of paths in G that have exactly k edges. We will denote by
X1 the number of edges of G whose both endpoints have degree 3. Let X2 be
the number of paths in G that have exactly two edges and their endpoints both
have degree 3. Further, let ∆ be the number of vertices of degree 3 whose all
neighbors are of degree 3, see Figure 1. All these quantities, except Πk, can
be computed in linear time O (n) by a single search over all vertices of G. Πk
can also be computed in linear time for k = 2, 3, 4, 5, 6. This can be done by
starting the breadth-first search at each vertex and counting how many different
vertices we have reached after 2, 3, 4, 5, 6 steps. Summing over all the vertices
and dividing the sum by 2, gives us Πk for k = 2, 3, 4, 5, 6.
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Figure 1. Situations of types X1,X2, and ∆.

We will also use the symbol ] followed by a figure of a graph to denote the
number of subgraphs of G isomorphic to the graph shown. So, for example:

] bb = Π1 ,

] bbbb = m2 ,

] bbb = Π2 , etc .

Figure 2. A hexagonal system with 8 hexagons.

Example 1.1. Let G be the hexagonal system shown in Figure 2. Then

X1 = 15, X2 = 24, ∆ = 6,
Π2 = 56, Π3 = 92, Π4 = 152, Π5 = 246 .

Note that G has Π1 = m = 35 edges and n = 28 vertices.
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2. Matchings of order two

In counting the matchings of order two we will derive some results valid for
an arbitrary graph. Let G be a simple graph on n vertices and with m edges.
Let G have ni vertices of degree i, i = 1, 2, . . . , n. Then

n =
nX
i=1

ni and 2m =
nX
i=1

ini .

First of all we note that a2 = m1 = m simply by applying Lemma 1.1.

2.1. Proposition. In an arbitrary simple graph with m edges, n vertices and
ni vertices of degree i (i ≥ 1) we have

m2 =
m (m+ 1)

2
− 1
2

nX
i=1

i2ni .

Proof. m2 =
¡
m
2

¢ − Π2 since the first term is the number of all subsets of
E (G) of order 2 and we subtract number of subsets that do not represent a
matching. (Two edges do not represent a matching if and only if they form a
path.)

Suppose that a vertex v has degree i. Then v is the mid-point vertex of
exactly

¡
i
2

¢
paths of length 2. Summing over all the vertices we obtain Π2 =Pn

i=1

¡
i
2

¢
ni. Hence,

(2.1) m2 =

µ
m

2

¶
− 1
2

nX
i=1

i2ni +
1

2

nX
i=1

ini .

The last sum is equal to m which yields the theorem.

2.1. Corollary. Suppose that G has only vertices of degrees i and j. Then

m2 =
1

2

¡
m2 +m+ ijn− 2im− 2jm¢ .

Proof. From n = ni + nj and 2m = ini + jnj we get

nj =
2m− in
j − i and ni =

nj − 2m
j − i .

Now we simply apply Proposition 2.1.

From (2.1) we easily get the following corollary.
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2.2. Corollary. Let G be a k-regular graph on n vertices. Then

m2 =
1

8

¡
n2k2 + 2nk − 4nk2¢ .

From here on we will consider hexagonal systems only. Let G be an arbitrary
hexagonal system with n vertices and m edges. The following theorem shows
that n and m uniquely determine the number of 2-matchings.

2.2. Proposition. m2 =
1
2

¡
m2 − 9m+ 6n¢.

Proof. In Corollary 2.1 put i = 3 and j = 2.

Clearly, n2 + n3 = n, 2n2 + 3n3 = 2m,n2 + 3n3 = Π2. This implies

2.1. Lemma. n2 = 3n− 2m,n3 = 2m− 2n,Π2 = 4m− 3n.
The number of 2-matchings is also related to the characteristic polynomial

of a hexagonal system.

2.3. Observation. In a hexagonal system we have m2 = a4.

Proof. Since hexagonal systems do not have cycles of length 4, subgraphs
H from Lemma 1.1 correspond precisely to 2-matchings in G, and for them we
have α (H) = 1.

3. Matchings of order three

Counting the number of 3-matchings is slightly more complicated. For each
vertex i let Πk (i) denote the number of paths which have k edges and one of
whose endpoints is the vertex i. We will refer to a path which has k edges as a
k-path. Clearly

(3.1) Πk =
1

2

nX
i=1

Πk (i) =
1

2

µ X
i,deg(i)=3

Πk (i) +
X

i,deg(i)=2

Πk (i)

¶
.

We also have

3.1. Lemma. For 2 ≤ k ≤ 5,

Πk =
1
2

µ
2 ·Pi,deg(i)=3Πk−1 (i) +

P
i,deg(i)=2Πk−1 (i)

¶
.

Proof. k being smaller than the length of a shortest cycle in G, any (k − 1)-
path P that has an end vertex v of degree i can be extended through v to exactly
i− 1 k−paths. Using this observation and the fact that in such a way we have
counted each k-path twice, the result of the lemma follows.
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3.2. Lemma. Π3 = 7m− 6n+X1.

Proof. Using (3.1) for k = 2 and Lemma 3.1 for k = 3, we obtain

(3.2) Π3 =
1

2

µ
2Π2 +

X
i,deg(i)=3

Π2 (i)

¶
.

Let i be a vertex of degree 3. Let ti be the number of its neighbors of degree 3.
Clearly, Π2 (i) = ti + 3. Therefore

(3.3)
X

i,deg(i)=3

Π2 (i) =
X

i,deg(i)=3

(ti + 3) = 3n3 + 2X1 .

Now we only fill up the values for Π2 and n3 from Lemma 2.1 into (3.2) and
(3.3).

The main result of this section is the following.

3.1. Theorem. m3 =
1
6

¡
m3 − 27m2 + 116m+ 18mn− 96n+ 6X1

¢
.

Proof. We will use the formula

(3.4) m3 =

µ
m

3

¶
− (m− 2)Π2 +Π3 + 2n3

which is obtained as follows. From the number of all 3−subsets (the first term)
we subtract the number of those 3−subsets that do not represent 3-matchings.
To each 2-path we add an edge that does not lie on this path. Only such subsets
do not represent 3-matchings. This yields the second term. However, every 3-
path ijkl has been counted twice: therefore we have to add the third term.
Moreover, each subset {ij, ik, il}, where i is a vertex of degree 3, has been
counted thrice: therefore we have to add the last term.

Eventually, we insert into (3.4) the values for Π2 and n3 (Lemma 2.1) and
for Π3 (Lemma 3.2).

3.2. Theorem.

(3.5) a6 = m3 + 2h ,

where h = m− n+ 1 is the number of hexagons in G.

Proof. We apply Lemma 1.1. A subgraph H of G from Lemma 1.1 can only
be a hexagon or three pairwise disjoint edges. The former ones have α (H) = 2
and are therefore represented by the second term in (3.5) whereas the latter ones
are precisely the 3-matchings. Note that we have also used Euler’s polyhedron
formula, which implies that the number of hexagons is m− n+ 1.
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4. Matchings of order four

To count the number of matchings of order four, we will use the same method
as developed in the proof of Theorem 3.1. Therefore only equations will be
written down and the arguments for their proof omitted.

4.1. Theorem. m4 =
m4

24 − 9m3

4 + 707m2

24 +X1m− 329m
4 −X2− 10X1+ 9n2

2 +
147n
2 − 59mn

2 + 3m2n
2 .

Proof.

(4.1) m4 =
¡
m
4

¢− ¡m−22 ¢
Π2 + 2Π4 + 2 · ] bbbbbb+3 · ] bbb

bb
+

] bbbbbb+ ] bbb
bbb

.

Note that the coefficient in front of each figure is equal to the number of
2-paths in that figure minus 1. This is because one pattern must remain in
subtracting the second term. Similarly we get

(4.2) (m− 3)n3 = ] bbbbbb+ ] bbb
bb
.

(4.3)
¡
Π2
2

¢
= ] bbbbbb+ ] bbb

bb
+Π4 +Π3 + 3n3.

(4.4) (m− 3)Π3 = ] bbb
bbb

+2 · ] bbb
bb
+2Π4.

From each of (4.2)-(4.4) we express the first term on the right hand side and
use this in (4.1). We apply expressions for Π2,Π3,Π4, and n3 from previous
sections. If we also use

(4.5) ] bbb
bb
=
P

i,deg(i)=3Π2 (i) = 2X1 + 3n3,
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we get the claim.

4.2. Theorem. a8 = m4 + 2m
2 − 26m− 2mn+ 30n− 24.

Proof. Applying Lemma 1.1 and observing that appropriate subgraphs H are
only hexagons together with a disjoint edge (H = C6 ∪ P2) or 4-matchings, we
derive

(4.6) a8 = 2 · ](C6 ∪ P2) +m4 .

The following relation holds

(4.7) (m− 6) (m− n+ 1) = (m− 6) · ]C6 = ](C6 ∪ P2) + ](Q) ,
where Q denotes a graph consisting of a hexagon plus one pendant edge

attached to a vertex of the hexagon.
To count ](Q), we observe that it depends only on vertices of degree 3. Let s2

be the number of vertices of degree 3 belonging to 2 hexagons and similarly let
s3 be the number of vertices of degree 3 belonging to 3 hexagons. Observe that
each vertex of degree 2 lies in exactly one hexagon. Recall that ni is the number
of vertices of degree i. Therefore we get the following system of equations

n2 + 2s2 + 3s3 = 6(m− n+ 1)
s2 + s3 = n3

n2 + n3 = n

Now it easily follows that s3 = 4m− 5n+ 6. If a vertex of degree 3 lies in 2
or 3 hexagons, then such a vertex contributes 2, 3, respectively, to the number
](Q). Therefore

(4.8) ](Q) = 2n3 + s3 = 2n3 + 4m− 5n+ 6 .
Putting (4.6), (4.7), and (4.8) together, we get the theorem.

5. Matchings of order five

For 5-matchings we can apply the same method as in the proof of Theorem
4.1 but the task is more tedious. The proof is rather technical and therefore
omitted.

5.1. Theorem.

m5 =
m5

120
− 3m

4

4
+
475m3

24
− 677m

2

4
+
1661m

5
− 48n2− 308n+ 9mn

2

2
+
nm3

2
−

−43m
2n

2
+
407nm

2
+72X1− 29mX1

2
+
m2X1
2

+3nX1+10X2−mX2+2∆+Π5 .
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6. Concluding remarks

6.1. Proposition. Let G be a hexagonal system. For k = 1, . . . , bn/2c we
have a2k ≥ mk.

Proof. For a2k we have a suitable representation in Lemma 1.1. All the terms
in the sum are nonnegative and some terms of the sum represent k-matchings.
Since each term is nonnegative, the theorem follows.

In Section 5 we did not relate m5 and a10. It is ‘difficult’ to calculate the

number of subgraphs isomorphic to the graph . This number can still be

expressed in terms of ] and ] , where the two added

edges in the last graph are allowed to be in any of the six positions on the
hexagon.

What about counting the number of 6-matchings? The methods used in this
paper can be applied but the formulas become much more complicated.

Example 6.1. Let us apply our results to the hexagonal system discussed in
Example 1.1. All values required have already been determined (m = 35, n =
28). Using theorems concerning matchings, we can easily compute

m1 = 35, m2 = 539,
m3 = 4817, m4 = 27742, m5 = 108104 .

According to our results expressing a2i with mi (i = 1, 2, 3, 4) we can in
an easy way write down the first terms of the charaterstic polynomial, namely,
x28 − 35x26 + 539x24 − 4833x22 + 28138x20 − · · ·.

For some examples of the matching polynomial

m(G;x) = xn −m1x
n−2 +m2x

n−4 − . . .
of a hexagonal system G see [6, 7].
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